xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 130d950cafcd29c6a32cf5357bf600dcd9c1d998)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/ScalarEvolution.h"
187 #include "llvm/Analysis/ScalarEvolutionExpander.h"
188 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
189 #include "llvm/IR/Function.h"
190 #include "llvm/IR/GlobalValue.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/InitializePasses.h"
195 #include "llvm/Pass.h"
196 #include "llvm/Support/CommandLine.h"
197 #include "llvm/Support/Debug.h"
198 #include "llvm/Transforms/Scalar.h"
199 #include "llvm/Transforms/Utils/GuardUtils.h"
200 #include "llvm/Transforms/Utils/Local.h"
201 #include "llvm/Transforms/Utils/LoopUtils.h"
202 
203 #define DEBUG_TYPE "loop-predication"
204 
205 STATISTIC(TotalConsidered, "Number of guards considered");
206 STATISTIC(TotalWidened, "Number of checks widened");
207 
208 using namespace llvm;
209 
210 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
211                                         cl::Hidden, cl::init(true));
212 
213 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
214                                         cl::Hidden, cl::init(true));
215 
216 static cl::opt<bool>
217     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
218                             cl::Hidden, cl::init(false));
219 
220 // This is the scale factor for the latch probability. We use this during
221 // profitability analysis to find other exiting blocks that have a much higher
222 // probability of exiting the loop instead of loop exiting via latch.
223 // This value should be greater than 1 for a sane profitability check.
224 static cl::opt<float> LatchExitProbabilityScale(
225     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
226     cl::desc("scale factor for the latch probability. Value should be greater "
227              "than 1. Lower values are ignored"));
228 
229 static cl::opt<bool> PredicateWidenableBranchGuards(
230     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
231     cl::desc("Whether or not we should predicate guards "
232              "expressed as widenable branches to deoptimize blocks"),
233     cl::init(true));
234 
235 namespace {
236 /// Represents an induction variable check:
237 ///   icmp Pred, <induction variable>, <loop invariant limit>
238 struct LoopICmp {
239   ICmpInst::Predicate Pred;
240   const SCEVAddRecExpr *IV;
241   const SCEV *Limit;
242   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
243            const SCEV *Limit)
244     : Pred(Pred), IV(IV), Limit(Limit) {}
245   LoopICmp() {}
246   void dump() {
247     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
248            << ", Limit = " << *Limit << "\n";
249   }
250 };
251 
252 class LoopPredication {
253   AliasAnalysis *AA;
254   DominatorTree *DT;
255   ScalarEvolution *SE;
256   LoopInfo *LI;
257   BranchProbabilityInfo *BPI;
258 
259   Loop *L;
260   const DataLayout *DL;
261   BasicBlock *Preheader;
262   LoopICmp LatchCheck;
263 
264   bool isSupportedStep(const SCEV* Step);
265   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
266   Optional<LoopICmp> parseLoopLatchICmp();
267 
268   /// Return an insertion point suitable for inserting a safe to speculate
269   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
270   /// trivial result would be the at the User itself, but we try to return a
271   /// loop invariant location if possible.
272   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
273   /// Same as above, *except* that this uses the SCEV definition of invariant
274   /// which is that an expression *can be made* invariant via SCEVExpander.
275   /// Thus, this version is only suitable for finding an insert point to be be
276   /// passed to SCEVExpander!
277   Instruction *findInsertPt(Instruction *User, ArrayRef<const SCEV*> Ops);
278 
279   /// Return true if the value is known to produce a single fixed value across
280   /// all iterations on which it executes.  Note that this does not imply
281   /// speculation safety.  That must be established seperately.
282   bool isLoopInvariantValue(const SCEV* S);
283 
284   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
285                      ICmpInst::Predicate Pred, const SCEV *LHS,
286                      const SCEV *RHS);
287 
288   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
289                                         Instruction *Guard);
290   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
291                                                         LoopICmp RangeCheck,
292                                                         SCEVExpander &Expander,
293                                                         Instruction *Guard);
294   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
295                                                         LoopICmp RangeCheck,
296                                                         SCEVExpander &Expander,
297                                                         Instruction *Guard);
298   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
299                          SCEVExpander &Expander, Instruction *Guard);
300   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
301   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
302   // If the loop always exits through another block in the loop, we should not
303   // predicate based on the latch check. For example, the latch check can be a
304   // very coarse grained check and there can be more fine grained exit checks
305   // within the loop. We identify such unprofitable loops through BPI.
