1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/LoopPass.h" 23 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 24 #include "llvm/Analysis/ScalarEvolution.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DiagnosticInfo.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Utils.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include <cassert> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "loop-interchange" 56 57 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 58 59 static cl::opt<int> LoopInterchangeCostThreshold( 60 "loop-interchange-threshold", cl::init(0), cl::Hidden, 61 cl::desc("Interchange if you gain more than this number")); 62 63 namespace { 64 65 using LoopVector = SmallVector<Loop *, 8>; 66 67 // TODO: Check if we can use a sparse matrix here. 68 using CharMatrix = std::vector<std::vector<char>>; 69 70 } // end anonymous namespace 71 72 // Maximum number of dependencies that can be handled in the dependency matrix. 73 static const unsigned MaxMemInstrCount = 100; 74 75 // Maximum loop depth supported. 76 static const unsigned MaxLoopNestDepth = 10; 77 78 #ifdef DUMP_DEP_MATRICIES 79 static void printDepMatrix(CharMatrix &DepMatrix) { 80 for (auto &Row : DepMatrix) { 81 for (auto D : Row) 82 LLVM_DEBUG(dbgs() << D << " "); 83 LLVM_DEBUG(dbgs() << "\n"); 84 } 85 } 86 #endif 87 88 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 89 Loop *L, DependenceInfo *DI) { 90 using ValueVector = SmallVector<Value *, 16>; 91 92 ValueVector MemInstr; 93 94 // For each block. 95 for (BasicBlock *BB : L->blocks()) { 96 // Scan the BB and collect legal loads and stores. 97 for (Instruction &I : *BB) { 98 if (!isa<Instruction>(I)) 99 return false; 100 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 101 if (!Ld->isSimple()) 102 return false; 103 MemInstr.push_back(&I); 104 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 105 if (!St->isSimple()) 106 return false; 107 MemInstr.push_back(&I); 108 } 109 } 110 } 111 112 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 113 << " Loads and Stores to analyze\n"); 114 115 ValueVector::iterator I, IE, J, JE; 116 117 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 118 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 119 std::vector<char> Dep; 120 Instruction *Src = cast<Instruction>(*I); 121 Instruction *Dst = cast<Instruction>(*J); 122 if (Src == Dst) 123 continue; 124 // Ignore Input dependencies. 125 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 126 continue; 127 // Track Output, Flow, and Anti dependencies. 128 if (auto D = DI->depends(Src, Dst, true)) { 129 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 130 LLVM_DEBUG(StringRef DepType = 131 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 132 dbgs() << "Found " << DepType 133 << " dependency between Src and Dst\n" 134 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 135 unsigned Levels = D->getLevels(); 136 char Direction; 137 for (unsigned II = 1; II <= Levels; ++II) { 138 const SCEV *Distance = D->getDistance(II); 139 const SCEVConstant *SCEVConst = 140 dyn_cast_or_null<SCEVConstant>(Distance); 141 if (SCEVConst) { 142 const ConstantInt *CI = SCEVConst->getValue(); 143 if (CI->isNegative()) 144 Direction = '<'; 145 else if (CI->isZero()) 146 Direction = '='; 147 else 148 Direction = '>'; 149 Dep.push_back(Direction); 150 } else if (D->isScalar(II)) { 151 Direction = 'S'; 152 Dep.push_back(Direction); 153 } else { 154 unsigned Dir = D->getDirection(II); 155 if (Dir == Dependence::DVEntry::LT || 156 Dir == Dependence::DVEntry::LE) 157 Direction = '<'; 158 else if (Dir == Dependence::DVEntry::GT || 159 Dir == Dependence::DVEntry::GE) 160 Direction = '>'; 161 else if (Dir == Dependence::DVEntry::EQ) 162 Direction = '='; 163 else 164 Direction = '*'; 165 Dep.push_back(Direction); 166 } 167 } 168 while (Dep.size() != Level) { 169 Dep.push_back('I'); 170 } 171 172 DepMatrix.push_back(Dep); 173 if (DepMatrix.size() > MaxMemInstrCount) { 174 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 175 << " dependencies inside loop\n"); 176 return false; 177 } 178 } 179 } 180 } 181 182 return true; 183 } 184 185 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 186 // matrix by exchanging the two columns. 187 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 188 unsigned ToIndx) { 189 unsigned numRows = DepMatrix.size(); 190 for (unsigned i = 0; i < numRows; ++i) { 191 char TmpVal = DepMatrix[i][ToIndx]; 192 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 193 DepMatrix[i][FromIndx] = TmpVal; 194 } 195 } 196 197 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 198 // '>' 199 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 200 unsigned Column) { 201 for (unsigned i = 0; i <= Column; ++i) { 202 if (DepMatrix[Row][i] == '<') 203 return false; 204 if (DepMatrix[Row][i] == '>') 205 return true; 206 } 207 // All dependencies were '=','S' or 'I' 208 return false; 209 } 210 211 // Checks if no dependence exist in the dependency matrix in Row before Column. 