xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp (revision 0c428864495af9dc7d2af4d0a5ae21732af9c739)
1 //===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LoopPredication pass tries to convert loop variant range checks to loop
10 // invariant by widening checks across loop iterations. For example, it will
11 // convert
12 //
13 //   for (i = 0; i < n; i++) {
14 //     guard(i < len);
15 //     ...
16 //   }
17 //
18 // to
19 //
20 //   for (i = 0; i < n; i++) {
21 //     guard(n - 1 < len);
22 //     ...
23 //   }
24 //
25 // After this transformation the condition of the guard is loop invariant, so
26 // loop-unswitch can later unswitch the loop by this condition which basically
27 // predicates the loop by the widened condition:
28 //
29 //   if (n - 1 < len)
30 //     for (i = 0; i < n; i++) {
31 //       ...
32 //     }
33 //   else
34 //     deoptimize
35 //
36 // It's tempting to rely on SCEV here, but it has proven to be problematic.
37 // Generally the facts SCEV provides about the increment step of add
38 // recurrences are true if the backedge of the loop is taken, which implicitly
39 // assumes that the guard doesn't fail. Using these facts to optimize the
40 // guard results in a circular logic where the guard is optimized under the
41 // assumption that it never fails.
42 //
43 // For example, in the loop below the induction variable will be marked as nuw
44 // basing on the guard. Basing on nuw the guard predicate will be considered
45 // monotonic. Given a monotonic condition it's tempting to replace the induction
46 // variable in the condition with its value on the last iteration. But this
47 // transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
48 //
49 //   for (int i = b; i != e; i++)
50 //     guard(i u< len)
51 //
52 // One of the ways to reason about this problem is to use an inductive proof
53 // approach. Given the loop:
54 //
55 //   if (B(0)) {
56 //     do {
57 //       I = PHI(0, I.INC)
58 //       I.INC = I + Step
59 //       guard(G(I));
60 //     } while (B(I));
61 //   }
62 //
63 // where B(x) and G(x) are predicates that map integers to booleans, we want a
64 // loop invariant expression M such the following program has the same semantics
65 // as the above:
66 //
67 //   if (B(0)) {
68 //     do {
69 //       I = PHI(0, I.INC)
70 //       I.INC = I + Step
71 //       guard(G(0) && M);
72 //     } while (B(I));
73 //   }
74 //
75 // One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
76 //
77 // Informal proof that the transformation above is correct:
78 //
79 //   By the definition of guards we can rewrite the guard condition to:
80 //     G(I) && G(0) && M
81 //
82 //   Let's prove that for each iteration of the loop:
83 //     G(0) && M => G(I)
84 //   And the condition above can be simplified to G(Start) && M.
85 //
86 //   Induction base.
87 //     G(0) && M => G(0)
88 //
89 //   Induction step. Assuming G(0) && M => G(I) on the subsequent
90 //   iteration:
91 //
92 //     B(I) is true because it's the backedge condition.
93 //     G(I) is true because the backedge is guarded by this condition.
94 //
95 //   So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
96 //
97 // Note that we can use anything stronger than M, i.e. any condition which
98 // implies M.
99 //
100 // When S = 1 (i.e. forward iterating loop), the transformation is supported
101 // when:
102 //   * The loop has a single latch with the condition of the form:
103 //     B(X) = latchStart + X <pred> latchLimit,
104 //     where <pred> is u<, u<=, s<, or s<=.
105 //   * The guard condition is of the form
106 //     G(X) = guardStart + X u< guardLimit
107 //
108 //   For the ult latch comparison case M is:
109 //     forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
110 //        guardStart + X + 1 u< guardLimit
111 //
112 //   The only way the antecedent can be true and the consequent can be false is
113 //   if
114 //     X == guardLimit - 1 - guardStart
115 //   (and guardLimit is non-zero, but we won't use this latter fact).
116 //   If X == guardLimit - 1 - guardStart then the second half of the antecedent is
117 //     latchStart + guardLimit - 1 - guardStart u< latchLimit
118 //   and its negation is
119 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
120 //
121 //   In other words, if
122 //     latchLimit u<= latchStart + guardLimit - 1 - guardStart
123 //   then:
124 //   (the ranges below are written in ConstantRange notation, where [A, B) is the
125 //   set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
126 //
127 //      forall X . guardStart + X u< guardLimit &&
128 //                 latchStart + X u< latchLimit =>
129 //        guardStart + X + 1 u< guardLimit
130 //   == forall X . guardStart + X u< guardLimit &&
131 //                 latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
132 //        guardStart + X + 1 u< guardLimit
133 //   == forall X . (guardStart + X) in [0, guardLimit) &&
134 //                 (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
135 //        (guardStart + X + 1) in [0, guardLimit)
136 //   == forall X . X in [-guardStart, guardLimit - guardStart) &&
137 //                 X in [-latchStart, guardLimit - 1 - guardStart) =>
138 //         X in [-guardStart - 1, guardLimit - guardStart - 1)
139 //   == true
140 //
141 //   So the widened condition is:
142 //     guardStart u< guardLimit &&
143 //     latchStart + guardLimit - 1 - guardStart u>= latchLimit
144 //   Similarly for ule condition the widened condition is:
145 //     guardStart u< guardLimit &&
146 //     latchStart + guardLimit - 1 - guardStart u> latchLimit
147 //   For slt condition the widened condition is:
148 //     guardStart u< guardLimit &&
149 //     latchStart + guardLimit - 1 - guardStart s>= latchLimit
150 //   For sle condition the widened condition is:
151 //     guardStart u< guardLimit &&
152 //     latchStart + guardLimit - 1 - guardStart s> latchLimit
153 //
154 // When S = -1 (i.e. reverse iterating loop), the transformation is supported
155 // when:
156 //   * The loop has a single latch with the condition of the form:
157 //     B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
158 //   * The guard condition is of the form
159 //     G(X) = X - 1 u< guardLimit
160 //
161 //   For the ugt latch comparison case M is:
162 //     forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
163 //
164 //   The only way the antecedent can be true and the consequent can be false is if
165 //     X == 1.
166 //   If X == 1 then the second half of the antecedent is
167 //     1 u> latchLimit, and its negation is latchLimit u>= 1.
168 //
169 //   So the widened condition is:
170 //     guardStart u< guardLimit && latchLimit u>= 1.
171 //   Similarly for sgt condition the widened condition is:
172 //     guardStart u< guardLimit && latchLimit s>= 1.
173 //   For uge condition the widened condition is:
174 //     guardStart u< guardLimit && latchLimit u> 1.