306   bool isLoopProfitableToPredicate();
307 
308   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
309 
310 public:
311   LoopPredication(AliasAnalysis *AA, DominatorTree *DT,
312                   ScalarEvolution *SE, LoopInfo *LI,
313                   BranchProbabilityInfo *BPI)
314     : AA(AA), DT(DT), SE(SE), LI(LI), BPI(BPI) {};
315   bool runOnLoop(Loop *L);
316 };
317 
318 class LoopPredicationLegacyPass : public LoopPass {
319 public:
320   static char ID;
321   LoopPredicationLegacyPass() : LoopPass(ID) {
322     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
323   }
324 
325   void getAnalysisUsage(AnalysisUsage &AU) const override {
326     AU.addRequired<BranchProbabilityInfoWrapperPass>();
327     getLoopAnalysisUsage(AU);
328   }
329 
330   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
331     if (skipLoop(L))
332       return false;
333     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
334     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
335     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
336     BranchProbabilityInfo &BPI =
337         getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
338     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
339     LoopPredication LP(AA, DT, SE, LI, &BPI);
340     return LP.runOnLoop(L);
341   }
342 };
343 
344 char LoopPredicationLegacyPass::ID = 0;
345 } // end namespace llvm
346 
347 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
348                       "Loop predication", false, false)
349 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
350 INITIALIZE_PASS_DEPENDENCY(LoopPass)
351 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
352                     "Loop predication", false, false)
353 
354 Pass *llvm::createLoopPredicationPass() {
355   return new LoopPredicationLegacyPass();
356 }
357 
358 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
359                                            LoopStandardAnalysisResults &AR,
360                                            LPMUpdater &U) {
361   const auto &FAM =
362       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
363   Function *F = L.getHeader()->getParent();
364   auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
365   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI, BPI);
366   if (!LP.runOnLoop(&L))
367     return PreservedAnalyses::all();
368 
369   return getLoopPassPreservedAnalyses();
370 }
371 
372 Optional<LoopICmp>
373 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
374   auto Pred = ICI->getPredicate();
375   auto *LHS = ICI->getOperand(0);
376   auto *RHS = ICI->getOperand(1);
377 
378   const SCEV *LHSS = SE->getSCEV(LHS);
379   if (isa<SCEVCouldNotCompute>(LHSS))
380     return None;
381   const SCEV *RHSS = SE->getSCEV(RHS);
382   if (isa<SCEVCouldNotCompute>(RHSS))
383     return None;
384 
385   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
386   if (SE->isLoopInvariant(LHSS, L)) {
387     std::swap(LHS, RHS);
388     std::swap(LHSS, RHSS);
389     Pred = ICmpInst::getSwappedPredicate(Pred);
390   }
391 
392   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
393   if (!AR || AR->getLoop() != L)
394     return None;
395 
396   return LoopICmp(Pred, AR, RHSS);
397 }
398 
399 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
400                                     Instruction *Guard,
401                                     ICmpInst::Predicate Pred, const SCEV *LHS,
402                                     const SCEV *RHS) {
403   Type *Ty = LHS->getType();
404   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
405 
406   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
407     IRBuilder<> Builder(Guard);
408     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
409       return Builder.getTrue();
410     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
411                                      LHS, RHS))
412       return Builder.getFalse();
413   }
414 
415   Value *LHSV = Expander.expandCodeFor(LHS, Ty, findInsertPt(Guard, {LHS}));
416   Value *RHSV = Expander.expandCodeFor(RHS, Ty, findInsertPt(Guard, {RHS}));
417   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
418   return Builder.CreateICmp(Pred, LHSV, RHSV);
419 }
420 
421 
422 // Returns true if its safe to truncate the IV to RangeCheckType.
423 // When the IV type is wider than the range operand type, we can still do loop
424 // predication, by generating SCEVs for the range and latch that are of the
425 // same type. We achieve this by generating a SCEV truncate expression for the
426 // latch IV. This is done iff truncation of the IV is a safe operation,
427 // without loss of information.
428 // Another way to achieve this is by generating a wider type SCEV for the
429 // range check operand, however, this needs a more involved check that
430 // operands do not overflow. This can lead to loss of information when the
431 // range operand is of the form: add i32 %offset, %iv. We need to prove that
432 // sext(x + y) is same as sext(x) + sext(y).
433 // This function returns true if we can safely represent the IV type in
434 // the RangeCheckType without loss of information.
435 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
436                                        ScalarEvolution &SE,
437                                        const LoopICmp LatchCheck,
438                                        Type *RangeCheckType) {
439   if (!EnableIVTruncation)
440     return false;
441   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()) >
442              DL.getTypeSizeInBits(RangeCheckType) &&
443          "Expected latch check IV type to be larger than range check operand "
444          "type!");
445   // The start and end values of the IV should be known. This is to guarantee
446   // that truncating the wide type will not lose information.
