1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implement a loop-aware load elimination pass. 10 // 11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a 12 // distance of one between stores and loads. These form the candidates for the 13 // transformation. The source value of each store then propagated to the user 14 // of the corresponding load. This makes the load dead. 15 // 16 // The pass can also version the loop and add memchecks in order to prove that 17 // may-aliasing stores can't change the value in memory before it's read by the 18 // load. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DepthFirstIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/BlockFrequencyInfo.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 34 #include "llvm/Analysis/LoopAccessAnalysis.h" 35 #include "llvm/Analysis/LoopAnalysisManager.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 40 #include "llvm/Analysis/TargetLibraryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/InitializePasses.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Transforms/Scalar.h" 56 #include "llvm/Transforms/Utils.h" 57 #include "llvm/Transforms/Utils/LoopSimplify.h" 58 #include "llvm/Transforms/Utils/LoopVersioning.h" 59 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 60 #include "llvm/Transforms/Utils/SizeOpts.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <forward_list> 64 #include <tuple> 65 #include <utility> 66 67 using namespace llvm; 68 69 #define LLE_OPTION "loop-load-elim" 70 #define DEBUG_TYPE LLE_OPTION 71 72 static cl::opt<unsigned> CheckPerElim( 73 "runtime-check-per-loop-load-elim", cl::Hidden, 74 cl::desc("Max number of memchecks allowed per eliminated load on average"), 75 cl::init(1)); 76 77 static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 78 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 79 cl::desc("The maximum number of SCEV checks allowed for Loop " 80 "Load Elimination")); 81 82 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 83 84 namespace { 85 86 /// Represent a store-to-forwarding candidate. 87 struct StoreToLoadForwardingCandidate { 88 LoadInst *Load; 89 StoreInst *Store; 90 91 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 92 : Load(Load), Store(Store) {} 93 94 /// Return true if the dependence from the store to the load has a 95 /// distance of one. E.g. A[i+1] = A[i] 96 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 97 Loop *L) const { 98 Value *LoadPtr = Load->getPointerOperand(); 99 Value *StorePtr = Store->getPointerOperand(); 100 Type *LoadType = getLoadStoreType(Load); 101 auto &DL = Load->getParent()->getModule()->getDataLayout(); 102 103 assert(LoadPtr->getType()->getPointerAddressSpace() == 104 StorePtr->getType()->getPointerAddressSpace() && 105 DL.getTypeSizeInBits(LoadType) == 106 DL.getTypeSizeInBits(getLoadStoreType(Store)) && 107 "Should be a known dependence"); 108 109 // Currently we only support accesses with unit stride. FIXME: we should be 110 // able to handle non unit stirde as well as long as the stride is equal to 111 // the dependence distance. 112 if (getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0) != 1 || 113 getPtrStride(PSE, LoadType, StorePtr, L).value_or(0) != 1) 114 return false; 115 116 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 117 118 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 119 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 120 121 // We don't need to check non-wrapping here because forward/backward 122 // dependence wouldn't be valid if these weren't monotonic accesses. 123 auto *Dist = cast<SCEVConstant>( 124 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 125 const APInt &Val = Dist->getAPInt(); 126 return Val == TypeByteSize; 127 } 128 129 Value *getLoadPtr() const { return Load->getPointerOperand(); } 130 131 #ifndef NDEBUG 132 friend raw_ostream &operator<<(raw_ostream &OS, 133 const StoreToLoadForwardingCandidate &Cand) { 134 OS << *Cand.Store << " -->\n"; 135 OS.indent(2) << *Cand.Load << "\n"; 136 return OS; 137 } 138 #endif 139 }; 140 141 } // end anonymous namespace 142 143 /// Check if the store dominates all latches, so as long as there is no 144 /// intervening store this value will be loaded in the next iteration. 145 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 146 DominatorTree *DT) { 147 SmallVector<BasicBlock *, 8> Latches; 148 L->getLoopLatches(Latches); 149 return llvm::all_of(Latches, [&](const BasicBlock *Latch) { 150 return DT->dominates(StoreBlock, Latch); 151 }); 152 } 153 154 /// Return true if the load is not executed on all paths in the loop. 155 static bool isLoadConditional(LoadInst *Load, Loop *L) { 156 return Load->getParent() != L->getHeader(); 157 } 158 159 namespace { 160 161 /// The per-loop class that does most of the work. 162 class LoadEliminationForLoop { 163 public: 164 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 165 DominatorTree *DT, BlockFrequencyInfo *BFI, 166 ProfileSummaryInfo* PSI) 167 : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {} 168 169 /// Look through the loop-carried and loop-independent dependences in 170 /// this loop and find store->load dependences. 