212 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 213 unsigned Column) { 214 for (unsigned i = 0; i < Column; ++i) { 215 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 216 DepMatrix[Row][i] != 'I') 217 return false; 218 } 219 return true; 220 } 221 222 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 223 unsigned OuterLoopId, char InnerDep, 224 char OuterDep) { 225 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 226 return false; 227 228 if (InnerDep == OuterDep) 229 return true; 230 231 // It is legal to interchange if and only if after interchange no row has a 232 // '>' direction as the leftmost non-'='. 233 234 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 235 return true; 236 237 if (InnerDep == '<') 238 return true; 239 240 if (InnerDep == '>') { 241 // If OuterLoopId represents outermost loop then interchanging will make the 242 // 1st dependency as '>' 243 if (OuterLoopId == 0) 244 return false; 245 246 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 247 // interchanging will result in this row having an outermost non '=' 248 // dependency of '>' 249 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 250 return true; 251 } 252 253 return false; 254 } 255 256 // Checks if it is legal to interchange 2 loops. 257 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 258 // if the direction matrix, after the same permutation is applied to its 259 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 260 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 261 unsigned InnerLoopId, 262 unsigned OuterLoopId) { 263 unsigned NumRows = DepMatrix.size(); 264 // For each row check if it is valid to interchange. 265 for (unsigned Row = 0; Row < NumRows; ++Row) { 266 char InnerDep = DepMatrix[Row][InnerLoopId]; 267 char OuterDep = DepMatrix[Row][OuterLoopId]; 268 if (InnerDep == '*' || OuterDep == '*') 269 return false; 270 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 271 return false; 272 } 273 return true; 274 } 275 276 static LoopVector populateWorklist(Loop &L) { 277 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 278 << L.getHeader()->getParent()->getName() << " Loop: %" 279 << L.getHeader()->getName() << '\n'); 280 LoopVector LoopList; 281 Loop *CurrentLoop = &L; 282 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 283 while (!Vec->empty()) { 284 // The current loop has multiple subloops in it hence it is not tightly 285 // nested. 286 // Discard all loops above it added into Worklist. 287 if (Vec->size() != 1) 288 return {}; 289 290 LoopList.push_back(CurrentLoop); 291 CurrentLoop = Vec->front(); 292 Vec = &CurrentLoop->getSubLoops(); 293 } 294 LoopList.push_back(CurrentLoop); 295 return LoopList; 296 } 297 298 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 299 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 300 if (InnerIndexVar) 301 return InnerIndexVar; 302 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 303 return nullptr; 304 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 305 PHINode *PhiVar = cast<PHINode>(I); 306 Type *PhiTy = PhiVar->getType(); 307 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 308 !PhiTy->isPointerTy()) 309 return nullptr; 310 const SCEVAddRecExpr *AddRec = 311 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 312 if (!AddRec || !AddRec->isAffine()) 313 continue; 314 const SCEV *Step = AddRec->getStepRecurrence(*SE); 315 if (!isa<SCEVConstant>(Step)) 316 continue; 317 // Found the induction variable. 318 // FIXME: Handle loops with more than one induction variable. Note that, 319 // currently, legality makes sure we have only one induction variable. 320 return PhiVar; 321 } 322 return nullptr; 323 } 324 325 namespace { 326 327 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 328 class LoopInterchangeLegality { 329 public: 330 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 331 OptimizationRemarkEmitter *ORE) 332 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 333 334 /// Check if the loops can be interchanged. 