447   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
448   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
449   if (!Limit || !Start)
450     return false;
451   // This check makes sure that the IV does not change sign during loop
452   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
453   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
454   // IV wraps around, and the truncation of the IV would lose the range of
455   // iterations between 2^32 and 2^64.
456   bool Increasing;
457   if (!SE.isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
458     return false;
459   // The active bits should be less than the bits in the RangeCheckType. This
460   // guarantees that truncating the latch check to RangeCheckType is a safe
461   // operation.
462   auto RangeCheckTypeBitSize = DL.getTypeSizeInBits(RangeCheckType);
463   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
464          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
465 }
466 
467 
468 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
469 // the requested type if safe to do so.  May involve the use of a new IV.
470 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
471                                                  ScalarEvolution &SE,
472                                                  const LoopICmp LatchCheck,
473                                                  Type *RangeCheckType) {
474 
475   auto *LatchType = LatchCheck.IV->getType();
476   if (RangeCheckType == LatchType)
477     return LatchCheck;
478   // For now, bail out if latch type is narrower than range type.
479   if (DL.getTypeSizeInBits(LatchType) < DL.getTypeSizeInBits(RangeCheckType))
480     return None;
481   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
482     return None;
483   // We can now safely identify the truncated version of the IV and limit for
484   // RangeCheckType.
485   LoopICmp NewLatchCheck;
486   NewLatchCheck.Pred = LatchCheck.Pred;
487   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
488       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
489   if (!NewLatchCheck.IV)
490     return None;
491   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
492   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
493                     << "can be represented as range check type:"
494                     << *RangeCheckType << "\n");
495   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
496   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
497   return NewLatchCheck;
498 }
499 
500 bool LoopPredication::isSupportedStep(const SCEV* Step) {
501   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
502 }
503 
504 Instruction *LoopPredication::findInsertPt(Instruction *Use,
505                                            ArrayRef<Value*> Ops) {
506   for (Value *Op : Ops)
507     if (!L->isLoopInvariant(Op))
508       return Use;
509   return Preheader->getTerminator();
510 }
511 
512 Instruction *LoopPredication::findInsertPt(Instruction *Use,
513                                            ArrayRef<const SCEV*> Ops) {
514   // Subtlety: SCEV considers things to be invariant if the value produced is
515   // the same across iterations.  This is not the same as being able to
516   // evaluate outside the loop, which is what we actually need here.
517   for (const SCEV *Op : Ops)
518     if (!SE->isLoopInvariant(Op, L) ||
519         !isSafeToExpandAt(Op, Preheader->getTerminator(), *SE))
520       return Use;
521   return Preheader->getTerminator();
522 }
523 
524 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
525   // Handling expressions which produce invariant results, but *haven't* yet
526   // been removed from the loop serves two important purposes.
527   // 1) Most importantly, it resolves a pass ordering cycle which would
528   // otherwise need us to iteration licm, loop-predication, and either
529   // loop-unswitch or loop-peeling to make progress on examples with lots of
530   // predicable range checks in a row.  (Since, in the general case,  we can't
531   // hoist the length checks until the dominating checks have been discharged
532   // as we can't prove doing so is safe.)
533   // 2) As a nice side effect, this exposes the value of peeling or unswitching
534   // much more obviously in the IR.  Otherwise, the cost modeling for other
535   // transforms would end up needing to duplicate all of this logic to model a
536   // check which becomes predictable based on a modeled peel or unswitch.
537   //
538   // The cost of doing so in the worst case is an extra fill from the stack  in
539   // the loop to materialize the loop invariant test value instead of checking
540   // against the original IV which is presumable in a register inside the loop.
541   // Such cases are presumably rare, and hint at missing oppurtunities for
542   // other passes.
543 
544   if (SE->isLoopInvariant(S, L))
545     // Note: This the SCEV variant, so the original Value* may be within the
546     // loop even though SCEV has proven it is loop invariant.
547     return true;
548 
549   // Handle a particular important case which SCEV doesn't yet know about which
550   // shows up in range checks on arrays with immutable lengths.
551   // TODO: This should be sunk inside SCEV.
552   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
553     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
554       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
555         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
556             LI->hasMetadata(LLVMContext::MD_invariant_load))
557           return true;
558   return false;
559 }
560 
561 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
562     LoopICmp LatchCheck, LoopICmp RangeCheck,
563     SCEVExpander &Expander, Instruction *Guard) {
564   auto *Ty = RangeCheck.IV->getType();
565   // Generate the widened condition for the forward loop:
566   //   guardStart u< guardLimit &&
567   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
568   // where <pred> depends on the latch condition predicate. See the file
569   // header comment for the reasoning.