171 /// 172 /// Note that no candidate is returned if LAA has failed to analyze the loop 173 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 174 std::forward_list<StoreToLoadForwardingCandidate> 175 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 176 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 177 178 const auto *Deps = LAI.getDepChecker().getDependences(); 179 if (!Deps) 180 return Candidates; 181 182 // Find store->load dependences (consequently true dep). Both lexically 183 // forward and backward dependences qualify. Disqualify loads that have 184 // other unknown dependences. 185 186 SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence; 187 188 for (const auto &Dep : *Deps) { 189 Instruction *Source = Dep.getSource(LAI); 190 Instruction *Destination = Dep.getDestination(LAI); 191 192 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) { 193 if (isa<LoadInst>(Source)) 194 LoadsWithUnknownDepedence.insert(Source); 195 if (isa<LoadInst>(Destination)) 196 LoadsWithUnknownDepedence.insert(Destination); 197 continue; 198 } 199 200 if (Dep.isBackward()) 201 // Note that the designations source and destination follow the program 202 // order, i.e. source is always first. (The direction is given by the 203 // DepType.) 204 std::swap(Source, Destination); 205 else 206 assert(Dep.isForward() && "Needs to be a forward dependence"); 207 208 auto *Store = dyn_cast<StoreInst>(Source); 209 if (!Store) 210 continue; 211 auto *Load = dyn_cast<LoadInst>(Destination); 212 if (!Load) 213 continue; 214 215 // Only propagate if the stored values are bit/pointer castable. 216 if (!CastInst::isBitOrNoopPointerCastable( 217 getLoadStoreType(Store), getLoadStoreType(Load), 218 Store->getParent()->getModule()->getDataLayout())) 219 continue; 220 221 Candidates.emplace_front(Load, Store); 222 } 223 224 if (!LoadsWithUnknownDepedence.empty()) 225 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 226 return LoadsWithUnknownDepedence.count(C.Load); 227 }); 228 229 return Candidates; 230 } 231 232 /// Return the index of the instruction according to program order. 233 unsigned getInstrIndex(Instruction *Inst) { 234 auto I = InstOrder.find(Inst); 235 assert(I != InstOrder.end() && "No index for instruction"); 236 return I->second; 237 } 238 239 /// If a load has multiple candidates associated (i.e. different 240 /// stores), it means that it could be forwarding from multiple stores 241 /// depending on control flow. Remove these candidates. 242 /// 243 /// Here, we rely on LAA to include the relevant loop-independent dependences. 244 /// LAA is known to omit these in the very simple case when the read and the 245 /// write within an alias set always takes place using the *same* pointer. 246 /// 247 /// However, we know that this is not the case here, i.e. we can rely on LAA 248 /// to provide us with loop-independent dependences for the cases we're 249 /// interested. Consider the case for example where a loop-independent 250 /// dependece S1->S2 invalidates the forwarding S3->S2. 251 /// 252 /// A[i] = ... (S1) 253 /// ... = A[i] (S2) 254 /// A[i+1] = ... (S3) 255 /// 256 /// LAA will perform dependence analysis here because there are two 257 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 258 void removeDependencesFromMultipleStores( 259 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 260 // If Store is nullptr it means that we have multiple stores forwarding to 261 // this store. 262 using LoadToSingleCandT = 263 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>; 264 LoadToSingleCandT LoadToSingleCand; 265 266 for (const auto &Cand : Candidates) { 267 bool NewElt; 268 LoadToSingleCandT::iterator Iter; 269 270 std::tie(Iter, NewElt) = 271 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 272 if (!NewElt) { 273 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 274 // Already multiple stores forward to this load. 275 if (OtherCand == nullptr) 276 continue; 277 278 // Handle the very basic case when the two stores are in the same block 279 // so deciding which one forwards is easy. The later one forwards as 280 // long as they both have a dependence distance of one to the load. 281 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 282 Cand.isDependenceDistanceOfOne(PSE, L) && 283 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 284 // They are in the same block, the later one will forward to the load. 285 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 286 OtherCand = &Cand; 287 } else 288 OtherCand = nullptr; 289 } 290 } 291 292 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 293 if (LoadToSingleCand[Cand.Load] != &Cand) { 294 LLVM_DEBUG( 295 dbgs() << "Removing from candidates: \n" 296 << Cand 297 << " The load may have multiple stores forwarding to " 298 << "it\n"); 299 return true; 300 } 301 return false; 302 }); 303 } 304 305 /// Given two pointers operations by their RuntimePointerChecking 306 /// indices, return true if they require an alias check. 