xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/DependenceAnalysis.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Scalar.h"
44 #include "llvm/Transforms/Utils.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include <cassert>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "loop-interchange"
54 
55 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
56 
57 static cl::opt<int> LoopInterchangeCostThreshold(
58     "loop-interchange-threshold", cl::init(0), cl::Hidden,
59     cl::desc("Interchange if you gain more than this number"));
60 
61 namespace {
62 
63 using LoopVector = SmallVector<Loop *, 8>;
64 
65 // TODO: Check if we can use a sparse matrix here.
66 using CharMatrix = std::vector<std::vector<char>>;
67 
68 } // end anonymous namespace
69 
70 // Maximum number of dependencies that can be handled in the dependency matrix.
71 static const unsigned MaxMemInstrCount = 100;
72 
73 // Maximum loop depth supported.
74 static const unsigned MaxLoopNestDepth = 10;
75 
76 #ifdef DUMP_DEP_MATRICIES
77 static void printDepMatrix(CharMatrix &DepMatrix) {
78   for (auto &Row : DepMatrix) {
79     for (auto D : Row)
80       LLVM_DEBUG(dbgs() << D << " ");
81     LLVM_DEBUG(dbgs() << "\n");
82   }
83 }
84 #endif
85 
86 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
87                                      Loop *L, DependenceInfo *DI) {
88   using ValueVector = SmallVector<Value *, 16>;
89 
90   ValueVector MemInstr;
91 
92   // For each block.
93   for (BasicBlock *BB : L->blocks()) {
94     // Scan the BB and collect legal loads and stores.
95     for (Instruction &I : *BB) {
96       if (!isa<Instruction>(I))
97         return false;
98       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
99         if (!Ld->isSimple())
100           return false;
101         MemInstr.push_back(&I);
102       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
103         if (!St->isSimple())
104           return false;
105         MemInstr.push_back(&I);
106       }
107     }
108   }
109 
110   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
111                     << " Loads and Stores to analyze\n");
112 
113   ValueVector::iterator I, IE, J, JE;
114 
115   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
116     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
117       std::vector<char> Dep;
118       Instruction *Src = cast<Instruction>(*I);
119       Instruction *Dst = cast<Instruction>(*J);
120       if (Src == Dst)
121         continue;
122       // Ignore Input dependencies.
123       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
124         continue;
125       // Track Output, Flow, and Anti dependencies.
126       if (auto D = DI->depends(Src, Dst, true)) {
127         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
128         LLVM_DEBUG(StringRef DepType =
129                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
130                    dbgs() << "Found " << DepType
131                           << " dependency between Src and Dst\n"
132                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
133         unsigned Levels = D->getLevels();
134         char Direction;
135         for (unsigned II = 1; II <= Levels; ++II) {
136           const SCEV *Distance = D->getDistance(II);
137           const SCEVConstant *SCEVConst =
138               dyn_cast_or_null<SCEVConstant>(Distance);
139           if (SCEVConst) {
140             const ConstantInt *CI = SCEVConst->getValue();
141             if (CI->isNegative())
142               Direction = '<';
143             else if (CI->isZero())
144               Direction = '=';
145             else
146               Direction = '>';
147             Dep.push_back(Direction);
148           } else if (D->isScalar(II)) {
149             Direction = 'S';
150             Dep.push_back(Direction);
151           } else {
152             unsigned Dir = D->getDirection(II);
153             if (Dir == Dependence::DVEntry::LT ||
154                 Dir == Dependence::DVEntry::LE)
155               Direction = '<';
156             else if (Dir == Dependence::DVEntry::GT ||
157                      Dir == Dependence::DVEntry::GE)
158               Direction = '>';
159             else if (Dir == Dependence::DVEntry::EQ)
160               Direction = '=';
161             else
162               Direction = '*';
163             Dep.push_back(Direction);
164           }
165         }
166         while (Dep.size() != Level) {
167           Dep.push_back('I');
168         }
169 
170         DepMatrix.push_back(Dep);
171         if (DepMatrix.size() > MaxMemInstrCount) {
172           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
173                             << " dependencies inside loop\n");
174           return false;
175         }
176       }
177     }
178   }
179 
180   return true;
181 }
182 
183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
184 // matrix by exchanging the two columns.
185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
186                                     unsigned ToIndx) {
187   unsigned numRows = DepMatrix.size();
188   for (unsigned i = 0; i < numRows; ++i) {
189     char TmpVal = DepMatrix[i][ToIndx];
190     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
191     DepMatrix[i][FromIndx] = TmpVal;
192   }
193 }
194 
195 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
196 // '>'
197 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
198                                    unsigned Column) {
199   for (unsigned i = 0; i <= Column; ++i) {
200     if (DepMatrix[Row][i] == '<')
201       return false;
202     if (DepMatrix[Row][i] == '>')
203       return true;
204   }
205   // All dependencies were '=','S' or 'I'
206   return false;
207 }
208 
209 // Checks if no dependence exist in the dependency matrix in Row before Column.
210 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
211                                  unsigned Column) {
212   for (unsigned i = 0; i < Column; ++i) {
213     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
214         DepMatrix[Row][i] != 'I')
215       return false;
216   }
217   return true;
218 }
219 
220 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
221                                 unsigned OuterLoopId, char InnerDep,
222                                 char OuterDep) {
223   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
224     return false;
225 
226   if (InnerDep == OuterDep)
227     return true;
228 
229   // It is legal to interchange if and only if after interchange no row has a
230   // '>' direction as the leftmost non-'='.
231 
232   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
233     return true;
234 
235   if (InnerDep == '<')
236     return true;
237 
238   if (InnerDep == '>') {
239     // If OuterLoopId represents outermost loop then interchanging will make the
240     // 1st dependency as '>'
241     if (OuterLoopId == 0)
242       return false;
243 
244     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
245     // interchanging will result in this row having an outermost non '='
246     // dependency of '>'
247     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
248       return true;
249   }
250 
251   return false;
252 }
253 
254 // Checks if it is legal to interchange 2 loops.
