10b57cec5SDimitry Andric //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implement a loop-aware load elimination pass.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric // It uses LoopAccessAnalysis to identify loop-carried dependences with a
120b57cec5SDimitry Andric // distance of one between stores and loads. These form the candidates for the
130b57cec5SDimitry Andric // transformation. The source value of each store then propagated to the user
140b57cec5SDimitry Andric // of the corresponding load. This makes the load dead.
150b57cec5SDimitry Andric //
160b57cec5SDimitry Andric // The pass can also version the loop and add memchecks in order to prove that
170b57cec5SDimitry Andric // may-aliasing stores can't change the value in memory before it's read by the
180b57cec5SDimitry Andric // load.
190b57cec5SDimitry Andric //
200b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
210b57cec5SDimitry Andric
220b57cec5SDimitry Andric #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
230b57cec5SDimitry Andric #include "llvm/ADT/APInt.h"
240b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
250b57cec5SDimitry Andric #include "llvm/ADT/DepthFirstIterator.h"
260b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
270b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
280b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
290b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h"
300b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h"
310b57cec5SDimitry Andric #include "llvm/Analysis/BlockFrequencyInfo.h"
320b57cec5SDimitry Andric #include "llvm/Analysis/GlobalsModRef.h"
330b57cec5SDimitry Andric #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
340b57cec5SDimitry Andric #include "llvm/Analysis/LoopAccessAnalysis.h"
350b57cec5SDimitry Andric #include "llvm/Analysis/LoopAnalysisManager.h"
360b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h"
370b57cec5SDimitry Andric #include "llvm/Analysis/ProfileSummaryInfo.h"
380b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h"
390b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolutionExpressions.h"
400b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h"
410b57cec5SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
420b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
430b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
440b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
450b57cec5SDimitry Andric #include "llvm/IR/Module.h"
460b57cec5SDimitry Andric #include "llvm/IR/PassManager.h"
470b57cec5SDimitry Andric #include "llvm/IR/Type.h"
480b57cec5SDimitry Andric #include "llvm/IR/Value.h"
490b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
500b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
510b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
520b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
530b57cec5SDimitry Andric #include "llvm/Transforms/Utils.h"
54e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopSimplify.h"
550b57cec5SDimitry Andric #include "llvm/Transforms/Utils/LoopVersioning.h"
565ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
570b57cec5SDimitry Andric #include "llvm/Transforms/Utils/SizeOpts.h"
580b57cec5SDimitry Andric #include <algorithm>
590b57cec5SDimitry Andric #include <cassert>
600b57cec5SDimitry Andric #include <forward_list>
610b57cec5SDimitry Andric #include <tuple>
620b57cec5SDimitry Andric #include <utility>
630b57cec5SDimitry Andric
640b57cec5SDimitry Andric using namespace llvm;
650b57cec5SDimitry Andric
660b57cec5SDimitry Andric #define LLE_OPTION "loop-load-elim"
670b57cec5SDimitry Andric #define DEBUG_TYPE LLE_OPTION
680b57cec5SDimitry Andric
690b57cec5SDimitry Andric static cl::opt<unsigned> CheckPerElim(
700b57cec5SDimitry Andric "runtime-check-per-loop-load-elim", cl::Hidden,
710b57cec5SDimitry Andric cl::desc("Max number of memchecks allowed per eliminated load on average"),
720b57cec5SDimitry Andric cl::init(1));
730b57cec5SDimitry Andric
740b57cec5SDimitry Andric static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
750b57cec5SDimitry Andric "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
760b57cec5SDimitry Andric cl::desc("The maximum number of SCEV checks allowed for Loop "
770b57cec5SDimitry Andric "Load Elimination"));
780b57cec5SDimitry Andric
790b57cec5SDimitry Andric STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
800b57cec5SDimitry Andric
810b57cec5SDimitry Andric namespace {
820b57cec5SDimitry Andric
830b57cec5SDimitry Andric /// Represent a store-to-forwarding candidate.
840b57cec5SDimitry Andric struct StoreToLoadForwardingCandidate {
850b57cec5SDimitry Andric LoadInst *Load;
860b57cec5SDimitry Andric StoreInst *Store;
870b57cec5SDimitry Andric
StoreToLoadForwardingCandidate__anon087f49260111::StoreToLoadForwardingCandidate880b57cec5SDimitry Andric StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
890b57cec5SDimitry Andric : Load(Load), Store(Store) {}
900b57cec5SDimitry Andric
9106c3fb27SDimitry Andric /// Return true if the dependence from the store to the load has an
9206c3fb27SDimitry Andric /// absolute distance of one.
9306c3fb27SDimitry Andric /// E.g. A[i+1] = A[i] (or A[i-1] = A[i] for descending loop)
isDependenceDistanceOfOne__anon087f49260111::StoreToLoadForwardingCandidate940b57cec5SDimitry Andric bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
950b57cec5SDimitry Andric Loop *L) const {
960b57cec5SDimitry Andric Value *LoadPtr = Load->getPointerOperand();
970b57cec5SDimitry Andric Value *StorePtr = Store->getPointerOperand();
98fe6060f1SDimitry Andric Type *LoadType = getLoadStoreType(Load);
99*0fca6ea1SDimitry Andric auto &DL = Load->getDataLayout();
1000b57cec5SDimitry Andric
101fe6060f1SDimitry Andric assert(LoadPtr->getType()->getPointerAddressSpace() ==
1020b57cec5SDimitry Andric StorePtr->getType()->getPointerAddressSpace() &&
103bdd1243dSDimitry Andric DL.getTypeSizeInBits(LoadType) ==
104bdd1243dSDimitry Andric DL.getTypeSizeInBits(getLoadStoreType(Store)) &&
1050b57cec5SDimitry Andric "Should be a known dependence");
1060b57cec5SDimitry Andric
10706c3fb27SDimitry Andric int64_t StrideLoad = getPtrStride(PSE, LoadType, LoadPtr, L).value_or(0);
10806c3fb27SDimitry Andric int64_t StrideStore = getPtrStride(PSE, LoadType, StorePtr, L).value_or(0);
10906c3fb27SDimitry Andric if (!StrideLoad || !StrideStore || StrideLoad != StrideStore)
11006c3fb27SDimitry Andric return false;
11106c3fb27SDimitry Andric
11206c3fb27SDimitry Andric // TODO: This check for stride values other than 1 and -1 can be eliminated.
