1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The LoopPredication pass tries to convert loop variant range checks to loop 10 // invariant by widening checks across loop iterations. For example, it will 11 // convert 12 // 13 // for (i = 0; i < n; i++) { 14 // guard(i < len); 15 // ... 16 // } 17 // 18 // to 19 // 20 // for (i = 0; i < n; i++) { 21 // guard(n - 1 < len); 22 // ... 23 // } 24 // 25 // After this transformation the condition of the guard is loop invariant, so 26 // loop-unswitch can later unswitch the loop by this condition which basically 27 // predicates the loop by the widened condition: 28 // 29 // if (n - 1 < len) 30 // for (i = 0; i < n; i++) { 31 // ... 32 // } 33 // else 34 // deoptimize 35 // 36 // It's tempting to rely on SCEV here, but it has proven to be problematic. 37 // Generally the facts SCEV provides about the increment step of add 38 // recurrences are true if the backedge of the loop is taken, which implicitly 39 // assumes that the guard doesn't fail. Using these facts to optimize the 40 // guard results in a circular logic where the guard is optimized under the 41 // assumption that it never fails. 42 // 43 // For example, in the loop below the induction variable will be marked as nuw 44 // basing on the guard. Basing on nuw the guard predicate will be considered 45 // monotonic. Given a monotonic condition it's tempting to replace the induction 46 // variable in the condition with its value on the last iteration. But this 47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop. 48 // 49 // for (int i = b; i != e; i++) 50 // guard(i u< len) 51 // 52 // One of the ways to reason about this problem is to use an inductive proof 53 // approach. Given the loop: 54 // 55 // if (B(0)) { 56 // do { 57 // I = PHI(0, I.INC) 58 // I.INC = I + Step 59 // guard(G(I)); 60 // } while (B(I)); 61 // } 62 // 63 // where B(x) and G(x) are predicates that map integers to booleans, we want a 64 // loop invariant expression M such the following program has the same semantics 65 // as the above: 66 // 67 // if (B(0)) { 68 // do { 69 // I = PHI(0, I.INC) 70 // I.INC = I + Step 71 // guard(G(0) && M); 72 // } while (B(I)); 73 // } 74 // 75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step) 76 // 77 // Informal proof that the transformation above is correct: 78 // 79 // By the definition of guards we can rewrite the guard condition to: 80 // G(I) && G(0) && M 81 // 82 // Let's prove that for each iteration of the loop: 83 // G(0) && M => G(I) 84 // And the condition above can be simplified to G(Start) && M. 85 // 86 // Induction base. 87 // G(0) && M => G(0) 88 // 89 // Induction step. Assuming G(0) && M => G(I) on the subsequent 90 // iteration: 91 // 92 // B(I) is true because it's the backedge condition. 93 // G(I) is true because the backedge is guarded by this condition. 94 // 95 // So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step). 96 // 97 // Note that we can use anything stronger than M, i.e. any condition which 98 // implies M. 99 // 100 // When S = 1 (i.e. forward iterating loop), the transformation is supported 101 // when: 102 // * The loop has a single latch with the condition of the form: 103 // B(X) = latchStart + X <pred> latchLimit, 104 // where <pred> is u<, u<=, s<, or s<=. 105 // * The guard condition is of the form 106 // G(X) = guardStart + X u< guardLimit 107 // 108 // For the ult latch comparison case M is: 109 // forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit => 110 // guardStart + X + 1 u< guardLimit 111 // 112 // The only way the antecedent can be true and the consequent can be false is 113 // if 114 // X == guardLimit - 1 - guardStart 115 // (and guardLimit is non-zero, but we won't use this latter fact). 116 // If X == guardLimit - 1 - guardStart then the second half of the antecedent is 117 // latchStart + guardLimit - 1 - guardStart u< latchLimit 118 // and its negation is 119 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 120 // 121 // In other words, if 122 // latchLimit u<= latchStart + guardLimit - 1 - guardStart 123 // then: 124 // (the ranges below are written in ConstantRange notation, where [A, B) is the 125 // set for (I = A; I != B; I++ /*maywrap*/) yield(I);) 126 // 127 // forall X . guardStart + X u< guardLimit && 128 // latchStart + X u< latchLimit => 129 // guardStart + X + 1 u< guardLimit 130 // == forall X . guardStart + X u< guardLimit && 131 // latchStart + X u< latchStart + guardLimit - 1 - guardStart => 132 // guardStart + X + 1 u< guardLimit 133 // == forall X . (guardStart + X) in [0, guardLimit) && 134 // (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) => 135 // (guardStart + X + 1) in [0, guardLimit) 136 // == forall X . X in [-guardStart, guardLimit - guardStart) && 137 // X in [-latchStart, guardLimit - 1 - guardStart) => 138 // X in [-guardStart - 1, guardLimit - guardStart - 1) 139 // == true 140 // 141 // So the widened condition is: 142 // guardStart u< guardLimit && 143 // latchStart + guardLimit - 1 - guardStart u>= latchLimit 144 // Similarly for ule condition the widened condition is: 145 // guardStart u< guardLimit && 146 // latchStart + guardLimit - 1 - guardStart u> latchLimit 147 // For slt condition the widened condition is: 148 // guardStart u< guardLimit && 149 // latchStart + guardLimit - 1 - guardStart s>= latchLimit 150 // For sle condition the widened condition is: 151 // guardStart u< guardLimit && 152 // latchStart + guardLimit - 1 - guardStart s> latchLimit 153 // 154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported 155 // when: 156 // * The loop has a single latch with the condition of the form: 157 // B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=. 158 // * The guard condition is of the form 159 // G(X) = X - 1 u< guardLimit 160 // 161 // For the ugt latch comparison case M is: 162 // forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit 163 // 164 // The only way the antecedent can be true and the consequent can be false is if 165 // X == 1. 166 // If X == 1 then the second half of the antecedent is 167 // 1 u> latchLimit, and its negation is latchLimit u>= 1. 168 // 169 // So the widened condition is: 170 // guardStart u< guardLimit && latchLimit u>= 1. 171 // Similarly for sgt condition the widened condition is: 172 // guardStart u< guardLimit && latchLimit s>= 1. 173 // For uge condition the widened condition is: 174 // guardStart u< guardLimit && latchLimit u> 1. 