255 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
256 // if the direction matrix, after the same permutation is applied to its
257 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
258 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
259                                       unsigned InnerLoopId,
260                                       unsigned OuterLoopId) {
261   unsigned NumRows = DepMatrix.size();
262   // For each row check if it is valid to interchange.
263   for (unsigned Row = 0; Row < NumRows; ++Row) {
264     char InnerDep = DepMatrix[Row][InnerLoopId];
265     char OuterDep = DepMatrix[Row][OuterLoopId];
266     if (InnerDep == '*' || OuterDep == '*')
267       return false;
268     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
269       return false;
270   }
271   return true;
272 }
273 
274 static LoopVector populateWorklist(Loop &L) {
275   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
276                     << L.getHeader()->getParent()->getName() << " Loop: %"
277                     << L.getHeader()->getName() << '\n');
278   LoopVector LoopList;
279   Loop *CurrentLoop = &L;
280   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
281   while (!Vec->empty()) {
282     // The current loop has multiple subloops in it hence it is not tightly
283     // nested.
284     // Discard all loops above it added into Worklist.
285     if (Vec->size() != 1)
286       return {};
287 
288     LoopList.push_back(CurrentLoop);
289     CurrentLoop = Vec->front();
290     Vec = &CurrentLoop->getSubLoops();
291   }
292   LoopList.push_back(CurrentLoop);
293   return LoopList;
294 }
295 
296 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
297   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
298   if (InnerIndexVar)
299     return InnerIndexVar;
300   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
301     return nullptr;
302   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
303     PHINode *PhiVar = cast<PHINode>(I);
304     Type *PhiTy = PhiVar->getType();
305     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
306         !PhiTy->isPointerTy())
307       return nullptr;
308     const SCEVAddRecExpr *AddRec =
309         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
310     if (!AddRec || !AddRec->isAffine())
311       continue;
312     const SCEV *Step = AddRec->getStepRecurrence(*SE);
313     if (!isa<SCEVConstant>(Step))
314       continue;
315     // Found the induction variable.
316     // FIXME: Handle loops with more than one induction variable. Note that,
317     // currently, legality makes sure we have only one induction variable.
318     return PhiVar;
319   }
320   return nullptr;
321 }
322 
323 namespace {
324 
325 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
326 class LoopInterchangeLegality {
327 public:
328   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
329                           OptimizationRemarkEmitter *ORE)
330       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
331 
332   /// Check if the loops can be interchanged.
333   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
334                            CharMatrix &DepMatrix);
335 
336   /// Check if the loop structure is understood. We do not handle triangular
337   /// loops for now.
338   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
339 
340   bool currentLimitations();
341 
342   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
343     return OuterInnerReductions;
344   }
345 
346 private:
347   bool tightlyNested(Loop *Outer, Loop *Inner);
348   bool containsUnsafeInstructions(BasicBlock *BB);
349 
350   /// Discover induction and reduction PHIs in the header of \p L. Induction
351   /// PHIs are added to \p Inductions, reductions are added to
352   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
353   /// to be passed as \p InnerLoop.
354   bool findInductionAndReductions(Loop *L,
355                                   SmallVector<PHINode *, 8> &Inductions,
356                                   Loop *InnerLoop);
357 
358   Loop *OuterLoop;
359   Loop *InnerLoop;
360 
361   ScalarEvolution *SE;
362 
363   /// Interface to emit optimization remarks.
364   OptimizationRemarkEmitter *ORE;
365 
366   /// Set of reduction PHIs taking part of a reduction across the inner and
367   /// outer loop.
368   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
369 };
370 
371 /// LoopInterchangeProfitability checks if it is profitable to interchange the
372 /// loop.
373 class LoopInterchangeProfitability {
374 public:
375   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
376                                OptimizationRemarkEmitter *ORE)
377       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
378 
379   /// Check if the loop interchange is profitable.
380   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
381                     CharMatrix &DepMatrix);
382 
383 private:
384   int getInstrOrderCost();
385 
386   Loop *OuterLoop;
387   Loop *InnerLoop;
388 
389   /// Scev analysis.
390   ScalarEvolution *SE;
391 
392   /// Interface to emit optimization remarks.
393   OptimizationRemarkEmitter *ORE;
394 };
395 
396 /// LoopInterchangeTransform interchanges the loop.
397 class LoopInterchangeTransform {
398 public:
399   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
400                            LoopInfo *LI, DominatorTree *DT,
401                            BasicBlock *LoopNestExit,
402                            const LoopInterchangeLegality &LIL)
403       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
404         LoopExit(LoopNestExit), LIL(LIL) {}
405 
406   /// Interchange OuterLoop and InnerLoop.
407   bool transform();
408   void restructureLoops(Loop *NewInner, Loop *NewOuter,
409                         BasicBlock *OrigInnerPreHeader,
410                         BasicBlock *OrigOuterPreHeader);
411   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
412 
413 private:
414   bool adjustLoopLinks();
415   bool adjustLoopBranches();
416 
417   Loop *OuterLoop;
418   Loop *InnerLoop;
419 
420   /// Scev analysis.
421   ScalarEvolution *SE;
422 
423   LoopInfo *LI;
424   DominatorTree *DT;
425   BasicBlock *LoopExit;
426 
427   const LoopInterchangeLegality &LIL;
428 };
429 
430 // Main LoopInterchange Pass.
431 struct LoopInterchange : public LoopPass {
432   static char ID;
433   ScalarEvolution *SE = nullptr;
434   LoopInfo *LI = nullptr;
435   DependenceInfo *DI = nullptr;
436   DominatorTree *DT = nullptr;
437 
438   /// Interface to emit optimization remarks.