11306c3fb27SDimitry Andric // However, doing so may cause the LoopAccessAnalysis to overcompensate,
11406c3fb27SDimitry Andric // generating numerous non-wrap runtime checks that may undermine the
11506c3fb27SDimitry Andric // benefits of load elimination. To safely implement support for non-unit
11606c3fb27SDimitry Andric // strides, we would need to ensure either that the processed case does not
11706c3fb27SDimitry Andric // require these additional checks, or improve the LAA to handle them more
11806c3fb27SDimitry Andric // efficiently, or potentially both.
11906c3fb27SDimitry Andric if (std::abs(StrideLoad) != 1)
1200b57cec5SDimitry Andric return false;
1210b57cec5SDimitry Andric
1220b57cec5SDimitry Andric unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
1230b57cec5SDimitry Andric
1240b57cec5SDimitry Andric auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
1250b57cec5SDimitry Andric auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
1260b57cec5SDimitry Andric
1270b57cec5SDimitry Andric // We don't need to check non-wrapping here because forward/backward
1280b57cec5SDimitry Andric // dependence wouldn't be valid if these weren't monotonic accesses.
129*0fca6ea1SDimitry Andric auto *Dist = dyn_cast<SCEVConstant>(
1300b57cec5SDimitry Andric PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
131*0fca6ea1SDimitry Andric if (!Dist)
132*0fca6ea1SDimitry Andric return false;
1330b57cec5SDimitry Andric const APInt &Val = Dist->getAPInt();
13406c3fb27SDimitry Andric return Val == TypeByteSize * StrideLoad;
1350b57cec5SDimitry Andric }
1360b57cec5SDimitry Andric
getLoadPtr__anon087f49260111::StoreToLoadForwardingCandidate1370b57cec5SDimitry Andric Value *getLoadPtr() const { return Load->getPointerOperand(); }
1380b57cec5SDimitry Andric
1390b57cec5SDimitry Andric #ifndef NDEBUG
operator <<(raw_ostream & OS,const StoreToLoadForwardingCandidate & Cand)1400b57cec5SDimitry Andric friend raw_ostream &operator<<(raw_ostream &OS,
1410b57cec5SDimitry Andric const StoreToLoadForwardingCandidate &Cand) {
1420b57cec5SDimitry Andric OS << *Cand.Store << " -->\n";
1430b57cec5SDimitry Andric OS.indent(2) << *Cand.Load << "\n";
1440b57cec5SDimitry Andric return OS;
1450b57cec5SDimitry Andric }
1460b57cec5SDimitry Andric #endif
1470b57cec5SDimitry Andric };
1480b57cec5SDimitry Andric
1490b57cec5SDimitry Andric } // end anonymous namespace
1500b57cec5SDimitry Andric
1510b57cec5SDimitry Andric /// Check if the store dominates all latches, so as long as there is no
1520b57cec5SDimitry Andric /// intervening store this value will be loaded in the next iteration.
doesStoreDominatesAllLatches(BasicBlock * StoreBlock,Loop * L,DominatorTree * DT)1530b57cec5SDimitry Andric static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
1540b57cec5SDimitry Andric DominatorTree *DT) {
1550b57cec5SDimitry Andric SmallVector<BasicBlock *, 8> Latches;
1560b57cec5SDimitry Andric L->getLoopLatches(Latches);
1570b57cec5SDimitry Andric return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
1580b57cec5SDimitry Andric return DT->dominates(StoreBlock, Latch);
1590b57cec5SDimitry Andric });
1600b57cec5SDimitry Andric }
1610b57cec5SDimitry Andric
1620b57cec5SDimitry Andric /// Return true if the load is not executed on all paths in the loop.
isLoadConditional(LoadInst * Load,Loop * L)1630b57cec5SDimitry Andric static bool isLoadConditional(LoadInst *Load, Loop *L) {
1640b57cec5SDimitry Andric return Load->getParent() != L->getHeader();
1650b57cec5SDimitry Andric }
1660b57cec5SDimitry Andric
1670b57cec5SDimitry Andric namespace {
1680b57cec5SDimitry Andric
1690b57cec5SDimitry Andric /// The per-loop class that does most of the work.
1700b57cec5SDimitry Andric class LoadEliminationForLoop {
1710b57cec5SDimitry Andric public:
LoadEliminationForLoop(Loop * L,LoopInfo * LI,const LoopAccessInfo & LAI,DominatorTree * DT,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI)1720b57cec5SDimitry Andric LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
1730b57cec5SDimitry Andric DominatorTree *DT, BlockFrequencyInfo *BFI,
1740b57cec5SDimitry Andric ProfileSummaryInfo* PSI)
1750b57cec5SDimitry Andric : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
1760b57cec5SDimitry Andric
1770b57cec5SDimitry Andric /// Look through the loop-carried and loop-independent dependences in
1780b57cec5SDimitry Andric /// this loop and find store->load dependences.