335 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 336 CharMatrix &DepMatrix); 337 338 /// Check if the loop structure is understood. We do not handle triangular 339 /// loops for now. 340 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 341 342 bool currentLimitations(); 343 344 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 345 return OuterInnerReductions; 346 } 347 348 private: 349 bool tightlyNested(Loop *Outer, Loop *Inner); 350 bool containsUnsafeInstructions(BasicBlock *BB); 351 352 /// Discover induction and reduction PHIs in the header of \p L. Induction 353 /// PHIs are added to \p Inductions, reductions are added to 354 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 355 /// to be passed as \p InnerLoop. 356 bool findInductionAndReductions(Loop *L, 357 SmallVector<PHINode *, 8> &Inductions, 358 Loop *InnerLoop); 359 360 Loop *OuterLoop; 361 Loop *InnerLoop; 362 363 ScalarEvolution *SE; 364 365 /// Interface to emit optimization remarks. 366 OptimizationRemarkEmitter *ORE; 367 368 /// Set of reduction PHIs taking part of a reduction across the inner and 369 /// outer loop. 370 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 371 }; 372 373 /// LoopInterchangeProfitability checks if it is profitable to interchange the 374 /// loop. 375 class LoopInterchangeProfitability { 376 public: 377 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 378 OptimizationRemarkEmitter *ORE) 379 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 380 381 /// Check if the loop interchange is profitable. 382 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 383 CharMatrix &DepMatrix); 384 385 private: 386 int getInstrOrderCost(); 387 388 Loop *OuterLoop; 389 Loop *InnerLoop; 390 391 /// Scev analysis. 392 ScalarEvolution *SE; 393 394 /// Interface to emit optimization remarks. 395 OptimizationRemarkEmitter *ORE; 396 }; 397 398 /// LoopInterchangeTransform interchanges the loop. 399 class LoopInterchangeTransform { 400 public: 401 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 402 LoopInfo *LI, DominatorTree *DT, 403 BasicBlock *LoopNestExit, 404 const LoopInterchangeLegality &LIL) 405 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 406 LoopExit(LoopNestExit), LIL(LIL) {} 407 408 /// Interchange OuterLoop and InnerLoop. 409 bool transform(); 410 void restructureLoops(Loop *NewInner, Loop *NewOuter, 411 BasicBlock *OrigInnerPreHeader, 412 BasicBlock *OrigOuterPreHeader); 413 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 414 415 private: 416 bool adjustLoopLinks(); 417 bool adjustLoopBranches(); 418 419 Loop *OuterLoop; 420 Loop *InnerLoop; 421 422 /// Scev analysis. 423 ScalarEvolution *SE; 424 425 LoopInfo *LI; 426 DominatorTree *DT; 427 BasicBlock *LoopExit; 428 429 const LoopInterchangeLegality &LIL; 430 }; 431 432 struct LoopInterchange { 433 ScalarEvolution *SE = nullptr; 434 LoopInfo *LI = nullptr; 435 DependenceInfo *DI = nullptr; 436 DominatorTree *DT = nullptr; 437 438 /// Interface to emit optimization remarks. 439 OptimizationRemarkEmitter *ORE; 440 441 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 442 DominatorTree *DT, OptimizationRemarkEmitter *ORE) 443 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {} 444 445 bool run(Loop *L) { 446 if (L->getParentLoop()) 447 return false; 448 449 return processLoopList(populateWorklist(*L)); 450 } 451 452 bool isComputableLoopNest(LoopVector LoopList) { 453 for (Loop *L : LoopList) { 454 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 455 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 456 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 457 return false; 458 } 459 if (L->getNumBackEdges() != 1) { 460 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 461 return false; 462 } 463 if (!L->getExitingBlock()) { 464 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 465 return false; 466 } 467 } 468 return true; 469 } 470 471 unsigned selectLoopForInterchange(const LoopVector &LoopList) { 472 // TODO: Add a better heuristic to select the loop to be interchanged based 473 // on the dependence matrix. Currently we select the innermost loop. 474 return LoopList.size() - 1; 475 } 476 477 bool processLoopList(LoopVector LoopList) { 478 bool Changed = false; 479 unsigned LoopNestDepth = LoopList.size(); 480 if (LoopNestDepth < 2) { 481 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 482 return false; 483 } 484 if (LoopNestDepth > MaxLoopNestDepth) { 485 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 486 << MaxLoopNestDepth << "\n"); 487 return false; 488 } 489 if (!isComputableLoopNest(LoopList)) { 490 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 491 return false; 492 } 493 494 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 495 << "\n"); 496 497 CharMatrix DependencyMatrix; 498 Loop *OuterMostLoop = *(LoopList.begin()); 499 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 500 OuterMostLoop, DI)) { 501 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 502 return false; 503 } 504 #ifdef DUMP_DEP_MATRICIES 505 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 506 printDepMatrix(DependencyMatrix); 507 #endif 508 509 // Get the Outermost loop exit. 510 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 511 if (!LoopNestExit) { 512 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 513 return false; 514 } 515 516 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 517 // Move the selected loop outwards to the best possible position. 