1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implement a loop-aware load elimination pass. 10 // 11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a 12 // distance of one between stores and loads. These form the candidates for the 13 // transformation. The source value of each store then propagated to the user 14 // of the corresponding load. This makes the load dead. 15 // 16 // The pass can also version the loop and add memchecks in order to prove that 17 // may-aliasing stores can't change the value in memory before it's read by the 18 // load. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DepthFirstIterator.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/BlockFrequencyInfo.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 34 #include "llvm/Analysis/LoopAccessAnalysis.h" 35 #include "llvm/Analysis/LoopAnalysisManager.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/ProfileSummaryInfo.h" 38 #include "llvm/Analysis/ScalarEvolution.h" 39 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 40 #include "llvm/Analysis/TargetLibraryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Transforms/Utils.h" 54 #include "llvm/Transforms/Utils/LoopSimplify.h" 55 #include "llvm/Transforms/Utils/LoopVersioning.h" 56 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 57 #include "llvm/Transforms/Utils/SizeOpts.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <forward_list> 61 #include <tuple> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define LLE_OPTION "loop-load-elim" 67 #define DEBUG_TYPE LLE_OPTION 68 69 static cl::opt<unsigned> CheckPerElim( 70 "runtime-check-per-loop-load-elim", cl::Hidden, 71 cl::desc("Max number of memchecks allowed per eliminated load on average"), 72 cl::init(1)); 73 74 static cl::opt<unsigned> LoadElimSCEVCheckThreshold( 75 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden, 76 cl::desc("The maximum number of SCEV checks allowed for Loop " 77 "Load Elimination")); 78 79 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE"); 80 81 namespace { 82 83 /// Represent a store-to-forwarding candidate. 84 struct StoreToLoadForwardingCandidate { 85 LoadInst *Load; 86 StoreInst *Store; 87 88 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store) 89 : Load(Load), Store(Store) {} 90 91 /// Return true if the dependence from the store to the load has an 92 /// absolute distance of one. 93 /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop) 94 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE, 95 Loop *L) const { 96 Value *LoadPtr = Load->getPointerOperand(); 97 Value *StorePtr = Store->getPointerOperand(); 98 Type *LoadType = getLoadStoreType(Load); 99 auto &DL = Load->getDataLayout(); 100 101 assert(LoadPtr->getType()->getPointerAddressSpace() == 102 StorePtr->getType()->getPointerAddressSpace() && 103 DL.getTypeSizeInBits(LoadType) == 104 DL.getTypeSizeInBits(getLoadStoreType(Store)) && 105 "Should be a known dependence"); 106 107 int64_t StrideLoad = getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0); 108 int64_t StrideStore = getPtrStride(PSE, LoadType, StorePtr, L).value_or(0); 109 if (!StrideLoad || !StrideStore || StrideLoad != StrideStore) 110 return false; 111 112 // TODO: This check for stride values other than 1 and -1 can be eliminated. 113 // However, doing so may cause the LoopAccessAnalysis to overcompensate, 114 // generating numerous non-wrap runtime checks that may undermine the 115 // benefits of load elimination. To safely implement support for non-unit 116 // strides, we would need to ensure either that the processed case does not 117 // require these additional checks, or improve the LAA to handle them more 118 // efficiently, or potentially both. 119 if (std::abs(StrideLoad) != 1) 120 return false; 121 122 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType)); 123 124 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr)); 125 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr)); 126 127 // We don't need to check non-wrapping here because forward/backward 128 // dependence wouldn't be valid if these weren't monotonic accesses. 