xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision e40139ff33b48b56a24c808b166b04b8ee6f5b21)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/ScalarEvolution.h"
187 #include "llvm/Analysis/ScalarEvolutionExpander.h"
188 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
189 #include "llvm/IR/Function.h"
190 #include "llvm/IR/GlobalValue.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/Pass.h"
195 #include "llvm/Support/Debug.h"
196 #include "llvm/Transforms/Scalar.h"
197 #include "llvm/Transforms/Utils/Local.h"
198 #include "llvm/Transforms/Utils/LoopUtils.h"
199 
200 #define DEBUG_TYPE "loop-predication"
201 
202 STATISTIC(TotalConsidered, "Number of guards considered");
203 STATISTIC(TotalWidened, "Number of checks widened");
204 
205 using namespace llvm;
206 
207 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
208                                         cl::Hidden, cl::init(true));
209 
210 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
211                                         cl::Hidden, cl::init(true));
212 
213 static cl::opt<bool>
214     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
215                             cl::Hidden, cl::init(false));
216 
217 // This is the scale factor for the latch probability. We use this during
218 // profitability analysis to find other exiting blocks that have a much higher
219 // probability of exiting the loop instead of loop exiting via latch.
220 // This value should be greater than 1 for a sane profitability check.
221 static cl::opt<float> LatchExitProbabilityScale(
222     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
223     cl::desc("scale factor for the latch probability. Value should be greater "
224              "than 1. Lower values are ignored"));
225 
226 static cl::opt<bool> PredicateWidenableBranchGuards(
227     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
228     cl::desc("Whether or not we should predicate guards "
229              "expressed as widenable branches to deoptimize blocks"),
230     cl::init(true));
231 
232 namespace {
233 /// Represents an induction variable check:
234 ///   icmp Pred, <induction variable>, <loop invariant limit>
235 struct LoopICmp {
236   ICmpInst::Predicate Pred;
237   const SCEVAddRecExpr *IV;
238   const SCEV *Limit;
239   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
240            const SCEV *Limit)
241     : Pred(Pred), IV(IV), Limit(Limit) {}
242   LoopICmp() {}
243   void dump() {
244     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
245            << ", Limit = " << *Limit << "\n";
246   }
247 };
248 
249 class LoopPredication {
250   AliasAnalysis *AA;
251   ScalarEvolution *SE;
252   BranchProbabilityInfo *BPI;
253 
254   Loop *L;
255   const DataLayout *DL;
256   BasicBlock *Preheader;
257   LoopICmp LatchCheck;
258 
259   bool isSupportedStep(const SCEV* Step);
260   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
261   Optional<LoopICmp> parseLoopLatchICmp();
262 
263   /// Return an insertion point suitable for inserting a safe to speculate
264   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
265   /// trivial result would be the at the User itself, but we try to return a
266   /// loop invariant location if possible.
267   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
268   /// Same as above, *except* that this uses the SCEV definition of invariant
269   /// which is that an expression *can be made* invariant via SCEVExpander.
270   /// Thus, this version is only suitable for finding an insert point to be be
271   /// passed to SCEVExpander!
272   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
273 
274   /// Return true if the value is known to produce a single fixed value across
275   /// all iterations on which it executes.  Note that this does not imply
276   /// speculation safety.  That must be established seperately.
277   bool isLoopInvariantValue(const SCEV* S);
278 
279   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
280                      ICmpInst::Predicate Pred, const SCEV *LHS,
281                      const SCEV *RHS);
282 
283   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
284                                         Instruction *Guard);
285   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
286                                                         LoopICmp RangeCheck,
287                                                         SCEVExpander &Expander,
288                                                         Instruction *Guard);
289   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
290                                                         LoopICmp RangeCheck,
291                                                         SCEVExpander &Expander,
292                                                         Instruction *Guard);
293   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
294                          SCEVExpander &Expander, Instruction *Guard);
295   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
296   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
297   // If the loop always exits through another block in the loop, we should not
298   // predicate based on the latch check. For example, the latch check can be a
299   // very coarse grained check and there can be more fine grained exit checks
300   // within the loop. We identify such unprofitable loops through BPI.
