1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/DependenceAnalysis.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/LoopUtils.h" 47 #include <cassert> 48 #include <utility> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "loop-interchange" 54 55 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 56 57 static cl::opt<int> LoopInterchangeCostThreshold( 58 "loop-interchange-threshold", cl::init(0), cl::Hidden, 59 cl::desc("Interchange if you gain more than this number")); 60 61 namespace { 62 63 using LoopVector = SmallVector<Loop *, 8>; 64 65 // TODO: Check if we can use a sparse matrix here. 66 using CharMatrix = std::vector<std::vector<char>>; 67 68 } // end anonymous namespace 69 70 // Maximum number of dependencies that can be handled in the dependency matrix. 71 static const unsigned MaxMemInstrCount = 100; 72 73 // Maximum loop depth supported. 74 static const unsigned MaxLoopNestDepth = 10; 75 76 #ifdef DUMP_DEP_MATRICIES 77 static void printDepMatrix(CharMatrix &DepMatrix) { 78 for (auto &Row : DepMatrix) { 79 for (auto D : Row) 80 LLVM_DEBUG(dbgs() << D << " "); 81 LLVM_DEBUG(dbgs() << "\n"); 82 } 83 } 84 #endif 85 86 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 87 Loop *L, DependenceInfo *DI) { 88 using ValueVector = SmallVector<Value *, 16>; 89 90 ValueVector MemInstr; 91 92 // For each block. 93 for (BasicBlock *BB : L->blocks()) { 94 // Scan the BB and collect legal loads and stores. 95 for (Instruction &I : *BB) { 96 if (!isa<Instruction>(I)) 97 return false; 98 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 99 if (!Ld->isSimple()) 100 return false; 101 MemInstr.push_back(&I); 102 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 103 if (!St->isSimple()) 104 return false; 105 MemInstr.push_back(&I); 106 } 107 } 108 } 109 110 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 111 << " Loads and Stores to analyze\n"); 112 113 ValueVector::iterator I, IE, J, JE; 114 115 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 116 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 117 std::vector<char> Dep; 118 Instruction *Src = cast<Instruction>(*I); 119 Instruction *Dst = cast<Instruction>(*J); 120 if (Src == Dst) 121 continue; 122 // Ignore Input dependencies. 123 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 124 continue; 125 // Track Output, Flow, and Anti dependencies. 126 if (auto D = DI->depends(Src, Dst, true)) { 127 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 128 LLVM_DEBUG(StringRef DepType = 129 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 130 dbgs() << "Found " << DepType 131 << " dependency between Src and Dst\n" 132 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 133 unsigned Levels = D->getLevels(); 134 char Direction; 135 for (unsigned II = 1; II <= Levels; ++II) { 136 const SCEV *Distance = D->getDistance(II); 137 const SCEVConstant *SCEVConst = 138 dyn_cast_or_null<SCEVConstant>(Distance); 139 if (SCEVConst) { 140 const ConstantInt *CI = SCEVConst->getValue(); 141 if (CI->isNegative()) 142 Direction = '<'; 143 else if (CI->isZero()) 144 Direction = '='; 145 else 146 Direction = '>'; 147 Dep.push_back(Direction); 148 } else if (D->isScalar(II)) { 149 Direction = 'S'; 150 Dep.push_back(Direction); 151 } else { 152 unsigned Dir = D->getDirection(II); 153 if (Dir == Dependence::DVEntry::LT || 154 Dir == Dependence::DVEntry::LE) 155 Direction = '<'; 156 else if (Dir == Dependence::DVEntry::GT || 157 Dir == Dependence::DVEntry::GE) 158 Direction = '>'; 159 else if (Dir == Dependence::DVEntry::EQ) 160 Direction = '='; 161 else 162 Direction = '*'; 163 Dep.push_back(Direction); 164 } 165 } 166 while (Dep.size() != Level) { 167 Dep.push_back('I'); 168 } 169 170 DepMatrix.push_back(Dep); 171 if (DepMatrix.size() > MaxMemInstrCount) { 172 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 173 << " dependencies inside loop\n"); 174 return false; 175 } 176 } 177 } 178 } 179 180 return true; 181 } 182 183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 184 // matrix by exchanging the two columns. 185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 186 unsigned ToIndx) { 187 unsigned numRows = DepMatrix.size(); 188 for (unsigned i = 0; i < numRows; ++i) { 189 char TmpVal = DepMatrix[i][ToIndx]; 190 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 191 DepMatrix[i][FromIndx] = TmpVal; 192 } 193 } 194 195 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 196 // '>' 197 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 198 unsigned Column) { 199 for (unsigned i = 0; i <= Column; ++i) { 200 if (DepMatrix[Row][i] == '<') 201 return false; 202 if (DepMatrix[Row][i] == '>') 203 return true; 204 } 205 // All dependencies were '=','S' or 'I' 206 return false; 207 } 208 209 // Checks if no dependence exist in the dependency matrix in Row before Column. 210 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 211 unsigned Column) { 212 for (unsigned i = 0; i < Column; ++i) { 213 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 214 DepMatrix[Row][i] != 'I') 215 return false; 216 } 217 return true; 218 } 219 220 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 221 unsigned OuterLoopId, char InnerDep, 222 char OuterDep) { 223 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 224 return false; 225 226 if (InnerDep == OuterDep) 227 return true; 228 229 // It is legal to interchange if and only if after interchange no row has a 230 // '>' direction as the leftmost non-'='. 231 232 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 233 return true; 234 235 if (InnerDep == '<') 236 return true; 237 238 if (InnerDep == '>') { 239 // If OuterLoopId represents outermost loop then interchanging will make the 240 // 1st dependency as '>' 241 if (OuterLoopId == 0) 242 return false; 243 244 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 245 // interchanging will result in this row having an outermost non '=' 246 // dependency of '>' 247 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 248 return true; 249 } 250 251 return false; 252 } 253 254 // Checks if it is legal to interchange 2 loops. 255 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 256 // if the direction matrix, after the same permutation is applied to its 257 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 258 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 259 unsigned InnerLoopId, 260 unsigned OuterLoopId) { 261 unsigned NumRows = DepMatrix.size(); 262 // For each row check if it is valid to interchange. 263 for (unsigned Row = 0; Row < NumRows; ++Row) { 264 char InnerDep = DepMatrix[Row][InnerLoopId]; 265 char OuterDep = DepMatrix[Row][OuterLoopId]; 266 if (InnerDep == '*' || OuterDep == '*') 267 return false; 268 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 269 return false; 270 } 271 return true; 272 } 273 274 static LoopVector populateWorklist(Loop &L) { 275 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 276 << L.getHeader()->getParent()->getName() << " Loop: %" 277 << L.getHeader()->getName() << '\n'); 278 LoopVector LoopList; 279 Loop *CurrentLoop = &L; 280 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 281 while (!Vec->empty()) { 282 // The current loop has multiple subloops in it hence it is not tightly 283 // nested. 