xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/GlobalValue.h"
192 #include "llvm/IR/IntrinsicInst.h"
193 #include "llvm/IR/Module.h"
194 #include "llvm/IR/PatternMatch.h"
195 #include "llvm/InitializePasses.h"
196 #include "llvm/Pass.h"
197 #include "llvm/Support/CommandLine.h"
198 #include "llvm/Support/Debug.h"
199 #include "llvm/Transforms/Scalar.h"
200 #include "llvm/Transforms/Utils/GuardUtils.h"
201 #include "llvm/Transforms/Utils/Local.h"
202 #include "llvm/Transforms/Utils/LoopUtils.h"
203 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
204 
205 #define DEBUG_TYPE "loop-predication"
206 
207 STATISTIC(TotalConsidered, "Number of guards considered");
208 STATISTIC(TotalWidened, "Number of checks widened");
209 
210 using namespace llvm;
211 
212 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
213                                         cl::Hidden, cl::init(true));
214 
215 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
216                                         cl::Hidden, cl::init(true));
217 
218 static cl::opt<bool>
219     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
220                             cl::Hidden, cl::init(false));
221 
222 // This is the scale factor for the latch probability. We use this during
223 // profitability analysis to find other exiting blocks that have a much higher
224 // probability of exiting the loop instead of loop exiting via latch.
225 // This value should be greater than 1 for a sane profitability check.
226 static cl::opt<float> LatchExitProbabilityScale(
227     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
228     cl::desc("scale factor for the latch probability. Value should be greater "
229              "than 1. Lower values are ignored"));
230 
231 static cl::opt<bool> PredicateWidenableBranchGuards(
232     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
233     cl::desc("Whether or not we should predicate guards "
234              "expressed as widenable branches to deoptimize blocks"),
235     cl::init(true));
236 
237 namespace {
238 /// Represents an induction variable check:
239 ///   icmp Pred, <induction variable>, <loop invariant limit>
240 struct LoopICmp {
241   ICmpInst::Predicate Pred;
242   const SCEVAddRecExpr *IV;
243   const SCEV *Limit;
244   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
245            const SCEV *Limit)
246     : Pred(Pred), IV(IV), Limit(Limit) {}
247   LoopICmp() {}
248   void dump() {
249     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
250            << ", Limit = " << *Limit << "\n";
251   }
252 };
253 
254 class LoopPredication {
255   AliasAnalysis *AA;
256   DominatorTree *DT;
257   ScalarEvolution *SE;
258   LoopInfo *LI;
259   MemorySSAUpdater *MSSAU;
260 
261   Loop *L;
262   const DataLayout *DL;
263   BasicBlock *Preheader;
264   LoopICmp LatchCheck;
265 
266   bool isSupportedStep(const SCEV* Step);
267   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
268   Optional<LoopICmp> parseLoopLatchICmp();
269 
270   /// Return an insertion point suitable for inserting a safe to speculate
271   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
272   /// trivial result would be the at the User itself, but we try to return a
273   /// loop invariant location if possible.
274   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
275   /// Same as above, *except* that this uses the SCEV definition of invariant
276   /// which is that an expression *can be made* invariant via SCEVExpander.
277   /// Thus, this version is only suitable for finding an insert point to be be
278   /// passed to SCEVExpander!
279   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
280 
281   /// Return true if the value is known to produce a single fixed value across
282   /// all iterations on which it executes.  Note that this does not imply
283   /// speculation safety.  That must be established separately.
284   bool isLoopInvariantValue(const SCEV* S);
285 
286   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
287                      ICmpInst::Predicate Pred, const SCEV *LHS,
288                      const SCEV *RHS);
289 
290   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
291                                         Instruction *Guard);
292   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
293                                                         LoopICmp RangeCheck,
294                                                         SCEVExpander &Expander,
295                                                         Instruction *Guard);
296   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
297                                                         LoopICmp RangeCheck,
298                                                         SCEVExpander &Expander,
299                                                         Instruction *Guard);
300   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
301                          SCEVExpander &Expander, Instruction *Guard);
302   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
303   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
304   // If the loop always exits through another block in the loop, we should not
305   // predicate based on the latch check. For example, the latch check can be a
306   // very coarse grained check and there can be more fine grained exit checks
307   // within the loop.