570   // guardLimit - guardStart + latchStart - 1
571   const SCEV *GuardStart = RangeCheck.IV->getStart();
572   const SCEV *GuardLimit = RangeCheck.Limit;
573   const SCEV *LatchStart = LatchCheck.IV->getStart();
574   const SCEV *LatchLimit = LatchCheck.Limit;
575   // Subtlety: We need all the values to be *invariant* across all iterations,
576   // but we only need to check expansion safety for those which *aren't*
577   // already guaranteed to dominate the guard.
578   if (!isLoopInvariantValue(GuardStart) ||
579       !isLoopInvariantValue(GuardLimit) ||
580       !isLoopInvariantValue(LatchStart) ||
581       !isLoopInvariantValue(LatchLimit)) {
582     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
583     return None;
584   }
585   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
586       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
587     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
588     return None;
589   }
590 
591   // guardLimit - guardStart + latchStart - 1
592   const SCEV *RHS =
593       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
594                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
595   auto LimitCheckPred =
596       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
597 
598   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
599   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
600   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
601 
602   auto *LimitCheck =
603       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
604   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
605                                           GuardStart, GuardLimit);
606   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
607   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
608 }
609 
610 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
611     LoopICmp LatchCheck, LoopICmp RangeCheck,
612     SCEVExpander &Expander, Instruction *Guard) {
613   auto *Ty = RangeCheck.IV->getType();
614   const SCEV *GuardStart = RangeCheck.IV->getStart();
615   const SCEV *GuardLimit = RangeCheck.Limit;
616   const SCEV *LatchStart = LatchCheck.IV->getStart();
617   const SCEV *LatchLimit = LatchCheck.Limit;
618   // Subtlety: We need all the values to be *invariant* across all iterations,
619   // but we only need to check expansion safety for those which *aren't*
620   // already guaranteed to dominate the guard.
621   if (!isLoopInvariantValue(GuardStart) ||
622       !isLoopInvariantValue(GuardLimit) ||
623       !isLoopInvariantValue(LatchStart) ||
624       !isLoopInvariantValue(LatchLimit)) {
625     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
626     return None;
627   }
628   if (!isSafeToExpandAt(LatchStart, Guard, *SE) ||
629       !isSafeToExpandAt(LatchLimit, Guard, *SE)) {
630     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
631     return None;
632   }
633   // The decrement of the latch check IV should be the same as the
634   // rangeCheckIV.
635   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
636   if (RangeCheck.IV != PostDecLatchCheckIV) {
637     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
638                       << *PostDecLatchCheckIV
639                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
640     return None;
641   }
642 
643   // Generate the widened condition for CountDownLoop:
644   // guardStart u< guardLimit &&
645   // latchLimit <pred> 1.
646   // See the header comment for reasoning of the checks.
647   auto LimitCheckPred =
648       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
649   auto *FirstIterationCheck = expandCheck(Expander, Guard,
650                                           ICmpInst::ICMP_ULT,
651                                           GuardStart, GuardLimit);
652   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
653                                  SE->getOne(Ty));
654   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
655   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
656 }
657 
658 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
659                                LoopICmp& RC) {
660   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
661   // ULT/UGE form for ease of handling by our caller.
662   if (ICmpInst::isEquality(RC.Pred) &&
663       RC.IV->getStepRecurrence(*SE)->isOne() &&
664       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
665     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
666       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
667 }
668 
669 
670 /// If ICI can be widened to a loop invariant condition emits the loop
671 /// invariant condition in the loop preheader and return it, otherwise
672 /// returns None.
673 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
674                                                        SCEVExpander &Expander,
675                                                        Instruction *Guard) {
676   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
677   LLVM_DEBUG(ICI->dump());
678 
679   // parseLoopStructure guarantees that the latch condition is:
680   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
681   // We are looking for the range checks of the form:
682   //   i u< guardLimit
683   auto RangeCheck = parseLoopICmp(ICI);
684   if (!RangeCheck) {
685     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
686     return None;
687   }
688   LLVM_DEBUG(dbgs() << "Guard check:\n");
689   LLVM_DEBUG(RangeCheck->dump());
690   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
691     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
692                       << RangeCheck->Pred << ")!\n");
693     return None;
694   }
695   auto *RangeCheckIV = RangeCheck->IV;
696   if (!RangeCheckIV->isAffine()) {
697     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
698     return None;
699   }
700   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
701   // We cannot just compare with latch IV step because the latch and range IVs
702   // may have different types.