1790b57cec5SDimitry Andric ///
1800b57cec5SDimitry Andric /// Note that no candidate is returned if LAA has failed to analyze the loop
1810b57cec5SDimitry Andric /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
1820b57cec5SDimitry Andric std::forward_list<StoreToLoadForwardingCandidate>
findStoreToLoadDependences(const LoopAccessInfo & LAI)1830b57cec5SDimitry Andric findStoreToLoadDependences(const LoopAccessInfo &LAI) {
1840b57cec5SDimitry Andric std::forward_list<StoreToLoadForwardingCandidate> Candidates;
1850b57cec5SDimitry Andric
186*0fca6ea1SDimitry Andric const auto &DepChecker = LAI.getDepChecker();
187*0fca6ea1SDimitry Andric const auto *Deps = DepChecker.getDependences();
1880b57cec5SDimitry Andric if (!Deps)
1890b57cec5SDimitry Andric return Candidates;
1900b57cec5SDimitry Andric
1910b57cec5SDimitry Andric // Find store->load dependences (consequently true dep). Both lexically
1920b57cec5SDimitry Andric // forward and backward dependences qualify. Disqualify loads that have
1930b57cec5SDimitry Andric // other unknown dependences.
1940b57cec5SDimitry Andric
1950b57cec5SDimitry Andric SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
1960b57cec5SDimitry Andric
1970b57cec5SDimitry Andric for (const auto &Dep : *Deps) {
198*0fca6ea1SDimitry Andric Instruction *Source = Dep.getSource(DepChecker);
199*0fca6ea1SDimitry Andric Instruction *Destination = Dep.getDestination(DepChecker);
2000b57cec5SDimitry Andric
2015f757f3fSDimitry Andric if (Dep.Type == MemoryDepChecker::Dependence::Unknown ||
2025f757f3fSDimitry Andric Dep.Type == MemoryDepChecker::Dependence::IndirectUnsafe) {
2030b57cec5SDimitry Andric if (isa<LoadInst>(Source))
2040b57cec5SDimitry Andric LoadsWithUnknownDepedence.insert(Source);
2050b57cec5SDimitry Andric if (isa<LoadInst>(Destination))
2060b57cec5SDimitry Andric LoadsWithUnknownDepedence.insert(Destination);
2070b57cec5SDimitry Andric continue;
2080b57cec5SDimitry Andric }
2090b57cec5SDimitry Andric
2100b57cec5SDimitry Andric if (Dep.isBackward())
2110b57cec5SDimitry Andric // Note that the designations source and destination follow the program
2120b57cec5SDimitry Andric // order, i.e. source is always first. (The direction is given by the
2130b57cec5SDimitry Andric // DepType.)
2140b57cec5SDimitry Andric std::swap(Source, Destination);
2150b57cec5SDimitry Andric else
2160b57cec5SDimitry Andric assert(Dep.isForward() && "Needs to be a forward dependence");
2170b57cec5SDimitry Andric
2180b57cec5SDimitry Andric auto *Store = dyn_cast<StoreInst>(Source);
2190b57cec5SDimitry Andric if (!Store)
2200b57cec5SDimitry Andric continue;
2210b57cec5SDimitry Andric auto *Load = dyn_cast<LoadInst>(Destination);
2220b57cec5SDimitry Andric if (!Load)
2230b57cec5SDimitry Andric continue;
2240b57cec5SDimitry Andric
225bdd1243dSDimitry Andric // Only propagate if the stored values are bit/pointer castable.
226bdd1243dSDimitry Andric if (!CastInst::isBitOrNoopPointerCastable(
227bdd1243dSDimitry Andric getLoadStoreType(Store), getLoadStoreType(Load),
228*0fca6ea1SDimitry Andric Store->getDataLayout()))
2290b57cec5SDimitry Andric continue;
2300b57cec5SDimitry Andric
2310b57cec5SDimitry Andric Candidates.emplace_front(Load, Store);
2320b57cec5SDimitry Andric }
2330b57cec5SDimitry Andric
2340b57cec5SDimitry Andric if (!LoadsWithUnknownDepedence.empty())
2350b57cec5SDimitry Andric Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
2360b57cec5SDimitry Andric return LoadsWithUnknownDepedence.count(C.Load);
2370b57cec5SDimitry Andric });
2380b57cec5SDimitry Andric
2390b57cec5SDimitry Andric return Candidates;
2400b57cec5SDimitry Andric }
2410b57cec5SDimitry Andric
2420b57cec5SDimitry Andric /// Return the index of the instruction according to program order.
getInstrIndex(Instruction * Inst)2430b57cec5SDimitry Andric unsigned getInstrIndex(Instruction *Inst) {
2440b57cec5SDimitry Andric auto I = InstOrder.find(Inst);
2450b57cec5SDimitry Andric assert(I != InstOrder.end() && "No index for instruction");
2460b57cec5SDimitry Andric return I->second;
2470b57cec5SDimitry Andric }
2480b57cec5SDimitry Andric
2490b57cec5SDimitry Andric /// If a load has multiple candidates associated (i.e. different
2500b57cec5SDimitry Andric /// stores), it means that it could be forwarding from multiple stores
2510b57cec5SDimitry Andric /// depending on control flow. Remove these candidates.
2520b57cec5SDimitry Andric ///
2530b57cec5SDimitry Andric /// Here, we rely on LAA to include the relevant loop-independent dependences.
2540b57cec5SDimitry Andric /// LAA is known to omit these in the very simple case when the read and the
2550b57cec5SDimitry Andric /// write within an alias set always takes place using the *same* pointer.
2560b57cec5SDimitry Andric ///
2570b57cec5SDimitry Andric /// However, we know that this is not the case here, i.e. we can rely on LAA
2580b57cec5SDimitry Andric /// to provide us with loop-independent dependences for the cases we're
2590b57cec5SDimitry Andric /// interested. Consider the case for example where a loop-independent
2600b57cec5SDimitry Andric /// dependece S1->S2 invalidates the forwarding S3->S2.
2610b57cec5SDimitry Andric ///
2620b57cec5SDimitry Andric /// A[i] = ... (S1)
2630b57cec5SDimitry Andric /// ... = A[i] (S2)
2640b57cec5SDimitry Andric /// A[i+1] = ... (S3)
2650b57cec5SDimitry Andric ///
2660b57cec5SDimitry Andric /// LAA will perform dependence analysis here because there are two
2670b57cec5SDimitry Andric /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
removeDependencesFromMultipleStores(std::forward_list<StoreToLoadForwardingCandidate> & Candidates)2680b57cec5SDimitry Andric void removeDependencesFromMultipleStores(
2690b57cec5SDimitry Andric std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
2700b57cec5SDimitry Andric // If Store is nullptr it means that we have multiple stores forwarding to
2710b57cec5SDimitry Andric // this store.