307 /// 308 /// We need a check if one is a pointer for a candidate load and the other is 309 /// a pointer for a possibly intervening store. 310 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 311 const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath, 312 const SmallPtrSetImpl<Value *> &CandLoadPtrs) { 313 Value *Ptr1 = 314 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 315 Value *Ptr2 = 316 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 317 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 318 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 319 } 320 321 /// Return pointers that are possibly written to on the path from a 322 /// forwarding store to a load. 323 /// 324 /// These pointers need to be alias-checked against the forwarding candidates. 325 SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath( 326 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 327 // From FirstStore to LastLoad neither of the elimination candidate loads 328 // should overlap with any of the stores. 329 // 330 // E.g.: 331 // 332 // st1 C[i] 333 // ld1 B[i] <-------, 334 // ld0 A[i] <----, | * LastLoad 335 // ... | | 336 // st2 E[i] | | 337 // st3 B[i+1] -- | -' * FirstStore 338 // st0 A[i+1] ---' 339 // st4 D[i] 340 // 341 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 342 // ld0. 343 344 LoadInst *LastLoad = 345 std::max_element(Candidates.begin(), Candidates.end(), 346 [&](const StoreToLoadForwardingCandidate &A, 347 const StoreToLoadForwardingCandidate &B) { 348 return getInstrIndex(A.Load) < getInstrIndex(B.Load); 349 }) 350 ->Load; 351 StoreInst *FirstStore = 352 std::min_element(Candidates.begin(), Candidates.end(), 353 [&](const StoreToLoadForwardingCandidate &A, 354 const StoreToLoadForwardingCandidate &B) { 355 return getInstrIndex(A.Store) < 356 getInstrIndex(B.Store); 357 }) 358 ->Store; 359 360 // We're looking for stores after the first forwarding store until the end 361 // of the loop, then from the beginning of the loop until the last 362 // forwarded-to load. Collect the pointer for the stores. 363 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath; 364 365 auto InsertStorePtr = [&](Instruction *I) { 366 if (auto *S = dyn_cast<StoreInst>(I)) 367 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 368 }; 369 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 370 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 371 MemInstrs.end(), InsertStorePtr); 372 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 373 InsertStorePtr); 374 375 return PtrsWrittenOnFwdingPath; 376 } 377 378 /// Determine the pointer alias checks to prove that there are no 379 /// intervening stores. 380 SmallVector<RuntimePointerCheck, 4> collectMemchecks( 381 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 382 383 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath = 384 findPointersWrittenOnForwardingPath(Candidates); 385 386 // Collect the pointers of the candidate loads. 387 SmallPtrSet<Value *, 4> CandLoadPtrs; 388 for (const auto &Candidate : Candidates) 389 CandLoadPtrs.insert(Candidate.getLoadPtr()); 390 391 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 392 SmallVector<RuntimePointerCheck, 4> Checks; 393 394 copy_if(AllChecks, std::back_inserter(Checks), 395 [&](const RuntimePointerCheck &Check) { 396 for (auto PtrIdx1 : Check.first->Members) 397 for (auto PtrIdx2 : Check.second->Members) 398 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath, 399 CandLoadPtrs)) 400 return true; 401 return false; 402 }); 403 404 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() 405 << "):\n"); 406 LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 407 408 return Checks; 409 } 410 411 /// Perform the transformation for a candidate. 412 void 413 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 414 SCEVExpander &SEE) { 415 // loop: 416 // %x = load %gep_i 417 // = ... %x 418 // store %y, %gep_i_plus_1 419 // 420 // => 421 // 422 // ph: 423 // %x.initial = load %gep_0 424 // loop: 425 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 426 // %x = load %gep_i <---- now dead 427 // = ... %x.storeforward 428 // store %y, %gep_i_plus_1 429 430 Value *Ptr = Cand.Load->getPointerOperand(); 431 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 432 auto *PH = L->getLoopPreheader(); 433 assert(PH && "Preheader should exist!"); 434 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 435 PH->getTerminator()); 436 Value *Initial = new LoadInst( 437 Cand.Load->getType(), InitialPtr, "load_initial", 438 /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator()); 439 440 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded", 441 &L->getHeader()->front()); 442 PHI->addIncoming(Initial, PH); 443 444 Type *LoadType = Initial->getType(); 445 Type *StoreType = Cand.Store->getValueOperand()->getType(); 446 auto &DL = Cand.Load->getParent()->getModule()->getDataLayout(); 447 (void)DL; 448 449 assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) && 450 "The type sizes should match!"); 451 452 Value *StoreValue = Cand.Store->getValueOperand(); 453 if (LoadType != StoreType) 454 StoreValue = CastInst::CreateBitOrPointerCast( 455 StoreValue, LoadType, "store_forward_cast", Cand.Store); 456 457 PHI->addIncoming(StoreValue, L->getLoopLatch()); 458 459 Cand.Load->replaceAllUsesWith(PHI); 460 } 461 462 /// Top-level driver for each loop: find store->load forwarding 463 /// candidates, add run-time checks and perform transformation. 