703   if (!isSupportedStep(Step)) {
704     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
705     return None;
706   }
707   auto *Ty = RangeCheckIV->getType();
708   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
709   if (!CurrLatchCheckOpt) {
710     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
711                          "corresponding to range type: "
712                       << *Ty << "\n");
713     return None;
714   }
715 
716   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
717   // At this point, the range and latch step should have the same type, but need
718   // not have the same value (we support both 1 and -1 steps).
719   assert(Step->getType() ==
720              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
721          "Range and latch steps should be of same type!");
722   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
723     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
724     return None;
725   }
726 
727   if (Step->isOne())
728     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
729                                                Expander, Guard);
730   else {
731     assert(Step->isAllOnesValue() && "Step should be -1!");
732     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
733                                                Expander, Guard);
734   }
735 }
736 
737 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
738                                         Value *Condition,
739                                         SCEVExpander &Expander,
740                                         Instruction *Guard) {
741   unsigned NumWidened = 0;
742   // The guard condition is expected to be in form of:
743   //   cond1 && cond2 && cond3 ...
744   // Iterate over subconditions looking for icmp conditions which can be
745   // widened across loop iterations. Widening these conditions remember the
746   // resulting list of subconditions in Checks vector.
747   SmallVector<Value *, 4> Worklist(1, Condition);
748   SmallPtrSet<Value *, 4> Visited;
749   Value *WideableCond = nullptr;
750   do {
751     Value *Condition = Worklist.pop_back_val();
752     if (!Visited.insert(Condition).second)
753       continue;
754 
755     Value *LHS, *RHS;
756     using namespace llvm::PatternMatch;
757     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
758       Worklist.push_back(LHS);
759       Worklist.push_back(RHS);
760       continue;
761     }
762 
763     if (match(Condition,
764               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
765       // Pick any, we don't care which
766       WideableCond = Condition;
767       continue;
768     }
769 
770     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
771       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
772                                                    Guard)) {
773         Checks.push_back(NewRangeCheck.getValue());
774         NumWidened++;
775         continue;
776       }
777     }
778 
779     // Save the condition as is if we can't widen it
780     Checks.push_back(Condition);
781   } while (!Worklist.empty());
782   // At the moment, our matching logic for wideable conditions implicitly
783   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
784   // Note that if there were multiple calls to wideable condition in the
785   // traversal, we only need to keep one, and which one is arbitrary.
786   if (WideableCond)
787     Checks.push_back(WideableCond);
788   return NumWidened;
789 }
790 
791 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
792                                            SCEVExpander &Expander) {
793   LLVM_DEBUG(dbgs() << "Processing guard:\n");
794   LLVM_DEBUG(Guard->dump());
795 
796   TotalConsidered++;
797   SmallVector<Value *, 4> Checks;
798   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
799                                       Guard);
800   if (NumWidened == 0)
801     return false;
802 
803   TotalWidened += NumWidened;
804 
805   // Emit the new guard condition
806   IRBuilder<> Builder(findInsertPt(Guard, Checks));
807   Value *AllChecks = Builder.CreateAnd(Checks);
808   auto *OldCond = Guard->getOperand(0);
809   Guard->setOperand(0, AllChecks);
810   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
811 
812   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
813   return true;
814 }
815 
816 bool LoopPredication::widenWidenableBranchGuardConditions(
817     BranchInst *BI, SCEVExpander &Expander) {
818   assert(isGuardAsWidenableBranch(BI) && "Must be!");
819   LLVM_DEBUG(dbgs() << "Processing guard:\n");
820   LLVM_DEBUG(BI->dump());
821 
822   TotalConsidered++;
823   SmallVector<Value *, 4> Checks;
824   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
825                                       Expander, BI);
826   if (NumWidened == 0)
827     return false;
828 
829   TotalWidened += NumWidened;
830 
831   // Emit the new guard condition
832   IRBuilder<> Builder(findInsertPt(BI, Checks));
833   Value *AllChecks = Builder.CreateAnd(Checks);
834   auto *OldCond = BI->getCondition();
835   BI->setCondition(AllChecks);
836   RecursivelyDeleteTriviallyDeadInstructions(OldCond);
837   assert(isGuardAsWidenableBranch(BI) &&
838          "Stopped being a guard after transform?");
839 
840   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
841   return true;
842 }
843 
844 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
845   using namespace PatternMatch;
846 
847   BasicBlock *LoopLatch = L->getLoopLatch();
848   if (!LoopLatch) {
849     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
850     return None;
851   }
852 
853   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
854   if (!BI || !BI->isConditional()) {
855     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
856     return None;
857   }
858   BasicBlock *TrueDest = BI->getSuccessor(0);
859   assert(
860       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
861       "One of the latch's destinations must be the header");
862 
863   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
864   if (!ICI) {
865     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
866     return None;
867   }
868   auto Result = parseLoopICmp(ICI);
869   if (!Result) {
870     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
871     return None;
872   }
873 
874   if (TrueDest != L->getHeader())
875     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
876 
877   // Check affine first, so if it's not we don't try to compute the step
878   // recurrence.