175 //   For sge condition the widened condition is:
176 //     guardStart u< guardLimit && latchLimit s> 1.
177 //===----------------------------------------------------------------------===//
178 
179 #include "llvm/Transforms/Scalar/LoopPredication.h"
180 #include "llvm/ADT/Statistic.h"
181 #include "llvm/Analysis/AliasAnalysis.h"
182 #include "llvm/Analysis/BranchProbabilityInfo.h"
183 #include "llvm/Analysis/GuardUtils.h"
184 #include "llvm/Analysis/LoopInfo.h"
185 #include "llvm/Analysis/LoopPass.h"
186 #include "llvm/Analysis/MemorySSA.h"
187 #include "llvm/Analysis/MemorySSAUpdater.h"
188 #include "llvm/Analysis/ScalarEvolution.h"
189 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
190 #include "llvm/IR/Function.h"
191 #include "llvm/IR/IntrinsicInst.h"
192 #include "llvm/IR/Module.h"
193 #include "llvm/IR/PatternMatch.h"
194 #include "llvm/InitializePasses.h"
195 #include "llvm/Pass.h"
196 #include "llvm/Support/CommandLine.h"
197 #include "llvm/Support/Debug.h"
198 #include "llvm/Transforms/Scalar.h"
199 #include "llvm/Transforms/Utils/GuardUtils.h"
200 #include "llvm/Transforms/Utils/Local.h"
201 #include "llvm/Transforms/Utils/LoopUtils.h"
202 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
203 
204 #define DEBUG_TYPE "loop-predication"
205 
206 STATISTIC(TotalConsidered, "Number of guards considered");
207 STATISTIC(TotalWidened, "Number of checks widened");
208 
209 using namespace llvm;
210 
211 static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
212                                         cl::Hidden, cl::init(true));
213 
214 static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
215                                         cl::Hidden, cl::init(true));
216 
217 static cl::opt<bool>
218     SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
219                             cl::Hidden, cl::init(false));
220 
221 // This is the scale factor for the latch probability. We use this during
222 // profitability analysis to find other exiting blocks that have a much higher
223 // probability of exiting the loop instead of loop exiting via latch.
224 // This value should be greater than 1 for a sane profitability check.
225 static cl::opt<float> LatchExitProbabilityScale(
226     "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
227     cl::desc("scale factor for the latch probability. Value should be greater "
228              "than 1. Lower values are ignored"));
229 
230 static cl::opt<bool> PredicateWidenableBranchGuards(
231     "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
232     cl::desc("Whether or not we should predicate guards "
233              "expressed as widenable branches to deoptimize blocks"),
234     cl::init(true));
235 
236 namespace {
237 /// Represents an induction variable check:
238 ///   icmp Pred, <induction variable>, <loop invariant limit>
239 struct LoopICmp {
240   ICmpInst::Predicate Pred;
241   const SCEVAddRecExpr *IV;
242   const SCEV *Limit;
243   LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
244            const SCEV *Limit)
245     : Pred(Pred), IV(IV), Limit(Limit) {}
246   LoopICmp() = default;
247   void dump() {
248     dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
249            << ", Limit = " << *Limit << "\n";
250   }
251 };
252 
253 class LoopPredication {
254   AliasAnalysis *AA;
255   DominatorTree *DT;
256   ScalarEvolution *SE;
257   LoopInfo *LI;
258   MemorySSAUpdater *MSSAU;
259 
260   Loop *L;
261   const DataLayout *DL;
262   BasicBlock *Preheader;
263   LoopICmp LatchCheck;
264 
265   bool isSupportedStep(const SCEV* Step);
266   Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI);
267   Optional<LoopICmp> parseLoopLatchICmp();
268 
269   /// Return an insertion point suitable for inserting a safe to speculate
270   /// instruction whose only user will be 'User' which has operands 'Ops'.  A
271   /// trivial result would be the at the User itself, but we try to return a
272   /// loop invariant location if possible.
273   Instruction *findInsertPt(Instruction *User, ArrayRef<Value*> Ops);
274   /// Same as above, *except* that this uses the SCEV definition of invariant
275   /// which is that an expression *can be made* invariant via SCEVExpander.
276   /// Thus, this version is only suitable for finding an insert point to be be
277   /// passed to SCEVExpander!
278   Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User,
279                             ArrayRef<const SCEV *> Ops);
280 
281   /// Return true if the value is known to produce a single fixed value across
282   /// all iterations on which it executes.  Note that this does not imply
283   /// speculation safety.  That must be established separately.
284   bool isLoopInvariantValue(const SCEV* S);
285 
286   Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
287                      ICmpInst::Predicate Pred, const SCEV *LHS,
288                      const SCEV *RHS);
289 
290   Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
291                                         Instruction *Guard);
292   Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
293                                                         LoopICmp RangeCheck,
294                                                         SCEVExpander &Expander,
295                                                         Instruction *Guard);
296   Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
297                                                         LoopICmp RangeCheck,
298                                                         SCEVExpander &Expander,
299                                                         Instruction *Guard);
300   unsigned collectChecks(SmallVectorImpl<Value *> &Checks, Value *Condition,
301                          SCEVExpander &Expander, Instruction *Guard);
302   bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
303   bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
304   // If the loop always exits through another block in the loop, we should not
305   // predicate based on the latch check. For example, the latch check can be a
306   // very coarse grained check and there can be more fine grained exit checks
307   // within the loop.