175 // For sge condition the widened condition is: 176 // guardStart u< guardLimit && latchLimit s> 1. 177 //===----------------------------------------------------------------------===// 178 179 #include "llvm/Transforms/Scalar/LoopPredication.h" 180 #include "llvm/ADT/Statistic.h" 181 #include "llvm/Analysis/AliasAnalysis.h" 182 #include "llvm/Analysis/BranchProbabilityInfo.h" 183 #include "llvm/Analysis/GuardUtils.h" 184 #include "llvm/Analysis/LoopInfo.h" 185 #include "llvm/Analysis/LoopPass.h" 186 #include "llvm/Analysis/MemorySSA.h" 187 #include "llvm/Analysis/MemorySSAUpdater.h" 188 #include "llvm/Analysis/ScalarEvolution.h" 189 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 190 #include "llvm/IR/Function.h" 191 #include "llvm/IR/IntrinsicInst.h" 192 #include "llvm/IR/Module.h" 193 #include "llvm/IR/PatternMatch.h" 194 #include "llvm/InitializePasses.h" 195 #include "llvm/Pass.h" 196 #include "llvm/Support/CommandLine.h" 197 #include "llvm/Support/Debug.h" 198 #include "llvm/Transforms/Scalar.h" 199 #include "llvm/Transforms/Utils/GuardUtils.h" 200 #include "llvm/Transforms/Utils/Local.h" 201 #include "llvm/Transforms/Utils/LoopUtils.h" 202 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 203 204 #define DEBUG_TYPE "loop-predication" 205 206 STATISTIC(TotalConsidered, "Number of guards considered"); 207 STATISTIC(TotalWidened, "Number of checks widened"); 208 209 using namespace llvm; 210 211 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation", 212 cl::Hidden, cl::init(true)); 213 214 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop", 215 cl::Hidden, cl::init(true)); 216 217 static cl::opt<bool> 218 SkipProfitabilityChecks("loop-predication-skip-profitability-checks", 219 cl::Hidden, cl::init(false)); 220 221 // This is the scale factor for the latch probability. We use this during 222 // profitability analysis to find other exiting blocks that have a much higher 223 // probability of exiting the loop instead of loop exiting via latch. 224 // This value should be greater than 1 for a sane profitability check. 225 static cl::opt<float> LatchExitProbabilityScale( 226 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), 227 cl::desc("scale factor for the latch probability. Value should be greater " 228 "than 1. Lower values are ignored")); 229 230 static cl::opt<bool> PredicateWidenableBranchGuards( 231 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, 232 cl::desc("Whether or not we should predicate guards " 233 "expressed as widenable branches to deoptimize blocks"), 234 cl::init(true)); 235 236 namespace { 237 /// Represents an induction variable check: 238 /// icmp Pred, <induction variable>, <loop invariant limit> 239 struct LoopICmp { 240 ICmpInst::Predicate Pred; 241 const SCEVAddRecExpr *IV; 242 const SCEV *Limit; 243 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV, 244 const SCEV *Limit) 245 : Pred(Pred), IV(IV), Limit(Limit) {} 246 LoopICmp() = default; 247 void dump() { 248 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV 249 << ", Limit = " << *Limit << "\n"; 250 } 251 }; 252 253 class LoopPredication { 254 AliasAnalysis *AA; 255 DominatorTree *DT; 256 ScalarEvolution *SE; 257 LoopInfo *LI; 258 MemorySSAUpdater *MSSAU; 259 260 Loop *L; 261 const DataLayout *DL; 262 BasicBlock *Preheader; 263 LoopICmp LatchCheck; 264 265 bool isSupportedStep(const SCEV* Step); 266 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI); 267 Optional<LoopICmp> parseLoopLatchICmp(); 268 269 /// Return an insertion point suitable for inserting a safe to speculate 270 /// instruction whose only user will be 'User' which has operands 'Ops'. A 271 /// trivial result would be the at the User itself, but we try to return a 272 /// loop invariant location if possible. 273 Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops); 274 /// Same as above, *except* that this uses the SCEV definition of invariant 275 /// which is that an expression *can be made* invariant via SCEVExpander. 276 /// Thus, this version is only suitable for finding an insert point to be be 277 /// passed to SCEVExpander! 278 Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User, 279 ArrayRef<const SCEV *> Ops); 280 281 /// Return true if the value is known to produce a single fixed value across 282 /// all iterations on which it executes. Note that this does not imply 283 /// speculation safety. That must be established separately. 284 bool isLoopInvariantValue(const SCEV* S); 285 286 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard, 287 ICmpInst::Predicate Pred, const SCEV *LHS, 288 const SCEV *RHS); 289 290 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander, 291 Instruction *Guard); 292 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, 293 LoopICmp RangeCheck, 294 SCEVExpander &Expander, 295 Instruction *Guard); 296 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, 297 LoopICmp RangeCheck, 298 SCEVExpander &Expander, 299 Instruction *Guard); 300 unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition, 301 SCEVExpander &Expander, Instruction *Guard); 302 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander); 303 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander); 304 // If the loop always exits through another block in the loop, we should not 305 // predicate based on the latch check. For example, the latch check can be a 306 // very coarse grained check and there can be more fine grained exit checks 307 // within the loop. 308 bool isLoopProfitableToPredicate(); 309 310 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 311 312 public: 313 LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE, 314 LoopInfo *LI, MemorySSAUpdater *MSSAU) 315 : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){}; 316 bool runOnLoop(Loop *L); 317 }; 318 319 class LoopPredicationLegacyPass : public LoopPass { 320 public: 321 static char ID; 322 LoopPredicationLegacyPass() : LoopPass(ID) { 323 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry()); 324 } 325 326 void getAnalysisUsage(AnalysisUsage &AU) const override { 327 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 328 getLoopAnalysisUsage(AU); 329 AU.addPreserved<MemorySSAWrapperPass>(); 330 } 331 332 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 333 if (skipLoop(L)) 334 return false; 335 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 336 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 337 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 