301   bool isLoopProfitableToPredicate();
302 
303 public:
304   LoopPredication(AliasAnalysis *AA, ScalarEvolution *SE,
305                   BranchProbabilityInfo *BPI)
306     : AA(AA), SE(SE), BPI(BPI){};
307   bool runOnLoop(Loop *L);
308 };
309 
310 class LoopPredicationLegacyPass : public LoopPass {
311 public:
312   static char ID;
313   LoopPredicationLegacyPass() : LoopPass(ID) {
314     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
315   }
316 
317   void getAnalysisUsage(AnalysisUsage &AU) const override {
318     AU.addRequired<BranchProbabilityInfoWrapperPass>();
319     getLoopAnalysisUsage(AU);
320   }
321 
322   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
323     if (skipLoop(L))
324       return false;
325     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
326     BranchProbabilityInfo &BPI =
327         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
328     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
329     LoopPredication LP(AA, SE, &BPI);
330     return LP.runOnLoop(L);
331   }
332 };
333 
334 char LoopPredicationLegacyPass::ID = 0;
335 } // end namespace llvm
336 
337 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
338                       "Loop predication", false, false)
339 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
340 INITIALIZE_PASS_DEPENDENCY(LoopPass)
341 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
342                     "Loop predication", false, false)
343 
344 Pass *llvm::createLoopPredicationPass() {
345   return new LoopPredicationLegacyPass();
346 }
347 
348 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
349                                            LoopStandardAnalysisResults &AR,
350                                            LPMUpdater &U) {
351   const auto &FAM =
352       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
353   Function *F = L.getHeader()->getParent();
354   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
355   LoopPredication LP(&AR.AA, &AR.SE, BPI);
356   if (!LP.runOnLoop(&L))
357     return PreservedAnalyses::all();
358 
359   return getLoopPassPreservedAnalyses();
360 }
361 
362 Optional<LoopICmp>
363 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
364   auto Pred = ICI->getPredicate();
365   auto *LHS = ICI->getOperand(0);
366   auto *RHS = ICI->getOperand(1);
367 
368   const SCEV *LHSS = SE->getSCEV(LHS);
369   if (isa<SCEVCouldNotCompute>(LHSS))
370     return None;
371   const SCEV *RHSS = SE->getSCEV(RHS);
372   if (isa<SCEVCouldNotCompute>(RHSS))
373     return None;
374 
375   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
376   if (SE->isLoopInvariant(LHSS, L)) {
377     std::swap(LHS, RHS);
378     std::swap(LHSS, RHSS);
379     Pred = ICmpInst::getSwappedPredicate(Pred);
380   }
381 
382   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
383   if (!AR || AR->getLoop() != L)
384     return None;
385 
386   return LoopICmp(Pred, AR, RHSS);
387 }
388 
389 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
390                                     Instruction *Guard,
391                                     ICmpInst::Predicate Pred, const SCEV *LHS,
392                                     const SCEV *RHS) {
393   Type *Ty = LHS->getType();
394   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
395 
396   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
397     IRBuilder<> Builder(Guard);
398     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
399       return Builder.getTrue();
400     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
401                                      LHS, RHS))
402       return Builder.getFalse();
403   }
404 
405   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
406   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
407   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
408   return Builder.CreateICmp(Pred, LHSV, RHSV);
409 }
410 
411 
412 // Returns true if its safe to truncate the IV to RangeCheckType.
413 // When the IV type is wider than the range operand type, we can still do loop
414 // predication, by generating SCEVs for the range and latch that are of the
415 // same type. We achieve this by generating a SCEV truncate expression for the
416 // latch IV. This is done iff truncation of the IV is a safe operation,
417 // without loss of information.