308   bool isLoopProfitableToPredicate();
309 
310   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
311 
312 public:
313   LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
314                   LoopInfo *LI, MemorySSAUpdater *MSSAU)
315       : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
316   bool runOnLoop(Loop *L);
317 };
318 
319 class LoopPredicationLegacyPass : public LoopPass {
320 public:
321   static char ID;
322   LoopPredicationLegacyPass() : LoopPass(ID) {
323     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
324   }
325 
326   void getAnalysisUsage(AnalysisUsage &AU) const override {
327     AU.addRequired<BranchProbabilityInfoWrapperPass>();
328     getLoopAnalysisUsage(AU);
329     AU.addPreserved<MemorySSAWrapperPass>();
330   }
331 
332   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
333     if (skipLoop(L))
334       return false;
335     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
336     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
337     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
338     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
339     std::unique_ptr<MemorySSAUpdater> MSSAU;
340     if (MSSAWP)
341       MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
342     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
343     LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() : nullptr);
344     return LP.runOnLoop(L);
345   }
346 };
347 
348 char LoopPredicationLegacyPass::ID = 0;
349 } // end namespace
350 
351 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
352                       "Loop predication", false, false)
353 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
354 INITIALIZE_PASS_DEPENDENCY(LoopPass)
355 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
356                     "Loop predication", false, false)
357 
358 Pass *llvm::createLoopPredicationPass() {
359   return new LoopPredicationLegacyPass();
360 }
361 
362 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
363                                            LoopStandardAnalysisResults &AR,
364                                            LPMUpdater &U) {
365   std::unique_ptr<MemorySSAUpdater> MSSAU;
366   if (AR.MSSA)
367     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
368   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
369                      MSSAU ? MSSAU.get() : nullptr);
370   if (!LP.runOnLoop(&L))
371     return PreservedAnalyses::all();
372 
373   auto PA = getLoopPassPreservedAnalyses();
374   if (AR.MSSA)
375     PA.preserve<MemorySSAAnalysis>();
376   return PA;
377 }
378 
379 Optional<LoopICmp>
380 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
381   auto Pred = ICI->getPredicate();
382   auto *LHS = ICI->getOperand(0);
383   auto *RHS = ICI->getOperand(1);
384 
385   const SCEV *LHSS = SE->getSCEV(LHS);
386   if (isa<SCEVCouldNotCompute>(LHSS))
387     return None;
388   const SCEV *RHSS = SE->getSCEV(RHS);
389   if (isa<SCEVCouldNotCompute>(RHSS))
390     return None;
391 
392   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
393   if (SE->isLoopInvariant(LHSS, L)) {
394     std::swap(LHS, RHS);
395     std::swap(LHSS, RHSS);
396     Pred = ICmpInst::getSwappedPredicate(Pred);
397   }
398 
399   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
400   if (!AR || AR->getLoop() != L)
401     return None;
402 
403   return LoopICmp(Pred, AR, RHSS);
404 }
405 
406 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
407                                     Instruction *Guard,
408                                     ICmpInst::Predicate Pred, const SCEV *LHS,
409                                     const SCEV *RHS) {
410   Type *Ty = LHS->getType();
411   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
412 
413   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
414     IRBuilder<> Builder(Guard);
415     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
416       return Builder.getTrue();
417     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
418                                      LHS, RHS))
419       return Builder.getFalse();
420   }
421 
422   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
423   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
424   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
425   return Builder.CreateICmp(Pred, LHSV, RHSV);
426 }
427 
428 
429 // Returns true if its safe to truncate the IV to RangeCheckType.
430 // When the IV type is wider than the range operand type, we can still do loop
431 // predication, by generating SCEVs for the range and latch that are of the
432 // same type. We achieve this by generating a SCEV truncate expression for the
433 // latch IV. This is done iff truncation of the IV is a safe operation,
434 // without loss of information.
435 // Another way to achieve this is by generating a wider type SCEV for the
436 // range check operand, however, this needs a more involved check that
437 // operands do not overflow. This can lead to loss of information when the
438 // range operand is of the form: add i32 %offset, %iv. We need to prove that
439 // sext(x + y) is same as sext(x) + sext(y).
440 // This function returns true if we can safely represent the IV type in
441 // the RangeCheckType without loss of information.
442 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
443                                        ScalarEvolution &SE,
444                                        const LoopICmp LatchCheck,
445                                        Type *RangeCheckType) {
446   if (!EnableIVTruncation)
447     return false;
448   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() >
449              DL.getTypeSizeInBits(RangeCheckType).getFixedSize() &&
450          "Expected latch check IV type to be larger than range check operand "
451          "type!");
452   // The start and end values of the IV should be known. This is to guarantee
453   // that truncating the wide type will not lose information.
454   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
455   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
456   if (!Limit || !Start)
457     return false;
458   // This check makes sure that the IV does not change sign during loop
459   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
460   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
461   // IV wraps around, and the truncation of the IV would lose the range of
462   // iterations between 2^32 and 2^64.
463   if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
464     return false;
465   // The active bits should be less than the bits in the RangeCheckType. This
466   // guarantees that truncating the latch check to RangeCheckType is a safe
467   // operation.
468   auto RangeCheckTypeBitSize =
469       DL.getTypeSizeInBits(RangeCheckType).getFixedSize();
470   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
471          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
472 }
473 
474 
475 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
476 // the requested type if safe to do so.  May involve the use of a new IV.