338 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 339 std::unique_ptr<MemorySSAUpdater> MSSAU; 340 if (MSSAWP) 341 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA()); 342 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 343 LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() : nullptr); 344 return LP.runOnLoop(L); 345 } 346 }; 347 348 char LoopPredicationLegacyPass::ID = 0; 349 } // end namespace 350 351 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication", 352 "Loop predication", false, false) 353 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) 354 INITIALIZE_PASS_DEPENDENCY(LoopPass) 355 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication", 356 "Loop predication", false, false) 357 358 Pass *llvm::createLoopPredicationPass() { 359 return new LoopPredicationLegacyPass(); 360 } 361 362 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM, 363 LoopStandardAnalysisResults &AR, 364 LPMUpdater &U) { 365 std::unique_ptr<MemorySSAUpdater> MSSAU; 366 if (AR.MSSA) 367 MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA); 368 LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, 369 MSSAU ? MSSAU.get() : nullptr); 370 if (!LP.runOnLoop(&L)) 371 return PreservedAnalyses::all(); 372 373 auto PA = getLoopPassPreservedAnalyses(); 374 if (AR.MSSA) 375 PA.preserve<MemorySSAAnalysis>(); 376 return PA; 377 } 378 379 Optional<LoopICmp> 380 LoopPredication::parseLoopICmp(ICmpInst *ICI) { 381 auto Pred = ICI->getPredicate(); 382 auto *LHS = ICI->getOperand(0); 383 auto *RHS = ICI->getOperand(1); 384 385 const SCEV *LHSS = SE->getSCEV(LHS); 386 if (isa<SCEVCouldNotCompute>(LHSS)) 387 return None; 388 const SCEV *RHSS = SE->getSCEV(RHS); 389 if (isa<SCEVCouldNotCompute>(RHSS)) 390 return None; 391 392 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV 393 if (SE->isLoopInvariant(LHSS, L)) { 394 std::swap(LHS, RHS); 395 std::swap(LHSS, RHSS); 396 Pred = ICmpInst::getSwappedPredicate(Pred); 397 } 398 399 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS); 400 if (!AR || AR->getLoop() != L) 401 return None; 402 403 return LoopICmp(Pred, AR, RHSS); 404 } 405 406 Value *LoopPredication::expandCheck(SCEVExpander &Expander, 407 Instruction *Guard, 408 ICmpInst::Predicate Pred, const SCEV *LHS, 409 const SCEV *RHS) { 410 Type *Ty = LHS->getType(); 411 assert(Ty == RHS->getType() && "expandCheck operands have different types?"); 412 413 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) { 414 IRBuilder<> Builder(Guard); 415 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS)) 416 return Builder.getTrue(); 417 if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred), 418 LHS, RHS)) 419 return Builder.getFalse(); 420 } 421 422 Value *LHSV = 423 Expander.expandCodeFor(LHS, Ty, findInsertPt(Expander, Guard, {LHS})); 424 Value *RHSV = 425 Expander.expandCodeFor(RHS, Ty, findInsertPt(Expander, Guard, {RHS})); 426 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV})); 427 return Builder.CreateICmp(Pred, LHSV, RHSV); 428 } 429 430 // Returns true if its safe to truncate the IV to RangeCheckType. 431 // When the IV type is wider than the range operand type, we can still do loop 432 // predication, by generating SCEVs for the range and latch that are of the 433 // same type. We achieve this by generating a SCEV truncate expression for the 434 // latch IV. This is done iff truncation of the IV is a safe operation, 435 // without loss of information. 436 // Another way to achieve this is by generating a wider type SCEV for the 437 // range check operand, however, this needs a more involved check that 438 // operands do not overflow. This can lead to loss of information when the 439 // range operand is of the form: add i32 %offset, %iv. We need to prove that 440 // sext(x + y) is same as sext(x) + sext(y). 441 // This function returns true if we can safely represent the IV type in 442 // the RangeCheckType without loss of information. 443 static bool isSafeToTruncateWideIVType(const DataLayout &DL, 444 ScalarEvolution &SE, 445 const LoopICmp LatchCheck, 446 Type *RangeCheckType) { 447 if (!EnableIVTruncation) 448 return false; 449 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() > 450 DL.getTypeSizeInBits(RangeCheckType).getFixedSize() && 451 "Expected latch check IV type to be larger than range check operand " 452 "type!"); 453 // The start and end values of the IV should be known. This is to guarantee 454 // that truncating the wide type will not lose information. 455 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit); 456 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart()); 457 if (!Limit || !Start) 458 return false; 459 // This check makes sure that the IV does not change sign during loop 460 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE, 461 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the 462 // IV wraps around, and the truncation of the IV would lose the range of 463 // iterations between 2^32 and 2^64. 464 if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred)) 465 return false; 466 // The active bits should be less than the bits in the RangeCheckType. This 467 // guarantees that truncating the latch check to RangeCheckType is a safe 468 // operation. 469 auto RangeCheckTypeBitSize = 470 DL.getTypeSizeInBits(RangeCheckType).getFixedSize(); 471 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize && 472 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize; 473 } 474 475 476 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with 477 // the requested type if safe to do so. May involve the use of a new IV. 478 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL, 479 ScalarEvolution &SE, 480 const LoopICmp LatchCheck, 481 Type *RangeCheckType) { 482 483 auto *LatchType = LatchCheck.IV->getType(); 484 if (RangeCheckType == LatchType) 485 return LatchCheck; 486 // For now, bail out if latch type is narrower than range type. 487 if (DL.getTypeSizeInBits(LatchType).getFixedSize() < 488 DL.getTypeSizeInBits(RangeCheckType).getFixedSize()) 489 return None; 490 if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType)) 491 return None; 492 // We can now safely identify the truncated version of the IV and limit for 493 // RangeCheckType. 