129 auto *Dist = dyn_cast<SCEVConstant>( 130 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV)); 131 if (!Dist) 132 return false; 133 const APInt &Val = Dist->getAPInt(); 134 return Val == TypeByteSize * StrideLoad; 135 } 136 137 Value *getLoadPtr() const { return Load->getPointerOperand(); } 138 139 #ifndef NDEBUG 140 friend raw_ostream &operator<<(raw_ostream &OS, 141 const StoreToLoadForwardingCandidate &Cand) { 142 OS << *Cand.Store << " -->\n"; 143 OS.indent(2) << *Cand.Load << "\n"; 144 return OS; 145 } 146 #endif 147 }; 148 149 } // end anonymous namespace 150 151 /// Check if the store dominates all latches, so as long as there is no 152 /// intervening store this value will be loaded in the next iteration. 153 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L, 154 DominatorTree *DT) { 155 SmallVector<BasicBlock *, 8> Latches; 156 L->getLoopLatches(Latches); 157 return llvm::all_of(Latches, [&](const BasicBlock *Latch) { 158 return DT->dominates(StoreBlock, Latch); 159 }); 160 } 161 162 /// Return true if the load is not executed on all paths in the loop. 163 static bool isLoadConditional(LoadInst *Load, Loop *L) { 164 return Load->getParent() != L->getHeader(); 165 } 166 167 namespace { 168 169 /// The per-loop class that does most of the work. 170 class LoadEliminationForLoop { 171 public: 172 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI, 173 DominatorTree *DT, BlockFrequencyInfo *BFI, 174 ProfileSummaryInfo* PSI) 175 : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {} 176 177 /// Look through the loop-carried and loop-independent dependences in 178 /// this loop and find store->load dependences. 179 /// 180 /// Note that no candidate is returned if LAA has failed to analyze the loop 181 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.) 182 std::forward_list<StoreToLoadForwardingCandidate> 183 findStoreToLoadDependences(const LoopAccessInfo &LAI) { 184 std::forward_list<StoreToLoadForwardingCandidate> Candidates; 185 186 const auto &DepChecker = LAI.getDepChecker(); 187 const auto *Deps = DepChecker.getDependences(); 188 if (!Deps) 189 return Candidates; 190 191 // Find store->load dependences (consequently true dep). Both lexically 192 // forward and backward dependences qualify. Disqualify loads that have 193 // other unknown dependences. 194 195 SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence; 196 197 for (const auto &Dep : *Deps) { 198 Instruction *Source = Dep.getSource(DepChecker); 199 Instruction *Destination = Dep.getDestination(DepChecker); 200 201 if (Dep.Type == MemoryDepChecker::Dependence::Unknown || 202 Dep.Type == MemoryDepChecker::Dependence::IndirectUnsafe) { 203 if (isa<LoadInst>(Source)) 204 LoadsWithUnknownDepedence.insert(Source); 205 if (isa<LoadInst>(Destination)) 206 LoadsWithUnknownDepedence.insert(Destination); 207 continue; 208 } 209 210 if (Dep.isBackward()) 211 // Note that the designations source and destination follow the program 212 // order, i.e. source is always first. (The direction is given by the 213 // DepType.) 214 std::swap(Source, Destination); 215 else 216 assert(Dep.isForward() && "Needs to be a forward dependence"); 217 218 auto *Store = dyn_cast<StoreInst>(Source); 219 if (!Store) 220 continue; 221 auto *Load = dyn_cast<LoadInst>(Destination); 222 if (!Load) 223 continue; 224 225 // Only propagate if the stored values are bit/pointer castable. 226 if (!CastInst::isBitOrNoopPointerCastable( 227 getLoadStoreType(Store), getLoadStoreType(Load), 228 Store->getDataLayout())) 229 continue; 230 231 Candidates.emplace_front(Load, Store); 232 } 233 234 if (!LoadsWithUnknownDepedence.empty()) 235 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) { 236 return LoadsWithUnknownDepedence.count(C.Load); 237 }); 238 239 return Candidates; 240 } 241 242 /// Return the index of the instruction according to program order. 