439   OptimizationRemarkEmitter *ORE;
440 
441   LoopInterchange() : LoopPass(ID) {
442     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
443   }
444 
445   void getAnalysisUsage(AnalysisUsage &AU) const override {
446     AU.addRequired<DependenceAnalysisWrapperPass>();
447     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
448 
449     getLoopAnalysisUsage(AU);
450   }
451 
452   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
453     if (skipLoop(L) || L->getParentLoop())
454       return false;
455 
456     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
457     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
458     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
459     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
460     ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
461 
462     return processLoopList(populateWorklist(*L));
463   }
464 
465   bool isComputableLoopNest(LoopVector LoopList) {
466     for (Loop *L : LoopList) {
467       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
468       if (ExitCountOuter == SE->getCouldNotCompute()) {
469         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
470         return false;
471       }
472       if (L->getNumBackEdges() != 1) {
473         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
474         return false;
475       }
476       if (!L->getExitingBlock()) {
477         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
478         return false;
479       }
480     }
481     return true;
482   }
483 
484   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
485     // TODO: Add a better heuristic to select the loop to be interchanged based
486     // on the dependence matrix. Currently we select the innermost loop.
487     return LoopList.size() - 1;
488   }
489 
490   bool processLoopList(LoopVector LoopList) {
491     bool Changed = false;
492     unsigned LoopNestDepth = LoopList.size();
493     if (LoopNestDepth < 2) {
494       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
495       return false;
496     }
497     if (LoopNestDepth > MaxLoopNestDepth) {
498       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
499                         << MaxLoopNestDepth << "\n");
500       return false;
501     }
502     if (!isComputableLoopNest(LoopList)) {
503       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
504       return false;
505     }
506 
507     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
508                       << "\n");
509 
510     CharMatrix DependencyMatrix;
511     Loop *OuterMostLoop = *(LoopList.begin());
512     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
513                                   OuterMostLoop, DI)) {
514       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
515       return false;
516     }
517 #ifdef DUMP_DEP_MATRICIES
518     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
519     printDepMatrix(DependencyMatrix);
520 #endif
521 
522     // Get the Outermost loop exit.
523     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
524     if (!LoopNestExit) {
525       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
526       return false;
527     }
528 
529     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
530     // Move the selected loop outwards to the best possible position.
531     for (unsigned i = SelecLoopId; i > 0; i--) {
532       bool Interchanged =
533           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
534       if (!Interchanged)
535         return Changed;
536       // Loops interchanged reflect the same in LoopList
537       std::swap(LoopList[i - 1], LoopList[i]);
538 
539       // Update the DependencyMatrix
540       interChangeDependencies(DependencyMatrix, i, i - 1);
541 #ifdef DUMP_DEP_MATRICIES
542       LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
543       printDepMatrix(DependencyMatrix);
544 #endif
545       Changed |= Interchanged;
546     }
547     return Changed;
548   }
549 
550   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
551                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
552                    std::vector<std::vector<char>> &DependencyMatrix) {
553     LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
554                       << " and OuterLoopId = " << OuterLoopId << "\n");
555     Loop *InnerLoop = LoopList[InnerLoopId];
556     Loop *OuterLoop = LoopList[OuterLoopId];
557 
558     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
559     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
560       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
561       return false;
562     }
563     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
564     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
565     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
566       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
567       return false;
568     }
569 
570     ORE->emit([&]() {
571       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
572                                 InnerLoop->getStartLoc(),
573                                 InnerLoop->getHeader())
574              << "Loop interchanged with enclosing loop.";
575     });
576 
577     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
578                                  LIL);
579     LIT.transform();
580     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
581     LoopsInterchanged++;
582 
583     assert(InnerLoop->isLCSSAForm(*DT) &&
584            "Inner loop not left in LCSSA form after loop interchange!");
585     assert(OuterLoop->isLCSSAForm(*DT) &&
586            "Outer loop not left in LCSSA form after loop interchange!");
587 
588     return true;
589   }
590 };
591 
592 } // end anonymous namespace
593 
594 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
595   return any_of(*BB, [](const Instruction &I) {
596     return I.mayHaveSideEffects() || I.mayReadFromMemory();
597   });
598 }
599 
600 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
601   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
602   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
603   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
604 
605   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
606 
607   // A perfectly nested loop will not have any branch in between the outer and
608   // inner block i.e. outer header will branch to either inner preheader and
609   // outerloop latch.
610   BranchInst *OuterLoopHeaderBI =
611       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
612   if (!OuterLoopHeaderBI)
613     return false;
614 
615   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
616     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
617         Succ != OuterLoopLatch)
618       return false;
619 
620   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
621   // We do not have any basic block in between now make sure the outer header
622   // and outer loop latch doesn't contain any unsafe instructions.
623   if (containsUnsafeInstructions(OuterLoopHeader) ||
624       containsUnsafeInstructions(OuterLoopLatch))
625     return false;
626 
627   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
628   // We have a perfect loop nest.
629   return true;
630 }
631 
632 bool LoopInterchangeLegality::isLoopStructureUnderstood(
633     PHINode *InnerInduction) {
634   unsigned Num = InnerInduction->getNumOperands();
635   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
636   for (unsigned i = 0; i < Num; ++i) {
637     Value *Val = InnerInduction->getOperand(i);
638     if (isa<Constant>(Val))
639       continue;
640     Instruction *I = dyn_cast<Instruction>(Val);
641     if (!I)
642       return false;
643     // TODO: Handle triangular loops.
644     // e.g. for(int i=0;i<N;i++)
645     //        for(int j=i;j<N;j++)
646     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
647     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
648             InnerLoopPreheader &&
649         !OuterLoop->isLoopInvariant(I)) {
650       return false;
651     }
652   }
653   return true;
654 }
655 
656 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
657 // value.
658 static Value *followLCSSA(Value *SV) {
659   PHINode *PHI = dyn_cast<PHINode>(SV);
660   if (!PHI)
661     return SV;
662 
663   if (PHI->getNumIncomingValues() != 1)
664     return SV;
665   return followLCSSA(PHI->getIncomingValue(0));
666 }
667 
668 // Check V's users to see if it is involved in a reduction in L.
669 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
670   for (Value *User : V->users()) {
671     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
672       if (PHI->getNumIncomingValues() == 1)
673         continue;
674       RecurrenceDescriptor RD;
675       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
676         return PHI;
677       return nullptr;
678     }
679   }
680 
681   return nullptr;
682 }
683 
684 bool LoopInterchangeLegality::findInductionAndReductions(
685     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
686   if (!L->getLoopLatch() || !L->getLoopPredecessor())
687     return false;
688   for (PHINode &PHI : L->getHeader()->phis()) {
689     RecurrenceDescriptor RD;
690     InductionDescriptor ID;
691     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
692       Inductions.push_back(&PHI);
693     else {
694       // PHIs in inner loops need to be part of a reduction in the outer loop,
695       // discovered when checking the PHIs of the outer loop earlier.