494 LoopICmp NewLatchCheck; 495 NewLatchCheck.Pred = LatchCheck.Pred; 496 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>( 497 SE.getTruncateExpr(LatchCheck.IV, RangeCheckType)); 498 if (!NewLatchCheck.IV) 499 return None; 500 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType); 501 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType 502 << "can be represented as range check type:" 503 << *RangeCheckType << "\n"); 504 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n"); 505 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n"); 506 return NewLatchCheck; 507 } 508 509 bool LoopPredication::isSupportedStep(const SCEV* Step) { 510 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop); 511 } 512 513 Instruction *LoopPredication::findInsertPt(Instruction *Use, 514 ArrayRef<Value*> Ops) { 515 for (Value *Op : Ops) 516 if (!L->isLoopInvariant(Op)) 517 return Use; 518 return Preheader->getTerminator(); 519 } 520 521 Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander, 522 Instruction *Use, 523 ArrayRef<const SCEV *> Ops) { 524 // Subtlety: SCEV considers things to be invariant if the value produced is 525 // the same across iterations. This is not the same as being able to 526 // evaluate outside the loop, which is what we actually need here. 527 for (const SCEV *Op : Ops) 528 if (!SE->isLoopInvariant(Op, L) || 529 !Expander.isSafeToExpandAt(Op, Preheader->getTerminator())) 530 return Use; 531 return Preheader->getTerminator(); 532 } 533 534 bool LoopPredication::isLoopInvariantValue(const SCEV* S) { 535 // Handling expressions which produce invariant results, but *haven't* yet 536 // been removed from the loop serves two important purposes. 537 // 1) Most importantly, it resolves a pass ordering cycle which would 538 // otherwise need us to iteration licm, loop-predication, and either 539 // loop-unswitch or loop-peeling to make progress on examples with lots of 540 // predicable range checks in a row. (Since, in the general case, we can't 541 // hoist the length checks until the dominating checks have been discharged 542 // as we can't prove doing so is safe.) 543 // 2) As a nice side effect, this exposes the value of peeling or unswitching 544 // much more obviously in the IR. Otherwise, the cost modeling for other 545 // transforms would end up needing to duplicate all of this logic to model a 546 // check which becomes predictable based on a modeled peel or unswitch. 547 // 548 // The cost of doing so in the worst case is an extra fill from the stack in 549 // the loop to materialize the loop invariant test value instead of checking 550 // against the original IV which is presumable in a register inside the loop. 551 // Such cases are presumably rare, and hint at missing oppurtunities for 552 // other passes. 553 554 if (SE->isLoopInvariant(S, L)) 555 // Note: This the SCEV variant, so the original Value* may be within the 556 // loop even though SCEV has proven it is loop invariant. 557 return true; 558 559 // Handle a particular important case which SCEV doesn't yet know about which 560 // shows up in range checks on arrays with immutable lengths. 561 // TODO: This should be sunk inside SCEV. 562 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 563 if (const auto *LI = dyn_cast<LoadInst>(U->getValue())) 564 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI)) 565 if (AA->pointsToConstantMemory(LI->getOperand(0)) || 566 LI->hasMetadata(LLVMContext::MD_invariant_load)) 567 return true; 568 return false; 569 } 570 571 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop( 572 LoopICmp LatchCheck, LoopICmp RangeCheck, 573 SCEVExpander &Expander, Instruction *Guard) { 574 auto *Ty = RangeCheck.IV->getType(); 575 // Generate the widened condition for the forward loop: 576 // guardStart u< guardLimit && 577 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart 578 // where <pred> depends on the latch condition predicate. See the file 579 // header comment for the reasoning. 580 // guardLimit - guardStart + latchStart - 1 581 const SCEV *GuardStart = RangeCheck.IV->getStart(); 582 const SCEV *GuardLimit = RangeCheck.Limit; 583 const SCEV *LatchStart = LatchCheck.IV->getStart(); 584 const SCEV *LatchLimit = LatchCheck.Limit; 585 // Subtlety: We need all the values to be *invariant* across all iterations, 586 // but we only need to check expansion safety for those which *aren't* 587 // already guaranteed to dominate the guard. 588 if (!isLoopInvariantValue(GuardStart) || 589 !isLoopInvariantValue(GuardLimit) || 590 !isLoopInvariantValue(LatchStart) || 591 !isLoopInvariantValue(LatchLimit)) { 592 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 593 return None; 594 } 595 if (!Expander.isSafeToExpandAt(LatchStart, Guard) || 596 !Expander.isSafeToExpandAt(LatchLimit, Guard)) { 597 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 598 return None; 599 } 600 601 // guardLimit - guardStart + latchStart - 1 602 const SCEV *RHS = 603 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart), 604 SE->getMinusSCEV(LatchStart, SE->getOne(Ty))); 605 auto LimitCheckPred = 606 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 607 608 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n"); 609 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n"); 610 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n"); 611 612 auto *LimitCheck = 613 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS); 614 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred, 615 GuardStart, GuardLimit); 616 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 617 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 618 } 619 620 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop( 621 LoopICmp LatchCheck, LoopICmp RangeCheck, 622 SCEVExpander &Expander, Instruction *Guard) { 623 auto *Ty = RangeCheck.IV->getType(); 624 const SCEV *GuardStart = RangeCheck.IV->getStart(); 625 const SCEV *GuardLimit = RangeCheck.Limit; 626 const SCEV *LatchStart = LatchCheck.IV->getStart(); 627 const SCEV *LatchLimit = LatchCheck.Limit; 628 // Subtlety: We need all the values to be *invariant* across all iterations, 629 // but we only need to check expansion safety for those which *aren't* 630 // already guaranteed to dominate the guard. 631 if (!isLoopInvariantValue(GuardStart) || 632 !isLoopInvariantValue(GuardLimit) || 633 !isLoopInvariantValue(LatchStart) || 634 !isLoopInvariantValue(LatchLimit)) { 635 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 636 return None; 637 } 638 if (!Expander.isSafeToExpandAt(LatchStart, Guard) || 639 !Expander.isSafeToExpandAt(LatchLimit, Guard)) { 640 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n"); 641 return None; 642 } 643 // The decrement of the latch check IV should be the same as the 644 // rangeCheckIV. 