879   if (!Result->IV->isAffine()) {
880     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
881     return None;
882   }
883 
884   auto *Step = Result->IV->getStepRecurrence(*SE);
885   if (!isSupportedStep(Step)) {
886     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
887     return None;
888   }
889 
890   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
891     if (Step->isOne()) {
892       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
893              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
894     } else {
895       assert(Step->isAllOnesValue() && "Step should be -1!");
896       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
897              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
898     }
899   };
900 
901   normalizePredicate(SE, L, *Result);
902   if (IsUnsupportedPredicate(Step, Result->Pred)) {
903     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
904                       << ")!\n");
905     return None;
906   }
907 
908   return Result;
909 }
910 
911 
912 bool LoopPredication::isLoopProfitableToPredicate() {
913   if (SkipProfitabilityChecks || !BPI)
914     return true;
915 
916   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
917   L->getExitEdges(ExitEdges);
918   // If there is only one exiting edge in the loop, it is always profitable to
919   // predicate the loop.
920   if (ExitEdges.size() == 1)
921     return true;
922 
923   // Calculate the exiting probabilities of all exiting edges from the loop,
924   // starting with the LatchExitProbability.
925   // Heuristic for profitability: If any of the exiting blocks' probability of
926   // exiting the loop is larger than exiting through the latch block, it's not
927   // profitable to predicate the loop.
928   auto *LatchBlock = L->getLoopLatch();
929   assert(LatchBlock && "Should have a single latch at this point!");
930   auto *LatchTerm = LatchBlock->getTerminator();
931   assert(LatchTerm->getNumSuccessors() == 2 &&
932          "expected to be an exiting block with 2 succs!");
933   unsigned LatchBrExitIdx =
934       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
935   BranchProbability LatchExitProbability =
936       BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
937 
938   // Protect against degenerate inputs provided by the user. Providing a value
939   // less than one, can invert the definition of profitable loop predication.
940   float ScaleFactor = LatchExitProbabilityScale;
941   if (ScaleFactor < 1) {
942     LLVM_DEBUG(
943         dbgs()
944         << "Ignored user setting for loop-predication-latch-probability-scale: "
945         << LatchExitProbabilityScale << "\n");
946     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
947     ScaleFactor = 1.0;
948   }
949   const auto LatchProbabilityThreshold =
950       LatchExitProbability * ScaleFactor;
951 
952   for (const auto &ExitEdge : ExitEdges) {
953     BranchProbability ExitingBlockProbability =
954         BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
955     // Some exiting edge has higher probability than the latch exiting edge.
956     // No longer profitable to predicate.
957     if (ExitingBlockProbability > LatchProbabilityThreshold)
958       return false;
959   }
960   // Using BPI, we have concluded that the most probable way to exit from the
961   // loop is through the latch (or there's no profile information and all
962   // exits are equally likely).
963   return true;
964 }
965 
966 /// If we can (cheaply) find a widenable branch which controls entry into the
967 /// loop, return it.
968 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
969   // Walk back through any unconditional executed blocks and see if we can find
970   // a widenable condition which seems to control execution of this loop.  Note
971   // that we predict that maythrow calls are likely untaken and thus that it's
972   // profitable to widen a branch before a maythrow call with a condition
973   // afterwards even though that may cause the slow path to run in a case where
974   // it wouldn't have otherwise.
975   BasicBlock *BB = L->getLoopPreheader();
976   if (!BB)
977     return nullptr;
978   do {
979     if (BasicBlock *Pred = BB->getSinglePredecessor())
980       if (BB == Pred->getSingleSuccessor()) {
981         BB = Pred;
982         continue;
983       }
984     break;
985   } while (true);
986 
987   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
988     auto *Term = Pred->getTerminator();
989 
990     Value *Cond, *WC;
991     BasicBlock *IfTrueBB, *IfFalseBB;
992     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
993         IfTrueBB == BB)
994       return cast<BranchInst>(Term);
995   }
996   return nullptr;
997 }
998 
999 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1000 /// on the actual exit count.  If there are not at least two analyzeable exits,
1001 /// returns SCEVCouldNotCompute.