418 // Another way to achieve this is by generating a wider type SCEV for the
419 // range check operand, however, this needs a more involved check that
420 // operands do not overflow. This can lead to loss of information when the
421 // range operand is of the form: add i32 %offset, %iv. We need to prove that
422 // sext(x + y) is same as sext(x) + sext(y).
423 // This function returns true if we can safely represent the IV type in
424 // the RangeCheckType without loss of information.
425 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
426                                        ScalarEvolution &SE,
427                                        const LoopICmp LatchCheck,
428                                        Type *RangeCheckType) {
429   if (!EnableIVTruncation)
430     return false;
431   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
432              DL.getTypeSizeInBits(RangeCheckType) &&
433          "Expected latch check IV type to be larger than range check operand "
434          "type!");
435   // The start and end values of the IV should be known. This is to guarantee
436   // that truncating the wide type will not lose information.
437   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
438   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
439   if (!Limit || !Start)
440     return false;
441   // This check makes sure that the IV does not change sign during loop
442   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
443   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
444   // IV wraps around, and the truncation of the IV would lose the range of
445   // iterations between 2^32 and 2^64.
446   bool Increasing;
447   if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
448     return false;
449   // The active bits should be less than the bits in the RangeCheckType. This
450   // guarantees that truncating the latch check to RangeCheckType is a safe
451   // operation.
452   auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
453   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
454          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
455 }
456 
457 
458 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
459 // the requested type if safe to do so.  May involve the use of a new IV.
460 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
461                                                  ScalarEvolution &SE,
462                                                  const LoopICmp LatchCheck,
463                                                  Type *RangeCheckType) {
464 
465   auto *LatchType = LatchCheck.IV->getType();
466   if (RangeCheckType == LatchType)
467     return LatchCheck;
468   // For now, bail out if latch type is narrower than range type.
469   if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
470     return None;
471   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
472     return None;
473   // We can now safely identify the truncated version of the IV and limit for
474   // RangeCheckType.
475   LoopICmp NewLatchCheck;
476   NewLatchCheck.Pred = LatchCheck.Pred;
477   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
478       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
479   if (!NewLatchCheck.IV)
480     return None;
481   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
482   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
483                     << "can be represented as range check type:"
484                     << *RangeCheckType << "\n");
485   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
486   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
487   return NewLatchCheck;
488 }
489 
490 bool LoopPredication::isSupportedStep(const SCEV* Step) {
491   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
492 }
493 
494 Instruction *LoopPredication::findInsertPt(Instruction *Use,
495                                            ArrayRef<Value*> Ops) {
496   for (Value *Op : Ops)
497     if (!L->isLoopInvariant(Op))
498       return Use;
499   return Preheader->getTerminator();
500 }
501 
502 Instruction *LoopPredication::findInsertPt(Instruction *Use,
503                                            ArrayRef<const SCEV*> Ops) {
504   // Subtlety: SCEV considers things to be invariant if the value produced is
505   // the same across iterations.  This is not the same as being able to
506   // evaluate outside the loop, which is what we actually need here.
507   for (const SCEV *Op : Ops)
508     if (!SE->isLoopInvariant(Op, L) ||
509         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
510       return Use;
511   return Preheader->getTerminator();
512 }
513 
514 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
515   // Handling expressions which produce invariant results, but *haven't* yet
516   // been removed from the loop serves two important purposes.
517   // 1) Most importantly, it resolves a pass ordering cycle which would
518   // otherwise need us to iteration licm, loop-predication, and either
519   // loop-unswitch or loop-peeling to make progress on examples with lots of
520   // predicable range checks in a row.  (Since, in the general case,  we can't
521   // hoist the length checks until the dominating checks have been discharged
522   // as we can't prove doing so is safe.)
523   // 2) As a nice side effect, this exposes the value of peeling or unswitching
524   // much more obviously in the IR.  Otherwise, the cost modeling for other
525   // transforms would end up needing to duplicate all of this logic to model a
526   // check which becomes predictable based on a modeled peel or unswitch.