645 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE); 646 if (RangeCheck.IV != PostDecLatchCheckIV) { 647 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: " 648 << *PostDecLatchCheckIV 649 << " and RangeCheckIV: " << *RangeCheck.IV << "\n"); 650 return None; 651 } 652 653 // Generate the widened condition for CountDownLoop: 654 // guardStart u< guardLimit && 655 // latchLimit <pred> 1. 656 // See the header comment for reasoning of the checks. 657 auto LimitCheckPred = 658 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred); 659 auto *FirstIterationCheck = expandCheck(Expander, Guard, 660 ICmpInst::ICMP_ULT, 661 GuardStart, GuardLimit); 662 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, 663 SE->getOne(Ty)); 664 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck})); 665 return Builder.CreateAnd(FirstIterationCheck, LimitCheck); 666 } 667 668 static void normalizePredicate(ScalarEvolution *SE, Loop *L, 669 LoopICmp& RC) { 670 // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the 671 // ULT/UGE form for ease of handling by our caller. 672 if (ICmpInst::isEquality(RC.Pred) && 673 RC.IV->getStepRecurrence(*SE)->isOne() && 674 SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit)) 675 RC.Pred = RC.Pred == ICmpInst::ICMP_NE ? 676 ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 677 } 678 679 680 /// If ICI can be widened to a loop invariant condition emits the loop 681 /// invariant condition in the loop preheader and return it, otherwise 682 /// returns None. 683 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI, 684 SCEVExpander &Expander, 685 Instruction *Guard) { 686 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n"); 687 LLVM_DEBUG(ICI->dump()); 688 689 // parseLoopStructure guarantees that the latch condition is: 690 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=. 691 // We are looking for the range checks of the form: 692 // i u< guardLimit 693 auto RangeCheck = parseLoopICmp(ICI); 694 if (!RangeCheck) { 695 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 696 return None; 697 } 698 LLVM_DEBUG(dbgs() << "Guard check:\n"); 699 LLVM_DEBUG(RangeCheck->dump()); 700 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) { 701 LLVM_DEBUG(dbgs() << "Unsupported range check predicate(" 702 << RangeCheck->Pred << ")!\n"); 703 return None; 704 } 705 auto *RangeCheckIV = RangeCheck->IV; 706 if (!RangeCheckIV->isAffine()) { 707 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n"); 708 return None; 709 } 710 auto *Step = RangeCheckIV->getStepRecurrence(*SE); 711 // We cannot just compare with latch IV step because the latch and range IVs 712 // may have different types. 713 if (!isSupportedStep(Step)) { 714 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n"); 715 return None; 716 } 717 auto *Ty = RangeCheckIV->getType(); 718 auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty); 719 if (!CurrLatchCheckOpt) { 720 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check " 721 "corresponding to range type: " 722 << *Ty << "\n"); 723 return None; 724 } 725 726 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt; 727 // At this point, the range and latch step should have the same type, but need 728 // not have the same value (we support both 1 and -1 steps). 729 assert(Step->getType() == 730 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() && 731 "Range and latch steps should be of same type!"); 732 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) { 733 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n"); 734 return None; 735 } 736 737 if (Step->isOne()) 738 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck, 739 Expander, Guard); 740 else { 741 assert(Step->isAllOnesValue() && "Step should be -1!"); 742 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck, 743 Expander, Guard); 744 } 745 } 746 747 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks, 748 Value *Condition, 749 SCEVExpander &Expander, 750 Instruction *Guard) { 751 unsigned NumWidened = 0; 752 // The guard condition is expected to be in form of: 753 // cond1 && cond2 && cond3 ... 754 // Iterate over subconditions looking for icmp conditions which can be 755 // widened across loop iterations. Widening these conditions remember the 756 // resulting list of subconditions in Checks vector. 757 SmallVector<Value *, 4> Worklist(1, Condition); 758 SmallPtrSet<Value *, 4> Visited; 759 Value *WideableCond = nullptr; 760 do { 761 Value *Condition = Worklist.pop_back_val(); 762 if (!Visited.insert(Condition).second) 763 continue; 764 765 Value *LHS, *RHS; 766 using namespace llvm::PatternMatch; 767 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) { 768 Worklist.push_back(LHS); 769 Worklist.push_back(RHS); 770 continue; 771 } 772 773 if (match(Condition, 774 m_Intrinsic<Intrinsic::experimental_widenable_condition>())) { 775 // Pick any, we don't care which 776 WideableCond = Condition; 777 continue; 778 } 779 780 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) { 781 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, 782 Guard)) { 783 Checks.push_back(*NewRangeCheck); 784 NumWidened++; 785 continue; 786 } 787 } 788 789 // Save the condition as is if we can't widen it 790 Checks.push_back(Condition); 791 } while (!Worklist.empty()); 792 // At the moment, our matching logic for wideable conditions implicitly 793 // assumes we preserve the form: (br (and Cond, WC())). FIXME 794 // Note that if there were multiple calls to wideable condition in the 795 // traversal, we only need to keep one, and which one is arbitrary. 