1002 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1003                                                        DominatorTree &DT,
1004                                                        Loop *L) {
1005   SmallVector<BasicBlock *, 16> ExitingBlocks;
1006   L->getExitingBlocks(ExitingBlocks);
1007 
1008   SmallVector<const SCEV *, 4> ExitCounts;
1009   for (BasicBlock *ExitingBB : ExitingBlocks) {
1010     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1011     if (isa<SCEVCouldNotCompute>(ExitCount))
1012       continue;
1013     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1014            "We should only have known counts for exiting blocks that "
1015            "dominate latch!");
1016     ExitCounts.push_back(ExitCount);
1017   }
1018   if (ExitCounts.size() < 2)
1019     return SE.getCouldNotCompute();
1020   return SE.getUMinFromMismatchedTypes(ExitCounts);
1021 }
1022 
1023 /// Return true if we can be fairly sure that executing block BB will probably
1024 /// lead to executing an __llvm_deoptimize.  This is a profitability heuristic,
1025 /// not a legality constraint.
1026 static bool isVeryLikelyToDeopt(BasicBlock *BB) {
1027   while (BB->getUniqueSuccessor())
1028     // Will skip side effects, that's okay
1029     BB = BB->getUniqueSuccessor();
1030 
1031   return BB->getTerminatingDeoptimizeCall();
1032 }
1033 
1034 /// This implements an analogous, but entirely distinct transform from the main
1035 /// loop predication transform.  This one is phrased in terms of using a
1036 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1037 /// following loop.  This is close in spirit to the IndVarSimplify transform
1038 /// of the same name, but is materially different widening loosens legality
1039 /// sharply.
1040 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1041   // The transformation performed here aims to widen a widenable condition
1042   // above the loop such that all analyzeable exit leading to deopt are dead.
1043   // It assumes that the latch is the dominant exit for profitability and that
1044   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1045   // semantics of widenable expressions for legality. (i.e. being able to fall
1046   // down the widenable path spuriously allows us to ignore exit order,
1047   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1048   // which restrict the applicability of the non-WC based version of this
1049   // transform in IndVarSimplify.)
1050   //
1051   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1052   // imply flags on the expression being hoisted and inserting new uses (flags
1053   // are only correct for current uses).  The result is that we may be
1054   // inserting a branch on the value which can be either poison or undef.  In
1055   // this case, the branch can legally go either way; we just need to avoid
1056   // introducing UB.  This is achieved through the use of the freeze
1057   // instruction.
1058 
1059   SmallVector<BasicBlock *, 16> ExitingBlocks;
1060   L->getExitingBlocks(ExitingBlocks);
1061 
1062   if (ExitingBlocks.empty())
1063     return false; // Nothing to do.
1064 
1065   auto *Latch = L->getLoopLatch();
1066   if (!Latch)
1067     return false;
1068 
1069   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1070   if (!WidenableBR)
1071     return false;
1072 
1073   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1074   if (isa<SCEVCouldNotCompute>(LatchEC))
1075     return false; // profitability - want hot exit in analyzeable set
1076 
1077   // At this point, we have found an analyzeable latch, and a widenable
1078   // condition above the loop.  If we have a widenable exit within the loop
1079   // (for which we can't compute exit counts), drop the ability to further
1080   // widen so that we gain ability to analyze it's exit count and perform this
1081   // transform.  TODO: It'd be nice to know for sure the exit became
1082   // analyzeable after dropping widenability.
1083   {
1084     bool Invalidate = false;
1085 
1086     for (auto *ExitingBB : ExitingBlocks) {
1087       if (LI->getLoopFor(ExitingBB) != L)
1088         continue;
1089 
1090       auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1091       if (!BI)
1092         continue;
1093 
1094       Use *Cond, *WC;
1095       BasicBlock *IfTrueBB, *IfFalseBB;
1096       if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1097           L->contains(IfTrueBB)) {
1098         WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1099         Invalidate = true;
1100       }
1101     }
1102     if (Invalidate)
1103       SE->forgetLoop(L);
1104   }
1105 
1106   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1107   // important for profitability.  We may have a loop which hasn't been fully
1108   // canonicalized just yet.  If the exit we chose to widen is provably never
1109   // taken, we want the widened form to *also* be provably never taken.  We
1110   // can't guarantee this as a current unanalyzeable exit may later become
1111   // analyzeable, but we can at least avoid the obvious cases.
1112   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1113   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1114       !SE->isLoopInvariant(MinEC, L) ||
1115       !isSafeToExpandAt(MinEC, WidenableBR, *SE))
1116     return false;
1117 
1118   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
1119   // that it can only have one transitive use at the moment, and thus moving
1120   // that use to just before the branch and inserting code before it and then
1121   // modifying the operand is legal.