2720b57cec5SDimitry Andric using LoadToSingleCandT =
2730b57cec5SDimitry Andric DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
2740b57cec5SDimitry Andric LoadToSingleCandT LoadToSingleCand;
2750b57cec5SDimitry Andric
2760b57cec5SDimitry Andric for (const auto &Cand : Candidates) {
2770b57cec5SDimitry Andric bool NewElt;
2780b57cec5SDimitry Andric LoadToSingleCandT::iterator Iter;
2790b57cec5SDimitry Andric
2800b57cec5SDimitry Andric std::tie(Iter, NewElt) =
2810b57cec5SDimitry Andric LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
2820b57cec5SDimitry Andric if (!NewElt) {
2830b57cec5SDimitry Andric const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
2840b57cec5SDimitry Andric // Already multiple stores forward to this load.
2850b57cec5SDimitry Andric if (OtherCand == nullptr)
2860b57cec5SDimitry Andric continue;
2870b57cec5SDimitry Andric
2880b57cec5SDimitry Andric // Handle the very basic case when the two stores are in the same block
2890b57cec5SDimitry Andric // so deciding which one forwards is easy. The later one forwards as
2900b57cec5SDimitry Andric // long as they both have a dependence distance of one to the load.
2910b57cec5SDimitry Andric if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
2920b57cec5SDimitry Andric Cand.isDependenceDistanceOfOne(PSE, L) &&
2930b57cec5SDimitry Andric OtherCand->isDependenceDistanceOfOne(PSE, L)) {
2940b57cec5SDimitry Andric // They are in the same block, the later one will forward to the load.
2950b57cec5SDimitry Andric if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
2960b57cec5SDimitry Andric OtherCand = &Cand;
2970b57cec5SDimitry Andric } else
2980b57cec5SDimitry Andric OtherCand = nullptr;
2990b57cec5SDimitry Andric }
3000b57cec5SDimitry Andric }
3010b57cec5SDimitry Andric
3020b57cec5SDimitry Andric Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
3030b57cec5SDimitry Andric if (LoadToSingleCand[Cand.Load] != &Cand) {
3040b57cec5SDimitry Andric LLVM_DEBUG(
3050b57cec5SDimitry Andric dbgs() << "Removing from candidates: \n"
3060b57cec5SDimitry Andric << Cand
3070b57cec5SDimitry Andric << " The load may have multiple stores forwarding to "
3080b57cec5SDimitry Andric << "it\n");
3090b57cec5SDimitry Andric return true;
3100b57cec5SDimitry Andric }
3110b57cec5SDimitry Andric return false;
3120b57cec5SDimitry Andric });
3130b57cec5SDimitry Andric }
3140b57cec5SDimitry Andric
3150b57cec5SDimitry Andric /// Given two pointers operations by their RuntimePointerChecking
3160b57cec5SDimitry Andric /// indices, return true if they require an alias check.
3170b57cec5SDimitry Andric ///
3180b57cec5SDimitry Andric /// We need a check if one is a pointer for a candidate load and the other is
3190b57cec5SDimitry Andric /// a pointer for a possibly intervening store.
needsChecking(unsigned PtrIdx1,unsigned PtrIdx2,const SmallPtrSetImpl<Value * > & PtrsWrittenOnFwdingPath,const SmallPtrSetImpl<Value * > & CandLoadPtrs)3200b57cec5SDimitry Andric bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
321e8d8bef9SDimitry Andric const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath,
322e8d8bef9SDimitry Andric const SmallPtrSetImpl<Value *> &CandLoadPtrs) {
3230b57cec5SDimitry Andric Value *Ptr1 =
3240b57cec5SDimitry Andric LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
3250b57cec5SDimitry Andric Value *Ptr2 =
3260b57cec5SDimitry Andric LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
3270b57cec5SDimitry Andric return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
3280b57cec5SDimitry Andric (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
3290b57cec5SDimitry Andric }
3300b57cec5SDimitry Andric
3310b57cec5SDimitry Andric /// Return pointers that are possibly written to on the path from a
3320b57cec5SDimitry Andric /// forwarding store to a load.
3330b57cec5SDimitry Andric ///
3340b57cec5SDimitry Andric /// These pointers need to be alias-checked against the forwarding candidates.
findPointersWrittenOnForwardingPath(const SmallVectorImpl<StoreToLoadForwardingCandidate> & Candidates)3350b57cec5SDimitry Andric SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
3360b57cec5SDimitry Andric const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
3370b57cec5SDimitry Andric // From FirstStore to LastLoad neither of the elimination candidate loads
3380b57cec5SDimitry Andric // should overlap with any of the stores.
3390b57cec5SDimitry Andric //
3400b57cec5SDimitry Andric // E.g.:
3410b57cec5SDimitry Andric //
3420b57cec5SDimitry Andric // st1 C[i]
3430b57cec5SDimitry Andric // ld1 B[i] <-------,
3440b57cec5SDimitry Andric // ld0 A[i] <----, | * LastLoad
3450b57cec5SDimitry Andric // ... | |
3460b57cec5SDimitry Andric // st2 E[i] | |
3470b57cec5SDimitry Andric // st3 B[i+1] -- | -' * FirstStore
3480b57cec5SDimitry Andric // st0 A[i+1] ---'
3490b57cec5SDimitry Andric // st4 D[i]
3500b57cec5SDimitry Andric //
3510b57cec5SDimitry Andric // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
3520b57cec5SDimitry Andric // ld0.