796 if (WideableCond) 797 Checks.push_back(WideableCond); 798 return NumWidened; 799 } 800 801 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard, 802 SCEVExpander &Expander) { 803 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 804 LLVM_DEBUG(Guard->dump()); 805 806 TotalConsidered++; 807 SmallVector<Value *, 4> Checks; 808 unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander, 809 Guard); 810 if (NumWidened == 0) 811 return false; 812 813 TotalWidened += NumWidened; 814 815 // Emit the new guard condition 816 IRBuilder<> Builder(findInsertPt(Guard, Checks)); 817 Value *AllChecks = Builder.CreateAnd(Checks); 818 auto *OldCond = Guard->getOperand(0); 819 Guard->setOperand(0, AllChecks); 820 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU); 821 822 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 823 return true; 824 } 825 826 bool LoopPredication::widenWidenableBranchGuardConditions( 827 BranchInst *BI, SCEVExpander &Expander) { 828 assert(isGuardAsWidenableBranch(BI) && "Must be!"); 829 LLVM_DEBUG(dbgs() << "Processing guard:\n"); 830 LLVM_DEBUG(BI->dump()); 831 832 TotalConsidered++; 833 SmallVector<Value *, 4> Checks; 834 unsigned NumWidened = collectChecks(Checks, BI->getCondition(), 835 Expander, BI); 836 if (NumWidened == 0) 837 return false; 838 839 TotalWidened += NumWidened; 840 841 // Emit the new guard condition 842 IRBuilder<> Builder(findInsertPt(BI, Checks)); 843 Value *AllChecks = Builder.CreateAnd(Checks); 844 auto *OldCond = BI->getCondition(); 845 BI->setCondition(AllChecks); 846 RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU); 847 assert(isGuardAsWidenableBranch(BI) && 848 "Stopped being a guard after transform?"); 849 850 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n"); 851 return true; 852 } 853 854 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() { 855 using namespace PatternMatch; 856 857 BasicBlock *LoopLatch = L->getLoopLatch(); 858 if (!LoopLatch) { 859 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n"); 860 return None; 861 } 862 863 auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator()); 864 if (!BI || !BI->isConditional()) { 865 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n"); 866 return None; 867 } 868 BasicBlock *TrueDest = BI->getSuccessor(0); 869 assert( 870 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) && 871 "One of the latch's destinations must be the header"); 872 873 auto *ICI = dyn_cast<ICmpInst>(BI->getCondition()); 874 if (!ICI) { 875 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n"); 876 return None; 877 } 878 auto Result = parseLoopICmp(ICI); 879 if (!Result) { 880 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n"); 881 return None; 882 } 883 884 if (TrueDest != L->getHeader()) 885 Result->Pred = ICmpInst::getInversePredicate(Result->Pred); 886 887 // Check affine first, so if it's not we don't try to compute the step 888 // recurrence. 889 if (!Result->IV->isAffine()) { 890 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n"); 891 return None; 892 } 893 894 auto *Step = Result->IV->getStepRecurrence(*SE); 895 if (!isSupportedStep(Step)) { 896 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n"); 897 return None; 898 } 899 900 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) { 901 if (Step->isOne()) { 902 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT && 903 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE; 904 } else { 905 assert(Step->isAllOnesValue() && "Step should be -1!"); 906 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT && 907 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE; 908 } 909 }; 910 911 normalizePredicate(SE, L, *Result); 912 if (IsUnsupportedPredicate(Step, Result->Pred)) { 913 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred 914 << ")!\n"); 915 return None; 916 } 917 918 return Result; 919 } 920 921 922 bool LoopPredication::isLoopProfitableToPredicate() { 923 if (SkipProfitabilityChecks) 924 return true; 925 926 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges; 927 L->getExitEdges(ExitEdges); 928 // If there is only one exiting edge in the loop, it is always profitable to 929 // predicate the loop. 930 if (ExitEdges.size() == 1) 931 return true; 932 933 // Calculate the exiting probabilities of all exiting edges from the loop, 934 // starting with the LatchExitProbability. 935 // Heuristic for profitability: If any of the exiting blocks' probability of 936 // exiting the loop is larger than exiting through the latch block, it's not 937 // profitable to predicate the loop. 938 auto *LatchBlock = L->getLoopLatch(); 939 assert(LatchBlock && "Should have a single latch at this point!"); 940 auto *LatchTerm = LatchBlock->getTerminator(); 941 assert(LatchTerm->getNumSuccessors() == 2 && 942 "expected to be an exiting block with 2 succs!"); 943 unsigned LatchBrExitIdx = 944 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0; 945 // We compute branch probabilities without BPI. We do not rely on BPI since 946 // Loop predication is usually run in an LPM and BPI is only preserved 947 // lossily within loop pass managers, while BPI has an inherent notion of 948 // being complete for an entire function. 949 950 // If the latch exits into a deoptimize or an unreachable block, do not 951 // predicate on that latch check. 952 auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx); 953 if (isa<UnreachableInst>(LatchTerm) || 954 LatchExitBlock->getTerminatingDeoptimizeCall()) 955 return false; 956 957 auto IsValidProfileData = [](MDNode *ProfileData, const Instruction *Term) { 958 if (!ProfileData || !ProfileData->getOperand(0)) 959 return false; 960 if (MDString *MDS = dyn_cast<MDString>(ProfileData->getOperand(0))) 961 if (!MDS->getString().equals("branch_weights")) 962 return false; 963 if (ProfileData->getNumOperands() != 1 + Term->getNumSuccessors()) 964 return false; 965 return true; 966 }; 967 MDNode *LatchProfileData = LatchTerm->getMetadata(LLVMContext::MD_prof); 968 // Latch terminator has no valid profile data, so nothing to check 969 // profitability on. 970 if (!IsValidProfileData(LatchProfileData, LatchTerm)) 971 return true; 972 973 auto ComputeBranchProbability = 974 [&](const BasicBlock *ExitingBlock, 975 const BasicBlock *ExitBlock) -> BranchProbability { 976 auto *Term = ExitingBlock->getTerminator(); 977 MDNode *ProfileData = Term->getMetadata(LLVMContext::MD_prof); 978 unsigned NumSucc = Term->getNumSuccessors(); 979 if (IsValidProfileData(ProfileData, Term)) { 980 uint64_t Numerator = 0, Denominator = 0, ProfVal = 0; 981 for (unsigned i = 0; i < NumSucc; i++) { 982 ConstantInt *CI = 983 mdconst::extract<ConstantInt>(ProfileData->getOperand(i + 1)); 984 ProfVal = CI->getValue().getZExtValue(); 985 if (Term->getSuccessor(i) == ExitBlock) 986 Numerator += ProfVal; 987 Denominator += ProfVal; 988 } 989 return BranchProbability::getBranchProbability(Numerator, Denominator); 990 } else { 991 assert(LatchBlock != ExitingBlock && 992 "Latch term should always have profile data!"); 993 // No profile data, so we choose the weight as 1/num_of_succ(Src) 994 return BranchProbability::getBranchProbability(1, NumSucc); 995 } 996 }; 997 998 BranchProbability LatchExitProbability = 999 ComputeBranchProbability(LatchBlock, LatchExitBlock); 1000 1001 // Protect against degenerate inputs provided by the user. Providing a value 1002 // less than one, can invert the definition of profitable loop predication. 