696       if (!InnerLoop) {
697         if (!OuterInnerReductions.count(&PHI)) {
698           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
699                                "across the outer loop.\n");
700           return false;
701         }
702       } else {
703         assert(PHI.getNumIncomingValues() == 2 &&
704                "Phis in loop header should have exactly 2 incoming values");
705         // Check if we have a PHI node in the outer loop that has a reduction
706         // result from the inner loop as an incoming value.
707         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
708         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
709         if (!InnerRedPhi ||
710             !llvm::any_of(InnerRedPhi->incoming_values(),
711                           [&PHI](Value *V) { return V == &PHI; })) {
712           LLVM_DEBUG(
713               dbgs()
714               << "Failed to recognize PHI as an induction or reduction.\n");
715           return false;
716         }
717         OuterInnerReductions.insert(&PHI);
718         OuterInnerReductions.insert(InnerRedPhi);
719       }
720     }
721   }
722   return true;
723 }
724 
725 // This function indicates the current limitations in the transform as a result
726 // of which we do not proceed.
727 bool LoopInterchangeLegality::currentLimitations() {
728   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
729   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
730 
731   // transform currently expects the loop latches to also be the exiting
732   // blocks.
733   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
734       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
735       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
736       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
737     LLVM_DEBUG(
738         dbgs() << "Loops where the latch is not the exiting block are not"
739                << " supported currently.\n");
740     ORE->emit([&]() {
741       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
742                                       OuterLoop->getStartLoc(),
743                                       OuterLoop->getHeader())
744              << "Loops where the latch is not the exiting block cannot be"
745                 " interchange currently.";
746     });
747     return true;
748   }
749 
750   PHINode *InnerInductionVar;
751   SmallVector<PHINode *, 8> Inductions;
752   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
753     LLVM_DEBUG(
754         dbgs() << "Only outer loops with induction or reduction PHI nodes "
755                << "are supported currently.\n");
756     ORE->emit([&]() {
757       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
758                                       OuterLoop->getStartLoc(),
759                                       OuterLoop->getHeader())
760              << "Only outer loops with induction or reduction PHI nodes can be"
761                 " interchanged currently.";
762     });
763     return true;
764   }
765 
766   // TODO: Currently we handle only loops with 1 induction variable.
767   if (Inductions.size() != 1) {
768     LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
769                       << "supported currently.\n");
770     ORE->emit([&]() {
771       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
772                                       OuterLoop->getStartLoc(),
773                                       OuterLoop->getHeader())
774              << "Only outer loops with 1 induction variable can be "
775                 "interchanged currently.";
776     });
777     return true;
778   }
779 
780   Inductions.clear();
781   if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
782     LLVM_DEBUG(
783         dbgs() << "Only inner loops with induction or reduction PHI nodes "
784                << "are supported currently.\n");
785     ORE->emit([&]() {
786       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
787                                       InnerLoop->getStartLoc(),
788                                       InnerLoop->getHeader())
789              << "Only inner loops with induction or reduction PHI nodes can be"
790                 " interchange currently.";
791     });
792     return true;
793   }
794 
795   // TODO: Currently we handle only loops with 1 induction variable.
796   if (Inductions.size() != 1) {
797     LLVM_DEBUG(
798         dbgs() << "We currently only support loops with 1 induction variable."
799                << "Failed to interchange due to current limitation\n");
800     ORE->emit([&]() {
801       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
802                                       InnerLoop->getStartLoc(),
803                                       InnerLoop->getHeader())
804              << "Only inner loops with 1 induction variable can be "
805                 "interchanged currently.";
806     });
807     return true;
808   }
809   InnerInductionVar = Inductions.pop_back_val();
810 
811   // TODO: Triangular loops are not handled for now.
812   if (!isLoopStructureUnderstood(InnerInductionVar)) {
813     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
814     ORE->emit([&]() {
815       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
816                                       InnerLoop->getStartLoc(),
817                                       InnerLoop->getHeader())
818              << "Inner loop structure not understood currently.";
819     });
820     return true;
821   }
822 
823   // TODO: Current limitation: Since we split the inner loop latch at the point
824   // were induction variable is incremented (induction.next); We cannot have
825   // more than 1 user of induction.next since it would result in broken code
826   // after split.
827   // e.g.
828   // for(i=0;i<N;i++) {
829   //    for(j = 0;j<M;j++) {
830   //      A[j+1][i+2] = A[j][i]+k;
831   //  }
832   // }
833   Instruction *InnerIndexVarInc = nullptr;
834   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
835     InnerIndexVarInc =
836         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
837   else
838     InnerIndexVarInc =
839         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
840 
841   if (!InnerIndexVarInc) {
842     LLVM_DEBUG(
843         dbgs() << "Did not find an instruction to increment the induction "
844                << "variable.\n");
845     ORE->emit([&]() {
846       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
847                                       InnerLoop->getStartLoc(),
848                                       InnerLoop->getHeader())
849              << "The inner loop does not increment the induction variable.";
850     });
851     return true;
852   }
853 
854   // Since we split the inner loop latch on this induction variable. Make sure
855   // we do not have any instruction between the induction variable and branch
856   // instruction.
857 
858   bool FoundInduction = false;
859   for (const Instruction &I :
860        llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
861     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
862         isa<ZExtInst>(I))
863       continue;
864 
865     // We found an instruction. If this is not induction variable then it is not
866     // safe to split this loop latch.