3530b57cec5SDimitry Andric
3540b57cec5SDimitry Andric LoadInst *LastLoad =
355*0fca6ea1SDimitry Andric llvm::max_element(Candidates,
3560b57cec5SDimitry Andric [&](const StoreToLoadForwardingCandidate &A,
3570b57cec5SDimitry Andric const StoreToLoadForwardingCandidate &B) {
358*0fca6ea1SDimitry Andric return getInstrIndex(A.Load) <
359*0fca6ea1SDimitry Andric getInstrIndex(B.Load);
3600b57cec5SDimitry Andric })
3610b57cec5SDimitry Andric ->Load;
3620b57cec5SDimitry Andric StoreInst *FirstStore =
363*0fca6ea1SDimitry Andric llvm::min_element(Candidates,
3640b57cec5SDimitry Andric [&](const StoreToLoadForwardingCandidate &A,
3650b57cec5SDimitry Andric const StoreToLoadForwardingCandidate &B) {
3660b57cec5SDimitry Andric return getInstrIndex(A.Store) <
3670b57cec5SDimitry Andric getInstrIndex(B.Store);
3680b57cec5SDimitry Andric })
3690b57cec5SDimitry Andric ->Store;
3700b57cec5SDimitry Andric
3710b57cec5SDimitry Andric // We're looking for stores after the first forwarding store until the end
3720b57cec5SDimitry Andric // of the loop, then from the beginning of the loop until the last
3730b57cec5SDimitry Andric // forwarded-to load. Collect the pointer for the stores.
3740b57cec5SDimitry Andric SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
3750b57cec5SDimitry Andric
3760b57cec5SDimitry Andric auto InsertStorePtr = [&](Instruction *I) {
3770b57cec5SDimitry Andric if (auto *S = dyn_cast<StoreInst>(I))
3780b57cec5SDimitry Andric PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
3790b57cec5SDimitry Andric };
3800b57cec5SDimitry Andric const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
3810b57cec5SDimitry Andric std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
3820b57cec5SDimitry Andric MemInstrs.end(), InsertStorePtr);
3830b57cec5SDimitry Andric std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
3840b57cec5SDimitry Andric InsertStorePtr);
3850b57cec5SDimitry Andric
3860b57cec5SDimitry Andric return PtrsWrittenOnFwdingPath;
3870b57cec5SDimitry Andric }
3880b57cec5SDimitry Andric
3890b57cec5SDimitry Andric /// Determine the pointer alias checks to prove that there are no
3900b57cec5SDimitry Andric /// intervening stores.
collectMemchecks(const SmallVectorImpl<StoreToLoadForwardingCandidate> & Candidates)3915ffd83dbSDimitry Andric SmallVector<RuntimePointerCheck, 4> collectMemchecks(
3920b57cec5SDimitry Andric const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
3930b57cec5SDimitry Andric
3940b57cec5SDimitry Andric SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
3950b57cec5SDimitry Andric findPointersWrittenOnForwardingPath(Candidates);
3960b57cec5SDimitry Andric
3970b57cec5SDimitry Andric // Collect the pointers of the candidate loads.
398e8d8bef9SDimitry Andric SmallPtrSet<Value *, 4> CandLoadPtrs;
399e8d8bef9SDimitry Andric for (const auto &Candidate : Candidates)
400e8d8bef9SDimitry Andric CandLoadPtrs.insert(Candidate.getLoadPtr());
4010b57cec5SDimitry Andric
4020b57cec5SDimitry Andric const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
4035ffd83dbSDimitry Andric SmallVector<RuntimePointerCheck, 4> Checks;
4040b57cec5SDimitry Andric
4050b57cec5SDimitry Andric copy_if(AllChecks, std::back_inserter(Checks),
4065ffd83dbSDimitry Andric [&](const RuntimePointerCheck &Check) {
4070b57cec5SDimitry Andric for (auto PtrIdx1 : Check.first->Members)
4080b57cec5SDimitry Andric for (auto PtrIdx2 : Check.second->Members)
4090b57cec5SDimitry Andric if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
4100b57cec5SDimitry Andric CandLoadPtrs))
4110b57cec5SDimitry Andric return true;
4120b57cec5SDimitry Andric return false;
4130b57cec5SDimitry Andric });
4140b57cec5SDimitry Andric
4150b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
4160b57cec5SDimitry Andric << "):\n");
4170b57cec5SDimitry Andric LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
4180b57cec5SDimitry Andric
4190b57cec5SDimitry Andric return Checks;
4200b57cec5SDimitry Andric }
4210b57cec5SDimitry Andric
4220b57cec5SDimitry Andric /// Perform the transformation for a candidate.
4230b57cec5SDimitry Andric void
propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate & Cand,SCEVExpander & SEE)4240b57cec5SDimitry Andric propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
4250b57cec5SDimitry Andric SCEVExpander &SEE) {
4260b57cec5SDimitry Andric // loop:
4270b57cec5SDimitry Andric // %x = load %gep_i
4280b57cec5SDimitry Andric // = ... %x
4290b57cec5SDimitry Andric // store %y, %gep_i_plus_1
4300b57cec5SDimitry Andric //
4310b57cec5SDimitry Andric // =>
4320b57cec5SDimitry Andric //
4330b57cec5SDimitry Andric // ph:
4340b57cec5SDimitry Andric // %x.initial = load %gep_0
4350b57cec5SDimitry Andric // loop:
4360b57cec5SDimitry Andric // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
4370b57cec5SDimitry Andric // %x = load %gep_i <---- now dead
4380b57cec5SDimitry Andric // = ... %x.storeforward
4390b57cec5SDimitry Andric // store %y, %gep_i_plus_1
4400b57cec5SDimitry Andric
4410b57cec5SDimitry Andric Value *Ptr = Cand.Load->getPointerOperand();
4420b57cec5SDimitry Andric auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
4430b57cec5SDimitry Andric auto *PH = L->getLoopPreheader();
4445ffd83dbSDimitry Andric assert(PH && "Preheader should exist!");
4450b57cec5SDimitry Andric Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
4460b57cec5SDimitry Andric PH->getTerminator());
447*0fca6ea1SDimitry Andric Value *Initial =
448*0fca6ea1SDimitry Andric new LoadInst(Cand.Load->getType(), InitialPtr, "load_initial",
449*0fca6ea1SDimitry Andric /* isVolatile */ false, Cand.Load->getAlign(),
450*0fca6ea1SDimitry Andric PH->getTerminator()->getIterator());
451*0fca6ea1SDimitry Andric // We don't give any debug location to Initial, because it is inserted
452*0fca6ea1SDimitry Andric // into the loop's preheader. A debug location inside the loop will cause
453*0fca6ea1SDimitry Andric // a misleading stepping when debugging. The test update-debugloc-store
454*0fca6ea1SDimitry Andric // -forwarded.ll checks this.