477 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
478                                                  ScalarEvolution &SE,
479                                                  const LoopICmp LatchCheck,
480                                                  Type *RangeCheckType) {
481 
482   auto *LatchType = LatchCheck.IV->getType();
483   if (RangeCheckType == LatchType)
484     return LatchCheck;
485   // For now, bail out if latch type is narrower than range type.
486   if (DL.getTypeSizeInBits(LatchType).getFixedSize() <
487       DL.getTypeSizeInBits(RangeCheckType).getFixedSize())
488     return None;
489   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
490     return None;
491   // We can now safely identify the truncated version of the IV and limit for
492   // RangeCheckType.
493   LoopICmp NewLatchCheck;
494   NewLatchCheck.Pred = LatchCheck.Pred;
495   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
496       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
497   if (!NewLatchCheck.IV)
498     return None;
499   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
500   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
501                     << "can be represented as range check type:"
502                     << *RangeCheckType << "\n");
503   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
504   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
505   return NewLatchCheck;
506 }
507 
508 bool LoopPredication::isSupportedStep(const SCEV* Step) {
509   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
510 }
511 
512 Instruction *LoopPredication::findInsertPt(Instruction *Use,
513                                            ArrayRef<Value*> Ops) {
514   for (Value *Op : Ops)
515     if (!L->isLoopInvariant(Op))
516       return Use;
517   return Preheader->getTerminator();
518 }
519 
520 Instruction *LoopPredication::findInsertPt(Instruction *Use,
521                                            ArrayRef<const SCEV*> Ops) {
522   // Subtlety: SCEV considers things to be invariant if the value produced is
523   // the same across iterations.  This is not the same as being able to
524   // evaluate outside the loop, which is what we actually need here.
525   for (const SCEV *Op : Ops)
526     if (!SE->isLoopInvariant(Op, L) ||
527         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
528       return Use;
529   return Preheader->getTerminator();
530 }
531 
532 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
533   // Handling expressions which produce invariant results, but *haven't* yet
534   // been removed from the loop serves two important purposes.
535   // 1) Most importantly, it resolves a pass ordering cycle which would
536   // otherwise need us to iteration licm, loop-predication, and either
537   // loop-unswitch or loop-peeling to make progress on examples with lots of
538   // predicable range checks in a row.  (Since, in the general case,  we can't
539   // hoist the length checks until the dominating checks have been discharged
540   // as we can't prove doing so is safe.)
541   // 2) As a nice side effect, this exposes the value of peeling or unswitching
542   // much more obviously in the IR.  Otherwise, the cost modeling for other
543   // transforms would end up needing to duplicate all of this logic to model a
544   // check which becomes predictable based on a modeled peel or unswitch.
545   //
546   // The cost of doing so in the worst case is an extra fill from the stack  in
547   // the loop to materialize the loop invariant test value instead of checking
548   // against the original IV which is presumable in a register inside the loop.
549   // Such cases are presumably rare, and hint at missing oppurtunities for
550   // other passes.
551 
552   if (SE->isLoopInvariant(S, L))
553     // Note: This the SCEV variant, so the original Value* may be within the
554     // loop even though SCEV has proven it is loop invariant.
555     return true;
556 
557   // Handle a particular important case which SCEV doesn't yet know about which
558   // shows up in range checks on arrays with immutable lengths.
559   // TODO: This should be sunk inside SCEV.
560   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
561     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
562       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
563         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
564             LI->hasMetadata(LLVMContext::MD_invariant_load))
565           return true;
566   return false;
567 }
568 
569 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
570     LoopICmp LatchCheck, LoopICmp RangeCheck,
571     SCEVExpander &Expander, Instruction *Guard) {
572   auto *Ty = RangeCheck.IV->getType();
573   // Generate the widened condition for the forward loop:
574   //   guardStart u< guardLimit &&
575   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
576   // where <pred> depends on the latch condition predicate. See the file
577   // header comment for the reasoning.
578   // guardLimit - guardStart + latchStart - 1
579   const SCEV *GuardStart = RangeCheck.IV->getStart();
580   const SCEV *GuardLimit = RangeCheck.Limit;
581   const SCEV *LatchStart = LatchCheck.IV->getStart();
582   const SCEV *LatchLimit = LatchCheck.Limit;
583   // Subtlety: We need all the values to be *invariant* across all iterations,
584   // but we only need to check expansion safety for those which *aren't*
585   // already guaranteed to dominate the guard.