243 unsigned getInstrIndex(Instruction *Inst) { 244 auto I = InstOrder.find(Inst); 245 assert(I != InstOrder.end() && "No index for instruction"); 246 return I->second; 247 } 248 249 /// If a load has multiple candidates associated (i.e. different 250 /// stores), it means that it could be forwarding from multiple stores 251 /// depending on control flow. Remove these candidates. 252 /// 253 /// Here, we rely on LAA to include the relevant loop-independent dependences. 254 /// LAA is known to omit these in the very simple case when the read and the 255 /// write within an alias set always takes place using the *same* pointer. 256 /// 257 /// However, we know that this is not the case here, i.e. we can rely on LAA 258 /// to provide us with loop-independent dependences for the cases we're 259 /// interested. Consider the case for example where a loop-independent 260 /// dependece S1->S2 invalidates the forwarding S3->S2. 261 /// 262 /// A[i] = ... (S1) 263 /// ... = A[i] (S2) 264 /// A[i+1] = ... (S3) 265 /// 266 /// LAA will perform dependence analysis here because there are two 267 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]). 268 void removeDependencesFromMultipleStores( 269 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) { 270 // If Store is nullptr it means that we have multiple stores forwarding to 271 // this store. 272 using LoadToSingleCandT = 273 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>; 274 LoadToSingleCandT LoadToSingleCand; 275 276 for (const auto &Cand : Candidates) { 277 bool NewElt; 278 LoadToSingleCandT::iterator Iter; 279 280 std::tie(Iter, NewElt) = 281 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand)); 282 if (!NewElt) { 283 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second; 284 // Already multiple stores forward to this load. 285 if (OtherCand == nullptr) 286 continue; 287 288 // Handle the very basic case when the two stores are in the same block 289 // so deciding which one forwards is easy. The later one forwards as 290 // long as they both have a dependence distance of one to the load. 291 if (Cand.Store->getParent() == OtherCand->Store->getParent() && 292 Cand.isDependenceDistanceOfOne(PSE, L) && 293 OtherCand->isDependenceDistanceOfOne(PSE, L)) { 294 // They are in the same block, the later one will forward to the load. 295 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store)) 296 OtherCand = &Cand; 297 } else 298 OtherCand = nullptr; 299 } 300 } 301 302 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) { 303 if (LoadToSingleCand[Cand.Load] != &Cand) { 304 LLVM_DEBUG( 305 dbgs() << "Removing from candidates: \n" 306 << Cand 307 << " The load may have multiple stores forwarding to " 308 << "it\n"); 309 return true; 310 } 311 return false; 312 }); 313 } 314 315 /// Given two pointers operations by their RuntimePointerChecking 316 /// indices, return true if they require an alias check. 317 /// 318 /// We need a check if one is a pointer for a candidate load and the other is 319 /// a pointer for a possibly intervening store. 320 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2, 321 const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath, 322 const SmallPtrSetImpl<Value *> &CandLoadPtrs) { 323 Value *Ptr1 = 324 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue; 325 Value *Ptr2 = 326 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue; 327 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) || 328 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1))); 329 } 330 331 /// Return pointers that are possibly written to on the path from a 332 /// forwarding store to a load. 333 /// 334 /// These pointers need to be alias-checked against the forwarding candidates. 335 SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath( 336 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 337 // From FirstStore to LastLoad neither of the elimination candidate loads 338 // should overlap with any of the stores. 339 // 340 // E.g.: 341 // 342 // st1 C[i] 343 // ld1 B[i] <-------, 344 // ld0 A[i] <----, | * LastLoad 345 // ... | | 346 // st2 E[i] | | 347 // st3 B[i+1] -- | -' * FirstStore 348 // st0 A[i+1] ---' 349 // st4 D[i] 350 // 351 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with 352 // ld0. 