518 for (unsigned i = SelecLoopId; i > 0; i--) { 519 bool Interchanged = 520 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); 521 if (!Interchanged) 522 return Changed; 523 // Loops interchanged reflect the same in LoopList 524 std::swap(LoopList[i - 1], LoopList[i]); 525 526 // Update the DependencyMatrix 527 interChangeDependencies(DependencyMatrix, i, i - 1); 528 #ifdef DUMP_DEP_MATRICIES 529 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 530 printDepMatrix(DependencyMatrix); 531 #endif 532 Changed |= Interchanged; 533 } 534 return Changed; 535 } 536 537 bool processLoop(LoopVector LoopList, unsigned InnerLoopId, 538 unsigned OuterLoopId, BasicBlock *LoopNestExit, 539 std::vector<std::vector<char>> &DependencyMatrix) { 540 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId 541 << " and OuterLoopId = " << OuterLoopId << "\n"); 542 Loop *InnerLoop = LoopList[InnerLoopId]; 543 Loop *OuterLoop = LoopList[OuterLoopId]; 544 545 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 546 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 547 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 548 return false; 549 } 550 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 551 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 552 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 553 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 554 return false; 555 } 556 557 ORE->emit([&]() { 558 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 559 InnerLoop->getStartLoc(), 560 InnerLoop->getHeader()) 561 << "Loop interchanged with enclosing loop."; 562 }); 563 564 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 565 LIL); 566 LIT.transform(); 567 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 568 LoopsInterchanged++; 569 570 assert(InnerLoop->isLCSSAForm(*DT) && 571 "Inner loop not left in LCSSA form after loop interchange!"); 572 assert(OuterLoop->isLCSSAForm(*DT) && 573 "Outer loop not left in LCSSA form after loop interchange!"); 574 575 return true; 576 } 577 }; 578 579 } // end anonymous namespace 580 581 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 582 return any_of(*BB, [](const Instruction &I) { 583 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 584 }); 585 } 586 587 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 588 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 589 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 590 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 591 592 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 593 594 // A perfectly nested loop will not have any branch in between the outer and 595 // inner block i.e. outer header will branch to either inner preheader and 596 // outerloop latch. 597 BranchInst *OuterLoopHeaderBI = 598 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 599 if (!OuterLoopHeaderBI) 600 return false; 601 602 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 603 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 604 Succ != OuterLoopLatch) 605 return false; 606 607 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 608 // We do not have any basic block in between now make sure the outer header 609 // and outer loop latch doesn't contain any unsafe instructions. 610 if (containsUnsafeInstructions(OuterLoopHeader) || 611 containsUnsafeInstructions(OuterLoopLatch)) 612 return false; 613 614 // Also make sure the inner loop preheader does not contain any unsafe 615 // instructions. Note that all instructions in the preheader will be moved to 616 // the outer loop header when interchanging. 617 if (InnerLoopPreHeader != OuterLoopHeader && 618 containsUnsafeInstructions(InnerLoopPreHeader)) 619 return false; 620 621 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 622 // We have a perfect loop nest. 623 return true; 624 } 625 626 bool LoopInterchangeLegality::isLoopStructureUnderstood( 627 PHINode *InnerInduction) { 628 unsigned Num = InnerInduction->getNumOperands(); 629 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 630 for (unsigned i = 0; i < Num; ++i) { 631 Value *Val = InnerInduction->getOperand(i); 632 if (isa<Constant>(Val)) 633 continue; 634 Instruction *I = dyn_cast<Instruction>(Val); 635 if (!I) 636 return false; 637 // TODO: Handle triangular loops. 