586   if (!isLoopInvariantValue(GuardStart) ||
587       !isLoopInvariantValue(GuardLimit) ||
588       !isLoopInvariantValue(LatchStart) ||
589       !isLoopInvariantValue(LatchLimit)) {
590     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
591     return None;
592   }
593   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
594       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
595     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
596     return None;
597   }
598 
599   // guardLimit - guardStart + latchStart - 1
600   const SCEV *RHS =
601       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
602                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
603   auto LimitCheckPred =
604       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
605 
606   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
607   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
608   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
609 
610   auto *LimitCheck =
611       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
612   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
613                                           GuardStart, GuardLimit);
614   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
615   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
616 }
617 
618 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
619     LoopICmp LatchCheck, LoopICmp RangeCheck,
620     SCEVExpander &Expander, Instruction *Guard) {
621   auto *Ty = RangeCheck.IV->getType();
622   const SCEV *GuardStart = RangeCheck.IV->getStart();
623   const SCEV *GuardLimit = RangeCheck.Limit;
624   const SCEV *LatchStart = LatchCheck.IV->getStart();
625   const SCEV *LatchLimit = LatchCheck.Limit;
626   // Subtlety: We need all the values to be *invariant* across all iterations,
627   // but we only need to check expansion safety for those which *aren't*
628   // already guaranteed to dominate the guard.
629   if (!isLoopInvariantValue(GuardStart) ||
630       !isLoopInvariantValue(GuardLimit) ||
631       !isLoopInvariantValue(LatchStart) ||
632       !isLoopInvariantValue(LatchLimit)) {
633     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
634     return None;
635   }
636   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
637       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
638     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
639     return None;
640   }
641   // The decrement of the latch check IV should be the same as the
642   // rangeCheckIV.
643   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
644   if (RangeCheck.IV != PostDecLatchCheckIV) {
645     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
646                       << *PostDecLatchCheckIV
647                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
648     return None;
649   }
650 
651   // Generate the widened condition for CountDownLoop:
652   // guardStart u< guardLimit &&
653   // latchLimit <pred> 1.
654   // See the header comment for reasoning of the checks.
655   auto LimitCheckPred =
656       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
657   auto *FirstIterationCheck = expandCheck(Expander, Guard,
658                                           ICmpInst::ICMP_ULT,
659                                           GuardStart, GuardLimit);
660   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
661                                  SE->getOne(Ty));
662   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
663   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
664 }
665 
666 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
667                                LoopICmp& RC) {
668   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
669   // ULT/UGE form for ease of handling by our caller.
670   if (ICmpInst::isEquality(RC.Pred) &&
671       RC.IV->getStepRecurrence(*SE)->isOne() &&
672       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
673     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
674       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
675 }
676 
677 
678 /// If ICI can be widened to a loop invariant condition emits the loop
679 /// invariant condition in the loop preheader and return it, otherwise
680 /// returns None.
681 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
682                                                        SCEVExpander &Expander,
683                                                        Instruction *Guard) {
684   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
685   LLVM_DEBUG(ICI->dump());
686 
687   // parseLoopStructure guarantees that the latch condition is:
688   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
689   // We are looking for the range checks of the form:
690   //   i u< guardLimit
691   auto RangeCheck = parseLoopICmp(ICI);
692   if (!RangeCheck) {
693     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
694     return None;
695   }
696   LLVM_DEBUG(dbgs() << "Guard check:\n");
697   LLVM_DEBUG(RangeCheck->dump());
698   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
699     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
700                       << RangeCheck->Pred << ")!\n");
701     return None;
702   }
703   auto *RangeCheckIV = RangeCheck->IV;
704   if (!RangeCheckIV->isAffine()) {
705     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
706     return None;
707   }
708   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
709   // We cannot just compare with latch IV step because the latch and range IVs
710   // may have different types.
711   if (!isSupportedStep(Step)) {
712     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
713     return None;
714   }
715   auto *Ty = RangeCheckIV->getType();
716   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
717   if (!CurrLatchCheckOpt) {
718     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
719                          "corresponding to range type: "
720                       << *Ty << "\n");
721     return None;
722   }
723 
724   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
725   // At this point, the range and latch step should have the same type, but need
726   // not have the same value (we support both 1 and -1 steps).
727   assert(Step->getType() ==
728              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
729          "Range and latch steps should be of same type!");
730   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
731     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
732     return None;
733   }
734 
735   if (Step->isOne())
736     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
737                                                Expander, Guard);
738   else {
739     assert(Step->isAllOnesValue() && "Step should be -1!");
740     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
741                                                Expander, Guard);
742   }
743 }
744 
745 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
746                                         Value *Condition,
747                                         SCEVExpander &Expander,
748                                         Instruction *Guard) {
749   unsigned NumWidened = 0;
750   // The guard condition is expected to be in form of:
751   //   cond1 && cond2 && cond3 ...
752   // Iterate over subconditions looking for icmp conditions which can be
753   // widened across loop iterations. Widening these conditions remember the
754   // resulting list of subconditions in Checks vector.