527   //
528   // The cost of doing so in the worst case is an extra fill from the stack  in
529   // the loop to materialize the loop invariant test value instead of checking
530   // against the original IV which is presumable in a register inside the loop.
531   // Such cases are presumably rare, and hint at missing oppurtunities for
532   // other passes.
533 
534   if (SE->isLoopInvariant(S, L))
535     // Note: This the SCEV variant, so the original Value* may be within the
536     // loop even though SCEV has proven it is loop invariant.
537     return true;
538 
539   // Handle a particular important case which SCEV doesn't yet know about which
540   // shows up in range checks on arrays with immutable lengths.
541   // TODO: This should be sunk inside SCEV.
542   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
543     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
544       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
545         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
546             LI->hasMetadata(LLVMContext::MD_invariant_load))
547           return true;
548   return false;
549 }
550 
551 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
552     LoopICmp LatchCheck, LoopICmp RangeCheck,
553     SCEVExpander &Expander, Instruction *Guard) {
554   auto *Ty = RangeCheck.IV->getType();
555   // Generate the widened condition for the forward loop:
556   //   guardStart u< guardLimit &&
557   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
558   // where <pred> depends on the latch condition predicate. See the file
559   // header comment for the reasoning.
560   // guardLimit - guardStart + latchStart - 1
561   const SCEV *GuardStart = RangeCheck.IV->getStart();
562   const SCEV *GuardLimit = RangeCheck.Limit;
563   const SCEV *LatchStart = LatchCheck.IV->getStart();
564   const SCEV *LatchLimit = LatchCheck.Limit;
565   // Subtlety: We need all the values to be *invariant* across all iterations,
566   // but we only need to check expansion safety for those which *aren't*
567   // already guaranteed to dominate the guard.
568   if (!isLoopInvariantValue(GuardStart) ||
569       !isLoopInvariantValue(GuardLimit) ||
570       !isLoopInvariantValue(LatchStart) ||
571       !isLoopInvariantValue(LatchLimit)) {
572     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
573     return None;
574   }
575   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
576       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
577     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
578     return None;
579   }
580 
581   // guardLimit - guardStart + latchStart - 1
582   const SCEV *RHS =
583       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
584                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
585   auto LimitCheckPred =
586       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
587 
588   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
589   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
590   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
591 
592   auto *LimitCheck =
593       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
594   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
595                                           GuardStart, GuardLimit);
596   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
597   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
598 }
599 
600 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
601     LoopICmp LatchCheck, LoopICmp RangeCheck,
602     SCEVExpander &Expander, Instruction *Guard) {
603   auto *Ty = RangeCheck.IV->getType();
604   const SCEV *GuardStart = RangeCheck.IV->getStart();
605   const SCEV *GuardLimit = RangeCheck.Limit;
606   const SCEV *LatchStart = LatchCheck.IV->getStart();
607   const SCEV *LatchLimit = LatchCheck.Limit;
608   // Subtlety: We need all the values to be *invariant* across all iterations,
609   // but we only need to check expansion safety for those which *aren't*
610   // already guaranteed to dominate the guard.
611   if (!isLoopInvariantValue(GuardStart) ||
612       !isLoopInvariantValue(GuardLimit) ||
613       !isLoopInvariantValue(LatchStart) ||
614       !isLoopInvariantValue(LatchLimit)) {
615     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
616     return None;
617   }
618   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
619       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
620     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
621     return None;
622   }
623   // The decrement of the latch check IV should be the same as the
624   // rangeCheckIV.
625   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
626   if (RangeCheck.IV != PostDecLatchCheckIV) {
627     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
628                       << *PostDecLatchCheckIV
629                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
630     return None;
631   }
632 
633   // Generate the widened condition for CountDownLoop:
634   // guardStart u< guardLimit &&
635   // latchLimit <pred> 1.
636   // See the header comment for reasoning of the checks.