308   bool isLoopProfitableToPredicate();
309 
310   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
311 
312 public:
313   LoopPredication(AliasAnalysis *AA, DominatorTree *DT, ScalarEvolution *SE,
314                   LoopInfo *LI, MemorySSAUpdater *MSSAU)
315       : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
316   bool runOnLoop(Loop *L);
317 };
318 
319 class LoopPredicationLegacyPass : public LoopPass {
320 public:
321   static char ID;
322   LoopPredicationLegacyPass() : LoopPass(ID) {
323     initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
324   }
325 
326   void getAnalysisUsage(AnalysisUsage &AU) const override {
327     AU.addRequired<BranchProbabilityInfoWrapperPass>();
328     getLoopAnalysisUsage(AU);
329     AU.addPreserved<MemorySSAWrapperPass>();
330   }
331 
332   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
333     if (skipLoop(L))
334       return false;
335     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
336     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
337     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
338     auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
339     std::unique_ptr<MemorySSAUpdater> MSSAU;
340     if (MSSAWP)
341       MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
342     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
343     LoopPredication LP(AA, DT, SE, LI, MSSAU ? MSSAU.get() : nullptr);
344     return LP.runOnLoop(L);
345   }
346 };
347 
348 char LoopPredicationLegacyPass::ID = 0;
349 } // end namespace
350 
351 INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
352                       "Loop predication", false, false)
353 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
354 INITIALIZE_PASS_DEPENDENCY(LoopPass)
355 INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
356                     "Loop predication", false, false)
357 
358 Pass *llvm::createLoopPredicationPass() {
359   return new LoopPredicationLegacyPass();
360 }
361 
362 PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
363                                            LoopStandardAnalysisResults &AR,
364                                            LPMUpdater &U) {
365   std::unique_ptr<MemorySSAUpdater> MSSAU;
366   if (AR.MSSA)
367     MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
368   LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
369                      MSSAU ? MSSAU.get() : nullptr);
370   if (!LP.runOnLoop(&L))
371     return PreservedAnalyses::all();
372 
373   auto PA = getLoopPassPreservedAnalyses();
374   if (AR.MSSA)
375     PA.preserve<MemorySSAAnalysis>();
376   return PA;
377 }
378 
379 Optional<LoopICmp>
380 LoopPredication::parseLoopICmp(ICmpInst *ICI) {
381   auto Pred = ICI->getPredicate();
382   auto *LHS = ICI->getOperand(0);
383   auto *RHS = ICI->getOperand(1);
384 
385   const SCEV *LHSS = SE->getSCEV(LHS);
386   if (isa<SCEVCouldNotCompute>(LHSS))
387     return None;
388   const SCEV *RHSS = SE->getSCEV(RHS);
389   if (isa<SCEVCouldNotCompute>(RHSS))
390     return None;
391 
392   // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
393   if (SE->isLoopInvariant(LHSS, L)) {
394     std::swap(LHS, RHS);
395     std::swap(LHSS, RHSS);
396     Pred = ICmpInst::getSwappedPredicate(Pred);
397   }
398 
399   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
400   if (!AR || AR->getLoop() != L)
401     return None;
402 
403   return LoopICmp(Pred, AR, RHSS);
404 }
405 
406 Value *LoopPredication::expandCheck(SCEVExpander &Expander,
407                                     Instruction *Guard,
408                                     ICmpInst::Predicate Pred, const SCEV *LHS,
409                                     const SCEV *RHS) {
410   Type *Ty = LHS->getType();
411   assert(Ty == RHS->getType() && "expandCheck operands have different types?");
412 
413   if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
414     IRBuilder<> Builder(Guard);
415     if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
416       return Builder.getTrue();
417     if (SE->isLoopEntryGuardedByCond(L, ICmpInst::getInversePredicate(Pred),
418                                      LHS, RHS))
419       return Builder.getFalse();
420   }
421 
422   Value *LHSV =
423       Expander.expandCodeFor(LHS, Ty, findInsertPt(Expander, Guard, {LHS}));
424   Value *RHSV =
425       Expander.expandCodeFor(RHS, Ty, findInsertPt(Expander, Guard, {RHS}));
426   IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
427   return Builder.CreateICmp(Pred, LHSV, RHSV);
428 }
429 
430 // Returns true if its safe to truncate the IV to RangeCheckType.
431 // When the IV type is wider than the range operand type, we can still do loop
432 // predication, by generating SCEVs for the range and latch that are of the
433 // same type. We achieve this by generating a SCEV truncate expression for the
434 // latch IV. This is done iff truncation of the IV is a safe operation,
435 // without loss of information.
436 // Another way to achieve this is by generating a wider type SCEV for the
437 // range check operand, however, this needs a more involved check that
438 // operands do not overflow. This can lead to loss of information when the
439 // range operand is of the form: add i32 %offset, %iv. We need to prove that
440 // sext(x + y) is same as sext(x) + sext(y).
441 // This function returns true if we can safely represent the IV type in
442 // the RangeCheckType without loss of information.
443 static bool isSafeToTruncateWideIVType(const DataLayout &DL,
444                                        ScalarEvolution &SE,
445                                        const LoopICmp LatchCheck,
446                                        Type *RangeCheckType) {
447   if (!EnableIVTruncation)
448     return false;
449   assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedSize() >
450              DL.getTypeSizeInBits(RangeCheckType).getFixedSize() &&
451          "Expected latch check IV type to be larger than range check operand "
452          "type!");
453   // The start and end values of the IV should be known. This is to guarantee
454   // that truncating the wide type will not lose information.
455   auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
456   auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
457   if (!Limit || !Start)
458     return false;
459   // This check makes sure that the IV does not change sign during loop
460   // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
461   // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
462   // IV wraps around, and the truncation of the IV would lose the range of
463   // iterations between 2^32 and 2^64.
464   if (!SE.getMonotonicPredicateType(LatchCheck.IV, LatchCheck.Pred))
465     return false;
466   // The active bits should be less than the bits in the RangeCheckType. This
467   // guarantees that truncating the latch check to RangeCheckType is a safe
468   // operation.
469   auto RangeCheckTypeBitSize =
470       DL.getTypeSizeInBits(RangeCheckType).getFixedSize();
471   return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
472          Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
473 }
474 
475 
476 // Return an LoopICmp describing a latch check equivlent to LatchCheck but with
477 // the requested type if safe to do so.  May involve the use of a new IV.
478 static Optional<LoopICmp> generateLoopLatchCheck(const DataLayout &DL,
479                                                  ScalarEvolution &SE,
480                                                  const LoopICmp LatchCheck,
481                                                  Type *RangeCheckType) {
482 
483   auto *LatchType = LatchCheck.IV->getType();
484   if (RangeCheckType == LatchType)
485     return LatchCheck;
486   // For now, bail out if latch type is narrower than range type.
487   if (DL.getTypeSizeInBits(LatchType).getFixedSize() <
488       DL.getTypeSizeInBits(RangeCheckType).getFixedSize())
489     return None;
490   if (!isSafeToTruncateWideIVType(DL, SE, LatchCheck, RangeCheckType))
491     return None;
492   // We can now safely identify the truncated version of the IV and limit for
493   // RangeCheckType.