755   SmallVector<Value *, 4> Worklist(1, Condition);
756   SmallPtrSet<Value *, 4> Visited;
757   Value *WideableCond = nullptr;
758   do {
759     Value *Condition = Worklist.pop_back_val();
760     if (!Visited.insert(Condition).second)
761       continue;
762 
763     Value *LHS, *RHS;
764     using namespace llvm::PatternMatch;
765     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
766       Worklist.push_back(LHS);
767       Worklist.push_back(RHS);
768       continue;
769     }
770 
771     if (match(Condition,
772               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
773       // Pick any, we don't care which
774       WideableCond = Condition;
775       continue;
776     }
777 
778     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
779       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
780                                                    Guard)) {
781         Checks.push_back(NewRangeCheck.getValue());
782         NumWidened++;
783         continue;
784       }
785     }
786 
787     // Save the condition as is if we can't widen it
788     Checks.push_back(Condition);
789   } while (!Worklist.empty());
790   // At the moment, our matching logic for wideable conditions implicitly
791   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
792   // Note that if there were multiple calls to wideable condition in the
793   // traversal, we only need to keep one, and which one is arbitrary.
794   if (WideableCond)
795     Checks.push_back(WideableCond);
796   return NumWidened;
797 }
798 
799 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
800                                            SCEVExpander &Expander) {
801   LLVM_DEBUG(dbgs() << "Processing guard:\n");
802   LLVM_DEBUG(Guard->dump());
803 
804   TotalConsidered++;
805   SmallVector<Value *, 4> Checks;
806   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
807                                       Guard);
808   if (NumWidened == 0)
809     return false;
810 
811   TotalWidened += NumWidened;
812 
813   // Emit the new guard condition
814   IRBuilder<> Builder(findInsertPt(Guard, Checks));
815   Value *AllChecks = Builder.CreateAnd(Checks);
816   auto *OldCond = Guard->getOperand(0);
817   Guard->setOperand(0, AllChecks);
818   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
819 
820   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
821   return true;
822 }
823 
824 bool LoopPredication::widenWidenableBranchGuardConditions(
825     BranchInst *BI, SCEVExpander &Expander) {
826   assert(isGuardAsWidenableBranch(BI) && "Must be!");
827   LLVM_DEBUG(dbgs() << "Processing guard:\n");
828   LLVM_DEBUG(BI->dump());
829 
830   TotalConsidered++;
831   SmallVector<Value *, 4> Checks;
832   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
833                                       Expander, BI);
834   if (NumWidened == 0)
835     return false;
836 
837   TotalWidened += NumWidened;
838 
839   // Emit the new guard condition
840   IRBuilder<> Builder(findInsertPt(BI, Checks));
841   Value *AllChecks = Builder.CreateAnd(Checks);
842   auto *OldCond = BI->getCondition();
843   BI->setCondition(AllChecks);
844   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
845   assert(isGuardAsWidenableBranch(BI) &&
846          "Stopped being a guard after transform?");
847 
848   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
849   return true;
850 }
851 
852 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
853   using namespace PatternMatch;
854 
855   BasicBlock *LoopLatch = L->getLoopLatch();
856   if (!LoopLatch) {
857     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
858     return None;
859   }
860 
861   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
862   if (!BI || !BI->isConditional()) {
863     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
864     return None;
865   }
866   BasicBlock *TrueDest = BI->getSuccessor(0);
867   assert(
868       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
869       "One of the latch's destinations must be the header");
870 
871   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
872   if (!ICI) {
873     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
874     return None;
875   }
876   auto Result = parseLoopICmp(ICI);
877   if (!Result) {
878     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
879     return None;
880   }
881 
882   if (TrueDest != L->getHeader())
883     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
884 
885   // Check affine first, so if it's not we don't try to compute the step
886   // recurrence.
887   if (!Result->IV->isAffine()) {
888     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
889     return None;
890   }
891 
892   auto *Step = Result->IV->getStepRecurrence(*SE);
893   if (!isSupportedStep(Step)) {
894     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
895     return None;
896   }
897 
898   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
899     if (Step->isOne()) {
900       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
901              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
902     } else {
903       assert(Step->isAllOnesValue() && "Step should be -1!");
904       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
905              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
906     }
907   };
908 
909   normalizePredicate(SE, L, *Result);
910   if (IsUnsupportedPredicate(Step, Result->Pred)) {
911     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
912                       << ")!\n");
913     return None;
914   }
915 
916   return Result;
917 }
918 
919 
920 bool LoopPredication::isLoopProfitableToPredicate() {
921   if (SkipProfitabilityChecks)
922     return true;
923 
924   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
925   L->getExitEdges(ExitEdges);
926   // If there is only one exiting edge in the loop, it is always profitable to
927   // predicate the loop.
928   if (ExitEdges.size() == 1)
929     return true;
930 
931   // Calculate the exiting probabilities of all exiting edges from the loop,
932   // starting with the LatchExitProbability.
933   // Heuristic for profitability: If any of the exiting blocks' probability of
934   // exiting the loop is larger than exiting through the latch block, it's not
935   // profitable to predicate the loop.
936   auto *LatchBlock = L->getLoopLatch();
937   assert(LatchBlock && "Should have a single latch at this point!");
938   auto *LatchTerm = LatchBlock->getTerminator();
939   assert(LatchTerm->getNumSuccessors() == 2 &&
940          "expected to be an exiting block with 2 succs!");
941   unsigned LatchBrExitIdx =
942       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
943   // We compute branch probabilities without BPI. We do not rely on BPI since
944   // Loop predication is usually run in an LPM and BPI is only preserved
945   // lossily within loop pass managers, while BPI has an inherent notion of
946   // being complete for an entire function.