353 354 LoadInst *LastLoad = 355 llvm::max_element(Candidates, 356 [&](const StoreToLoadForwardingCandidate &A, 357 const StoreToLoadForwardingCandidate &B) { 358 return getInstrIndex(A.Load) < 359 getInstrIndex(B.Load); 360 }) 361 ->Load; 362 StoreInst *FirstStore = 363 llvm::min_element(Candidates, 364 [&](const StoreToLoadForwardingCandidate &A, 365 const StoreToLoadForwardingCandidate &B) { 366 return getInstrIndex(A.Store) < 367 getInstrIndex(B.Store); 368 }) 369 ->Store; 370 371 // We're looking for stores after the first forwarding store until the end 372 // of the loop, then from the beginning of the loop until the last 373 // forwarded-to load. Collect the pointer for the stores. 374 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath; 375 376 auto InsertStorePtr = [&](Instruction *I) { 377 if (auto *S = dyn_cast<StoreInst>(I)) 378 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand()); 379 }; 380 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions(); 381 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1, 382 MemInstrs.end(), InsertStorePtr); 383 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)], 384 InsertStorePtr); 385 386 return PtrsWrittenOnFwdingPath; 387 } 388 389 /// Determine the pointer alias checks to prove that there are no 390 /// intervening stores. 391 SmallVector<RuntimePointerCheck, 4> collectMemchecks( 392 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) { 393 394 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath = 395 findPointersWrittenOnForwardingPath(Candidates); 396 397 // Collect the pointers of the candidate loads. 398 SmallPtrSet<Value *, 4> CandLoadPtrs; 399 for (const auto &Candidate : Candidates) 400 CandLoadPtrs.insert(Candidate.getLoadPtr()); 401 402 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks(); 403 SmallVector<RuntimePointerCheck, 4> Checks; 404 405 copy_if(AllChecks, std::back_inserter(Checks), 406 [&](const RuntimePointerCheck &Check) { 407 for (auto PtrIdx1 : Check.first->Members) 408 for (auto PtrIdx2 : Check.second->Members) 409 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath, 410 CandLoadPtrs)) 411 return true; 412 return false; 413 }); 414 415 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() 416 << "):\n"); 417 LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks)); 418 419 return Checks; 420 } 421 422 /// Perform the transformation for a candidate. 423 void 424 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand, 425 SCEVExpander &SEE) { 426 // loop: 427 // %x = load %gep_i 428 // = ... %x 429 // store %y, %gep_i_plus_1 430 // 431 // => 432 // 433 // ph: 434 // %x.initial = load %gep_0 435 // loop: 436 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 437 // %x = load %gep_i <---- now dead 438 // = ... %x.storeforward 439 // store %y, %gep_i_plus_1 440 441 Value *Ptr = Cand.Load->getPointerOperand(); 442 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr)); 443 auto *PH = L->getLoopPreheader(); 444 assert(PH && "Preheader should exist!"); 445 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(), 446 PH->getTerminator()); 447 Value *Initial = 448 new LoadInst(Cand.Load->getType(), InitialPtr, "load_initial", 449 /* isVolatile */ false, Cand.Load->getAlign(), 450 PH->getTerminator()->getIterator()); 451 // We don't give any debug location to Initial, because it is inserted 452 // into the loop's preheader. A debug location inside the loop will cause 453 // a misleading stepping when debugging. The test update-debugloc-store 454 // -forwarded.ll checks this. 455 456 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded"); 457 PHI->insertBefore(L->getHeader()->begin()); 458 PHI->addIncoming(Initial, PH); 459 460 Type *LoadType = Initial->getType(); 461 Type *StoreType = Cand.Store->getValueOperand()->getType(); 462 auto &DL = Cand.Load->getDataLayout(); 463 (void)DL; 464 465 assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) && 466 "The type sizes should match!"); 467 468 Value *StoreValue = Cand.Store->getValueOperand(); 469 if (LoadType != StoreType) { 470 