464 bool processLoop() { 465 LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 466 << "\" checking " << *L << "\n"); 467 468 // Look for store-to-load forwarding cases across the 469 // backedge. E.g.: 470 // 471 // loop: 472 // %x = load %gep_i 473 // = ... %x 474 // store %y, %gep_i_plus_1 475 // 476 // => 477 // 478 // ph: 479 // %x.initial = load %gep_0 480 // loop: 481 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 482 // %x = load %gep_i <---- now dead 483 // = ... %x.storeforward 484 // store %y, %gep_i_plus_1 485 486 // First start with store->load dependences. 487 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 488 if (StoreToLoadDependences.empty()) 489 return false; 490 491 // Generate an index for each load and store according to the original 492 // program order. This will be used later. 493 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 494 495 // To keep things simple for now, remove those where the load is potentially 496 // fed by multiple stores. 497 removeDependencesFromMultipleStores(StoreToLoadDependences); 498 if (StoreToLoadDependences.empty()) 499 return false; 500 501 // Filter the candidates further. 502 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 503 for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) { 504 LLVM_DEBUG(dbgs() << "Candidate " << Cand); 505 506 // Make sure that the stored values is available everywhere in the loop in 507 // the next iteration. 508 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 509 continue; 510 511 // If the load is conditional we can't hoist its 0-iteration instance to 512 // the preheader because that would make it unconditional. Thus we would 513 // access a memory location that the original loop did not access. 514 if (isLoadConditional(Cand.Load, L)) 515 continue; 516 517 // Check whether the SCEV difference is the same as the induction step, 518 // thus we load the value in the next iteration. 519 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 520 continue; 521 522 assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) && 523 "Loading from something other than indvar?"); 524 assert( 525 isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) && 526 "Storing to something other than indvar?"); 527 528 Candidates.push_back(Cand); 529 LLVM_DEBUG( 530 dbgs() 531 << Candidates.size() 532 << ". Valid store-to-load forwarding across the loop backedge\n"); 533 } 534 if (Candidates.empty()) 535 return false; 536 537 // Check intervening may-alias stores. These need runtime checks for alias 538 // disambiguation. 539 SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates); 540 541 // Too many checks are likely to outweigh the benefits of forwarding. 542 if (Checks.size() > Candidates.size() * CheckPerElim) { 543 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n"); 544 return false; 545 } 546 547 if (LAI.getPSE().getPredicate().getComplexity() > 548 LoadElimSCEVCheckThreshold) { 549 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 550 return false; 551 } 552 553 if (!L->isLoopSimplifyForm()) { 554 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form"); 555 return false; 556 } 557 558 if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) { 559 if (LAI.hasConvergentOp()) { 560 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with " 561 "convergent calls\n"); 562 return false; 563 } 564 565 auto *HeaderBB = L->getHeader(); 566 auto *F = HeaderBB->getParent(); 567 bool OptForSize = F->hasOptSize() || 568 llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI, 569 PGSOQueryType::IRPass); 570 if (OptForSize) { 571 LLVM_DEBUG( 572 dbgs() << "Versioning is needed but not allowed when optimizing " 573 "for size.\n"); 574 return false; 575 } 576 577 // Point of no-return, start the transformation. First, version the loop 578 // if necessary. 579 580 LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE()); 581 LV.versionLoop(); 582 583 // After versioning, some of the candidates' pointers could stop being 584 // SCEVAddRecs. We need to filter them out. 585 auto NoLongerGoodCandidate = [this]( 586 const StoreToLoadForwardingCandidate &Cand) { 587 return !isa<SCEVAddRecExpr>( 588 PSE.getSCEV(Cand.Load->getPointerOperand())) || 589 !isa<SCEVAddRecExpr>( 590 PSE.getSCEV(Cand.Store->getPointerOperand())); 591 }; 592 llvm::erase_if(Candidates, NoLongerGoodCandidate); 593 } 594 595 // Next, propagate the value stored by the store to the users of the load. 596 // Also for the first iteration, generate the initial value of the load. 597 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(), 598 "storeforward"); 599 for (const auto &Cand : Candidates) 600 propagateStoredValueToLoadUsers(Cand, SEE); 601 NumLoopLoadEliminted += Candidates.size(); 602 603 return true; 604 } 605 606 private: 607 Loop *L; 608 609 /// Maps the load/store instructions to their index according to 610 /// program order. 