1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implement a loop-aware load elimination pass. 10 // 11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a 12 // distance of one between stores and loads. These form the candidates for the 13 // transformation. The source value of each store then propagated to the user 14 // of the corresponding load. This makes the load dead. 15 // 16 // The pass can also version the loop and add memchecks in order to prove that 17 // may-aliasing stores can't change the value in memory before it's read by the 18 // load. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DepthFirstIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/BlockFrequencyInfo.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 34 #include "llvm/Analysis/LoopAccessAnalysis.h" 35 #include "llvm/Analysis/LoopAnalysisManager.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 40 #include "llvm/Analysis/TargetLibraryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Transforms/Utils.h" 54 #include "llvm/Transforms/Utils/LoopSimplify.h" 55 #include "llvm/Transforms/Utils/LoopVersioning.h" 56 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 57 #include "llvm/Transforms/Utils/SizeOpts.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <forward_list> 61 #include <tuple> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define LLE_OPTION "loop-load-elim" 67 #define DEBUG_TYPE LLE_OPTION 68 69 static cl::opt<unsigned> CheckPerElim( 70 "runtime-check-per-loop-load-elim", cl::Hidden, 71 cl::desc("Max number of memchecks allowed per eliminated load on average"), 72 cl::init(1)); 73 74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 75 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 76 cl::desc("The maximum number of SCEV checks allowed for Loop " 77 "Load Elimination")); 78 79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 80 81 namespace { 82 83 /// Represent a store-to-forwarding candidate. 84 struct StoreToLoadForwardingCandidate { 85 LoadInst *Load; 86 StoreInst *Store; 87 88 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 89 : Load(Load), Store(Store) {} 90 91 /// Return true if the dependence from the store to the load has an 92 /// absolute distance of one. 93 /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop) 94 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 95 Loop *L) const { 96 Value *LoadPtr = Load->getPointerOperand(); 97 Value *StorePtr = Store->getPointerOperand(); 98 Type *LoadType = getLoadStoreType(Load); 99 auto &DL = Load->getParent()->getModule()->getDataLayout(); 100 101 assert(LoadPtr->getType()->getPointerAddressSpace() == 102 StorePtr->getType()->getPointerAddressSpace() && 103 DL.getTypeSizeInBits(LoadType) == 104 DL.getTypeSizeInBits(getLoadStoreType(Store)) && 105 "Should be a known dependence"); 106 107 int64_t StrideLoad = getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0); 108 int64_t StrideStore = getPtrStride(PSE, LoadType, StorePtr, L).value_or(0); 109 if (!StrideLoad || !StrideStore || StrideLoad != StrideStore) 110 return false; 111 112 // TODO: This check for stride values other than 1 and -1 can be eliminated. 113 // However, doing so may cause the LoopAccessAnalysis to overcompensate, 114 // generating numerous non-wrap runtime checks that may undermine the 115 // benefits of load elimination. To safely implement support for non-unit 116 // strides, we would need to ensure either that the processed case does not 117 // require these additional checks, or improve the LAA to handle them more 118 // efficiently, or potentially both. 119 if (std::abs(StrideLoad) != 1) 120 return false; 121 122 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 123 124 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 125 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 126 127 // We don't need to check non-wrapping here because forward/backward 128 // dependence wouldn't be valid if these weren't monotonic accesses. 129 auto *Dist = cast<SCEVConstant>( 130 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 131 const APInt &Val = Dist->getAPInt(); 132 return Val == TypeByteSize * StrideLoad; 133 } 134 135 Value *getLoadPtr() const { return Load->getPointerOperand(); } 136 137 #ifndef NDEBUG 138 friend raw_ostream &operator<<(raw_ostream &OS, 139 const StoreToLoadForwardingCandidate &Cand) { 140 OS << *Cand.Store << " -->\n"; 141 OS.indent(2) << *Cand.Load << "\n"; 142 return OS; 143 } 144 #endif 145 }; 146 147 } // end anonymous namespace 148 149 /// Check if the store dominates all latches, so as long as there is no 150 /// intervening store this value will be loaded in the next iteration. 