StoreValue = CastInst::CreateBitOrPointerCast(StoreValue, LoadType, 471 "store_forward_cast", 472 Cand.Store->getIterator()); 473 // Because it casts the old `load` value and is used by the new `phi` 474 // which replaces the old `load`, we give the `load`'s debug location 475 // to it. 476 cast<Instruction>(StoreValue)->setDebugLoc(Cand.Load->getDebugLoc()); 477 } 478 479 PHI->addIncoming(StoreValue, L->getLoopLatch()); 480 481 Cand.Load->replaceAllUsesWith(PHI); 482 PHI->setDebugLoc(Cand.Load->getDebugLoc()); 483 } 484 485 /// Top-level driver for each loop: find store->load forwarding 486 /// candidates, add run-time checks and perform transformation. 487 bool processLoop() { 488 LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName() 489 << "\" checking " << *L << "\n"); 490 491 // Look for store-to-load forwarding cases across the 492 // backedge. E.g.: 493 // 494 // loop: 495 // %x = load %gep_i 496 // = ... %x 497 // store %y, %gep_i_plus_1 498 // 499 // => 500 // 501 // ph: 502 // %x.initial = load %gep_0 503 // loop: 504 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop] 505 // %x = load %gep_i <---- now dead 506 // = ... %x.storeforward 507 // store %y, %gep_i_plus_1 508 509 // First start with store->load dependences. 510 auto StoreToLoadDependences = findStoreToLoadDependences(LAI); 511 if (StoreToLoadDependences.empty()) 512 return false; 513 514 // Generate an index for each load and store according to the original 515 // program order. This will be used later. 516 InstOrder = LAI.getDepChecker().generateInstructionOrderMap(); 517 518 // To keep things simple for now, remove those where the load is potentially 519 // fed by multiple stores. 520 removeDependencesFromMultipleStores(StoreToLoadDependences); 521 if (StoreToLoadDependences.empty()) 522 return false; 523 524 // Filter the candidates further. 525 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates; 526 for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) { 527 LLVM_DEBUG(dbgs() << "Candidate " << Cand); 528 529 // Make sure that the stored values is available everywhere in the loop in 530 // the next iteration. 531 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT)) 532 continue; 533 534 // If the load is conditional we can't hoist its 0-iteration instance to 535 // the preheader because that would make it unconditional. Thus we would 536 // access a memory location that the original loop did not access. 537 if (isLoadConditional(Cand.Load, L)) 538 continue; 539 540 // Check whether the SCEV difference is the same as the induction step, 541 // thus we load the value in the next iteration. 542 if (!Cand.isDependenceDistanceOfOne(PSE, L)) 543 continue; 544 545 assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) && 546 "Loading from something other than indvar?"); 547 assert( 548 isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) && 549 "Storing to something other than indvar?"); 550 551 Candidates.push_back(Cand); 552 LLVM_DEBUG( 553 dbgs() 554 << Candidates.size() 555 << ". Valid store-to-load forwarding across the loop backedge\n"); 556 } 557 if (Candidates.empty()) 558 return false; 559 560 // Check intervening may-alias stores. These need runtime checks for alias 561 // disambiguation. 562 SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates); 563 564 // Too many checks are likely to outweigh the benefits of forwarding. 565 if (Checks.size() > Candidates.size() * CheckPerElim) { 566 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n"); 567 return false; 568 } 569 570 if (LAI.getPSE().getPredicate().getComplexity() > 571 LoadElimSCEVCheckThreshold) { 572 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n"); 573 return false; 574 } 575 576 if (!L->isLoopSimplifyForm()) { 577 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form"); 578 return false; 579 } 580 581 if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) { 582 if (LAI.hasConvergentOp()) { 583 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with " 584 "convergent calls\n"); 585 return false; 586 } 587 588 auto *HeaderBB = L->getHeader(); 589 auto *F = HeaderBB->getParent(); 590 bool OptForSize = F->hasOptSize() || 591 llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI, 592 PGSOQueryType::IRPass); 593 if (OptForSize) { 594 LLVM_DEBUG( 595 dbgs() << "Versioning is needed but not allowed when optimizing " 596 "for size.