1122   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1123   IP->moveBefore(WidenableBR);
1124   Rewriter.setInsertPoint(IP);
1125   IRBuilder<> B(IP);
1126 
1127   bool Changed = false;
1128   Value *MinECV = nullptr; // lazily generated if needed
1129   for (BasicBlock *ExitingBB : ExitingBlocks) {
1130     // If our exiting block exits multiple loops, we can only rewrite the
1131     // innermost one.  Otherwise, we're changing how many times the innermost
1132     // loop runs before it exits.
1133     if (LI->getLoopFor(ExitingBB) != L)
1134       continue;
1135 
1136     // Can't rewrite non-branch yet.
1137     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1138     if (!BI)
1139       continue;
1140 
1141     // If already constant, nothing to do.
1142     if (isa<Constant>(BI->getCondition()))
1143       continue;
1144 
1145     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1146     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1147         ExitCount->getType()->isPointerTy() ||
1148         !isSafeToExpandAt(ExitCount, WidenableBR, *SE))
1149       continue;
1150 
1151     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1152     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1153     if (!isVeryLikelyToDeopt(ExitBB))
1154       // Profitability: indicator of rarely/never taken exit
1155       continue;
1156 
1157     // If we found a widenable exit condition, do two things:
1158     // 1) fold the widened exit test into the widenable condition
1159     // 2) fold the branch to untaken - avoids infinite looping
1160 
1161     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1162     if (!MinECV)
1163       MinECV = Rewriter.expandCodeFor(MinEC);
1164     Value *RHS = MinECV;
1165     if (ECV->getType() != RHS->getType()) {
1166       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1167       ECV = B.CreateZExt(ECV, WiderTy);
1168       RHS = B.CreateZExt(RHS, WiderTy);
1169     }
1170     assert(!Latch || DT->dominates(ExitingBB, Latch));
1171     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1172     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1173     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1174     // context.
1175     NewCond = B.CreateFreeze(NewCond);
1176 
1177     widenWidenableBranch(WidenableBR, NewCond);
1178 
1179     Value *OldCond = BI->getCondition();
1180     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1181     Changed = true;
1182   }
1183 
1184   if (Changed)
1185     // We just mutated a bunch of loop exits changing there exit counts
1186     // widely.  We need to force recomputation of the exit counts given these
1187     // changes.  Note that all of the inserted exits are never taken, and
1188     // should be removed next time the CFG is modified.
1189     SE->forgetLoop(L);
1190   return Changed;
1191 }
1192 
1193 bool LoopPredication::runOnLoop(Loop *Loop) {
1194   L = Loop;
1195 
1196   LLVM_DEBUG(dbgs() << "Analyzing ");
1197   LLVM_DEBUG(L->dump());
1198 
1199   Module *M = L->getHeader()->getModule();
1200 
1201   // There is nothing to do if the module doesn't use guards
1202   auto *GuardDecl =
1203       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1204   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1205   auto *WCDecl = M->getFunction(
1206       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1207   bool HasWidenableConditions =
1208       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1209   if (!HasIntrinsicGuards && !HasWidenableConditions)
1210     return false;
1211 
1212   DL = &M->getDataLayout();
1213 
1214   Preheader = L->getLoopPreheader();
1215   if (!Preheader)
1216     return false;
1217 
1218   auto LatchCheckOpt = parseLoopLatchICmp();
1219   if (!LatchCheckOpt)
1220     return false;
1221   LatchCheck = *LatchCheckOpt;
1222 
1223   LLVM_DEBUG(dbgs() << "Latch check:\n");
1224   LLVM_DEBUG(LatchCheck.dump());
1225 
1226   if (!isLoopProfitableToPredicate()) {
1227     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1228     return false;
1229   }
1230   // Collect all the guards into a vector and process later, so as not
1231   // to invalidate the instruction iterator.
1232   SmallVector<IntrinsicInst *, 4> Guards;
1233   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1234   for (const auto BB : L->blocks()) {
1235     for (auto &I : *BB)
1236       if (isGuard(&I))
1237         Guards.push_back(cast<IntrinsicInst>(&I));
1238     if (PredicateWidenableBranchGuards &&
1239         isGuardAsWidenableBranch(BB->getTerminator()))
1240       GuardsAsWidenableBranches.push_back(
1241           cast<BranchInst>(BB->getTerminator()));
1242   }
1243 
1244   SCEVExpander Expander(*SE, *DL, "loop-predication");
1245   bool Changed = false;
1246   for (auto *Guard : Guards)
1247     Changed |= widenGuardConditions(Guard, Expander);
1248   for (auto *Guard : GuardsAsWidenableBranches)
1249     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1250   Changed |= predicateLoopExits(L, Expander);
1251   return Changed;
1252 }
1253