637   auto LimitCheckPred =
638       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
639   auto *FirstIterationCheck = expandCheck(Expander, Guard,
640                                           ICmpInst::ICMP_ULT,
641                                           GuardStart, GuardLimit);
642   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
643                                  SE->getOne(Ty));
644   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
645   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
646 }
647 
648 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
649                                LoopICmp& RC) {
650   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
651   // ULT/UGE form for ease of handling by our caller.
652   if (ICmpInst::isEquality(RC.Pred) &&
653       RC.IV->getStepRecurrence(*SE)->isOne() &&
654       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
655     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
656       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
657 }
658 
659 
660 /// If ICI can be widened to a loop invariant condition emits the loop
661 /// invariant condition in the loop preheader and return it, otherwise
662 /// returns None.
663 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
664                                                        SCEVExpander &Expander,
665                                                        Instruction *Guard) {
666   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
667   LLVM_DEBUG(ICI->dump());
668 
669   // parseLoopStructure guarantees that the latch condition is:
670   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
671   // We are looking for the range checks of the form:
672   //   i u< guardLimit
673   auto RangeCheck = parseLoopICmp(ICI);
674   if (!RangeCheck) {
675     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
676     return None;
677   }
678   LLVM_DEBUG(dbgs() << "Guard check:\n");
679   LLVM_DEBUG(RangeCheck->dump());
680   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
681     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
682                       << RangeCheck->Pred << ")!\n");
683     return None;
684   }
685   auto *RangeCheckIV = RangeCheck->IV;
686   if (!RangeCheckIV->isAffine()) {
687     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
688     return None;
689   }
690   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
691   // We cannot just compare with latch IV step because the latch and range IVs
692   // may have different types.
693   if (!isSupportedStep(Step)) {
694     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
695     return None;
696   }
697   auto *Ty = RangeCheckIV->getType();
698   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
699   if (!CurrLatchCheckOpt) {
700     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
701                          "corresponding to range type: "
702                       << *Ty << "\n");
703     return None;
704   }
705 
706   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
707   // At this point, the range and latch step should have the same type, but need
708   // not have the same value (we support both 1 and -1 steps).
709   assert(Step->getType() ==
710              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
711          "Range and latch steps should be of same type!");
712   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
713     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
714     return None;
715   }
716 
717   if (Step->isOne())
718     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
719                                                Expander, Guard);
720   else {
721     assert(Step->isAllOnesValue() && "Step should be -1!");
722     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
723                                                Expander, Guard);
724   }
725 }
726 
727 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
728                                         Value *Condition,
729                                         SCEVExpander &Expander,
730                                         Instruction *Guard) {
731   unsigned NumWidened = 0;
732   // The guard condition is expected to be in form of:
733   //   cond1 && cond2 && cond3 ...
734   // Iterate over subconditions looking for icmp conditions which can be
735   // widened across loop iterations. Widening these conditions remember the
736   // resulting list of subconditions in Checks vector.
737   SmallVector<Value *, 4> Worklist(1, Condition);
738   SmallPtrSet<Value *, 4> Visited;
739   Value *WideableCond = nullptr;
740   do {
741     Value *Condition = Worklist.pop_back_val();
742     if (!Visited.insert(Condition).second)
743       continue;
744 
745     Value *LHS, *RHS;
746     using namespace llvm::PatternMatch;
747     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
748       Worklist.push_back(LHS);
749       Worklist.push_back(RHS);
750       continue;
751     }
752 
753     if (match(Condition,
754               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
755       // Pick any, we don't care which
756       WideableCond = Condition;
757       continue;
758     }
759 
760     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
761       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
762                                                    Guard)) {
763         Checks.push_back(NewRangeCheck.getValue());
764         NumWidened++;
765         continue;
766       }
767     }
768 
769     // Save the condition as is if we can't widen it
770     Checks.push_back(Condition);
771   } while (!Worklist.empty());
772   // At the moment, our matching logic for wideable conditions implicitly
773   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
774   // Note that if there were multiple calls to wideable condition in the
775   // traversal, we only need to keep one, and which one is arbitrary.