151 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 152 DominatorTree *DT) { 153 SmallVector<BasicBlock *, 8> Latches; 154 L->getLoopLatches(Latches); 155 return llvm::all_of(Latches, [&](const BasicBlock *Latch) { 156 return DT->dominates(StoreBlock, Latch); 157 }); 158 } 159 160 /// Return true if the load is not executed on all paths in the loop. 161 static bool isLoadConditional(LoadInst *Load, Loop *L) { 162 return Load->getParent() != L->getHeader(); 163 } 164 165 namespace { 166 167 /// The per-loop class that does most of the work. 168 class LoadEliminationForLoop { 169 public: 170 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 171 DominatorTree *DT, BlockFrequencyInfo *BFI, 172 ProfileSummaryInfo* PSI) 173 : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {} 174 175 /// Look through the loop-carried and loop-independent dependences in 176 /// this loop and find store->load dependences. 177 /// 178 /// Note that no candidate is returned if LAA has failed to analyze the loop 179 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 180 std::forward_list<StoreToLoadForwardingCandidate> 181 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 182 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 183 184 const auto *Deps = LAI.getDepChecker().getDependences(); 185 if (!Deps) 186 return Candidates; 187 188 // Find store->load dependences (consequently true dep). Both lexically 189 // forward and backward dependences qualify. Disqualify loads that have 190 // other unknown dependences. 191 192 SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence; 193 194 for (const auto &Dep : *Deps) { 195 Instruction *Source = Dep.getSource(LAI); 196 Instruction *Destination = Dep.getDestination(LAI); 197 198 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) { 199 if (isa<LoadInst>(Source)) 200 LoadsWithUnknownDepedence.insert(Source); 201 if (isa<LoadInst>(Destination)) 202 LoadsWithUnknownDepedence.insert(Destination); 203 continue; 204 } 205 206 if (Dep.isBackward()) 207 // Note that the designations source and destination follow the program 208 // order, i.e. source is always first. (The direction is given by the 209 // DepType.) 210 std::swap(Source, Destination); 211 else 212 assert(Dep.isForward() && "Needs to be a forward dependence"); 213 214 auto *Store = dyn_cast<StoreInst>(Source); 215 if (!Store) 216 continue; 217 auto *Load = dyn_cast<LoadInst>(Destination); 218 if (!Load) 219 continue; 220 221 // Only propagate if the stored values are bit/pointer castable. 222 if (!CastInst::isBitOrNoopPointerCastable( 223 getLoadStoreType(Store), getLoadStoreType(Load), 224 Store->getParent()->getModule()->getDataLayout())) 225 continue; 226 227 Candidates.emplace_front(Load, Store); 228 } 229 230 if (!LoadsWithUnknownDepedence.empty()) 231 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 232 return LoadsWithUnknownDepedence.count(C.Load); 233 }); 234 235 return Candidates; 236 } 237 238 /// Return the index of the instruction according to program order. 239 unsigned getInstrIndex(Instruction *Inst) { 240 auto I = InstOrder.find(Inst); 241 assert(I != InstOrder.end() && "No index for instruction"); 242 return I->second; 243 } 244 245 /// If a load has multiple candidates associated (i.e. different 246 /// stores), it means that it could be forwarding from multiple stores 247 /// depending on control flow. Remove these candidates. 248 /// 249 /// Here, we rely on LAA to include the relevant loop-independent dependences. 250 /// LAA is known to omit these in the very simple case when the read and the 251 /// write within an alias set always takes place using the *same* pointer. 252 /// 253 /// However, we know that this is not the case here, i.e. we can rely on LAA 254 /// to provide us with loop-independent dependences for the cases we're 255 /// interested. Consider the case for example where a loop-independent 256 /// dependece S1->S2 invalidates the forwarding S3->S2. 257 /// 258 /// A[i] = ... (S1) 259 /// ... = A[i] (S2) 260 /// A[i+1] = ... (S3) 261 /// 262 /// LAA will perform dependence analysis here because there are two 263 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 264 void removeDependencesFromMultipleStores( 265 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 266 // If Store is nullptr it means that we have multiple stores forwarding to 267 // this store. 