284 // Discard all loops above it added into Worklist. 285 if (Vec->size() != 1) 286 return {}; 287 288 LoopList.push_back(CurrentLoop); 289 CurrentLoop = Vec->front(); 290 Vec = &CurrentLoop->getSubLoops(); 291 } 292 LoopList.push_back(CurrentLoop); 293 return LoopList; 294 } 295 296 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 297 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 298 if (InnerIndexVar) 299 return InnerIndexVar; 300 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 301 return nullptr; 302 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 303 PHINode *PhiVar = cast<PHINode>(I); 304 Type *PhiTy = PhiVar->getType(); 305 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 306 !PhiTy->isPointerTy()) 307 return nullptr; 308 const SCEVAddRecExpr *AddRec = 309 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 310 if (!AddRec || !AddRec->isAffine()) 311 continue; 312 const SCEV *Step = AddRec->getStepRecurrence(*SE); 313 if (!isa<SCEVConstant>(Step)) 314 continue; 315 // Found the induction variable. 316 // FIXME: Handle loops with more than one induction variable. Note that, 317 // currently, legality makes sure we have only one induction variable. 318 return PhiVar; 319 } 320 return nullptr; 321 } 322 323 namespace { 324 325 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 326 class LoopInterchangeLegality { 327 public: 328 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 329 OptimizationRemarkEmitter *ORE) 330 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 331 332 /// Check if the loops can be interchanged. 333 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 334 CharMatrix &DepMatrix); 335 336 /// Check if the loop structure is understood. We do not handle triangular 337 /// loops for now. 338 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 339 340 bool currentLimitations(); 341 342 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 343 return OuterInnerReductions; 344 } 345 346 private: 347 bool tightlyNested(Loop *Outer, Loop *Inner); 348 bool containsUnsafeInstructions(BasicBlock *BB); 349 350 /// Discover induction and reduction PHIs in the header of \p L. Induction 351 /// PHIs are added to \p Inductions, reductions are added to 352 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 353 /// to be passed as \p InnerLoop. 354 bool findInductionAndReductions(Loop *L, 355 SmallVector<PHINode *, 8> &Inductions, 356 Loop *InnerLoop); 357 358 Loop *OuterLoop; 359 Loop *InnerLoop; 360 361 ScalarEvolution *SE; 362 363 /// Interface to emit optimization remarks. 364 OptimizationRemarkEmitter *ORE; 365 366 /// Set of reduction PHIs taking part of a reduction across the inner and 367 /// outer loop. 368 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 369 }; 370 371 /// LoopInterchangeProfitability checks if it is profitable to interchange the 372 /// loop. 373 class LoopInterchangeProfitability { 374 public: 375 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 376 OptimizationRemarkEmitter *ORE) 377 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 378 379 /// Check if the loop interchange is profitable. 380 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 381 CharMatrix &DepMatrix); 382 383 private: 384 int getInstrOrderCost(); 385 386 Loop *OuterLoop; 387 Loop *InnerLoop; 388 389 /// Scev analysis. 390 ScalarEvolution *SE; 391 392 /// Interface to emit optimization remarks. 393 OptimizationRemarkEmitter *ORE; 394 }; 395 396 /// LoopInterchangeTransform interchanges the loop. 397 class LoopInterchangeTransform { 398 public: 399 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 400 LoopInfo *LI, DominatorTree *DT, 401 BasicBlock *LoopNestExit, 402 const LoopInterchangeLegality &LIL) 403 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 404 LoopExit(LoopNestExit), LIL(LIL) {} 405 406 /// Interchange OuterLoop and InnerLoop. 407 bool transform(); 408 void restructureLoops(Loop *NewInner, Loop *NewOuter, 409 BasicBlock *OrigInnerPreHeader, 410 BasicBlock *OrigOuterPreHeader); 411 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 412 413 private: 414 bool adjustLoopLinks(); 415 bool adjustLoopBranches(); 416 417 Loop *OuterLoop; 418 Loop *InnerLoop; 419 420 /// Scev analysis. 421 ScalarEvolution *SE; 422 423 LoopInfo *LI; 424 DominatorTree *DT; 425 BasicBlock *LoopExit; 426 427 const LoopInterchangeLegality &LIL; 428 }; 429 430 // Main LoopInterchange Pass. 431 struct LoopInterchange : public LoopPass { 432 static char ID; 433 ScalarEvolution *SE = nullptr; 434 LoopInfo *LI = nullptr; 435 DependenceInfo *DI = nullptr; 436 DominatorTree *DT = nullptr; 437 438 /// Interface to emit optimization remarks. 439 OptimizationRemarkEmitter *ORE; 440 441 LoopInterchange() : LoopPass(ID) { 442 initializeLoopInterchangePass(*PassRegistry::getPassRegistry()); 443 } 444 445 void getAnalysisUsage(AnalysisUsage &AU) const override { 446 AU.addRequired<DependenceAnalysisWrapperPass>(); 447 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 448 449 getLoopAnalysisUsage(AU); 450 } 451 452 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 453 if (skipLoop(L) || L->getParentLoop()) 454 return false; 455 456 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 457 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 458 DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 459 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 460 ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 461 462 return processLoopList(populateWorklist(*L)); 463 } 464 465 bool isComputableLoopNest(LoopVector LoopList) { 466 for (Loop *L : LoopList) { 467 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 468 if (ExitCountOuter == SE->getCouldNotCompute()) { 469 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 470 return false; 471 } 472 if (L->getNumBackEdges() != 1) { 473 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 474 return false; 475 } 476 if (!L->getExitingBlock()) { 477 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 478 return false; 479 } 480 } 481 return true; 482 } 483 484 unsigned selectLoopForInterchange(const LoopVector &LoopList) { 485 // TODO: Add a better heuristic to select the loop to be interchanged based 486 // on the dependence matrix. Currently we select the innermost loop. 487 return LoopList.size() - 1; 488 } 489 490 bool processLoopList(LoopVector LoopList) { 491 bool Changed = false; 492 unsigned LoopNestDepth = LoopList.size(); 493 if (LoopNestDepth < 2) { 494 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 495 return false; 496 } 497 if (LoopNestDepth > MaxLoopNestDepth) { 498 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 499 << MaxLoopNestDepth << "\n"); 500 return false; 501 } 502 if (!isComputableLoopNest(LoopList)) { 503 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 504 return false; 505 } 506 507 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 508 << "\n"); 509 510 CharMatrix DependencyMatrix; 511 Loop *OuterMostLoop = *(LoopList.begin()); 512 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 513 OuterMostLoop, DI)) { 514 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 515 return false; 516 } 517 #ifdef DUMP_DEP_MATRICIES 518 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 519 printDepMatrix(DependencyMatrix); 520 #endif 521 522 // Get the Outermost loop exit. 523 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 524 if (!LoopNestExit) { 525 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 526 return false; 527 } 528 529 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 530 // Move the selected loop outwards to the best possible position. 