\n"); 597 return false; 598 } 599 600 // Point of no-return, start the transformation. First, version the loop 601 // if necessary. 602 603 LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE()); 604 LV.versionLoop(); 605 606 // After versioning, some of the candidates' pointers could stop being 607 // SCEVAddRecs. We need to filter them out. 608 auto NoLongerGoodCandidate = [this]( 609 const StoreToLoadForwardingCandidate &Cand) { 610 return !isa<SCEVAddRecExpr>( 611 PSE.getSCEV(Cand.Load->getPointerOperand())) || 612 !isa<SCEVAddRecExpr>( 613 PSE.getSCEV(Cand.Store->getPointerOperand())); 614 }; 615 llvm::erase_if(Candidates, NoLongerGoodCandidate); 616 } 617 618 // Next, propagate the value stored by the store to the users of the load. 619 // Also for the first iteration, generate the initial value of the load. 620 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getDataLayout(), 621 "storeforward"); 622 for (const auto &Cand : Candidates) 623 propagateStoredValueToLoadUsers(Cand, SEE); 624 NumLoopLoadEliminted += Candidates.size(); 625 626 return true; 627 } 628 629 private: 630 Loop *L; 631 632 /// Maps the load/store instructions to their index according to 633 /// program order. 634 DenseMap<Instruction *, unsigned> InstOrder; 635 636 // Analyses used. 637 LoopInfo *LI; 638 const LoopAccessInfo &LAI; 639 DominatorTree *DT; 640 BlockFrequencyInfo *BFI; 641 ProfileSummaryInfo *PSI; 642 PredicatedScalarEvolution PSE; 643 }; 644 645 } // end anonymous namespace 646 647 static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, 648 DominatorTree &DT, 649 BlockFrequencyInfo *BFI, 650 ProfileSummaryInfo *PSI, 651 ScalarEvolution *SE, AssumptionCache *AC, 652 LoopAccessInfoManager &LAIs) { 653 // Build up a worklist of inner-loops to transform to avoid iterator 654 // invalidation. 655 // FIXME: This logic comes from other passes that actually change the loop 656 // nest structure. It isn't clear this is necessary (or useful) for a pass 657 // which merely optimizes the use of loads in a loop. 658 SmallVector<Loop *, 8> Worklist; 659 660 bool Changed = false; 661 662 for (Loop *TopLevelLoop : LI) 663 for (Loop *L : depth_first(TopLevelLoop)) { 664 Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false); 665 // We only handle inner-most loops. 666 if (L->isInnermost()) 667 Worklist.push_back(L); 668 } 669 670 // Now walk the identified inner loops. 671 for (Loop *L : Worklist) { 672 // Match historical behavior 673 if (!L->isRotatedForm() || !L->getExitingBlock()) 674 continue; 675 // The actual work is performed by LoadEliminationForLoop. 676 LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI); 677 Changed |= LEL.processLoop(); 678 if (Changed) 679 LAIs.clear(); 680 } 681 return Changed; 682 } 683 684 PreservedAnalyses LoopLoadEliminationPass::run(Function &F, 685 FunctionAnalysisManager &AM) { 686 auto &LI = AM.getResult<LoopAnalysis>(F); 687 // There are no loops in the function. Return before computing other expensive 688 // analyses. 689 if (LI.empty()) 690 return PreservedAnalyses::all(); 691 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 692 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 693 auto &AC = AM.getResult<AssumptionAnalysis>(F); 694 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 695 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 696 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 697 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 698 LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F); 699 700 bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs); 701 702 if (!Changed) 703 return PreservedAnalyses::all(); 704 705 PreservedAnalyses PA; 706 PA.preserve<DominatorTreeAnalysis>(); 707 PA.preserve<LoopAnalysis>(); 708 return PA; 709 } 710