268 using LoadToSingleCandT = 269 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>; 270 LoadToSingleCandT LoadToSingleCand; 271 272 for (const auto &Cand : Candidates) { 273 bool NewElt; 274 LoadToSingleCandT::iterator Iter; 275 276 std::tie(Iter, NewElt) = 277 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 278 if (!NewElt) { 279 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 280 // Already multiple stores forward to this load. 281 if (OtherCand == nullptr) 282 continue; 283 284 // Handle the very basic case when the two stores are in the same block 285 // so deciding which one forwards is easy. The later one forwards as 286 // long as they both have a dependence distance of one to the load. 287 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 288 Cand.isDependenceDistanceOfOne(PSE, L) && 289 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 290 // They are in the same block, the later one will forward to the load. 291 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 292 OtherCand = &Cand; 293 } else 294 OtherCand = nullptr; 295 } 296 } 297 298 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 299 if (LoadToSingleCand[Cand.Load] != &Cand) { 300 LLVM_DEBUG( 301 dbgs() << "Removing from candidates: \n" 302 << Cand 303 << " The load may have multiple stores forwarding to " 304 << "it\n"); 305 return true; 306 } 307 return false; 308 }); 309 } 310 311 /// Given two pointers operations by their RuntimePointerChecking 312 /// indices, return true if they require an alias check. 313 /// 314 /// We need a check if one is a pointer for a candidate load and the other is 315 /// a pointer for a possibly intervening store. 316 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 317 const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath, 318 const SmallPtrSetImpl<Value *> &CandLoadPtrs) { 319 Value *Ptr1 = 320 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 321 Value *Ptr2 = 322 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 323 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 324 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 325 } 326 327 /// Return pointers that are possibly written to on the path from a 328 /// forwarding store to a load. 329 /// 330 /// These pointers need to be alias-checked against the forwarding candidates. 331 SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath( 332 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 333 // From FirstStore to LastLoad neither of the elimination candidate loads 334 // should overlap with any of the stores. 335 // 336 // E.g.: 337 // 338 // st1 C[i] 339 // ld1 B[i] <-------, 340 // ld0 A[i] <----, | * LastLoad 341 // ... | | 342 // st2 E[i] | | 343 // st3 B[i+1] -- | -' * FirstStore 344 // st0 A[i+1] ---' 345 // st4 D[i] 346 // 347 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 348 // ld0. 349 350 LoadInst *LastLoad = 351 std::max_element(Candidates.begin(), Candidates.end(), 352 [&](const StoreToLoadForwardingCandidate &A, 353 const StoreToLoadForwardingCandidate &B) { 354 return getInstrIndex(A.Load) < getInstrIndex(B.Load); 355 }) 356 ->Load; 357 StoreInst *FirstStore = 358 std::min_element(Candidates.begin(), Candidates.end(), 359 [&](const StoreToLoadForwardingCandidate &A, 360 const StoreToLoadForwardingCandidate &B) { 361 return getInstrIndex(A.Store) < 362 getInstrIndex(B.Store); 363 }) 364 ->Store; 365 366 // We're looking for stores after the first forwarding store until the end 367 // of the loop, then from the beginning of the loop until the last 368 // forwarded-to load. Collect the pointer for the stores. 369 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath; 370 371 auto InsertStorePtr = [&](Instruction *I) { 372 if (auto *S = dyn_cast<StoreInst>(I)) 373 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 374 }; 375 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 376 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 377 MemInstrs.end(), InsertStorePtr); 378 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 379 InsertStorePtr); 380 381 return PtrsWrittenOnFwdingPath; 382 } 383 384 /// Determine the pointer alias checks to prove that there are no 385 /// intervening stores. 386 SmallVector<RuntimePointerCheck, 4> collectMemchecks( 387 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 388 389 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath = 390 findPointersWrittenOnForwardingPath(Candidates); 391 392 // Collect the pointers of the candidate loads. 393 SmallPtrSet<Value *, 4> CandLoadPtrs; 394 for (const auto &Candidate : Candidates) 395 CandLoadPtrs.insert(Candidate.getLoadPtr()); 396 397 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 398 SmallVector<RuntimePointerCheck, 4> Checks; 399 400 copy_if(AllChecks, std::back_inserter(Checks), 401 [&](const RuntimePointerCheck &Check) { 402 for (auto PtrIdx1 : Check.first->Members) 403 for (auto PtrIdx2 : Check.second->Members) 404 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath, 405 CandLoadPtrs)) 406 return true; 407 return false; 408 }); 409 410 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() 411 << "):\n"); 412 LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 413 414 return Checks; 415 } 416 417 /// Perform the transformation for a candidate. 