867     if (!I.isIdenticalTo(InnerIndexVarInc)) {
868       LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
869                         << "variable increment and branch.\n");
870       ORE->emit([&]() {
871         return OptimizationRemarkMissed(
872                    DEBUG_TYPE, "UnsupportedInsBetweenInduction",
873                    InnerLoop->getStartLoc(), InnerLoop->getHeader())
874                << "Found unsupported instruction between induction variable "
875                   "increment and branch.";
876       });
877       return true;
878     }
879 
880     FoundInduction = true;
881     break;
882   }
883   // The loop latch ended and we didn't find the induction variable return as
884   // current limitation.
885   if (!FoundInduction) {
886     LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
887     ORE->emit([&]() {
888       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
889                                       InnerLoop->getStartLoc(),
890                                       InnerLoop->getHeader())
891              << "Did not find the induction variable.";
892     });
893     return true;
894   }
895   return false;
896 }
897 
898 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
899 // users are either reduction PHIs or PHIs outside the outer loop (which means
900 // the we are only interested in the final value after the loop).
901 static bool
902 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
903                               SmallPtrSetImpl<PHINode *> &Reductions) {
904   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
905   for (PHINode &PHI : InnerExit->phis()) {
906     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
907     if (PHI.getNumIncomingValues() > 1)
908       return false;
909     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
910           PHINode *PN = dyn_cast<PHINode>(U);
911           return !PN ||
912                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
913         })) {
914       return false;
915     }
916   }
917   return true;
918 }
919 
920 // We currently support LCSSA PHI nodes in the outer loop exit, if their
921 // incoming values do not come from the outer loop latch or if the
922 // outer loop latch has a single predecessor. In that case, the value will
923 // be available if both the inner and outer loop conditions are true, which
924 // will still be true after interchanging. If we have multiple predecessor,
925 // that may not be the case, e.g. because the outer loop latch may be executed
926 // if the inner loop is not executed.
927 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
928   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
929   for (PHINode &PHI : LoopNestExit->phis()) {
930     //  FIXME: We currently are not able to detect floating point reductions
931     //         and have to use floating point PHIs as a proxy to prevent
932     //         interchanging in the presence of floating point reductions.
933     if (PHI.getType()->isFloatingPointTy())
934       return false;
935     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
936      Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
937      if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
938        continue;
939 
940      // The incoming value is defined in the outer loop latch. Currently we
941      // only support that in case the outer loop latch has a single predecessor.
942      // This guarantees that the outer loop latch is executed if and only if
943      // the inner loop is executed (because tightlyNested() guarantees that the
944      // outer loop header only branches to the inner loop or the outer loop
945      // latch).
946      // FIXME: We could weaken this logic and allow multiple predecessors,
947      //        if the values are produced outside the loop latch. We would need
948      //        additional logic to update the PHI nodes in the exit block as
949      //        well.
950      if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
951        return false;
952     }
953   }
954   return true;
955 }
956 
957 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
958                                                   unsigned OuterLoopId,
959                                                   CharMatrix &DepMatrix) {
960   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
961     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
962                       << " and OuterLoopId = " << OuterLoopId
963                       << " due to dependence\n");
964     ORE->emit([&]() {
965       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
966                                       InnerLoop->getStartLoc(),
967                                       InnerLoop->getHeader())
968              << "Cannot interchange loops due to dependences.";
969     });
970     return false;
971   }
972   // Check if outer and inner loop contain legal instructions only.
973   for (auto *BB : OuterLoop->blocks())
974     for (Instruction &I : BB->instructionsWithoutDebug())
975       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
976         // readnone functions do not prevent interchanging.
977         if (CI->doesNotReadMemory())
978           continue;
979         LLVM_DEBUG(
980             dbgs() << "Loops with call instructions cannot be interchanged "
981                    << "safely.");
982         ORE->emit([&]() {
983           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
984                                           CI->getDebugLoc(),
985                                           CI->getParent())
986                  << "Cannot interchange loops due to call instruction.";
987         });
988 
989         return false;
990       }
991 
992   // TODO: The loops could not be interchanged due to current limitations in the
993   // transform module.
994   if (currentLimitations()) {
995     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
996     return false;
997   }
998 
999   // Check if the loops are tightly nested.
1000   if (!tightlyNested(OuterLoop, InnerLoop)) {
1001     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1002     ORE->emit([&]() {
1003       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1004                                       InnerLoop->getStartLoc(),
1005                                       InnerLoop->getHeader())
1006              << "Cannot interchange loops because they are not tightly "
1007                 "nested.";
1008     });
1009     return false;
1010   }
1011 
1012   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1013                                      OuterInnerReductions)) {
1014     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1015     ORE->emit([&]() {
1016       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1017                                       InnerLoop->getStartLoc(),
1018                                       InnerLoop->getHeader())
1019              << "Found unsupported PHI node in loop exit.";
1020     });
1021     return false;
1022   }
1023 
1024   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1025     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1026     ORE->emit([&]() {
1027       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1028                                       OuterLoop->getStartLoc(),
1029                                       OuterLoop->getHeader())
1030              << "Found unsupported PHI node in loop exit.";
1031     });
1032     return false;
1033   }
1034 
1035   return true;
1036 }
1037 
1038 int LoopInterchangeProfitability::getInstrOrderCost() {
1039   unsigned GoodOrder, BadOrder;
1040   BadOrder = GoodOrder = 0;
1041   for (BasicBlock *BB : InnerLoop->blocks()) {
1042     for (Instruction &Ins : *BB) {
1043       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1044         unsigned NumOp = GEP->getNumOperands();
1045         bool FoundInnerInduction = false;
1046         bool FoundOuterInduction = false;
1047         for (unsigned i = 0; i < NumOp; ++i) {
1048           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1049           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1050           if (!AR)
1051             continue;
1052 
1053           // If we find the inner induction after an outer induction e.g.
1054           // for(int i=0;i<N;i++)
1055           //   for(int j=0;j<N;j++)
1056           //     A[i][j] = A[i-1][j-1]+k;
1057           // then it is a good order.
1058           if (AR->getLoop() == InnerLoop) {
1059             // We found an InnerLoop induction after OuterLoop induction. It is
1060             // a good order.
1061             FoundInnerInduction = true;
1062             if (FoundOuterInduction) {
1063               GoodOrder++;
1064               break;
1065             }
1066           }
1067           // If we find the outer induction after an inner induction e.g.