531 for (unsigned i = SelecLoopId; i > 0; i--) { 532 bool Interchanged = 533 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); 534 if (!Interchanged) 535 return Changed; 536 // Loops interchanged reflect the same in LoopList 537 std::swap(LoopList[i - 1], LoopList[i]); 538 539 // Update the DependencyMatrix 540 interChangeDependencies(DependencyMatrix, i, i - 1); 541 #ifdef DUMP_DEP_MATRICIES 542 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 543 printDepMatrix(DependencyMatrix); 544 #endif 545 Changed |= Interchanged; 546 } 547 return Changed; 548 } 549 550 bool processLoop(LoopVector LoopList, unsigned InnerLoopId, 551 unsigned OuterLoopId, BasicBlock *LoopNestExit, 552 std::vector<std::vector<char>> &DependencyMatrix) { 553 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId 554 << " and OuterLoopId = " << OuterLoopId << "\n"); 555 Loop *InnerLoop = LoopList[InnerLoopId]; 556 Loop *OuterLoop = LoopList[OuterLoopId]; 557 558 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 559 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 560 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 561 return false; 562 } 563 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 564 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 565 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 566 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 567 return false; 568 } 569 570 ORE->emit([&]() { 571 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 572 InnerLoop->getStartLoc(), 573 InnerLoop->getHeader()) 574 << "Loop interchanged with enclosing loop."; 575 }); 576 577 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 578 LIL); 579 LIT.transform(); 580 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 581 LoopsInterchanged++; 582 583 assert(InnerLoop->isLCSSAForm(*DT) && 584 "Inner loop not left in LCSSA form after loop interchange!"); 585 assert(OuterLoop->isLCSSAForm(*DT) && 586 "Outer loop not left in LCSSA form after loop interchange!"); 587 588 return true; 589 } 590 }; 591 592 } // end anonymous namespace 593 594 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 595 return any_of(*BB, [](const Instruction &I) { 596 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 597 }); 598 } 599 600 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 601 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 602 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 603 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 604 605 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 606 607 // A perfectly nested loop will not have any branch in between the outer and 608 // inner block i.e. outer header will branch to either inner preheader and 609 // outerloop latch. 610 BranchInst *OuterLoopHeaderBI = 611 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 612 if (!OuterLoopHeaderBI) 613 return false; 614 615 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 616 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 617 Succ != OuterLoopLatch) 618 return false; 619 620 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 621 // We do not have any basic block in between now make sure the outer header 622 // and outer loop latch doesn't contain any unsafe instructions. 623 if (containsUnsafeInstructions(OuterLoopHeader) || 624 containsUnsafeInstructions(OuterLoopLatch)) 625 return false; 626 627 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 628 // We have a perfect loop nest. 629 return true; 630 } 631 632 bool LoopInterchangeLegality::isLoopStructureUnderstood( 633 PHINode *InnerInduction) { 634 unsigned Num = InnerInduction->getNumOperands(); 635 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 636 for (unsigned i = 0; i < Num; ++i) { 637 Value *Val = InnerInduction->getOperand(i); 638 if (isa<Constant>(Val)) 639 continue; 640 Instruction *I = dyn_cast<Instruction>(Val); 641 if (!I) 642 return false; 643 // TODO: Handle triangular loops. 644 // e.g. for(int i=0;i<N;i++) 645 // for(int j=i;j<N;j++) 646 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 647 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 648 InnerLoopPreheader && 649 !OuterLoop->isLoopInvariant(I)) { 650 return false; 651 } 652 } 653 return true; 654 } 655 656 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 657 // value. 658 static Value *followLCSSA(Value *SV) { 659 PHINode *PHI = dyn_cast<PHINode>(SV); 660 if (!PHI) 661 return SV; 662 663 if (PHI->getNumIncomingValues() != 1) 664 return SV; 665 return followLCSSA(PHI->getIncomingValue(0)); 666 } 667 668 // Check V's users to see if it is involved in a reduction in L. 669 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 670 for (Value *User : V->users()) { 671 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 672 if (PHI->getNumIncomingValues() == 1) 673 continue; 674 RecurrenceDescriptor RD; 675 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 676 return PHI; 677 return nullptr; 678 } 679 } 680 681 return nullptr; 682 } 683 684 bool LoopInterchangeLegality::findInductionAndReductions( 685 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 686 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 687 return false; 688 for (PHINode &PHI : L->getHeader()->phis()) { 689 RecurrenceDescriptor RD; 690 InductionDescriptor ID; 691 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 692 Inductions.push_back(&PHI); 693 else { 694 // PHIs in inner loops need to be part of a reduction in the outer loop, 695 // discovered when checking the PHIs of the outer loop earlier. 696 if (!InnerLoop) { 697 if (!OuterInnerReductions.count(&PHI)) { 698 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 699 "across the outer loop.\n"); 700 return false; 701 } 702 } else { 703 assert(PHI.getNumIncomingValues() == 2 && 704 "Phis in loop header should have exactly 2 incoming values"); 705 // Check if we have a PHI node in the outer loop that has a reduction 706 // result from the inner loop as an incoming value. 