418 void 419 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 420 SCEVExpander &SEE) { 421 // loop: 422 // %x = load %gep_i 423 // = ... %x 424 // store %y, %gep_i_plus_1 425 // 426 // => 427 // 428 // ph: 429 // %x.initial = load %gep_0 430 // loop: 431 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 432 // %x = load %gep_i <---- now dead 433 // = ... %x.storeforward 434 // store %y, %gep_i_plus_1 435 436 Value *Ptr = Cand.Load->getPointerOperand(); 437 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 438 auto *PH = L->getLoopPreheader(); 439 assert(PH && "Preheader should exist!"); 440 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 441 PH->getTerminator()); 442 Value *Initial = new LoadInst( 443 Cand.Load->getType(), InitialPtr, "load_initial", 444 /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator()); 445 446 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded", 447 &L->getHeader()->front()); 448 PHI->addIncoming(Initial, PH); 449 450 Type *LoadType = Initial->getType(); 451 Type *StoreType = Cand.Store->getValueOperand()->getType(); 452 auto &DL = Cand.Load->getParent()->getModule()->getDataLayout(); 453 (void)DL; 454 455 assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) && 456 "The type sizes should match!"); 457 458 Value *StoreValue = Cand.Store->getValueOperand(); 459 if (LoadType != StoreType) 460 StoreValue = CastInst::CreateBitOrPointerCast( 461 StoreValue, LoadType, "store_forward_cast", Cand.Store); 462 463 PHI->addIncoming(StoreValue, L->getLoopLatch()); 464 465 Cand.Load->replaceAllUsesWith(PHI); 466 } 467 468 /// Top-level driver for each loop: find store->load forwarding 469 /// candidates, add run-time checks and perform transformation. 470 bool processLoop() { 471 LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 472 << "\" checking " << *L << "\n"); 473 474 // Look for store-to-load forwarding cases across the 475 // backedge. E.g.: 476 // 477 // loop: 478 // %x = load %gep_i 479 // = ... %x 480 // store %y, %gep_i_plus_1 481 // 482 // => 483 // 484 // ph: 485 // %x.initial = load %gep_0 486 // loop: 487 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 488 // %x = load %gep_i <---- now dead 489 // = ... %x.storeforward 490 // store %y, %gep_i_plus_1 491 492 // First start with store->load dependences. 493 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 494 if (StoreToLoadDependences.empty()) 495 return false; 496 497 // Generate an index for each load and store according to the original 498 // program order. This will be used later. 499 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 500 501 // To keep things simple for now, remove those where the load is potentially 502 // fed by multiple stores. 503 removeDependencesFromMultipleStores(StoreToLoadDependences); 504 if (StoreToLoadDependences.empty()) 505 return false; 506 507 // Filter the candidates further. 508 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 509 for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) { 510 LLVM_DEBUG(dbgs() << "Candidate " << Cand); 511 512 // Make sure that the stored values is available everywhere in the loop in 513 // the next iteration. 514 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 515 continue; 516 517 // If the load is conditional we can't hoist its 0-iteration instance to 518 // the preheader because that would make it unconditional. Thus we would 519 // access a memory location that the original loop did not access. 520 if (isLoadConditional(Cand.Load, L)) 521 continue; 522 523 // Check whether the SCEV difference is the same as the induction step, 524 // thus we load the value in the next iteration. 525 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 526 continue; 527 528 assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) && 529 "Loading from something other than indvar?"); 530 assert( 531 isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) && 532 "Storing to something other than indvar?"); 533 534 Candidates.push_back(Cand); 535 LLVM_DEBUG( 536 dbgs() 537 << Candidates.size() 538 << ". Valid store-to-load forwarding across the loop backedge\n"); 539 } 540 if (Candidates.empty()) 541 return false; 542 543 // Check intervening may-alias stores. These need runtime checks for alias 544 // disambiguation. 545 SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates); 546 547 // Too many checks are likely to outweigh the benefits of forwarding. 