947 
948   // If the latch exits into a deoptimize or an unreachable block, do not
949   // predicate on that latch check.
950   auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
951   if (isa<UnreachableInst>(LatchTerm) ||
952       LatchExitBlock->getTerminatingDeoptimizeCall())
953     return false;
954 
955   auto IsValidProfileData = [](MDNode *ProfileData, const Instruction *Term) {
956     if (!ProfileData || !ProfileData->getOperand(0))
957       return false;
958     if (MDString *MDS = dyn_cast<MDString>(ProfileData->getOperand(0)))
959       if (!MDS->getString().equals("branch_weights"))
960         return false;
961     if (ProfileData->getNumOperands() != 1 + Term->getNumSuccessors())
962       return false;
963     return true;
964   };
965   MDNode *LatchProfileData = LatchTerm->getMetadata(LLVMContext::MD_prof);
966   // Latch terminator has no valid profile data, so nothing to check
967   // profitability on.
968   if (!IsValidProfileData(LatchProfileData, LatchTerm))
969     return true;
970 
971   auto ComputeBranchProbability =
972       [&](const BasicBlock *ExitingBlock,
973           const BasicBlock *ExitBlock) -> BranchProbability {
974     auto *Term = ExitingBlock->getTerminator();
975     MDNode *ProfileData = Term->getMetadata(LLVMContext::MD_prof);
976     unsigned NumSucc = Term->getNumSuccessors();
977     if (IsValidProfileData(ProfileData, Term)) {
978       uint64_t Numerator = 0, Denominator = 0, ProfVal = 0;
979       for (unsigned i = 0; i < NumSucc; i++) {
980         ConstantInt *CI =
981             mdconst::extract<ConstantInt>(ProfileData->getOperand(i + 1));
982         ProfVal = CI->getValue().getZExtValue();
983         if (Term->getSuccessor(i) == ExitBlock)
984           Numerator += ProfVal;
985         Denominator += ProfVal;
986       }
987       return BranchProbability::getBranchProbability(Numerator, Denominator);
988     } else {
989       assert(LatchBlock != ExitingBlock &&
990              "Latch term should always have profile data!");
991       // No profile data, so we choose the weight as 1/num_of_succ(Src)
992       return BranchProbability::getBranchProbability(1, NumSucc);
993     }
994   };
995 
996   BranchProbability LatchExitProbability =
997       ComputeBranchProbability(LatchBlock, LatchExitBlock);
998 
999   // Protect against degenerate inputs provided by the user. Providing a value
1000   // less than one, can invert the definition of profitable loop predication.
1001   float ScaleFactor = LatchExitProbabilityScale;
1002   if (ScaleFactor < 1) {
1003     LLVM_DEBUG(
1004         dbgs()
1005         << "Ignored user setting for loop-predication-latch-probability-scale: "
1006         << LatchExitProbabilityScale << "\n");
1007     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
1008     ScaleFactor = 1.0;
1009   }
1010   const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
1011 
1012   for (const auto &ExitEdge : ExitEdges) {
1013     BranchProbability ExitingBlockProbability =
1014         ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
1015     // Some exiting edge has higher probability than the latch exiting edge.
1016     // No longer profitable to predicate.
1017     if (ExitingBlockProbability > LatchProbabilityThreshold)
1018       return false;
1019   }
1020 
1021   // We have concluded that the most probable way to exit from the
1022   // loop is through the latch (or there's no profile information and all
1023   // exits are equally likely).
1024   return true;
1025 }
1026 
1027 /// If we can (cheaply) find a widenable branch which controls entry into the
1028 /// loop, return it.
1029 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
1030   // Walk back through any unconditional executed blocks and see if we can find
1031   // a widenable condition which seems to control execution of this loop.  Note
1032   // that we predict that maythrow calls are likely untaken and thus that it's
1033   // profitable to widen a branch before a maythrow call with a condition
1034   // afterwards even though that may cause the slow path to run in a case where
1035   // it wouldn't have otherwise.
1036   BasicBlock *BB = L->getLoopPreheader();
1037   if (!BB)
1038     return nullptr;
1039   do {
1040     if (BasicBlock *Pred = BB->getSinglePredecessor())
1041       if (BB == Pred->getSingleSuccessor()) {
1042         BB = Pred;
1043         continue;
1044       }
1045     break;
1046   } while (true);
1047 
1048   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1049     auto *Term = Pred->getTerminator();
1050 
1051     Value *Cond, *WC;
1052     BasicBlock *IfTrueBB, *IfFalseBB;
1053     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
1054         IfTrueBB == BB)
1055       return cast<BranchInst>(Term);
1056   }
1057   return nullptr;
1058 }
1059 
1060 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1061 /// on the actual exit count.  If there are not at least two analyzeable exits,
1062 /// returns SCEVCouldNotCompute.