4550b57cec5SDimitry Andric
4565f757f3fSDimitry Andric PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded");
4575f757f3fSDimitry Andric PHI->insertBefore(L->getHeader()->begin());
4580b57cec5SDimitry Andric PHI->addIncoming(Initial, PH);
459bdd1243dSDimitry Andric
460bdd1243dSDimitry Andric Type *LoadType = Initial->getType();
461bdd1243dSDimitry Andric Type *StoreType = Cand.Store->getValueOperand()->getType();
462*0fca6ea1SDimitry Andric auto &DL = Cand.Load->getDataLayout();
463bdd1243dSDimitry Andric (void)DL;
464bdd1243dSDimitry Andric
465bdd1243dSDimitry Andric assert(DL.getTypeSizeInBits(LoadType) == DL.getTypeSizeInBits(StoreType) &&
466bdd1243dSDimitry Andric "The type sizes should match!");
467bdd1243dSDimitry Andric
468bdd1243dSDimitry Andric Value *StoreValue = Cand.Store->getValueOperand();
469*0fca6ea1SDimitry Andric if (LoadType != StoreType) {
470*0fca6ea1SDimitry Andric StoreValue = CastInst::CreateBitOrPointerCast(StoreValue, LoadType,
471*0fca6ea1SDimitry Andric "store_forward_cast",
472*0fca6ea1SDimitry Andric Cand.Store->getIterator());
473*0fca6ea1SDimitry Andric // Because it casts the old `load` value and is used by the new `phi`
474*0fca6ea1SDimitry Andric // which replaces the old `load`, we give the `load`'s debug location
475*0fca6ea1SDimitry Andric // to it.
476*0fca6ea1SDimitry Andric cast<Instruction>(StoreValue)->setDebugLoc(Cand.Load->getDebugLoc());
477*0fca6ea1SDimitry Andric }
478bdd1243dSDimitry Andric
479bdd1243dSDimitry Andric PHI->addIncoming(StoreValue, L->getLoopLatch());
4800b57cec5SDimitry Andric
4810b57cec5SDimitry Andric Cand.Load->replaceAllUsesWith(PHI);
482*0fca6ea1SDimitry Andric PHI->setDebugLoc(Cand.Load->getDebugLoc());
4830b57cec5SDimitry Andric }
4840b57cec5SDimitry Andric
4850b57cec5SDimitry Andric /// Top-level driver for each loop: find store->load forwarding
4860b57cec5SDimitry Andric /// candidates, add run-time checks and perform transformation.
processLoop()4870b57cec5SDimitry Andric bool processLoop() {
4880b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
4890b57cec5SDimitry Andric << "\" checking " << *L << "\n");
4900b57cec5SDimitry Andric
4910b57cec5SDimitry Andric // Look for store-to-load forwarding cases across the
4920b57cec5SDimitry Andric // backedge. E.g.:
4930b57cec5SDimitry Andric //
4940b57cec5SDimitry Andric // loop:
4950b57cec5SDimitry Andric // %x = load %gep_i
4960b57cec5SDimitry Andric // = ... %x
4970b57cec5SDimitry Andric // store %y, %gep_i_plus_1
4980b57cec5SDimitry Andric //
4990b57cec5SDimitry Andric // =>
5000b57cec5SDimitry Andric //
5010b57cec5SDimitry Andric // ph:
5020b57cec5SDimitry Andric // %x.initial = load %gep_0
5030b57cec5SDimitry Andric // loop:
5040b57cec5SDimitry Andric // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
5050b57cec5SDimitry Andric // %x = load %gep_i <---- now dead
5060b57cec5SDimitry Andric // = ... %x.storeforward
5070b57cec5SDimitry Andric // store %y, %gep_i_plus_1
5080b57cec5SDimitry Andric
5090b57cec5SDimitry Andric // First start with store->load dependences.
5100b57cec5SDimitry Andric auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
5110b57cec5SDimitry Andric if (StoreToLoadDependences.empty())
5120b57cec5SDimitry Andric return false;
5130b57cec5SDimitry Andric
5140b57cec5SDimitry Andric // Generate an index for each load and store according to the original
5150b57cec5SDimitry Andric // program order. This will be used later.
5160b57cec5SDimitry Andric InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
5170b57cec5SDimitry Andric
5180b57cec5SDimitry Andric // To keep things simple for now, remove those where the load is potentially
5190b57cec5SDimitry Andric // fed by multiple stores.
5200b57cec5SDimitry Andric removeDependencesFromMultipleStores(StoreToLoadDependences);
5210b57cec5SDimitry Andric if (StoreToLoadDependences.empty())
5220b57cec5SDimitry Andric return false;
5230b57cec5SDimitry Andric
5240b57cec5SDimitry Andric // Filter the candidates further.
5250b57cec5SDimitry Andric SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
526480093f4SDimitry Andric for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
5270b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Candidate " << Cand);
5280b57cec5SDimitry Andric
5290b57cec5SDimitry Andric // Make sure that the stored values is available everywhere in the loop in
5300b57cec5SDimitry Andric // the next iteration.