1068           // for(int i=0;i<N;i++)
1069           //   for(int j=0;j<N;j++)
1070           //     A[j][i] = A[j-1][i-1]+k;
1071           // then it is a bad order.
1072           if (AR->getLoop() == OuterLoop) {
1073             // We found an OuterLoop induction after InnerLoop induction. It is
1074             // a bad order.
1075             FoundOuterInduction = true;
1076             if (FoundInnerInduction) {
1077               BadOrder++;
1078               break;
1079             }
1080           }
1081         }
1082       }
1083     }
1084   }
1085   return GoodOrder - BadOrder;
1086 }
1087 
1088 static bool isProfitableForVectorization(unsigned InnerLoopId,
1089                                          unsigned OuterLoopId,
1090                                          CharMatrix &DepMatrix) {
1091   // TODO: Improve this heuristic to catch more cases.
1092   // If the inner loop is loop independent or doesn't carry any dependency it is
1093   // profitable to move this to outer position.
1094   for (auto &Row : DepMatrix) {
1095     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1096       return false;
1097     // TODO: We need to improve this heuristic.
1098     if (Row[OuterLoopId] != '=')
1099       return false;
1100   }
1101   // If outer loop has dependence and inner loop is loop independent then it is
1102   // profitable to interchange to enable parallelism.
1103   // If there are no dependences, interchanging will not improve anything.
1104   return !DepMatrix.empty();
1105 }
1106 
1107 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1108                                                 unsigned OuterLoopId,
1109                                                 CharMatrix &DepMatrix) {
1110   // TODO: Add better profitability checks.
1111   // e.g
1112   // 1) Construct dependency matrix and move the one with no loop carried dep
1113   //    inside to enable vectorization.
1114 
1115   // This is rough cost estimation algorithm. It counts the good and bad order
1116   // of induction variables in the instruction and allows reordering if number
1117   // of bad orders is more than good.
1118   int Cost = getInstrOrderCost();
1119   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1120   if (Cost < -LoopInterchangeCostThreshold)
1121     return true;
1122 
1123   // It is not profitable as per current cache profitability model. But check if
1124   // we can move this loop outside to improve parallelism.
1125   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1126     return true;
1127 
1128   ORE->emit([&]() {
1129     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1130                                     InnerLoop->getStartLoc(),
1131                                     InnerLoop->getHeader())
1132            << "Interchanging loops is too costly (cost="
1133            << ore::NV("Cost", Cost) << ", threshold="
1134            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1135            << ") and it does not improve parallelism.";
1136   });
1137   return false;
1138 }
1139 
1140 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1141                                                Loop *InnerLoop) {
1142   for (Loop *L : *OuterLoop)
1143     if (L == InnerLoop) {
1144       OuterLoop->removeChildLoop(L);
1145       return;
1146     }
1147   llvm_unreachable("Couldn't find loop");
1148 }
1149 
1150 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1151 /// new inner and outer loop after interchanging: NewInner is the original
1152 /// outer loop and NewOuter is the original inner loop.
1153 ///
1154 /// Before interchanging, we have the following structure
1155 /// Outer preheader
1156 //  Outer header
1157 //    Inner preheader
1158 //    Inner header
1159 //      Inner body
1160 //      Inner latch
1161 //   outer bbs
1162 //   Outer latch
1163 //
1164 // After interchanging:
1165 // Inner preheader
1166 // Inner header
1167 //   Outer preheader
1168 //   Outer header
1169 //     Inner body
1170 //     outer bbs
1171 //     Outer latch
1172 //   Inner latch
1173 void LoopInterchangeTransform::restructureLoops(
1174     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1175     BasicBlock *OrigOuterPreHeader) {
1176   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1177   // The original inner loop preheader moves from the new inner loop to
1178   // the parent loop, if there is one.
1179   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1180   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1181 
1182   // Switch the loop levels.
1183   if (OuterLoopParent) {
1184     // Remove the loop from its parent loop.
1185     removeChildLoop(OuterLoopParent, NewInner);
1186     removeChildLoop(NewInner, NewOuter);
1187     OuterLoopParent->addChildLoop(NewOuter);
1188   } else {
1189     removeChildLoop(NewInner, NewOuter);
1190     LI->changeTopLevelLoop(NewInner, NewOuter);
1191   }
1192   while (!NewOuter->empty())
1193     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1194   NewOuter->addChildLoop(NewInner);
1195 
1196   // BBs from the original inner loop.
1197   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1198 
1199   // Add BBs from the original outer loop to the original inner loop (excluding
1200   // BBs already in inner loop)
1201   for (BasicBlock *BB : NewInner->blocks())
1202     if (LI->getLoopFor(BB) == NewInner)
1203       NewOuter->addBlockEntry(BB);
1204 
1205   // Now remove inner loop header and latch from the new inner loop and move
1206   // other BBs (the loop body) to the new inner loop.
1207   BasicBlock *OuterHeader = NewOuter->getHeader();
1208   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1209   for (BasicBlock *BB : OrigInnerBBs) {
1210     // Nothing will change for BBs in child loops.
1211     if (LI->getLoopFor(BB) != NewOuter)
1212       continue;
1213     // Remove the new outer loop header and latch from the new inner loop.
1214     if (BB == OuterHeader || BB == OuterLatch)
1215       NewInner->removeBlockFromLoop(BB);
1216     else
1217       LI->changeLoopFor(BB, NewInner);
1218   }
1219 
1220   // The preheader of the original outer loop becomes part of the new
1221   // outer loop.
1222   NewOuter->addBlockEntry(OrigOuterPreHeader);
1223   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1224 
1225   // Tell SE that we move the loops around.
1226   SE->forgetLoop(NewOuter);
1227   SE->forgetLoop(NewInner);
1228 }
1229 
1230 bool LoopInterchangeTransform::transform() {
1231   bool Transformed = false;
1232   Instruction *InnerIndexVar;
1233 
1234   if (InnerLoop->getSubLoops().empty()) {
1235     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1236     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1237     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1238     if (!InductionPHI) {
1239       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1240       return false;
1241     }
1242 
1243     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1244       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1245     else
1246       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1247 
1248     // Ensure that InductionPHI is the first Phi node.