1063 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1064                                                        DominatorTree &DT,
1065                                                        Loop *L) {
1066   SmallVector<BasicBlock *, 16> ExitingBlocks;
1067   L->getExitingBlocks(ExitingBlocks);
1068 
1069   SmallVector<const SCEV *, 4> ExitCounts;
1070   for (BasicBlock *ExitingBB : ExitingBlocks) {
1071     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1072     if (isa<SCEVCouldNotCompute>(ExitCount))
1073       continue;
1074     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1075            "We should only have known counts for exiting blocks that "
1076            "dominate latch!");
1077     ExitCounts.push_back(ExitCount);
1078   }
1079   if (ExitCounts.size() < 2)
1080     return SE.getCouldNotCompute();
1081   return SE.getUMinFromMismatchedTypes(ExitCounts);
1082 }
1083 
1084 /// This implements an analogous, but entirely distinct transform from the main
1085 /// loop predication transform.  This one is phrased in terms of using a
1086 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1087 /// following loop.  This is close in spirit to the IndVarSimplify transform
1088 /// of the same name, but is materially different widening loosens legality
1089 /// sharply.
1090 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1091   // The transformation performed here aims to widen a widenable condition
1092   // above the loop such that all analyzeable exit leading to deopt are dead.
1093   // It assumes that the latch is the dominant exit for profitability and that
1094   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1095   // semantics of widenable expressions for legality. (i.e. being able to fall
1096   // down the widenable path spuriously allows us to ignore exit order,
1097   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1098   // which restrict the applicability of the non-WC based version of this
1099   // transform in IndVarSimplify.)
1100   //
1101   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1102   // imply flags on the expression being hoisted and inserting new uses (flags
1103   // are only correct for current uses).  The result is that we may be
1104   // inserting a branch on the value which can be either poison or undef.  In
1105   // this case, the branch can legally go either way; we just need to avoid
1106   // introducing UB.  This is achieved through the use of the freeze
1107   // instruction.
1108 
1109   SmallVector<BasicBlock *, 16> ExitingBlocks;
1110   L->getExitingBlocks(ExitingBlocks);
1111 
1112   if (ExitingBlocks.empty())
1113     return false; // Nothing to do.
1114 
1115   auto *Latch = L->getLoopLatch();
1116   if (!Latch)
1117     return false;
1118 
1119   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1120   if (!WidenableBR)
1121     return false;
1122 
1123   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1124   if (isa<SCEVCouldNotCompute>(LatchEC))
1125     return false; // profitability - want hot exit in analyzeable set
1126 
1127   // At this point, we have found an analyzeable latch, and a widenable
1128   // condition above the loop.  If we have a widenable exit within the loop
1129   // (for which we can't compute exit counts), drop the ability to further
1130   // widen so that we gain ability to analyze it's exit count and perform this
1131   // transform.  TODO: It'd be nice to know for sure the exit became
1132   // analyzeable after dropping widenability.
1133   bool ChangedLoop = false;
1134 
1135   for (auto *ExitingBB : ExitingBlocks) {
1136     if (LI->getLoopFor(ExitingBB) != L)
1137       continue;
1138 
1139     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1140     if (!BI)
1141       continue;
1142 
1143     Use *Cond, *WC;
1144     BasicBlock *IfTrueBB, *IfFalseBB;
1145     if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1146         L->contains(IfTrueBB)) {
1147       WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1148       ChangedLoop = true;
1149     }
1150   }
1151   if (ChangedLoop)
1152     SE->forgetLoop(L);
1153 
1154   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1155   // important for profitability.  We may have a loop which hasn't been fully
1156   // canonicalized just yet.  If the exit we chose to widen is provably never
1157   // taken, we want the widened form to *also* be provably never taken.  We
1158   // can't guarantee this as a current unanalyzeable exit may later become
1159   // analyzeable, but we can at least avoid the obvious cases.
1160   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1161   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1162       !SE->isLoopInvariant(MinEC, L) ||
1163       !isSafeToExpandAt(MinEC, WidenableBR, *SE))
1164     return ChangedLoop;
1165 
1166   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
1167   // that it can only have one transitive use at the moment, and thus moving
1168   // that use to just before the branch and inserting code before it and then
1169   // modifying the operand is legal.
1170   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1171   // Here we unconditionally modify the IR, so after this point we should return
1172   // only `true`!
1173   IP->moveBefore(WidenableBR);
1174   if (MSSAU)
1175     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP))
1176        MSSAU->moveToPlace(MUD, WidenableBR->getParent(),
1177                           MemorySSA::BeforeTerminator);
1178   Rewriter.setInsertPoint(IP);
1179   IRBuilder<> B(IP);
1180 
1181   bool InvalidateLoop = false;
1182   Value *MinECV = nullptr; // lazily generated if needed
1183   for (BasicBlock *ExitingBB : ExitingBlocks) {
1184     // If our exiting block exits multiple loops, we can only rewrite the
1185     // innermost one.  Otherwise, we're changing how many times the innermost
1186     // loop runs before it exits.