494   LoopICmp NewLatchCheck;
495   NewLatchCheck.Pred = LatchCheck.Pred;
496   NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
497       SE.getTruncateExpr(LatchCheck.IV, RangeCheckType));
498   if (!NewLatchCheck.IV)
499     return None;
500   NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
501   LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
502                     << "can be represented as range check type:"
503                     << *RangeCheckType << "\n");
504   LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
505   LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
506   return NewLatchCheck;
507 }
508 
509 bool LoopPredication::isSupportedStep(const SCEV* Step) {
510   return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
511 }
512 
513 Instruction *LoopPredication::findInsertPt(Instruction *Use,
514                                            ArrayRef<Value*> Ops) {
515   for (Value *Op : Ops)
516     if (!L->isLoopInvariant(Op))
517       return Use;
518   return Preheader->getTerminator();
519 }
520 
521 Instruction *LoopPredication::findInsertPt(const SCEVExpander &Expander,
522                                            Instruction *Use,
523                                            ArrayRef<const SCEV *> Ops) {
524   // Subtlety: SCEV considers things to be invariant if the value produced is
525   // the same across iterations.  This is not the same as being able to
526   // evaluate outside the loop, which is what we actually need here.
527   for (const SCEV *Op : Ops)
528     if (!SE->isLoopInvariant(Op, L) ||
529         !Expander.isSafeToExpandAt(Op, Preheader->getTerminator()))
530       return Use;
531   return Preheader->getTerminator();
532 }
533 
534 bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
535   // Handling expressions which produce invariant results, but *haven't* yet
536   // been removed from the loop serves two important purposes.
537   // 1) Most importantly, it resolves a pass ordering cycle which would
538   // otherwise need us to iteration licm, loop-predication, and either
539   // loop-unswitch or loop-peeling to make progress on examples with lots of
540   // predicable range checks in a row.  (Since, in the general case,  we can't
541   // hoist the length checks until the dominating checks have been discharged
542   // as we can't prove doing so is safe.)
543   // 2) As a nice side effect, this exposes the value of peeling or unswitching
544   // much more obviously in the IR.  Otherwise, the cost modeling for other
545   // transforms would end up needing to duplicate all of this logic to model a
546   // check which becomes predictable based on a modeled peel or unswitch.
547   //
548   // The cost of doing so in the worst case is an extra fill from the stack  in
549   // the loop to materialize the loop invariant test value instead of checking
550   // against the original IV which is presumable in a register inside the loop.
551   // Such cases are presumably rare, and hint at missing oppurtunities for
552   // other passes.
553 
554   if (SE->isLoopInvariant(S, L))
555     // Note: This the SCEV variant, so the original Value* may be within the
556     // loop even though SCEV has proven it is loop invariant.
557     return true;
558 
559   // Handle a particular important case which SCEV doesn't yet know about which
560   // shows up in range checks on arrays with immutable lengths.
561   // TODO: This should be sunk inside SCEV.
562   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
563     if (const auto *LI = dyn_cast<LoadInst>(U->getValue()))
564       if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
565         if (AA->pointsToConstantMemory(LI->getOperand(0)) ||
566             LI->hasMetadata(LLVMContext::MD_invariant_load))
567           return true;
568   return false;
569 }
570 
571 Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
572     LoopICmp LatchCheck, LoopICmp RangeCheck,
573     SCEVExpander &Expander, Instruction *Guard) {
574   auto *Ty = RangeCheck.IV->getType();
575   // Generate the widened condition for the forward loop:
576   //   guardStart u< guardLimit &&
577   //   latchLimit <pred> guardLimit - 1 - guardStart + latchStart
578   // where <pred> depends on the latch condition predicate. See the file
579   // header comment for the reasoning.
580   // guardLimit - guardStart + latchStart - 1
581   const SCEV *GuardStart = RangeCheck.IV->getStart();
582   const SCEV *GuardLimit = RangeCheck.Limit;
583   const SCEV *LatchStart = LatchCheck.IV->getStart();
584   const SCEV *LatchLimit = LatchCheck.Limit;
585   // Subtlety: We need all the values to be *invariant* across all iterations,
586   // but we only need to check expansion safety for those which *aren't*
587   // already guaranteed to dominate the guard.
588   if (!isLoopInvariantValue(GuardStart) ||
589       !isLoopInvariantValue(GuardLimit) ||
590       !isLoopInvariantValue(LatchStart) ||
591       !isLoopInvariantValue(LatchLimit)) {
592     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
593     return None;
594   }
595   if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
596       !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
597     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
598     return None;
599   }
600 
601   // guardLimit - guardStart + latchStart - 1
602   const SCEV *RHS =
603       SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
604                      SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
605   auto LimitCheckPred =
606       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
607 
608   LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
609   LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
610   LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
611 
612   auto *LimitCheck =
613       expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
614   auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
615                                           GuardStart, GuardLimit);
616   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
617   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
618 }
619 
620 Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
621     LoopICmp LatchCheck, LoopICmp RangeCheck,
622     SCEVExpander &Expander, Instruction *Guard) {
623   auto *Ty = RangeCheck.IV->getType();
624   const SCEV *GuardStart = RangeCheck.IV->getStart();
625   const SCEV *GuardLimit = RangeCheck.Limit;
626   const SCEV *LatchStart = LatchCheck.IV->getStart();
627   const SCEV *LatchLimit = LatchCheck.Limit;
628   // Subtlety: We need all the values to be *invariant* across all iterations,
629   // but we only need to check expansion safety for those which *aren't*
630   // already guaranteed to dominate the guard.
631   if (!isLoopInvariantValue(GuardStart) ||
632       !isLoopInvariantValue(GuardLimit) ||
633       !isLoopInvariantValue(LatchStart) ||
634       !isLoopInvariantValue(LatchLimit)) {
635     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
636     return None;
637   }
638   if (!Expander.isSafeToExpandAt(LatchStart, Guard) ||
639       !Expander.isSafeToExpandAt(LatchLimit, Guard)) {
640     LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
641     return None;
642   }
643   // The decrement of the latch check IV should be the same as the
644   // rangeCheckIV.
645   auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
646   if (RangeCheck.IV != PostDecLatchCheckIV) {
647     LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
648                       << *PostDecLatchCheckIV
649                       << "  and RangeCheckIV: " << *RangeCheck.IV << "\n");
650     return None;
651   }
652 
653   // Generate the widened condition for CountDownLoop:
654   // guardStart u< guardLimit &&
655   // latchLimit <pred> 1.
656   // See the header comment for reasoning of the checks.
657   auto LimitCheckPred =
658       ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
659   auto *FirstIterationCheck = expandCheck(Expander, Guard,
660                                           ICmpInst::ICMP_ULT,
661                                           GuardStart, GuardLimit);
662   auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
663                                  SE->getOne(Ty));
664   IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
665   return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
666 }
667 
668 static void normalizePredicate(ScalarEvolution *SE, Loop *L,
669                                LoopICmp& RC) {
670   // LFTR canonicalizes checks to the ICMP_NE/EQ form; normalize back to the
671   // ULT/UGE form for ease of handling by our caller.