1003 float ScaleFactor = LatchExitProbabilityScale; 1004 if (ScaleFactor < 1) { 1005 LLVM_DEBUG( 1006 dbgs() 1007 << "Ignored user setting for loop-predication-latch-probability-scale: " 1008 << LatchExitProbabilityScale << "\n"); 1009 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n"); 1010 ScaleFactor = 1.0; 1011 } 1012 const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor; 1013 1014 for (const auto &ExitEdge : ExitEdges) { 1015 BranchProbability ExitingBlockProbability = 1016 ComputeBranchProbability(ExitEdge.first, ExitEdge.second); 1017 // Some exiting edge has higher probability than the latch exiting edge. 1018 // No longer profitable to predicate. 1019 if (ExitingBlockProbability > LatchProbabilityThreshold) 1020 return false; 1021 } 1022 1023 // We have concluded that the most probable way to exit from the 1024 // loop is through the latch (or there's no profile information and all 1025 // exits are equally likely). 1026 return true; 1027 } 1028 1029 /// If we can (cheaply) find a widenable branch which controls entry into the 1030 /// loop, return it. 1031 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) { 1032 // Walk back through any unconditional executed blocks and see if we can find 1033 // a widenable condition which seems to control execution of this loop. Note 1034 // that we predict that maythrow calls are likely untaken and thus that it's 1035 // profitable to widen a branch before a maythrow call with a condition 1036 // afterwards even though that may cause the slow path to run in a case where 1037 // it wouldn't have otherwise. 1038 BasicBlock *BB = L->getLoopPreheader(); 1039 if (!BB) 1040 return nullptr; 1041 do { 1042 if (BasicBlock *Pred = BB->getSinglePredecessor()) 1043 if (BB == Pred->getSingleSuccessor()) { 1044 BB = Pred; 1045 continue; 1046 } 1047 break; 1048 } while (true); 1049 1050 if (BasicBlock *Pred = BB->getSinglePredecessor()) { 1051 auto *Term = Pred->getTerminator(); 1052 1053 Value *Cond, *WC; 1054 BasicBlock *IfTrueBB, *IfFalseBB; 1055 if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) && 1056 IfTrueBB == BB) 1057 return cast<BranchInst>(Term); 1058 } 1059 return nullptr; 1060 } 1061 1062 /// Return the minimum of all analyzeable exit counts. This is an upper bound 1063 /// on the actual exit count. If there are not at least two analyzeable exits, 1064 /// returns SCEVCouldNotCompute. 1065 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE, 1066 DominatorTree &DT, 1067 Loop *L) { 1068 SmallVector<BasicBlock *, 16> ExitingBlocks; 1069 L->getExitingBlocks(ExitingBlocks); 1070 1071 SmallVector<const SCEV *, 4> ExitCounts; 1072 for (BasicBlock *ExitingBB : ExitingBlocks) { 1073 const SCEV *ExitCount = SE.getExitCount(L, ExitingBB); 1074 if (isa<SCEVCouldNotCompute>(ExitCount)) 1075 continue; 1076 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 1077 "We should only have known counts for exiting blocks that " 1078 "dominate latch!"); 1079 ExitCounts.push_back(ExitCount); 1080 } 1081 if (ExitCounts.size() < 2) 1082 return SE.getCouldNotCompute(); 1083 return SE.getUMinFromMismatchedTypes(ExitCounts); 1084 } 1085 1086 /// This implements an analogous, but entirely distinct transform from the main 1087 /// loop predication transform. This one is phrased in terms of using a 1088 /// widenable branch *outside* the loop to allow us to simplify loop exits in a 1089 /// following loop. This is close in spirit to the IndVarSimplify transform 1090 /// of the same name, but is materially different widening loosens legality 1091 /// sharply. 1092 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1093 // The transformation performed here aims to widen a widenable condition 1094 // above the loop such that all analyzeable exit leading to deopt are dead. 1095 // It assumes that the latch is the dominant exit for profitability and that 1096 // exits branching to deoptimizing blocks are rarely taken. It relies on the 1097 // semantics of widenable expressions for legality. (i.e. being able to fall 1098 // down the widenable path spuriously allows us to ignore exit order, 1099 // unanalyzeable exits, side effects, exceptional exits, and other challenges 1100 // which restrict the applicability of the non-WC based version of this 1101 // transform in IndVarSimplify.) 1102 // 1103 // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may 1104 // imply flags on the expression being hoisted and inserting new uses (flags 1105 // are only correct for current uses). The result is that we may be 1106 // inserting a branch on the value which can be either poison or undef. In 1107 // this case, the branch can legally go either way; we just need to avoid 1108 // introducing UB. This is achieved through the use of the freeze 1109 // instruction. 1110 1111 SmallVector<BasicBlock *, 16> ExitingBlocks; 1112 L->getExitingBlocks(ExitingBlocks); 1113 1114 if (ExitingBlocks.empty()) 1115 return false; // Nothing to do. 1116 1117 auto *Latch = L->getLoopLatch(); 1118 if (!Latch) 1119 return false; 1120 1121 auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI); 1122 if (!WidenableBR) 1123 return false; 1124 1125 const SCEV *LatchEC = SE->getExitCount(L, Latch); 1126 if (isa<SCEVCouldNotCompute>(LatchEC)) 1127 return false; // profitability - want hot exit in analyzeable set 1128 1129 // At this point, we have found an analyzeable latch, and a widenable 1130 // condition above the loop. If we have a widenable exit within the loop 1131 // (for which we can't compute exit counts), drop the ability to further 1132 // widen so that we gain ability to analyze it's exit count and perform this 1133 // transform. TODO: It'd be nice to know for sure the exit became 1134 // analyzeable after dropping widenability. 