5310b57cec5SDimitry Andric if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
5320b57cec5SDimitry Andric continue;
5330b57cec5SDimitry Andric
5340b57cec5SDimitry Andric // If the load is conditional we can't hoist its 0-iteration instance to
5350b57cec5SDimitry Andric // the preheader because that would make it unconditional. Thus we would
5360b57cec5SDimitry Andric // access a memory location that the original loop did not access.
5370b57cec5SDimitry Andric if (isLoadConditional(Cand.Load, L))
5380b57cec5SDimitry Andric continue;
5390b57cec5SDimitry Andric
5400b57cec5SDimitry Andric // Check whether the SCEV difference is the same as the induction step,
5410b57cec5SDimitry Andric // thus we load the value in the next iteration.
5420b57cec5SDimitry Andric if (!Cand.isDependenceDistanceOfOne(PSE, L))
5430b57cec5SDimitry Andric continue;
5440b57cec5SDimitry Andric
545e8d8bef9SDimitry Andric assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) &&
546e8d8bef9SDimitry Andric "Loading from something other than indvar?");
547e8d8bef9SDimitry Andric assert(
548e8d8bef9SDimitry Andric isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) &&
549e8d8bef9SDimitry Andric "Storing to something other than indvar?");
550e8d8bef9SDimitry Andric
551e8d8bef9SDimitry Andric Candidates.push_back(Cand);
5520b57cec5SDimitry Andric LLVM_DEBUG(
5530b57cec5SDimitry Andric dbgs()
554e8d8bef9SDimitry Andric << Candidates.size()
5550b57cec5SDimitry Andric << ". Valid store-to-load forwarding across the loop backedge\n");
5560b57cec5SDimitry Andric }
5570b57cec5SDimitry Andric if (Candidates.empty())
5580b57cec5SDimitry Andric return false;
5590b57cec5SDimitry Andric
5600b57cec5SDimitry Andric // Check intervening may-alias stores. These need runtime checks for alias
5610b57cec5SDimitry Andric // disambiguation.
5625ffd83dbSDimitry Andric SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
5630b57cec5SDimitry Andric
5640b57cec5SDimitry Andric // Too many checks are likely to outweigh the benefits of forwarding.
5650b57cec5SDimitry Andric if (Checks.size() > Candidates.size() * CheckPerElim) {
5660b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
5670b57cec5SDimitry Andric return false;
5680b57cec5SDimitry Andric }
5690b57cec5SDimitry Andric
57081ad6265SDimitry Andric if (LAI.getPSE().getPredicate().getComplexity() >
5710b57cec5SDimitry Andric LoadElimSCEVCheckThreshold) {
5720b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
5730b57cec5SDimitry Andric return false;
5740b57cec5SDimitry Andric }
5750b57cec5SDimitry Andric
5765ffd83dbSDimitry Andric if (!L->isLoopSimplifyForm()) {
5775ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
5785ffd83dbSDimitry Andric return false;
5795ffd83dbSDimitry Andric }
5805ffd83dbSDimitry Andric
58181ad6265SDimitry Andric if (!Checks.empty() || !LAI.getPSE().getPredicate().isAlwaysTrue()) {
5820b57cec5SDimitry Andric if (LAI.hasConvergentOp()) {
5830b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
5840b57cec5SDimitry Andric "convergent calls\n");
5850b57cec5SDimitry Andric return false;
5860b57cec5SDimitry Andric }
5870b57cec5SDimitry Andric
5880b57cec5SDimitry Andric auto *HeaderBB = L->getHeader();
5890b57cec5SDimitry Andric auto *F = HeaderBB->getParent();
5900b57cec5SDimitry Andric bool OptForSize = F->hasOptSize() ||
591480093f4SDimitry Andric llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
592480093f4SDimitry Andric PGSOQueryType::IRPass);
5930b57cec5SDimitry Andric if (OptForSize) {
5940b57cec5SDimitry Andric LLVM_DEBUG(
5950b57cec5SDimitry Andric dbgs() << "Versioning is needed but not allowed when optimizing "
5960b57cec5SDimitry Andric "for size.\n");
5970b57cec5SDimitry Andric return false;
5980b57cec5SDimitry Andric }
5990b57cec5SDimitry Andric
6000b57cec5SDimitry Andric // Point of no-return, start the transformation. First, version the loop
6010b57cec5SDimitry Andric // if necessary.
6020b57cec5SDimitry Andric
603e8d8bef9SDimitry Andric LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE());
6040b57cec5SDimitry Andric LV.versionLoop();
605e8d8bef9SDimitry Andric
606e8d8bef9SDimitry Andric // After versioning, some of the candidates' pointers could stop being
607e8d8bef9SDimitry Andric // SCEVAddRecs. We need to filter them out.
608e8d8bef9SDimitry Andric auto NoLongerGoodCandidate = [this](
609e8d8bef9SDimitry Andric const StoreToLoadForwardingCandidate &Cand) {
610e8d8bef9SDimitry Andric return !isa<SCEVAddRecExpr>(
611e8d8bef9SDimitry Andric PSE.getSCEV(Cand.Load->getPointerOperand())) ||
612e8d8bef9SDimitry Andric !isa<SCEVAddRecExpr>(
613e8d8bef9SDimitry Andric PSE.getSCEV(Cand.Store->getPointerOperand()));
614e8d8bef9SDimitry Andric };
615e8d8bef9SDimitry Andric llvm::erase_if(Candidates, NoLongerGoodCandidate);
6160b57cec5SDimitry Andric }
6170b57cec5SDimitry Andric
6180b57cec5SDimitry Andric // Next, propagate the value stored by the store to the users of the load.
6190b57cec5SDimitry Andric // Also for the first iteration, generate the initial value of the load.