672   if (ICmpInst::isEquality(RC.Pred) &&
673       RC.IV->getStepRecurrence(*SE)->isOne() &&
674       SE->isKnownPredicate(ICmpInst::ICMP_ULE, RC.IV->getStart(), RC.Limit))
675     RC.Pred = RC.Pred == ICmpInst::ICMP_NE ?
676       ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
677 }
678 
679 
680 /// If ICI can be widened to a loop invariant condition emits the loop
681 /// invariant condition in the loop preheader and return it, otherwise
682 /// returns None.
683 Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
684                                                        SCEVExpander &Expander,
685                                                        Instruction *Guard) {
686   LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
687   LLVM_DEBUG(ICI->dump());
688 
689   // parseLoopStructure guarantees that the latch condition is:
690   //   ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
691   // We are looking for the range checks of the form:
692   //   i u< guardLimit
693   auto RangeCheck = parseLoopICmp(ICI);
694   if (!RangeCheck) {
695     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
696     return None;
697   }
698   LLVM_DEBUG(dbgs() << "Guard check:\n");
699   LLVM_DEBUG(RangeCheck->dump());
700   if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
701     LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
702                       << RangeCheck->Pred << ")!\n");
703     return None;
704   }
705   auto *RangeCheckIV = RangeCheck->IV;
706   if (!RangeCheckIV->isAffine()) {
707     LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
708     return None;
709   }
710   auto *Step = RangeCheckIV->getStepRecurrence(*SE);
711   // We cannot just compare with latch IV step because the latch and range IVs
712   // may have different types.
713   if (!isSupportedStep(Step)) {
714     LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
715     return None;
716   }
717   auto *Ty = RangeCheckIV->getType();
718   auto CurrLatchCheckOpt = generateLoopLatchCheck(*DL, *SE, LatchCheck, Ty);
719   if (!CurrLatchCheckOpt) {
720     LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
721                          "corresponding to range type: "
722                       << *Ty << "\n");
723     return None;
724   }
725 
726   LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
727   // At this point, the range and latch step should have the same type, but need
728   // not have the same value (we support both 1 and -1 steps).
729   assert(Step->getType() ==
730              CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
731          "Range and latch steps should be of same type!");
732   if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
733     LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
734     return None;
735   }
736 
737   if (Step->isOne())
738     return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
739                                                Expander, Guard);
740   else {
741     assert(Step->isAllOnesValue() && "Step should be -1!");
742     return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
743                                                Expander, Guard);
744   }
745 }
746 
747 unsigned LoopPredication::collectChecks(SmallVectorImpl<Value *> &Checks,
748                                         Value *Condition,
749                                         SCEVExpander &Expander,
750                                         Instruction *Guard) {
751   unsigned NumWidened = 0;
752   // The guard condition is expected to be in form of:
753   //   cond1 && cond2 && cond3 ...
754   // Iterate over subconditions looking for icmp conditions which can be
755   // widened across loop iterations. Widening these conditions remember the
756   // resulting list of subconditions in Checks vector.
757   SmallVector<Value *, 4> Worklist(1, Condition);
758   SmallPtrSet<Value *, 4> Visited;
759   Value *WideableCond = nullptr;
760   do {
761     Value *Condition = Worklist.pop_back_val();
762     if (!Visited.insert(Condition).second)
763       continue;
764 
765     Value *LHS, *RHS;
766     using namespace llvm::PatternMatch;
767     if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
768       Worklist.push_back(LHS);
769       Worklist.push_back(RHS);
770       continue;
771     }
772 
773     if (match(Condition,
774               m_Intrinsic<Intrinsic::experimental_widenable_condition>())) {
775       // Pick any, we don't care which
776       WideableCond = Condition;
777       continue;
778     }
779 
780     if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
781       if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander,
782                                                    Guard)) {
783         Checks.push_back(*NewRangeCheck);
784         NumWidened++;
785         continue;
786       }
787     }
788 
789     // Save the condition as is if we can't widen it
790     Checks.push_back(Condition);
791   } while (!Worklist.empty());
792   // At the moment, our matching logic for wideable conditions implicitly
793   // assumes we preserve the form: (br (and Cond, WC())).  FIXME
794   // Note that if there were multiple calls to wideable condition in the
795   // traversal, we only need to keep one, and which one is arbitrary.
796   if (WideableCond)
797     Checks.push_back(WideableCond);
798   return NumWidened;
799 }
800 
801 bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
802                                            SCEVExpander &Expander) {
803   LLVM_DEBUG(dbgs() << "Processing guard:\n");
804   LLVM_DEBUG(Guard->dump());
805 
806   TotalConsidered++;
807   SmallVector<Value *, 4> Checks;
808   unsigned NumWidened = collectChecks(Checks, Guard->getOperand(0), Expander,
809                                       Guard);
810   if (NumWidened == 0)
811     return false;
812 
813   TotalWidened += NumWidened;
814 
815   // Emit the new guard condition
816   IRBuilder<> Builder(findInsertPt(Guard, Checks));
817   Value *AllChecks = Builder.CreateAnd(Checks);
818   auto *OldCond = Guard->getOperand(0);
819   Guard->setOperand(0, AllChecks);
820   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
821 
822   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
823   return true;
824 }
825 
826 bool LoopPredication::widenWidenableBranchGuardConditions(
827     BranchInst *BI, SCEVExpander &Expander) {
828   assert(isGuardAsWidenableBranch(BI) && "Must be!");
829   LLVM_DEBUG(dbgs() << "Processing guard:\n");
830   LLVM_DEBUG(BI->dump());
831 
832   TotalConsidered++;
833   SmallVector<Value *, 4> Checks;
834   unsigned NumWidened = collectChecks(Checks, BI->getCondition(),
835                                       Expander, BI);
836   if (NumWidened == 0)
837     return false;
838 
839   TotalWidened += NumWidened;
840 
841   // Emit the new guard condition
842   IRBuilder<> Builder(findInsertPt(BI, Checks));
843   Value *AllChecks = Builder.CreateAnd(Checks);
844   auto *OldCond = BI->getCondition();
845   BI->setCondition(AllChecks);
846   RecursivelyDeleteTriviallyDeadInstructions(OldCond, nullptr /* TLI */, MSSAU);
847   assert(isGuardAsWidenableBranch(BI) &&
848          "Stopped being a guard after transform?");
849 
850   LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
851   return true;
852 }
853 
854 Optional<LoopICmp> LoopPredication::parseLoopLatchICmp() {
855   using namespace PatternMatch;
856 
857   BasicBlock *LoopLatch = L->getLoopLatch();
858   if (!LoopLatch) {
859     LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
860     return None;
861   }
862 
863   auto *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
864   if (!BI || !BI->isConditional()) {
865     LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
866     return None;
867   }
868   BasicBlock *TrueDest = BI->getSuccessor(0);
869   assert(
870       (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
871       "One of the latch's destinations must be the header");
872 
873   auto *ICI = dyn_cast<ICmpInst>(BI->getCondition());
874   if (!ICI) {
875     LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
876     return None;
877   }
878   auto Result = parseLoopICmp(ICI);
879   if (!Result) {
880     LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
881     return None;
882   }
883 
884   if (TrueDest != L->getHeader())
885     Result->Pred = ICmpInst::getInversePredicate(Result->Pred);
886 
887   // Check affine first, so if it's not we don't try to compute the step
888   // recurrence.