548 if (Checks.size() > Candidates.size() * CheckPerElim) { 549 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n"); 550 return false; 551 } 552 553 if (LAI.getPSE().getPredicate().getComplexity() > 554 LoadElimSCEVCheckThreshold) { 555 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 556 return false; 557 } 558 559 if (!L->isLoopSimplifyForm()) { 560 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form"); 561 return false; 562 } 563 564 if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) { 565 if (LAI.hasConvergentOp()) { 566 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with " 567 "convergent calls\n"); 568 return false; 569 } 570 571 auto *HeaderBB = L->getHeader(); 572 auto *F = HeaderBB->getParent(); 573 bool OptForSize = F->hasOptSize() || 574 llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI, 575 PGSOQueryType::IRPass); 576 if (OptForSize) { 577 LLVM_DEBUG( 578 dbgs() << "Versioning is needed but not allowed when optimizing " 579 "for size.\n"); 580 return false; 581 } 582 583 // Point of no-return, start the transformation. First, version the loop 584 // if necessary. 585 586 LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE()); 587 LV.versionLoop(); 588 589 // After versioning, some of the candidates' pointers could stop being 590 // SCEVAddRecs. We need to filter them out. 591 auto NoLongerGoodCandidate = [this]( 592 const StoreToLoadForwardingCandidate &Cand) { 593 return !isa<SCEVAddRecExpr>( 594 PSE.getSCEV(Cand.Load->getPointerOperand())) || 595 !isa<SCEVAddRecExpr>( 596 PSE.getSCEV(Cand.Store->getPointerOperand())); 597 }; 598 llvm::erase_if(Candidates, NoLongerGoodCandidate); 599 } 600 601 // Next, propagate the value stored by the store to the users of the load. 602 // Also for the first iteration, generate the initial value of the load. 603 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(), 604 "storeforward"); 605 for (const auto &Cand : Candidates) 606 propagateStoredValueToLoadUsers(Cand, SEE); 607 NumLoopLoadEliminted += Candidates.size(); 608 609 return true; 610 } 611 612 private: 613 Loop *L; 614 615 /// Maps the load/store instructions to their index according to 616 /// program order. 617 DenseMap<Instruction *, unsigned> InstOrder; 618 619 // Analyses used. 620 LoopInfo *LI; 621 const LoopAccessInfo &LAI; 622 DominatorTree *DT; 623 BlockFrequencyInfo *BFI; 624 ProfileSummaryInfo *PSI; 625 PredicatedScalarEvolution PSE; 626 }; 627 628 } // end anonymous namespace 629 630 static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, 631 DominatorTree &DT, 632 BlockFrequencyInfo *BFI, 633 ProfileSummaryInfo *PSI, 634 ScalarEvolution *SE, AssumptionCache *AC, 635 LoopAccessInfoManager &LAIs) { 636 // Build up a worklist of inner-loops to transform to avoid iterator 637 // invalidation. 638 // FIXME: This logic comes from other passes that actually change the loop 639 // nest structure. It isn't clear this is necessary (or useful) for a pass 640 // which merely optimizes the use of loads in a loop. 641 SmallVector<Loop *, 8> Worklist; 642 643 bool Changed = false; 644 645 for (Loop *TopLevelLoop : LI) 646 for (Loop *L : depth_first(TopLevelLoop)) { 647 Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false); 648 // We only handle inner-most loops. 649 if (L->isInnermost()) 650 Worklist.push_back(L); 651 } 652 653 // Now walk the identified inner loops. 654 for (Loop *L : Worklist) { 655 // Match historical behavior 656 if (!L->isRotatedForm() || !L->getExitingBlock()) 657 continue; 658 // The actual work is performed by LoadEliminationForLoop. 659 LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI); 660 Changed |= LEL.processLoop(); 661 if (Changed) 662 LAIs.clear(); 663 } 664 return Changed; 665 } 666 667 PreservedAnalyses LoopLoadEliminationPass::run(Function &F, 668 FunctionAnalysisManager &AM) { 669 auto &LI = AM.getResult<LoopAnalysis>(F); 670 // There are no loops in the function. Return before computing other expensive 671 // analyses. 672 if (LI.empty()) 673 return PreservedAnalyses::all(); 674 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 675 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 676 auto &AC = AM.getResult<AssumptionAnalysis>(F); 677 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 678 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 679 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 680 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 681 LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F); 682 683 bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs); 684 685 if (!Changed) 686 return PreservedAnalyses::all(); 687 688 PreservedAnalyses PA; 689 PA.preserve<DominatorTreeAnalysis>(); 690 PA.preserve<LoopAnalysis>(); 691 return PA; 692 } 693