707 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 708 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 709 if (!InnerRedPhi || 710 !llvm::any_of(InnerRedPhi->incoming_values(), 711 [&PHI](Value *V) { return V == &PHI; })) { 712 LLVM_DEBUG( 713 dbgs() 714 << "Failed to recognize PHI as an induction or reduction.\n"); 715 return false; 716 } 717 OuterInnerReductions.insert(&PHI); 718 OuterInnerReductions.insert(InnerRedPhi); 719 } 720 } 721 } 722 return true; 723 } 724 725 // This function indicates the current limitations in the transform as a result 726 // of which we do not proceed. 727 bool LoopInterchangeLegality::currentLimitations() { 728 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 729 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 730 731 // transform currently expects the loop latches to also be the exiting 732 // blocks. 733 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 734 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 735 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 736 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 737 LLVM_DEBUG( 738 dbgs() << "Loops where the latch is not the exiting block are not" 739 << " supported currently.\n"); 740 ORE->emit([&]() { 741 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 742 OuterLoop->getStartLoc(), 743 OuterLoop->getHeader()) 744 << "Loops where the latch is not the exiting block cannot be" 745 " interchange currently."; 746 }); 747 return true; 748 } 749 750 PHINode *InnerInductionVar; 751 SmallVector<PHINode *, 8> Inductions; 752 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 753 LLVM_DEBUG( 754 dbgs() << "Only outer loops with induction or reduction PHI nodes " 755 << "are supported currently.\n"); 756 ORE->emit([&]() { 757 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 758 OuterLoop->getStartLoc(), 759 OuterLoop->getHeader()) 760 << "Only outer loops with induction or reduction PHI nodes can be" 761 " interchanged currently."; 762 }); 763 return true; 764 } 765 766 // TODO: Currently we handle only loops with 1 induction variable. 767 if (Inductions.size() != 1) { 768 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 769 << "supported currently.\n"); 770 ORE->emit([&]() { 771 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 772 OuterLoop->getStartLoc(), 773 OuterLoop->getHeader()) 774 << "Only outer loops with 1 induction variable can be " 775 "interchanged currently."; 776 }); 777 return true; 778 } 779 780 Inductions.clear(); 781 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 782 LLVM_DEBUG( 783 dbgs() << "Only inner loops with induction or reduction PHI nodes " 784 << "are supported currently.\n"); 785 ORE->emit([&]() { 786 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 787 InnerLoop->getStartLoc(), 788 InnerLoop->getHeader()) 789 << "Only inner loops with induction or reduction PHI nodes can be" 790 " interchange currently."; 791 }); 792 return true; 793 } 794 795 // TODO: Currently we handle only loops with 1 induction variable. 796 if (Inductions.size() != 1) { 797 LLVM_DEBUG( 798 dbgs() << "We currently only support loops with 1 induction variable." 799 << "Failed to interchange due to current limitation\n"); 800 ORE->emit([&]() { 801 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 802 InnerLoop->getStartLoc(), 803 InnerLoop->getHeader()) 804 << "Only inner loops with 1 induction variable can be " 805 "interchanged currently."; 806 }); 807 return true; 808 } 809 InnerInductionVar = Inductions.pop_back_val(); 810 811 // TODO: Triangular loops are not handled for now. 812 if (!isLoopStructureUnderstood(InnerInductionVar)) { 813 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 814 ORE->emit([&]() { 815 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 816 InnerLoop->getStartLoc(), 817 InnerLoop->getHeader()) 818 << "Inner loop structure not understood currently."; 819 }); 820 return true; 821 } 822 823 // TODO: Current limitation: Since we split the inner loop latch at the point 824 // were induction variable is incremented (induction.next); We cannot have 825 // more than 1 user of induction.next since it would result in broken code 826 // after split. 827 // e.g. 828 // for(i=0;i<N;i++) { 829 // for(j = 0;j<M;j++) { 830 // A[j+1][i+2] = A[j][i]+k; 831 // } 832 // } 833 Instruction *InnerIndexVarInc = nullptr; 834 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 835 InnerIndexVarInc = 836 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 837 else 838 InnerIndexVarInc = 839 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 840 841 if (!InnerIndexVarInc) { 842 LLVM_DEBUG( 843 dbgs() << "Did not find an instruction to increment the induction " 844 << "variable.\n"); 845 ORE->emit([&]() { 846 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 847 InnerLoop->getStartLoc(), 848 InnerLoop->getHeader()) 849 << "The inner loop does not increment the induction variable."; 850 }); 851 return true; 852 } 853 854 // Since we split the inner loop latch on this induction variable. Make sure 855 // we do not have any instruction between the induction variable and branch 856 // instruction. 857 858 bool FoundInduction = false; 859 for (const Instruction &I : 860 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 861 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 862 isa<ZExtInst>(I)) 863 continue; 864 865 // We found an instruction. If this is not induction variable then it is not 866 // safe to split this loop latch. 867 if (!I.isIdenticalTo(InnerIndexVarInc)) { 868 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 869 << "variable increment and branch.\n"); 870 ORE->emit([&]() { 871 return OptimizationRemarkMissed( 872 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 873 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 874 << "Found unsupported instruction between induction variable " 875 "increment and branch."; 876 }); 877 return true; 878 } 879 880 FoundInduction = true; 881 break; 882 } 883 // The loop latch ended and we didn't find the induction variable return as 884 // current limitation. 885 if (!FoundInduction) { 886 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 887 ORE->emit([&]() { 888 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 889 InnerLoop->getStartLoc(), 890 InnerLoop->getHeader()) 891 << "Did not find the induction variable."; 892 }); 893 return true; 894 } 895 return false; 896 } 897 898 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 899 // users are either reduction PHIs or PHIs outside the outer loop (which means 900 // the we are only interested in the final value after the loop). 