889   if (!Result->IV->isAffine()) {
890     LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
891     return None;
892   }
893 
894   auto *Step = Result->IV->getStepRecurrence(*SE);
895   if (!isSupportedStep(Step)) {
896     LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
897     return None;
898   }
899 
900   auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
901     if (Step->isOne()) {
902       return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
903              Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
904     } else {
905       assert(Step->isAllOnesValue() && "Step should be -1!");
906       return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
907              Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
908     }
909   };
910 
911   normalizePredicate(SE, L, *Result);
912   if (IsUnsupportedPredicate(Step, Result->Pred)) {
913     LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
914                       << ")!\n");
915     return None;
916   }
917 
918   return Result;
919 }
920 
921 
922 bool LoopPredication::isLoopProfitableToPredicate() {
923   if (SkipProfitabilityChecks)
924     return true;
925 
926   SmallVector<std::pair<BasicBlock *, BasicBlock *>, 8> ExitEdges;
927   L->getExitEdges(ExitEdges);
928   // If there is only one exiting edge in the loop, it is always profitable to
929   // predicate the loop.
930   if (ExitEdges.size() == 1)
931     return true;
932 
933   // Calculate the exiting probabilities of all exiting edges from the loop,
934   // starting with the LatchExitProbability.
935   // Heuristic for profitability: If any of the exiting blocks' probability of
936   // exiting the loop is larger than exiting through the latch block, it's not
937   // profitable to predicate the loop.
938   auto *LatchBlock = L->getLoopLatch();
939   assert(LatchBlock && "Should have a single latch at this point!");
940   auto *LatchTerm = LatchBlock->getTerminator();
941   assert(LatchTerm->getNumSuccessors() == 2 &&
942          "expected to be an exiting block with 2 succs!");
943   unsigned LatchBrExitIdx =
944       LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
945   // We compute branch probabilities without BPI. We do not rely on BPI since
946   // Loop predication is usually run in an LPM and BPI is only preserved
947   // lossily within loop pass managers, while BPI has an inherent notion of
948   // being complete for an entire function.
949 
950   // If the latch exits into a deoptimize or an unreachable block, do not
951   // predicate on that latch check.
952   auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
953   if (isa<UnreachableInst>(LatchTerm) ||
954       LatchExitBlock->getTerminatingDeoptimizeCall())
955     return false;
956 
957   auto IsValidProfileData = [](MDNode *ProfileData, const Instruction *Term) {
958     if (!ProfileData || !ProfileData->getOperand(0))
959       return false;
960     if (MDString *MDS = dyn_cast<MDString>(ProfileData->getOperand(0)))
961       if (!MDS->getString().equals("branch_weights"))
962         return false;
963     if (ProfileData->getNumOperands() != 1 + Term->getNumSuccessors())
964       return false;
965     return true;
966   };
967   MDNode *LatchProfileData = LatchTerm->getMetadata(LLVMContext::MD_prof);
968   // Latch terminator has no valid profile data, so nothing to check
969   // profitability on.
970   if (!IsValidProfileData(LatchProfileData, LatchTerm))
971     return true;
972 
973   auto ComputeBranchProbability =
974       [&](const BasicBlock *ExitingBlock,
975           const BasicBlock *ExitBlock) -> BranchProbability {
976     auto *Term = ExitingBlock->getTerminator();
977     MDNode *ProfileData = Term->getMetadata(LLVMContext::MD_prof);
978     unsigned NumSucc = Term->getNumSuccessors();
979     if (IsValidProfileData(ProfileData, Term)) {
980       uint64_t Numerator = 0, Denominator = 0, ProfVal = 0;
981       for (unsigned i = 0; i < NumSucc; i++) {
982         ConstantInt *CI =
983             mdconst::extract<ConstantInt>(ProfileData->getOperand(i + 1));
984         ProfVal = CI->getValue().getZExtValue();
985         if (Term->getSuccessor(i) == ExitBlock)
986           Numerator += ProfVal;
987         Denominator += ProfVal;
988       }
989       return BranchProbability::getBranchProbability(Numerator, Denominator);
990     } else {
991       assert(LatchBlock != ExitingBlock &&
992              "Latch term should always have profile data!");
993       // No profile data, so we choose the weight as 1/num_of_succ(Src)
994       return BranchProbability::getBranchProbability(1, NumSucc);
995     }
996   };
997 
998   BranchProbability LatchExitProbability =
999       ComputeBranchProbability(LatchBlock, LatchExitBlock);
1000 
1001   // Protect against degenerate inputs provided by the user. Providing a value
1002   // less than one, can invert the definition of profitable loop predication.
1003   float ScaleFactor = LatchExitProbabilityScale;
1004   if (ScaleFactor < 1) {
1005     LLVM_DEBUG(
1006         dbgs()
1007         << "Ignored user setting for loop-predication-latch-probability-scale: "
1008         << LatchExitProbabilityScale << "\n");
1009     LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
1010     ScaleFactor = 1.0;
1011   }
1012   const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
1013 
1014   for (const auto &ExitEdge : ExitEdges) {
1015     BranchProbability ExitingBlockProbability =
1016         ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
1017     // Some exiting edge has higher probability than the latch exiting edge.
1018     // No longer profitable to predicate.
1019     if (ExitingBlockProbability > LatchProbabilityThreshold)
1020       return false;
1021   }
1022 
1023   // We have concluded that the most probable way to exit from the
1024   // loop is through the latch (or there's no profile information and all
1025   // exits are equally likely).