776   if (WideableCond)
777     Checks.push_back(WideableCond);
778   return NumWidened;
779 }
780 
781 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
782                                            SCEVExpander &Expander) {
783   LLVM_DEBUG(dbgs() << "Processing guard:\n");
784   LLVM_DEBUG(Guard->dump());
785 
786   TotalConsidered++;
787   SmallVector<Value *, 4> Checks;
788   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
789                                       Guard);
790   if (NumWidened == 0)
791     return false;
792 
793   TotalWidened += NumWidened;
794 
795   // Emit the new guard condition
796   IRBuilder<> Builder(findInsertPt(Guard, Checks));
797   Value *AllChecks = Builder.CreateAnd(Checks);
798   auto *OldCond = Guard->getOperand(0);
799   Guard->setOperand(0, AllChecks);
800   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
801 
802   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
803   return true;
804 }
805 
806 bool LoopPredication::widenWidenableBranchGuardConditions(
807     BranchInst *BI, SCEVExpander &Expander) {
808   assert(isGuardAsWidenableBranch(BI) && "Must be!");
809   LLVM_DEBUG(dbgs() << "Processing guard:\n");
810   LLVM_DEBUG(BI->dump());
811 
812   TotalConsidered++;
813   SmallVector<Value *, 4> Checks;
814   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
815                                       Expander, BI);
816   if (NumWidened == 0)
817     return false;
818 
819   TotalWidened += NumWidened;
820 
821   // Emit the new guard condition
822   IRBuilder<> Builder(findInsertPt(BI, Checks));
823   Value *AllChecks = Builder.CreateAnd(Checks);
824   auto *OldCond = BI->getCondition();
825   BI->setCondition(AllChecks);
826   assert(isGuardAsWidenableBranch(BI) &&
827          "Stopped being a guard after transform?");
828   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
829 
830   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
831   return true;
832 }
833 
834 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
835   using namespace PatternMatch;
836 
837   BasicBlock *LoopLatch = L->getLoopLatch();
838   if (!LoopLatch) {
839     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
840     return None;
841   }
842 
843   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
844   if (!BI || !BI->isConditional()) {
845     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
846     return None;
847   }
848   BasicBlock *TrueDest = BI->getSuccessor(0);
849   assert(
850       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
851       "One of the latch's destinations must be the header");
852 
853   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
854   if (!ICI) {
855     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
856     return None;
857   }
858   auto Result = parseLoopICmp(ICI);
859   if (!Result) {
860     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
861     return None;
862   }
863 
864   if (TrueDest != L->getHeader())
865     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
866 
867   // Check affine first, so if it's not we don't try to compute the step
868   // recurrence.
869   if (!Result->IV->isAffine()) {
870     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
871     return None;
872   }
873 
874   auto *Step = Result->IV->getStepRecurrence(*SE);
875   if (!isSupportedStep(Step)) {
876     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
877     return None;
878   }
879 
880   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
881     if (Step->isOne()) {
882       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
883              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
884     } else {
885       assert(Step->isAllOnesValue() && "Step should be -1!");
886       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
887              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
888     }
889   };
890 
891   normalizePredicate(SE, L, *Result);
892   if (IsUnsupportedPredicate(Step, Result->Pred)) {
893     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
894                       << ")!\n");
895     return None;
896   }
897 
898   return Result;
899 }
900 
901 
902 bool LoopPredication::isLoopProfitableToPredicate() {
903   if (SkipProfitabilityChecks || !BPI)
904     return true;
905 
906   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
907   L->getExitEdges(ExitEdges);
908   // If there is only one exiting edge in the loop, it is always profitable to
909   // predicate the loop.
910   if (ExitEdges.size() == 1)
911     return true;
912 
913   // Calculate the exiting probabilities of all exiting edges from the loop,
914   // starting with the LatchExitProbability.