611 DenseMap<Instruction *, unsigned> InstOrder; 612 613 // Analyses used. 614 LoopInfo *LI; 615 const LoopAccessInfo &LAI; 616 DominatorTree *DT; 617 BlockFrequencyInfo *BFI; 618 ProfileSummaryInfo *PSI; 619 PredicatedScalarEvolution PSE; 620 }; 621 622 } // end anonymous namespace 623 624 static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, 625 DominatorTree &DT, 626 BlockFrequencyInfo *BFI, 627 ProfileSummaryInfo *PSI, 628 ScalarEvolution *SE, AssumptionCache *AC, 629 LoopAccessInfoManager &LAIs) { 630 // Build up a worklist of inner-loops to transform to avoid iterator 631 // invalidation. 632 // FIXME: This logic comes from other passes that actually change the loop 633 // nest structure. It isn't clear this is necessary (or useful) for a pass 634 // which merely optimizes the use of loads in a loop. 635 SmallVector<Loop *, 8> Worklist; 636 637 bool Changed = false; 638 639 for (Loop *TopLevelLoop : LI) 640 for (Loop *L : depth_first(TopLevelLoop)) { 641 Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false); 642 // We only handle inner-most loops. 643 if (L->isInnermost()) 644 Worklist.push_back(L); 645 } 646 647 // Now walk the identified inner loops. 648 for (Loop *L : Worklist) { 649 // Match historical behavior 650 if (!L->isRotatedForm() || !L->getExitingBlock()) 651 continue; 652 // The actual work is performed by LoadEliminationForLoop. 653 LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI); 654 Changed |= LEL.processLoop(); 655 if (Changed) 656 LAIs.clear(); 657 } 658 return Changed; 659 } 660 661 namespace { 662 663 /// The pass. Most of the work is delegated to the per-loop 664 /// LoadEliminationForLoop class. 665 class LoopLoadElimination : public FunctionPass { 666 public: 667 static char ID; 668 669 LoopLoadElimination() : FunctionPass(ID) { 670 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry()); 671 } 672 673 bool runOnFunction(Function &F) override { 674 if (skipFunction(F)) 675 return false; 676 677 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 678 auto &LAIs = getAnalysis<LoopAccessLegacyAnalysis>().getLAIs(); 679 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 680 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 681 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 682 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 683 nullptr; 684 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 685 686 // Process each loop nest in the function. 687 return eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, SE, /*AC*/ nullptr, 688 LAIs); 689 } 690 691 void getAnalysisUsage(AnalysisUsage &AU) const override { 692 AU.addRequiredID(LoopSimplifyID); 693 AU.addRequired<LoopInfoWrapperPass>(); 694 AU.addPreserved<LoopInfoWrapperPass>(); 695 AU.addRequired<LoopAccessLegacyAnalysis>(); 696 AU.addRequired<ScalarEvolutionWrapperPass>(); 697 AU.addRequired<DominatorTreeWrapperPass>(); 698 AU.addPreserved<DominatorTreeWrapperPass>(); 699 AU.addPreserved<GlobalsAAWrapperPass>(); 700 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 701 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 702 } 703 }; 704 705 } // end anonymous namespace 706 707 char LoopLoadElimination::ID; 708 709 static const char LLE_name[] = "Loop Load Elimination"; 710 711 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 712 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 713 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 714 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 715 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 716 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 717 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 718 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 719 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false) 720 721 FunctionPass *llvm::createLoopLoadEliminationPass() { 722 return new LoopLoadElimination(); 723 } 724 725 PreservedAnalyses LoopLoadEliminationPass::run(Function &F, 726 FunctionAnalysisManager &AM) { 727 auto &LI = AM.getResult<LoopAnalysis>(F); 728 // There are no loops in the function. Return before computing other expensive 729 // analyses. 730 if (LI.empty()) 731 return PreservedAnalyses::all(); 732 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 733 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 734 auto &AC = AM.getResult<AssumptionAnalysis>(F); 735 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 736 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 737 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 738 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 739 LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F); 740 741 bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs); 742 743 if (!Changed) 744 return PreservedAnalyses::all(); 745 746 PreservedAnalyses PA; 747 return PA; 748 } 749