1026   return true;
1027 }
1028 
1029 /// If we can (cheaply) find a widenable branch which controls entry into the
1030 /// loop, return it.
1031 static BranchInst *FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI) {
1032   // Walk back through any unconditional executed blocks and see if we can find
1033   // a widenable condition which seems to control execution of this loop.  Note
1034   // that we predict that maythrow calls are likely untaken and thus that it's
1035   // profitable to widen a branch before a maythrow call with a condition
1036   // afterwards even though that may cause the slow path to run in a case where
1037   // it wouldn't have otherwise.
1038   BasicBlock *BB = L->getLoopPreheader();
1039   if (!BB)
1040     return nullptr;
1041   do {
1042     if (BasicBlock *Pred = BB->getSinglePredecessor())
1043       if (BB == Pred->getSingleSuccessor()) {
1044         BB = Pred;
1045         continue;
1046       }
1047     break;
1048   } while (true);
1049 
1050   if (BasicBlock *Pred = BB->getSinglePredecessor()) {
1051     auto *Term = Pred->getTerminator();
1052 
1053     Value *Cond, *WC;
1054     BasicBlock *IfTrueBB, *IfFalseBB;
1055     if (parseWidenableBranch(Term, Cond, WC, IfTrueBB, IfFalseBB) &&
1056         IfTrueBB == BB)
1057       return cast<BranchInst>(Term);
1058   }
1059   return nullptr;
1060 }
1061 
1062 /// Return the minimum of all analyzeable exit counts.  This is an upper bound
1063 /// on the actual exit count.  If there are not at least two analyzeable exits,
1064 /// returns SCEVCouldNotCompute.
1065 static const SCEV *getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE,
1066                                                        DominatorTree &DT,
1067                                                        Loop *L) {
1068   SmallVector<BasicBlock *, 16> ExitingBlocks;
1069   L->getExitingBlocks(ExitingBlocks);
1070 
1071   SmallVector<const SCEV *, 4> ExitCounts;
1072   for (BasicBlock *ExitingBB : ExitingBlocks) {
1073     const SCEV *ExitCount = SE.getExitCount(L, ExitingBB);
1074     if (isa<SCEVCouldNotCompute>(ExitCount))
1075       continue;
1076     assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
1077            "We should only have known counts for exiting blocks that "
1078            "dominate latch!");
1079     ExitCounts.push_back(ExitCount);
1080   }
1081   if (ExitCounts.size() < 2)
1082     return SE.getCouldNotCompute();
1083   return SE.getUMinFromMismatchedTypes(ExitCounts);
1084 }
1085 
1086 /// This implements an analogous, but entirely distinct transform from the main
1087 /// loop predication transform.  This one is phrased in terms of using a
1088 /// widenable branch *outside* the loop to allow us to simplify loop exits in a
1089 /// following loop.  This is close in spirit to the IndVarSimplify transform
1090 /// of the same name, but is materially different widening loosens legality
1091 /// sharply.
1092 bool LoopPredication::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1093   // The transformation performed here aims to widen a widenable condition
1094   // above the loop such that all analyzeable exit leading to deopt are dead.
1095   // It assumes that the latch is the dominant exit for profitability and that
1096   // exits branching to deoptimizing blocks are rarely taken. It relies on the
1097   // semantics of widenable expressions for legality. (i.e. being able to fall
1098   // down the widenable path spuriously allows us to ignore exit order,
1099   // unanalyzeable exits, side effects, exceptional exits, and other challenges
1100   // which restrict the applicability of the non-WC based version of this
1101   // transform in IndVarSimplify.)
1102   //
1103   // NOTE ON POISON/UNDEF - We're hoisting an expression above guards which may
1104   // imply flags on the expression being hoisted and inserting new uses (flags
1105   // are only correct for current uses).  The result is that we may be
1106   // inserting a branch on the value which can be either poison or undef.  In
1107   // this case, the branch can legally go either way; we just need to avoid
1108   // introducing UB.  This is achieved through the use of the freeze
1109   // instruction.
1110 
1111   SmallVector<BasicBlock *, 16> ExitingBlocks;
1112   L->getExitingBlocks(ExitingBlocks);
1113 
1114   if (ExitingBlocks.empty())
1115     return false; // Nothing to do.
1116 
1117   auto *Latch = L->getLoopLatch();
1118   if (!Latch)
1119     return false;
1120 
1121   auto *WidenableBR = FindWidenableTerminatorAboveLoop(L, *LI);
1122   if (!WidenableBR)
1123     return false;
1124 
1125   const SCEV *LatchEC = SE->getExitCount(L, Latch);
1126   if (isa<SCEVCouldNotCompute>(LatchEC))
1127     return false; // profitability - want hot exit in analyzeable set
1128 
1129   // At this point, we have found an analyzeable latch, and a widenable
1130   // condition above the loop.  If we have a widenable exit within the loop
1131   // (for which we can't compute exit counts), drop the ability to further
1132   // widen so that we gain ability to analyze it's exit count and perform this
1133   // transform.  TODO: It'd be nice to know for sure the exit became
1134   // analyzeable after dropping widenability.
1135   bool ChangedLoop = false;
1136 
1137   for (auto *ExitingBB : ExitingBlocks) {
1138     if (LI->getLoopFor(ExitingBB) != L)
1139       continue;
1140 
1141     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1142     if (!BI)
1143       continue;
1144 
1145     Use *Cond, *WC;
1146     BasicBlock *IfTrueBB, *IfFalseBB;
1147     if (parseWidenableBranch(BI, Cond, WC, IfTrueBB, IfFalseBB) &&
1148         L->contains(IfTrueBB)) {
1149       WC->set(ConstantInt::getTrue(IfTrueBB->getContext()));
1150       ChangedLoop = true;
1151     }
1152   }
1153   if (ChangedLoop)
1154     SE->forgetLoop(L);
1155 
1156   // The use of umin(all analyzeable exits) instead of latch is subtle, but
1157   // important for profitability.  We may have a loop which hasn't been fully
1158   // canonicalized just yet.  If the exit we chose to widen is provably never
1159   // taken, we want the widened form to *also* be provably never taken.  We
1160   // can't guarantee this as a current unanalyzeable exit may later become
1161   // analyzeable, but we can at least avoid the obvious cases.
1162   const SCEV *MinEC = getMinAnalyzeableBackedgeTakenCount(*SE, *DT, L);
1163   if (isa<SCEVCouldNotCompute>(MinEC) || MinEC->getType()->isPointerTy() ||
1164       !SE->isLoopInvariant(MinEC, L) ||
1165       !Rewriter.isSafeToExpandAt(MinEC, WidenableBR))
1166     return ChangedLoop;
1167 
1168   // Subtlety: We need to avoid inserting additional uses of the WC.  We know
1169   // that it can only have one transitive use at the moment, and thus moving
1170   // that use to just before the branch and inserting code before it and then
1171   // modifying the operand is legal.