901 static bool 902 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 903 SmallPtrSetImpl<PHINode *> &Reductions) { 904 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 905 for (PHINode &PHI : InnerExit->phis()) { 906 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 907 if (PHI.getNumIncomingValues() > 1) 908 return false; 909 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 910 PHINode *PN = dyn_cast<PHINode>(U); 911 return !PN || 912 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 913 })) { 914 return false; 915 } 916 } 917 return true; 918 } 919 920 // We currently support LCSSA PHI nodes in the outer loop exit, if their 921 // incoming values do not come from the outer loop latch or if the 922 // outer loop latch has a single predecessor. In that case, the value will 923 // be available if both the inner and outer loop conditions are true, which 924 // will still be true after interchanging. If we have multiple predecessor, 925 // that may not be the case, e.g. because the outer loop latch may be executed 926 // if the inner loop is not executed. 927 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 928 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 929 for (PHINode &PHI : LoopNestExit->phis()) { 930 // FIXME: We currently are not able to detect floating point reductions 931 // and have to use floating point PHIs as a proxy to prevent 932 // interchanging in the presence of floating point reductions. 933 if (PHI.getType()->isFloatingPointTy()) 934 return false; 935 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 936 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 937 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 938 continue; 939 940 // The incoming value is defined in the outer loop latch. Currently we 941 // only support that in case the outer loop latch has a single predecessor. 942 // This guarantees that the outer loop latch is executed if and only if 943 // the inner loop is executed (because tightlyNested() guarantees that the 944 // outer loop header only branches to the inner loop or the outer loop 945 // latch). 946 // FIXME: We could weaken this logic and allow multiple predecessors, 947 // if the values are produced outside the loop latch. We would need 948 // additional logic to update the PHI nodes in the exit block as 949 // well. 950 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 951 return false; 952 } 953 } 954 return true; 955 } 956 957 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 958 unsigned OuterLoopId, 959 CharMatrix &DepMatrix) { 960 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 961 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 962 << " and OuterLoopId = " << OuterLoopId 963 << " due to dependence\n"); 964 ORE->emit([&]() { 965 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 966 InnerLoop->getStartLoc(), 967 InnerLoop->getHeader()) 968 << "Cannot interchange loops due to dependences."; 969 }); 970 return false; 971 } 972 // Check if outer and inner loop contain legal instructions only. 973 for (auto *BB : OuterLoop->blocks()) 974 for (Instruction &I : BB->instructionsWithoutDebug()) 975 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 976 // readnone functions do not prevent interchanging. 977 if (CI->doesNotReadMemory()) 978 continue; 979 LLVM_DEBUG( 980 dbgs() << "Loops with call instructions cannot be interchanged " 981 << "safely."); 982 ORE->emit([&]() { 983 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 984 CI->getDebugLoc(), 985 CI->getParent()) 986 << "Cannot interchange loops due to call instruction."; 987 }); 988 989 return false; 990 } 991 992 // TODO: The loops could not be interchanged due to current limitations in the 993 // transform module. 994 if (currentLimitations()) { 995 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 996 return false; 997 } 998 999 // Check if the loops are tightly nested. 1000 if (!tightlyNested(OuterLoop, InnerLoop)) { 1001 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1002 ORE->emit([&]() { 1003 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1004 InnerLoop->getStartLoc(), 1005 InnerLoop->getHeader()) 1006 << "Cannot interchange loops because they are not tightly " 1007 "nested."; 1008 }); 1009 return false; 1010 } 1011 1012 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1013 OuterInnerReductions)) { 1014 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1015 ORE->emit([&]() { 1016 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1017 InnerLoop->getStartLoc(), 1018 InnerLoop->getHeader()) 1019 << "Found unsupported PHI node in loop exit."; 1020 }); 1021 return false; 1022 } 1023 1024 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1025 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1026 ORE->emit([&]() { 1027 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1028 OuterLoop->getStartLoc(), 1029 OuterLoop->getHeader()) 1030 << "Found unsupported PHI node in loop exit."; 1031 }); 1032 return false; 1033 } 1034 1035 return true; 1036 } 1037 1038 int LoopInterchangeProfitability::getInstrOrderCost() { 1039 unsigned GoodOrder, BadOrder; 1040 BadOrder = GoodOrder = 0; 1041 for (BasicBlock *BB : InnerLoop->blocks()) { 1042 for (Instruction &Ins : *BB) { 1043 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1044 unsigned NumOp = GEP->getNumOperands(); 1045 bool FoundInnerInduction = false; 1046 bool FoundOuterInduction = false; 1047 for (unsigned i = 0; i < NumOp; ++i) { 1048 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1049 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1050 if (!AR) 1051 continue; 1052 1053 // If we find the inner induction after an outer induction e.g. 1054 // for(int i=0;i<N;i++) 1055 // for(int j=0;j<N;j++) 1056 // A[i][j] = A[i-1][j-1]+k; 1057 // then it is a good order. 1058 if (AR->getLoop() == InnerLoop) { 1059 // We found an InnerLoop induction after OuterLoop induction. It is 1060 // a good order. 1061 FoundInnerInduction = true; 1062 if (FoundOuterInduction) { 1063 GoodOrder++; 1064 break; 1065 } 1066 } 1067 // If we find the outer induction after an inner induction e.g. 1068 // for(int i=0;i<N;i++) 1069 // for(int j=0;j<N;j++) 1070 // A[j][i] = A[j-1][i-1]+k; 1071 // then it is a bad order. 1072 if (AR->getLoop() == OuterLoop) { 1073 // We found an OuterLoop induction after InnerLoop induction. It is 1074 // a bad order. 1075 FoundOuterInduction = true; 1076 if (FoundInnerInduction) { 1077 BadOrder++; 1078 break; 1079 } 1080 } 1081 } 1082 } 1083 } 1084 } 1085 return GoodOrder - BadOrder; 1086 } 1087 1088 static bool isProfitableForVectorization(unsigned InnerLoopId, 1089 unsigned OuterLoopId, 1090 CharMatrix &DepMatrix) { 1091 // TODO: Improve this heuristic to catch more cases. 1092 // If the inner loop is loop independent or doesn't carry any dependency it is 1093 // profitable to move this to outer position. 1094 for (auto &Row : DepMatrix) { 1095 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1096 return false; 1097 // TODO: We need to improve this heuristic. 1098 if (Row[OuterLoopId] != '=') 1099 return false; 1100 } 1101 // If outer loop has dependence and inner loop is loop independent then it is 1102 // profitable to interchange to enable parallelism. 