915   // Heuristic for profitability: If any of the exiting blocks' probability of
916   // exiting the loop is larger than exiting through the latch block, it's not
917   // profitable to predicate the loop.
918   auto *LatchBlock = L->getLoopLatch();
919   assert(LatchBlock && "Should have a single latch at this point!");
920   auto *LatchTerm = LatchBlock->getTerminator();
921   assert(LatchTerm->getNumSuccessors() == 2 &&
922          "expected to be an exiting block with 2 succs!");
923   unsigned LatchBrExitIdx =
924       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
925   BranchProbability LatchExitProbability =
926       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
927 
928   // Protect against degenerate inputs provided by the user. Providing a value
929   // less than one, can invert the definition of profitable loop predication.
930   float ScaleFactor = LatchExitProbabilityScale;
931   if (ScaleFactor < 1) {
932     LLVM_DEBUG(
933         dbgs()
934         << "Ignored user setting for loop-predication-latch-probability-scale: "
935         << LatchExitProbabilityScale << "\n");
936     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
937     ScaleFactor = 1.0;
938   }
939   const auto LatchProbabilityThreshold =
940       LatchExitProbability * ScaleFactor;
941 
942   for (const auto &ExitEdge : ExitEdges) {
943     BranchProbability ExitingBlockProbability =
944         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
945     // Some exiting edge has higher probability than the latch exiting edge.
946     // No longer profitable to predicate.
947     if (ExitingBlockProbability > LatchProbabilityThreshold)
948       return false;
949   }
950   // Using BPI, we have concluded that the most probable way to exit from the
951   // loop is through the latch (or there's no profile information and all
952   // exits are equally likely).
953   return true;
954 }
955 
956 bool LoopPredication::runOnLoop(Loop *Loop) {
957   L = Loop;
958 
959   LLVM_DEBUG(dbgs() << "Analyzing ");
960   LLVM_DEBUG(L->dump());
961 
962   Module *M = L->getHeader()->getModule();
963 
964   // There is nothing to do if the module doesn't use guards
965   auto *GuardDecl =
966       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
967   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
968   auto *WCDecl = M->getFunction(
969       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
970   bool HasWidenableConditions =
971       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
972   if (!HasIntrinsicGuards && !HasWidenableConditions)
973     return false;
974 
975   DL = &M->getDataLayout();
976 
977   Preheader = L->getLoopPreheader();
978   if (!Preheader)
979     return false;
980 
981   auto LatchCheckOpt = parseLoopLatchICmp();
982   if (!LatchCheckOpt)
983     return false;
984   LatchCheck = *LatchCheckOpt;
985 
986   LLVM_DEBUG(dbgs() << "Latch check:\n");
987   LLVM_DEBUG(LatchCheck.dump());
988 
989   if (!isLoopProfitableToPredicate()) {
990     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
991     return false;
992   }
993   // Collect all the guards into a vector and process later, so as not
994   // to invalidate the instruction iterator.
995   SmallVector<IntrinsicInst *, 4> Guards;
996   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
997   for (const auto BB : L->blocks()) {
998     for (auto &I : *BB)
999       if (isGuard(&I))
1000         Guards.push_back(cast<IntrinsicInst>(&I));
1001     if (PredicateWidenableBranchGuards &&
1002         isGuardAsWidenableBranch(BB->getTerminator()))
1003       GuardsAsWidenableBranches.push_back(
1004           cast<BranchInst>(BB->getTerminator()));
1005   }
1006 
1007   if (Guards.empty() && GuardsAsWidenableBranches.empty())
1008     return false;
1009 
1010   SCEVExpander Expander(*SE, *DL, "loop-predication");
1011 
1012   bool Changed = false;
1013   for (auto *Guard : Guards)
1014     Changed |= widenGuardConditions(Guard, Expander);
1015   for (auto *Guard : GuardsAsWidenableBranches)
1016     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1017 
1018   return Changed;
1019 }
1020