1172   auto *IP = cast<Instruction>(WidenableBR->getCondition());
1173   // Here we unconditionally modify the IR, so after this point we should return
1174   // only `true`!
1175   IP->moveBefore(WidenableBR);
1176   if (MSSAU)
1177     if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(IP))
1178        MSSAU->moveToPlace(MUD, WidenableBR->getParent(),
1179                           MemorySSA::BeforeTerminator);
1180   Rewriter.setInsertPoint(IP);
1181   IRBuilder<> B(IP);
1182 
1183   bool InvalidateLoop = false;
1184   Value *MinECV = nullptr; // lazily generated if needed
1185   for (BasicBlock *ExitingBB : ExitingBlocks) {
1186     // If our exiting block exits multiple loops, we can only rewrite the
1187     // innermost one.  Otherwise, we're changing how many times the innermost
1188     // loop runs before it exits.
1189     if (LI->getLoopFor(ExitingBB) != L)
1190       continue;
1191 
1192     // Can't rewrite non-branch yet.
1193     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1194     if (!BI)
1195       continue;
1196 
1197     // If already constant, nothing to do.
1198     if (isa<Constant>(BI->getCondition()))
1199       continue;
1200 
1201     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1202     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1203         ExitCount->getType()->isPointerTy() ||
1204         !Rewriter.isSafeToExpandAt(ExitCount, WidenableBR))
1205       continue;
1206 
1207     const bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1208     BasicBlock *ExitBB = BI->getSuccessor(ExitIfTrue ? 0 : 1);
1209     if (!ExitBB->getPostdominatingDeoptimizeCall())
1210       continue;
1211 
1212     /// Here we can be fairly sure that executing this exit will most likely
1213     /// lead to executing llvm.experimental.deoptimize.
1214     /// This is a profitability heuristic, not a legality constraint.
1215 
1216     // If we found a widenable exit condition, do two things:
1217     // 1) fold the widened exit test into the widenable condition
1218     // 2) fold the branch to untaken - avoids infinite looping
1219 
1220     Value *ECV = Rewriter.expandCodeFor(ExitCount);
1221     if (!MinECV)
1222       MinECV = Rewriter.expandCodeFor(MinEC);
1223     Value *RHS = MinECV;
1224     if (ECV->getType() != RHS->getType()) {
1225       Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1226       ECV = B.CreateZExt(ECV, WiderTy);
1227       RHS = B.CreateZExt(RHS, WiderTy);
1228     }
1229     assert(!Latch || DT->dominates(ExitingBB, Latch));
1230     Value *NewCond = B.CreateICmp(ICmpInst::ICMP_UGT, ECV, RHS);
1231     // Freeze poison or undef to an arbitrary bit pattern to ensure we can
1232     // branch without introducing UB.  See NOTE ON POISON/UNDEF above for
1233     // context.
1234     NewCond = B.CreateFreeze(NewCond);
1235 
1236     widenWidenableBranch(WidenableBR, NewCond);
1237 
1238     Value *OldCond = BI->getCondition();
1239     BI->setCondition(ConstantInt::get(OldCond->getType(), !ExitIfTrue));
1240     InvalidateLoop = true;
1241   }
1242 
1243   if (InvalidateLoop)
1244     // We just mutated a bunch of loop exits changing there exit counts
1245     // widely.  We need to force recomputation of the exit counts given these
1246     // changes.  Note that all of the inserted exits are never taken, and
1247     // should be removed next time the CFG is modified.
1248     SE->forgetLoop(L);
1249 
1250   // Always return `true` since we have moved the WidenableBR's condition.
1251   return true;
1252 }
1253 
1254 bool LoopPredication::runOnLoop(Loop *Loop) {
1255   L = Loop;
1256 
1257   LLVM_DEBUG(dbgs() << "Analyzing ");
1258   LLVM_DEBUG(L->dump());
1259 
1260   Module *M = L->getHeader()->getModule();
1261 
1262   // There is nothing to do if the module doesn't use guards
1263   auto *GuardDecl =
1264       M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
1265   bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1266   auto *WCDecl = M->getFunction(
1267       Intrinsic::getName(Intrinsic::experimental_widenable_condition));
1268   bool HasWidenableConditions =
1269       PredicateWidenableBranchGuards && WCDecl && !WCDecl->use_empty();
1270   if (!HasIntrinsicGuards && !HasWidenableConditions)
1271     return false;
1272 
1273   DL = &M->getDataLayout();
1274 
1275   Preheader = L->getLoopPreheader();
1276   if (!Preheader)
1277     return false;
1278 
1279   auto LatchCheckOpt = parseLoopLatchICmp();
1280   if (!LatchCheckOpt)
1281     return false;
1282   LatchCheck = *LatchCheckOpt;
1283 
1284   LLVM_DEBUG(dbgs() << "Latch check:\n");
1285   LLVM_DEBUG(LatchCheck.dump());
1286 
1287   if (!isLoopProfitableToPredicate()) {
1288     LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1289     return false;
1290   }
1291   // Collect all the guards into a vector and process later, so as not
1292   // to invalidate the instruction iterator.
1293   SmallVector<IntrinsicInst *, 4> Guards;
1294   SmallVector<BranchInst *, 4> GuardsAsWidenableBranches;
1295   for (const auto BB : L->blocks()) {
1296     for (auto &I : *BB)
1297       if (isGuard(&I))
1298         Guards.push_back(cast<IntrinsicInst>(&I));
1299     if (PredicateWidenableBranchGuards &&
1300         isGuardAsWidenableBranch(BB->getTerminator()))
1301       GuardsAsWidenableBranches.push_back(
1302           cast<BranchInst>(BB->getTerminator()));
1303   }
1304 
1305   SCEVExpander Expander(*SE, *DL, "loop-predication");
1306   bool Changed = false;
1307   for (auto *Guard : Guards)
1308     Changed |= widenGuardConditions(Guard, Expander);
1309   for (auto *Guard : GuardsAsWidenableBranches)
1310     Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1311   Changed |= predicateLoopExits(L, Expander);
1312 
1313   if (MSSAU && VerifyMemorySSA)
1314     MSSAU->getMemorySSA()->verifyMemorySSA();
1315   return Changed;
1316 }
1317