1249     if (&InductionPHI->getParent()->front() != InductionPHI)
1250       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1251 
1252     // Create a new latch block for the inner loop. We split at the
1253     // current latch's terminator and then move the condition and all
1254     // operands that are not either loop-invariant or the induction PHI into the
1255     // new latch block.
1256     BasicBlock *NewLatch =
1257         SplitBlock(InnerLoop->getLoopLatch(),
1258                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1259 
1260     SmallSetVector<Instruction *, 4> WorkList;
1261     unsigned i = 0;
1262     auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
1263       for (; i < WorkList.size(); i++) {
1264         // Duplicate instruction and move it the new latch. Update uses that
1265         // have been moved.
1266         Instruction *NewI = WorkList[i]->clone();
1267         NewI->insertBefore(NewLatch->getFirstNonPHI());
1268         assert(!NewI->mayHaveSideEffects() &&
1269                "Moving instructions with side-effects may change behavior of "
1270                "the loop nest!");
1271         for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end();
1272              UI != UE;) {
1273           Use &U = *UI++;
1274           Instruction *UserI = cast<Instruction>(U.getUser());
1275           if (!InnerLoop->contains(UserI->getParent()) ||
1276               UserI->getParent() == NewLatch || UserI == InductionPHI)
1277             U.set(NewI);
1278         }
1279         // Add operands of moved instruction to the worklist, except if they are
1280         // outside the inner loop or are the induction PHI.
1281         for (Value *Op : WorkList[i]->operands()) {
1282           Instruction *OpI = dyn_cast<Instruction>(Op);
1283           if (!OpI ||
1284               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1285               OpI == InductionPHI)
1286             continue;
1287           WorkList.insert(OpI);
1288         }
1289       }
1290     };
1291 
1292     // FIXME: Should we interchange when we have a constant condition?
1293     Instruction *CondI = dyn_cast<Instruction>(
1294         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1295             ->getCondition());
1296     if (CondI)
1297       WorkList.insert(CondI);
1298     MoveInstructions();
1299     WorkList.insert(cast<Instruction>(InnerIndexVar));
1300     MoveInstructions();
1301 
1302     // Splits the inner loops phi nodes out into a separate basic block.
1303     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1304     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1305     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1306   }
1307 
1308   Transformed |= adjustLoopLinks();
1309   if (!Transformed) {
1310     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1311     return false;
1312   }
1313 
1314   return true;
1315 }
1316 
1317 /// \brief Move all instructions except the terminator from FromBB right before
1318 /// InsertBefore
1319 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1320   auto &ToList = InsertBefore->getParent()->getInstList();
1321   auto &FromList = FromBB->getInstList();
1322 
1323   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1324                 FromBB->getTerminator()->getIterator());
1325 }
1326 
1327 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1328 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1329   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1330   // from BB1 afterwards.
1331   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1332   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1333   for (Instruction *I : TempInstrs)
1334     I->removeFromParent();
1335 
1336   // Move instructions from BB2 to BB1.
1337   moveBBContents(BB2, BB1->getTerminator());
1338 
1339   // Move instructions from TempInstrs to BB2.
1340   for (Instruction *I : TempInstrs)
1341     I->insertBefore(BB2->getTerminator());
1342 }
1343 
1344 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1345 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1346 // \p OldBB  is exactly once in BI's successor list.
1347 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1348                             BasicBlock *NewBB,
1349                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1350                             bool MustUpdateOnce = true) {
1351   assert((!MustUpdateOnce ||
1352           llvm::count_if(successors(BI),
1353                          [OldBB](BasicBlock *BB) {
1354                            return BB == OldBB;
1355                          }) == 1) && "BI must jump to OldBB exactly once.");
1356   bool Changed = false;
1357   for (Use &Op : BI->operands())
1358     if (Op == OldBB) {
1359       Op.set(NewBB);
1360       Changed = true;
1361     }
1362 
1363   if (Changed) {
1364     DTUpdates.push_back(
1365         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1366     DTUpdates.push_back(
1367         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1368   }
1369   assert(Changed && "Expected a successor to be updated");
1370 }
1371 
1372 // Move Lcssa PHIs to the right place.
1373 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1374                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1375                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1376                           Loop *InnerLoop, LoopInfo *LI) {
1377 
1378   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1379   // defined either in the header or latch. Those blocks will become header and
1380   // latch of the new outer loop, and the only possible users can PHI nodes
1381   // in the exit block of the loop nest or the outer loop header (reduction
1382   // PHIs, in that case, the incoming value must be defined in the inner loop
1383   // header). We can just substitute the user with the incoming value and remove
1384   // the PHI.
1385   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1386     assert(P.getNumIncomingValues() == 1 &&
1387            "Only loops with a single exit are supported!");
1388 
1389     // Incoming values are guaranteed be instructions currently.
1390     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1391     // Skip phis with incoming values from the inner loop body, excluding the
1392     // header and latch.
1393     if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1394       continue;
1395 
1396     assert(all_of(P.users(),
1397                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1398                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1399                             IncI->getParent() == InnerHeader) ||
1400                            cast<PHINode>(U)->getParent() == OuterExit;
1401                   }) &&
1402            "Can only replace phis iff the uses are in the loop nest exit or "
1403            "the incoming value is defined in the inner header (it will "
1404            "dominate all loop blocks after interchanging)");
1405     P.replaceAllUsesWith(IncI);
1406     P.eraseFromParent();
1407   }
1408 
1409   SmallVector<PHINode *, 8> LcssaInnerExit;
1410   for (PHINode &P : InnerExit->phis())
1411     LcssaInnerExit.push_back(&P);
1412 
1413   SmallVector<PHINode *, 8> LcssaInnerLatch;
1414   for (PHINode &P : InnerLatch->phis())
1415     LcssaInnerLatch.push_back(&P);
1416 
1417   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1418   // If a PHI node has users outside of InnerExit, it has a use outside the
1419   // interchanged loop and we have to preserve it. We move these to
1420   // InnerLatch, which will become the new exit block for the innermost
1421   // loop after interchanging.