1103 // If there are no dependences, interchanging will not improve anything. 1104 return !DepMatrix.empty(); 1105 } 1106 1107 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1108 unsigned OuterLoopId, 1109 CharMatrix &DepMatrix) { 1110 // TODO: Add better profitability checks. 1111 // e.g 1112 // 1) Construct dependency matrix and move the one with no loop carried dep 1113 // inside to enable vectorization. 1114 1115 // This is rough cost estimation algorithm. It counts the good and bad order 1116 // of induction variables in the instruction and allows reordering if number 1117 // of bad orders is more than good. 1118 int Cost = getInstrOrderCost(); 1119 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1120 if (Cost < -LoopInterchangeCostThreshold) 1121 return true; 1122 1123 // It is not profitable as per current cache profitability model. But check if 1124 // we can move this loop outside to improve parallelism. 1125 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1126 return true; 1127 1128 ORE->emit([&]() { 1129 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1130 InnerLoop->getStartLoc(), 1131 InnerLoop->getHeader()) 1132 << "Interchanging loops is too costly (cost=" 1133 << ore::NV("Cost", Cost) << ", threshold=" 1134 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1135 << ") and it does not improve parallelism."; 1136 }); 1137 return false; 1138 } 1139 1140 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1141 Loop *InnerLoop) { 1142 for (Loop *L : *OuterLoop) 1143 if (L == InnerLoop) { 1144 OuterLoop->removeChildLoop(L); 1145 return; 1146 } 1147 llvm_unreachable("Couldn't find loop"); 1148 } 1149 1150 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1151 /// new inner and outer loop after interchanging: NewInner is the original 1152 /// outer loop and NewOuter is the original inner loop. 1153 /// 1154 /// Before interchanging, we have the following structure 1155 /// Outer preheader 1156 // Outer header 1157 // Inner preheader 1158 // Inner header 1159 // Inner body 1160 // Inner latch 1161 // outer bbs 1162 // Outer latch 1163 // 1164 // After interchanging: 1165 // Inner preheader 1166 // Inner header 1167 // Outer preheader 1168 // Outer header 1169 // Inner body 1170 // outer bbs 1171 // Outer latch 1172 // Inner latch 1173 void LoopInterchangeTransform::restructureLoops( 1174 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1175 BasicBlock *OrigOuterPreHeader) { 1176 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1177 // The original inner loop preheader moves from the new inner loop to 1178 // the parent loop, if there is one. 1179 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1180 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1181 1182 // Switch the loop levels. 1183 if (OuterLoopParent) { 1184 // Remove the loop from its parent loop. 1185 removeChildLoop(OuterLoopParent, NewInner); 1186 removeChildLoop(NewInner, NewOuter); 1187 OuterLoopParent->addChildLoop(NewOuter); 1188 } else { 1189 removeChildLoop(NewInner, NewOuter); 1190 LI->changeTopLevelLoop(NewInner, NewOuter); 1191 } 1192 while (!NewOuter->empty()) 1193 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1194 NewOuter->addChildLoop(NewInner); 1195 1196 // BBs from the original inner loop. 1197 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1198 1199 // Add BBs from the original outer loop to the original inner loop (excluding 1200 // BBs already in inner loop) 1201 for (BasicBlock *BB : NewInner->blocks()) 1202 if (LI->getLoopFor(BB) == NewInner) 1203 NewOuter->addBlockEntry(BB); 1204 1205 // Now remove inner loop header and latch from the new inner loop and move 1206 // other BBs (the loop body) to the new inner loop. 1207 BasicBlock *OuterHeader = NewOuter->getHeader(); 1208 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1209 for (BasicBlock *BB : OrigInnerBBs) { 1210 // Nothing will change for BBs in child loops. 1211 if (LI->getLoopFor(BB) != NewOuter) 1212 continue; 1213 // Remove the new outer loop header and latch from the new inner loop. 1214 if (BB == OuterHeader || BB == OuterLatch) 1215 NewInner->removeBlockFromLoop(BB); 1216 else 1217 LI->changeLoopFor(BB, NewInner); 1218 } 1219 1220 // The preheader of the original outer loop becomes part of the new 1221 // outer loop. 1222 NewOuter->addBlockEntry(OrigOuterPreHeader); 1223 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1224 1225 // Tell SE that we move the loops around. 1226 SE->forgetLoop(NewOuter); 1227 SE->forgetLoop(NewInner); 1228 } 1229 1230 bool LoopInterchangeTransform::transform() { 1231 bool Transformed = false; 1232 Instruction *InnerIndexVar; 1233 1234 if (InnerLoop->getSubLoops().empty()) { 1235 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1236 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1237 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1238 if (!InductionPHI) { 1239 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1240 return false; 1241 } 1242 1243 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1244 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1245 else 1246 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1247 1248 // Ensure that InductionPHI is the first Phi node. 1249 if (&InductionPHI->getParent()->front() != InductionPHI) 1250 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1251 1252 // Create a new latch block for the inner loop. We split at the 1253 // current latch's terminator and then move the condition and all 1254 // operands that are not either loop-invariant or the induction PHI into the 1255 // new latch block. 1256 BasicBlock *NewLatch = 1257 SplitBlock(InnerLoop->getLoopLatch(), 1258 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1259 1260 SmallSetVector<Instruction *, 4> WorkList; 1261 unsigned i = 0; 1262 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1263 for (; i < WorkList.size(); i++) { 1264 // Duplicate instruction and move it the new latch. Update uses that 1265 // have been moved. 1266 Instruction *NewI = WorkList[i]->clone(); 1267 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1268 assert(!NewI->mayHaveSideEffects() && 1269 "Moving instructions with side-effects may change behavior of " 1270 "the loop nest!"); 1271 for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end(); 1272 UI != UE;) { 1273 Use &U = *UI++; 1274 Instruction *UserI = cast<Instruction>(U.getUser()); 1275 if (!InnerLoop->contains(UserI->getParent()) || 1276 UserI->getParent() == NewLatch || UserI == InductionPHI) 1277 U.set(NewI); 1278 } 1279 // Add operands of moved instruction to the worklist, except if they are 1280 // outside the inner loop or are the induction PHI. 1281 for (Value *Op : WorkList[i]->operands()) { 1282 Instruction *OpI = dyn_cast<Instruction>(Op); 1283 if (!OpI || 1284 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1285 OpI == InductionPHI) 1286 continue; 1287 WorkList.insert(OpI); 1288 } 1289 } 1290 }; 1291 1292 // FIXME: Should we interchange when we have a constant condition? 