620*0fca6ea1SDimitry Andric SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getDataLayout(),
6210b57cec5SDimitry Andric "storeforward");
6220b57cec5SDimitry Andric for (const auto &Cand : Candidates)
6230b57cec5SDimitry Andric propagateStoredValueToLoadUsers(Cand, SEE);
624e8d8bef9SDimitry Andric NumLoopLoadEliminted += Candidates.size();
6250b57cec5SDimitry Andric
6260b57cec5SDimitry Andric return true;
6270b57cec5SDimitry Andric }
6280b57cec5SDimitry Andric
6290b57cec5SDimitry Andric private:
6300b57cec5SDimitry Andric Loop *L;
6310b57cec5SDimitry Andric
6320b57cec5SDimitry Andric /// Maps the load/store instructions to their index according to
6330b57cec5SDimitry Andric /// program order.
6340b57cec5SDimitry Andric DenseMap<Instruction *, unsigned> InstOrder;
6350b57cec5SDimitry Andric
6360b57cec5SDimitry Andric // Analyses used.
6370b57cec5SDimitry Andric LoopInfo *LI;
6380b57cec5SDimitry Andric const LoopAccessInfo &LAI;
6390b57cec5SDimitry Andric DominatorTree *DT;
6400b57cec5SDimitry Andric BlockFrequencyInfo *BFI;
6410b57cec5SDimitry Andric ProfileSummaryInfo *PSI;
6420b57cec5SDimitry Andric PredicatedScalarEvolution PSE;
6430b57cec5SDimitry Andric };
6440b57cec5SDimitry Andric
6450b57cec5SDimitry Andric } // end anonymous namespace
6460b57cec5SDimitry Andric
eliminateLoadsAcrossLoops(Function & F,LoopInfo & LI,DominatorTree & DT,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,ScalarEvolution * SE,AssumptionCache * AC,LoopAccessInfoManager & LAIs)647bdd1243dSDimitry Andric static bool eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI,
648bdd1243dSDimitry Andric DominatorTree &DT,
649bdd1243dSDimitry Andric BlockFrequencyInfo *BFI,
650bdd1243dSDimitry Andric ProfileSummaryInfo *PSI,
651e8d8bef9SDimitry Andric ScalarEvolution *SE, AssumptionCache *AC,
652bdd1243dSDimitry Andric LoopAccessInfoManager &LAIs) {
6530b57cec5SDimitry Andric // Build up a worklist of inner-loops to transform to avoid iterator
6540b57cec5SDimitry Andric // invalidation.
6550b57cec5SDimitry Andric // FIXME: This logic comes from other passes that actually change the loop
6560b57cec5SDimitry Andric // nest structure. It isn't clear this is necessary (or useful) for a pass
6570b57cec5SDimitry Andric // which merely optimizes the use of loads in a loop.
6580b57cec5SDimitry Andric SmallVector<Loop *, 8> Worklist;
6590b57cec5SDimitry Andric
660e8d8bef9SDimitry Andric bool Changed = false;
661e8d8bef9SDimitry Andric
6620b57cec5SDimitry Andric for (Loop *TopLevelLoop : LI)
663e8d8bef9SDimitry Andric for (Loop *L : depth_first(TopLevelLoop)) {
664e8d8bef9SDimitry Andric Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false);
6650b57cec5SDimitry Andric // We only handle inner-most loops.
666e8d8bef9SDimitry Andric if (L->isInnermost())
6670b57cec5SDimitry Andric Worklist.push_back(L);
668e8d8bef9SDimitry Andric }
6690b57cec5SDimitry Andric
6700b57cec5SDimitry Andric // Now walk the identified inner loops.
6710b57cec5SDimitry Andric for (Loop *L : Worklist) {
672e8d8bef9SDimitry Andric // Match historical behavior
673e8d8bef9SDimitry Andric if (!L->isRotatedForm() || !L->getExitingBlock())
674e8d8bef9SDimitry Andric continue;
6750b57cec5SDimitry Andric // The actual work is performed by LoadEliminationForLoop.
676bdd1243dSDimitry Andric LoadEliminationForLoop LEL(L, &LI, LAIs.getInfo(*L), &DT, BFI, PSI);
6770b57cec5SDimitry Andric Changed |= LEL.processLoop();
678bdd1243dSDimitry Andric if (Changed)
679bdd1243dSDimitry Andric LAIs.clear();
6800b57cec5SDimitry Andric }
6810b57cec5SDimitry Andric return Changed;
6820b57cec5SDimitry Andric }
6830b57cec5SDimitry Andric
run(Function & F,FunctionAnalysisManager & AM)6840b57cec5SDimitry Andric PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
6850b57cec5SDimitry Andric FunctionAnalysisManager &AM) {
6860b57cec5SDimitry Andric auto &LI = AM.getResult<LoopAnalysis>(F);
68781ad6265SDimitry Andric // There are no loops in the function. Return before computing other expensive
68881ad6265SDimitry Andric // analyses.
68981ad6265SDimitry Andric if (LI.empty())
69081ad6265SDimitry Andric return PreservedAnalyses::all();
69181ad6265SDimitry Andric auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
6920b57cec5SDimitry Andric auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
6930b57cec5SDimitry Andric auto &AC = AM.getResult<AssumptionAnalysis>(F);
6945ffd83dbSDimitry Andric auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
6955ffd83dbSDimitry Andric auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
6960b57cec5SDimitry Andric auto *BFI = (PSI && PSI->hasProfileSummary()) ?
6970b57cec5SDimitry Andric &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
698bdd1243dSDimitry Andric LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F);
6990b57cec5SDimitry Andric
700bdd1243dSDimitry Andric bool Changed = eliminateLoadsAcrossLoops(F, LI, DT, BFI, PSI, &SE, &AC, LAIs);
7010b57cec5SDimitry Andric
7020b57cec5SDimitry Andric if (!Changed)
7030b57cec5SDimitry Andric return PreservedAnalyses::all();
7040b57cec5SDimitry Andric
7050b57cec5SDimitry Andric PreservedAnalyses PA;
70606c3fb27SDimitry Andric PA.preserve<DominatorTreeAnalysis>();
70706c3fb27SDimitry Andric PA.preserve<LoopAnalysis>();
7080b57cec5SDimitry Andric return PA;
7090b57cec5SDimitry Andric }
710