1135 bool ChangedLoop = false; 1136 1137 for (auto *ExitingBB : ExitingBlocks) { 1138 if (LI->getLoopFor(ExitingBB) != L) 1139 continue; 1140 1141 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1142 if (!BI) 1143 continue; 1144 1145 Use *Cond, *WC; 1146 BasicBlock *IfTrueBB, *IfFalseBB; 1147 if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) && 1148 L->contains(IfTrueBB)) { 1149 WC->set(ConstantInt::getTrue(IfTrueBB->getContext())); 1150 ChangedLoop = true; 1151 } 1152 } 1153 if (ChangedLoop) 1154 SE->forgetLoop(L); 1155 1156 // The use of umin(all analyzeable exits) instead of latch is subtle, but 1157 // important for profitability. We may have a loop which hasn't been fully 1158 // canonicalized just yet. If the exit we chose to widen is provably never 1159 // taken, we want the widened form to *also* be provably never taken. We 1160 // can't guarantee this as a current unanalyzeable exit may later become 1161 // analyzeable, but we can at least avoid the obvious cases. 1162 const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L); 1163 if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() || 1164 !SE->isLoopInvariant(MinEC, L) || 1165 !Rewriter.isSafeToExpandAt(MinEC, WidenableBR)) 1166 return ChangedLoop; 1167 1168 // Subtlety: We need to avoid inserting additional uses of the WC. We know 1169 // that it can only have one transitive use at the moment, and thus moving 1170 // that use to just before the branch and inserting code before it and then 1171 // modifying the operand is legal. 1172 auto *IP = cast<Instruction>(WidenableBR->getCondition()); 1173 // Here we unconditionally modify the IR, so after this point we should return 1174 // only `true`! 1175 IP->moveBefore(WidenableBR); 1176 if (MSSAU) 1177 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP)) 1178 MSSAU->moveToPlace(MUD, WidenableBR->getParent(), 1179 MemorySSA::BeforeTerminator); 1180 Rewriter.setInsertPoint(IP); 1181 IRBuilder<> B(IP); 1182 1183 bool InvalidateLoop = false; 1184 Value *MinECV = nullptr; // lazily generated if needed 1185 for (BasicBlock *ExitingBB : ExitingBlocks) { 1186 // If our exiting block exits multiple loops, we can only rewrite the 1187 // innermost one. Otherwise, we're changing how many times the innermost 1188 // loop runs before it exits. 1189 if (LI->getLoopFor(ExitingBB) != L) 1190 continue; 1191 1192 // Can't rewrite non-branch yet. 1193 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1194 if (!BI) 1195 continue; 1196 1197 // If already constant, nothing to do. 1198 if (isa<Constant>(BI->getCondition())) 1199 continue; 1200 1201 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1202 if (isa<SCEVCouldNotCompute>(ExitCount) || 1203 ExitCount->getType()->isPointerTy() || 1204 !Rewriter.isSafeToExpandAt(ExitCount, WidenableBR)) 1205 continue; 1206 1207 const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1208 BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1); 1209 if (!ExitBB->getPostdominatingDeoptimizeCall()) 1210 continue; 1211 1212 /// Here we can be fairly sure that executing this exit will most likely 1213 /// lead to executing llvm.experimental.deoptimize. 1214 /// This is a profitability heuristic, not a legality constraint. 1215 1216 // If we found a widenable exit condition, do two things: 1217 // 1) fold the widened exit test into the widenable condition 1218 // 2) fold the branch to untaken - avoids infinite looping 1219 1220 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1221 if (!MinECV) 1222 MinECV = Rewriter.expandCodeFor(MinEC); 1223 Value *RHS = MinECV; 1224 if (ECV->getType() != RHS->getType()) { 1225 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1226 ECV = B.CreateZExt(ECV, WiderTy); 1227 RHS = B.CreateZExt(RHS, WiderTy); 1228 } 1229 assert(!Latch || DT->dominates(ExitingBB, Latch)); 1230 Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS); 1231 // Freeze poison or undef to an arbitrary bit pattern to ensure we can 1232 // branch without introducing UB. See NOTE ON POISON/UNDEF above for 1233 // context. 1234 NewCond = B.CreateFreeze(NewCond); 1235 1236 widenWidenableBranch(WidenableBR, NewCond); 1237 1238 Value *OldCond = BI->getCondition(); 1239 BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue)); 1240 InvalidateLoop = true; 1241 } 1242 1243 if (InvalidateLoop) 1244 // We just mutated a bunch of loop exits changing there exit counts 1245 // widely. We need to force recomputation of the exit counts given these 1246 // changes. Note that all of the inserted exits are never taken, and 1247 // should be removed next time the CFG is modified. 1248 SE->forgetLoop(L); 1249 1250 // Always return `true` since we have moved the WidenableBR's condition. 1251 return true; 1252 } 1253 1254 bool LoopPredication::runOnLoop(Loop *Loop) { 1255 L = Loop; 1256 1257 LLVM_DEBUG(dbgs() << "Analyzing "); 1258 LLVM_DEBUG(L->dump()); 1259 1260 Module *M = L->getHeader()->getModule(); 1261 1262 // There is nothing to do if the module doesn't use guards 1263 auto *GuardDecl = 1264 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); 1265 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty(); 1266 auto *WCDecl = M->getFunction( 1267 Intrinsic::getName(Intrinsic::experimental_widenable_condition)); 1268 bool HasWidenableConditions = 1269 PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty(); 1270 if (!HasIntrinsicGuards && !HasWidenableConditions) 1271 return false; 1272 1273 DL = &M->getDataLayout(); 1274 1275 Preheader = L->getLoopPreheader(); 1276 if (!Preheader) 1277 return false; 1278 1279 auto LatchCheckOpt = parseLoopLatchICmp(); 1280 if (!LatchCheckOpt) 1281 return false; 1282 LatchCheck = *LatchCheckOpt; 1283 1284 LLVM_DEBUG(dbgs() << "Latch check:\n"); 1285 LLVM_DEBUG(LatchCheck.dump()); 1286 1287 if (!isLoopProfitableToPredicate()) { 1288 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n"); 1289 return false; 1290 } 1291 // Collect all the guards into a vector and process later, so as not 1292 // to invalidate the instruction iterator. 1293 SmallVector<IntrinsicInst *, 4> Guards; 1294 SmallVector<BranchInst *, 4> GuardsAsWidenableBranches; 1295 for (const auto BB : L->blocks()) { 1296 for (auto &I : *BB) 1297 if (isGuard(&I)) 1298 Guards.push_back(cast<IntrinsicInst>(&I)); 1299 if (PredicateWidenableBranchGuards && 1300 isGuardAsWidenableBranch(BB->getTerminator())) 1301 GuardsAsWidenableBranches.push_back( 1302 cast<BranchInst>(BB->getTerminator())); 1303 } 1304 1305 SCEVExpander Expander(*SE, *DL, "loop-predication"); 1306 bool Changed = false; 1307 for (auto *Guard : Guards) 1308 Changed |= widenGuardConditions(Guard, Expander); 1309 for (auto *Guard : GuardsAsWidenableBranches) 1310 Changed |= widenWidenableBranchGuardConditions(Guard, Expander); 1311 Changed |= predicateLoopExits(L, Expander); 1312 1313 if (MSSAU && VerifyMemorySSA) 1314 MSSAU->getMemorySSA()->verifyMemorySSA(); 1315 return Changed; 1316 } 1317