1293 Instruction *CondI = dyn_cast<Instruction>( 1294 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1295 ->getCondition()); 1296 if (CondI) 1297 WorkList.insert(CondI); 1298 MoveInstructions(); 1299 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1300 MoveInstructions(); 1301 1302 // Splits the inner loops phi nodes out into a separate basic block. 1303 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1304 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1305 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1306 } 1307 1308 Transformed |= adjustLoopLinks(); 1309 if (!Transformed) { 1310 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1311 return false; 1312 } 1313 1314 return true; 1315 } 1316 1317 /// \brief Move all instructions except the terminator from FromBB right before 1318 /// InsertBefore 1319 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1320 auto &ToList = InsertBefore->getParent()->getInstList(); 1321 auto &FromList = FromBB->getInstList(); 1322 1323 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1324 FromBB->getTerminator()->getIterator()); 1325 } 1326 1327 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1328 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1329 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1330 // from BB1 afterwards. 1331 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1332 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1333 for (Instruction *I : TempInstrs) 1334 I->removeFromParent(); 1335 1336 // Move instructions from BB2 to BB1. 1337 moveBBContents(BB2, BB1->getTerminator()); 1338 1339 // Move instructions from TempInstrs to BB2. 1340 for (Instruction *I : TempInstrs) 1341 I->insertBefore(BB2->getTerminator()); 1342 } 1343 1344 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1345 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1346 // \p OldBB is exactly once in BI's successor list. 1347 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1348 BasicBlock *NewBB, 1349 std::vector<DominatorTree::UpdateType> &DTUpdates, 1350 bool MustUpdateOnce = true) { 1351 assert((!MustUpdateOnce || 1352 llvm::count_if(successors(BI), 1353 [OldBB](BasicBlock *BB) { 1354 return BB == OldBB; 1355 }) == 1) && "BI must jump to OldBB exactly once."); 1356 bool Changed = false; 1357 for (Use &Op : BI->operands()) 1358 if (Op == OldBB) { 1359 Op.set(NewBB); 1360 Changed = true; 1361 } 1362 1363 if (Changed) { 1364 DTUpdates.push_back( 1365 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1366 DTUpdates.push_back( 1367 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1368 } 1369 assert(Changed && "Expected a successor to be updated"); 1370 } 1371 1372 // Move Lcssa PHIs to the right place. 1373 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1374 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1375 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1376 Loop *InnerLoop, LoopInfo *LI) { 1377 1378 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1379 // defined either in the header or latch. Those blocks will become header and 1380 // latch of the new outer loop, and the only possible users can PHI nodes 1381 // in the exit block of the loop nest or the outer loop header (reduction 1382 // PHIs, in that case, the incoming value must be defined in the inner loop 1383 // header). We can just substitute the user with the incoming value and remove 1384 // the PHI. 1385 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1386 assert(P.getNumIncomingValues() == 1 && 1387 "Only loops with a single exit are supported!"); 1388 1389 // Incoming values are guaranteed be instructions currently. 1390 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1391 // Skip phis with incoming values from the inner loop body, excluding the 1392 // header and latch. 1393 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1394 continue; 1395 1396 assert(all_of(P.users(), 1397 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1398 return (cast<PHINode>(U)->getParent() == OuterHeader && 1399 IncI->getParent() == InnerHeader) || 1400 cast<PHINode>(U)->getParent() == OuterExit; 1401 }) && 1402 "Can only replace phis iff the uses are in the loop nest exit or " 1403 "the incoming value is defined in the inner header (it will " 1404 "dominate all loop blocks after interchanging)"); 1405 P.replaceAllUsesWith(IncI); 1406 P.eraseFromParent(); 1407 } 1408 1409 SmallVector<PHINode *, 8> LcssaInnerExit; 1410 for (PHINode &P : InnerExit->phis()) 1411 LcssaInnerExit.push_back(&P); 1412 1413 SmallVector<PHINode *, 8> LcssaInnerLatch; 1414 for (PHINode &P : InnerLatch->phis()) 1415 LcssaInnerLatch.push_back(&P); 1416 1417 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1418 // If a PHI node has users outside of InnerExit, it has a use outside the 1419 // interchanged loop and we have to preserve it. We move these to 1420 // InnerLatch, which will become the new exit block for the innermost 1421 // loop after interchanging. 1422 for (PHINode *P : LcssaInnerExit) 1423 P->moveBefore(InnerLatch->getFirstNonPHI()); 1424 1425 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1426 // and we have to move them to the new inner latch. 1427 for (PHINode *P : LcssaInnerLatch) 1428 P->moveBefore(InnerExit->getFirstNonPHI()); 1429 1430 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1431 // incoming values defined in the outer loop, we have to add a new PHI 1432 // in the inner loop latch, which became the exit block of the outer loop, 1433 // after interchanging. 1434 if (OuterExit) { 1435 for (PHINode &P : OuterExit->phis()) { 1436 if (P.getNumIncomingValues() != 1) 1437 continue; 1438 // Skip Phis with incoming values defined in the inner loop. Those should 1439 // already have been updated. 1440 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1441 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1442 continue; 1443 1444 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1445 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1446 NewPhi->setIncomingBlock(0, OuterLatch); 1447 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1448 P.setIncomingValue(0, NewPhi); 1449 } 1450 } 1451 1452 // Now adjust the incoming blocks for the LCSSA PHIs. 1453 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1454 // with the new latch. 1455 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1456 } 1457 1458 bool LoopInterchangeTransform::adjustLoopBranches() { 1459 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1460 std::vector<DominatorTree::UpdateType> DTUpdates; 1461 1462 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1463 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1464 1465 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1466 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1467 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1468 // Ensure that both preheaders do not contain PHI nodes and have single 1469 // predecessors. This allows us to move them easily. We use 1470 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1471 // preheaders do not satisfy those conditions. 