1422   for (PHINode *P : LcssaInnerExit)
1423     P->moveBefore(InnerLatch->getFirstNonPHI());
1424 
1425   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1426   // and we have to move them to the new inner latch.
1427   for (PHINode *P : LcssaInnerLatch)
1428     P->moveBefore(InnerExit->getFirstNonPHI());
1429 
1430   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1431   // incoming values defined in the outer loop, we have to add a new PHI
1432   // in the inner loop latch, which became the exit block of the outer loop,
1433   // after interchanging.
1434   if (OuterExit) {
1435     for (PHINode &P : OuterExit->phis()) {
1436       if (P.getNumIncomingValues() != 1)
1437         continue;
1438       // Skip Phis with incoming values defined in the inner loop. Those should
1439       // already have been updated.
1440       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1441       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1442         continue;
1443 
1444       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1445       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1446       NewPhi->setIncomingBlock(0, OuterLatch);
1447       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1448       P.setIncomingValue(0, NewPhi);
1449     }
1450   }
1451 
1452   // Now adjust the incoming blocks for the LCSSA PHIs.
1453   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1454   // with the new latch.
1455   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1456 }
1457 
1458 bool LoopInterchangeTransform::adjustLoopBranches() {
1459   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1460   std::vector<DominatorTree::UpdateType> DTUpdates;
1461 
1462   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1463   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1464 
1465   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1466          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1467          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1468   // Ensure that both preheaders do not contain PHI nodes and have single
1469   // predecessors. This allows us to move them easily. We use
1470   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1471   // preheaders do not satisfy those conditions.
1472   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1473       !OuterLoopPreHeader->getUniquePredecessor())
1474     OuterLoopPreHeader =
1475         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1476   if (InnerLoopPreHeader == OuterLoop->getHeader())
1477     InnerLoopPreHeader =
1478         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1479 
1480   // Adjust the loop preheader
1481   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1482   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1483   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1484   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1485   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1486   BasicBlock *InnerLoopLatchPredecessor =
1487       InnerLoopLatch->getUniquePredecessor();
1488   BasicBlock *InnerLoopLatchSuccessor;
1489   BasicBlock *OuterLoopLatchSuccessor;
1490 
1491   BranchInst *OuterLoopLatchBI =
1492       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1493   BranchInst *InnerLoopLatchBI =
1494       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1495   BranchInst *OuterLoopHeaderBI =
1496       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1497   BranchInst *InnerLoopHeaderBI =
1498       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1499 
1500   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1501       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1502       !InnerLoopHeaderBI)
1503     return false;
1504 
1505   BranchInst *InnerLoopLatchPredecessorBI =
1506       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1507   BranchInst *OuterLoopPredecessorBI =
1508       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1509 
1510   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1511     return false;
1512   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1513   if (!InnerLoopHeaderSuccessor)
1514     return false;
1515 
1516   // Adjust Loop Preheader and headers.
1517   // The branches in the outer loop predecessor and the outer loop header can
1518   // be unconditional branches or conditional branches with duplicates. Consider
1519   // this when updating the successors.
1520   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1521                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1522   // The outer loop header might or might not branch to the outer latch.
1523   // We are guaranteed to branch to the inner loop preheader.
1524   if (std::find(succ_begin(OuterLoopHeaderBI), succ_end(OuterLoopHeaderBI),
1525                 OuterLoopLatch) != succ_end(OuterLoopHeaderBI))
1526     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates,
1527                     /*MustUpdateOnce=*/false);
1528   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1529                   InnerLoopHeaderSuccessor, DTUpdates,
1530                   /*MustUpdateOnce=*/false);
1531 
1532   // Adjust reduction PHI's now that the incoming block has changed.
1533   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1534                                                OuterLoopHeader);
1535 
1536   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1537                   OuterLoopPreHeader, DTUpdates);
1538 
1539   // -------------Adjust loop latches-----------
1540   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1541     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1542   else
1543     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1544 
1545   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1546                   InnerLoopLatchSuccessor, DTUpdates);
1547 
1548 
1549   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1550     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1551   else
1552     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1553 
1554   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1555                   OuterLoopLatchSuccessor, DTUpdates);
1556   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1557                   DTUpdates);
1558 
1559   DT->applyUpdates(DTUpdates);
1560   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1561                    OuterLoopPreHeader);
1562 
1563   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1564                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1565                 InnerLoop, LI);
1566   // For PHIs in the exit block of the outer loop, outer's latch has been
1567   // replaced by Inners'.
1568   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1569 
1570   // Now update the reduction PHIs in the inner and outer loop headers.
1571   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1572   for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
1573     InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1574   for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
1575     OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1576 
1577   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1578   (void)OuterInnerReductions;
1579 
1580   // Now move the remaining reduction PHIs from outer to inner loop header and
1581   // vice versa. The PHI nodes must be part of a reduction across the inner and
1582   // outer loop and all the remains to do is and updating the incoming blocks.
1583   for (PHINode *PHI : OuterLoopPHIs) {
1584     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1585     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1586   }
1587   for (PHINode *PHI : InnerLoopPHIs) {
1588     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1589     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1590   }
1591 
1592   // Update the incoming blocks for moved PHI nodes.
1593   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1594   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1595   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1596   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1597 
1598   return true;
1599 }
1600 
1601 bool LoopInterchangeTransform::adjustLoopLinks() {
1602   // Adjust all branches in the inner and outer loop.
1603   bool Changed = adjustLoopBranches();
1604   if (Changed) {
1605     // We have interchanged the preheaders so we need to interchange the data in
1606     // the preheaders as well. This is because the content of the inner
1607     // preheader was previously executed inside the outer loop.
1608     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1609     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1610     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1611   }
1612   return Changed;
1613 }
1614 
1615 char LoopInterchange::ID = 0;
1616 
1617 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1618                       "Interchanges loops for cache reuse", false, false)
1619 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1620 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1621 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1622 
1623 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1624                     "Interchanges loops for cache reuse", false, false)
1625 
1626 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1627