1187     if (LI->getLoopFor(ExitingBB) != L)
1188       continue;
1189 
1190     // Can't rewrite non-branch yet.
1191     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1192     if (!BI)
1193       continue;
1194 
1195     // If already constant, nothing to do.
1196     if (isa<Constant>(BI->getCondition()))
1197       continue;
1198 
1199     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1200     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1201         ExitCount->getType()->isPointerTy() ||
1202         !isSafeToExpandAt(ExitCount, WidenableBR, *SE))
1203       continue;
1204 
1205     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1206     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1207     if (!ExitBB->getPostdominatingDeoptimizeCall())
1208       continue;
1209 
1210     /// Here we can be fairly sure that executing this exit will most likely
1211     /// lead to executing llvm.experimental.deoptimize.
1212     /// This is a profitability heuristic, not a legality constraint.
1213 
1214     // If we found a widenable exit condition, do two things:
1215     // 1) fold the widened exit test into the widenable condition
1216     // 2) fold the branch to untaken - avoids infinite looping
1217 
1218     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1219     if (!MinECV)
1220       MinECV = Rewriter.expandCodeFor(MinEC);
1221     Value *RHS = MinECV;
1222     if (ECV->getType() != RHS->getType()) {
1223       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1224       ECV = B.CreateZExt(ECV, WiderTy);
1225       RHS = B.CreateZExt(RHS, WiderTy);
1226     }
1227     assert(!Latch || DT->dominates(ExitingBB, Latch));
1228     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1229     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1230     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1231     // context.
1232     NewCond = B.CreateFreeze(NewCond);
1233 
1234     widenWidenableBranch(WidenableBR, NewCond);
1235 
1236     Value *OldCond = BI->getCondition();
1237     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1238     InvalidateLoop = true;
1239   }
1240 
1241   if (InvalidateLoop)
1242     // We just mutated a bunch of loop exits changing there exit counts
1243     // widely.  We need to force recomputation of the exit counts given these
1244     // changes.  Note that all of the inserted exits are never taken, and
1245     // should be removed next time the CFG is modified.
1246     SE->forgetLoop(L);
1247 
1248   // Always return `true` since we have moved the WidenableBR's condition.
1249   return true;
1250 }
1251 
1252 bool LoopPredication::runOnLoop(Loop *Loop) {
1253   L = Loop;
1254 
1255   LLVM_DEBUG(dbgs() << "Analyzing ");
1256   LLVM_DEBUG(L->dump());
1257 
1258   Module *M = L->getHeader()->getModule();
1259 
1260   // There is nothing to do if the module doesn't use guards
1261   auto *GuardDecl =
1262       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1263   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1264   auto *WCDecl = M->getFunction(
1265       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1266   bool HasWidenableConditions =
1267       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1268   if (!HasIntrinsicGuards && !HasWidenableConditions)
1269     return false;
1270 
1271   DL = &M->getDataLayout();
1272 
1273   Preheader = L->getLoopPreheader();
1274   if (!Preheader)
1275     return false;
1276 
1277   auto LatchCheckOpt = parseLoopLatchICmp();
1278   if (!LatchCheckOpt)
1279     return false;
1280   LatchCheck = *LatchCheckOpt;
1281 
1282   LLVM_DEBUG(dbgs() << "Latch check:\n");
1283   LLVM_DEBUG(LatchCheck.dump());
1284 
1285   if (!isLoopProfitableToPredicate()) {
1286     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1287     return false;
1288   }
1289   // Collect all the guards into a vector and process later, so as not
1290   // to invalidate the instruction iterator.
1291   SmallVector<IntrinsicInst *, 4> Guards;
1292   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1293   for (const auto BB : L->blocks()) {
1294     for (auto &I : *BB)
1295       if (isGuard(&I))
1296         Guards.push_back(cast<IntrinsicInst>(&I));
1297     if (PredicateWidenableBranchGuards &&
1298         isGuardAsWidenableBranch(BB->getTerminator()))
1299       GuardsAsWidenableBranches.push_back(
1300           cast<BranchInst>(BB->getTerminator()));
1301   }
1302 
1303   SCEVExpander Expander(*SE, *DL, "loop-predication");
1304   bool Changed = false;
1305   for (auto *Guard : Guards)
1306     Changed |= widenGuardConditions(Guard, Expander);
1307   for (auto *Guard : GuardsAsWidenableBranches)
1308     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1309   Changed |= predicateLoopExits(L, Expander);
1310 
1311   if (MSSAU && VerifyMemorySSA)
1312     MSSAU->getMemorySSA()->verifyMemorySSA();
1313   return Changed;
1314 }
1315