1472 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1473 !OuterLoopPreHeader->getUniquePredecessor()) 1474 OuterLoopPreHeader = 1475 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1476 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1477 InnerLoopPreHeader = 1478 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1479 1480 // Adjust the loop preheader 1481 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1482 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1483 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1484 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1485 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1486 BasicBlock *InnerLoopLatchPredecessor = 1487 InnerLoopLatch->getUniquePredecessor(); 1488 BasicBlock *InnerLoopLatchSuccessor; 1489 BasicBlock *OuterLoopLatchSuccessor; 1490 1491 BranchInst *OuterLoopLatchBI = 1492 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1493 BranchInst *InnerLoopLatchBI = 1494 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1495 BranchInst *OuterLoopHeaderBI = 1496 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1497 BranchInst *InnerLoopHeaderBI = 1498 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1499 1500 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1501 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1502 !InnerLoopHeaderBI) 1503 return false; 1504 1505 BranchInst *InnerLoopLatchPredecessorBI = 1506 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1507 BranchInst *OuterLoopPredecessorBI = 1508 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1509 1510 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1511 return false; 1512 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1513 if (!InnerLoopHeaderSuccessor) 1514 return false; 1515 1516 // Adjust Loop Preheader and headers. 1517 // The branches in the outer loop predecessor and the outer loop header can 1518 // be unconditional branches or conditional branches with duplicates. Consider 1519 // this when updating the successors. 1520 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1521 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1522 // The outer loop header might or might not branch to the outer latch. 1523 // We are guaranteed to branch to the inner loop preheader. 1524 if (std::find(succ_begin(OuterLoopHeaderBI), succ_end(OuterLoopHeaderBI), 1525 OuterLoopLatch) != succ_end(OuterLoopHeaderBI)) 1526 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates, 1527 /*MustUpdateOnce=*/false); 1528 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1529 InnerLoopHeaderSuccessor, DTUpdates, 1530 /*MustUpdateOnce=*/false); 1531 1532 // Adjust reduction PHI's now that the incoming block has changed. 1533 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1534 OuterLoopHeader); 1535 1536 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1537 OuterLoopPreHeader, DTUpdates); 1538 1539 // -------------Adjust loop latches----------- 1540 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1541 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1542 else 1543 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1544 1545 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1546 InnerLoopLatchSuccessor, DTUpdates); 1547 1548 1549 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1550 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1551 else 1552 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1553 1554 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1555 OuterLoopLatchSuccessor, DTUpdates); 1556 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1557 DTUpdates); 1558 1559 DT->applyUpdates(DTUpdates); 1560 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1561 OuterLoopPreHeader); 1562 1563 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1564 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1565 InnerLoop, LI); 1566 // For PHIs in the exit block of the outer loop, outer's latch has been 1567 // replaced by Inners'. 1568 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1569 1570 // Now update the reduction PHIs in the inner and outer loop headers. 1571 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1572 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1)) 1573 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1574 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1)) 1575 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1576 1577 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1578 (void)OuterInnerReductions; 1579 1580 // Now move the remaining reduction PHIs from outer to inner loop header and 1581 // vice versa. The PHI nodes must be part of a reduction across the inner and 1582 // outer loop and all the remains to do is and updating the incoming blocks. 1583 for (PHINode *PHI : OuterLoopPHIs) { 1584 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1585 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1586 } 1587 for (PHINode *PHI : InnerLoopPHIs) { 1588 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1589 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1590 } 1591 1592 // Update the incoming blocks for moved PHI nodes. 1593 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1594 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1595 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1596 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1597 1598 return true; 1599 } 1600 1601 bool LoopInterchangeTransform::adjustLoopLinks() { 1602 // Adjust all branches in the inner and outer loop. 1603 bool Changed = adjustLoopBranches(); 1604 if (Changed) { 1605 // We have interchanged the preheaders so we need to interchange the data in 1606 // the preheaders as well. This is because the content of the inner 1607 // preheader was previously executed inside the outer loop. 1608 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1609 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1610 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1611 } 1612 return Changed; 1613 } 1614 1615 char LoopInterchange::ID = 0; 1616 1617 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange", 1618 "Interchanges loops for cache reuse", false, false) 1619 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1620 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1621 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1622 1623 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange", 1624 "Interchanges loops for cache reuse", false, false) 1625 1626 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); } 1627