638 // e.g. for(int i=0;i<N;i++) 639 // for(int j=i;j<N;j++) 640 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 641 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 642 InnerLoopPreheader && 643 !OuterLoop->isLoopInvariant(I)) { 644 return false; 645 } 646 } 647 return true; 648 } 649 650 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 651 // value. 652 static Value *followLCSSA(Value *SV) { 653 PHINode *PHI = dyn_cast<PHINode>(SV); 654 if (!PHI) 655 return SV; 656 657 if (PHI->getNumIncomingValues() != 1) 658 return SV; 659 return followLCSSA(PHI->getIncomingValue(0)); 660 } 661 662 // Check V's users to see if it is involved in a reduction in L. 663 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 664 // Reduction variables cannot be constants. 665 if (isa<Constant>(V)) 666 return nullptr; 667 668 for (Value *User : V->users()) { 669 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 670 if (PHI->getNumIncomingValues() == 1) 671 continue; 672 RecurrenceDescriptor RD; 673 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 674 return PHI; 675 return nullptr; 676 } 677 } 678 679 return nullptr; 680 } 681 682 bool LoopInterchangeLegality::findInductionAndReductions( 683 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 684 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 685 return false; 686 for (PHINode &PHI : L->getHeader()->phis()) { 687 RecurrenceDescriptor RD; 688 InductionDescriptor ID; 689 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 690 Inductions.push_back(&PHI); 691 else { 692 // PHIs in inner loops need to be part of a reduction in the outer loop, 693 // discovered when checking the PHIs of the outer loop earlier. 694 if (!InnerLoop) { 695 if (!OuterInnerReductions.count(&PHI)) { 696 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 697 "across the outer loop.\n"); 698 return false; 699 } 700 } else { 701 assert(PHI.getNumIncomingValues() == 2 && 702 "Phis in loop header should have exactly 2 incoming values"); 703 // Check if we have a PHI node in the outer loop that has a reduction 704 // result from the inner loop as an incoming value. 705 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 706 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 707 if (!InnerRedPhi || 708 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 709 LLVM_DEBUG( 710 dbgs() 711 << "Failed to recognize PHI as an induction or reduction.\n"); 712 return false; 713 } 714 OuterInnerReductions.insert(&PHI); 715 OuterInnerReductions.insert(InnerRedPhi); 716 } 717 } 718 } 719 return true; 720 } 721 722 // This function indicates the current limitations in the transform as a result 723 // of which we do not proceed. 724 bool LoopInterchangeLegality::currentLimitations() { 725 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 726 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 727 728 // transform currently expects the loop latches to also be the exiting 729 // blocks. 730 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 731 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 732 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 733 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 734 LLVM_DEBUG( 735 dbgs() << "Loops where the latch is not the exiting block are not" 736 << " supported currently.\n"); 737 ORE->emit([&]() { 738 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 739 OuterLoop->getStartLoc(), 740 OuterLoop->getHeader()) 741 << "Loops where the latch is not the exiting block cannot be" 742 " interchange currently."; 743 }); 744 return true; 745 } 746 747 PHINode *InnerInductionVar; 748 SmallVector<PHINode *, 8> Inductions; 749 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 750 LLVM_DEBUG( 751 dbgs() << "Only outer loops with induction or reduction PHI nodes " 752 << "are supported currently.\n"); 753 ORE->emit([&]() { 754 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 755 OuterLoop->getStartLoc(), 756 OuterLoop->getHeader()) 757 << "Only outer loops with induction or reduction PHI nodes can be" 758 " interchanged currently."; 759 }); 760 return true; 761 } 762 763 // TODO: Currently we handle only loops with 1 induction variable. 764 if (Inductions.size() != 1) { 765 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 766 << "supported currently.\n"); 767 ORE->emit([&]() { 768 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 769 OuterLoop->getStartLoc(), 770 OuterLoop->getHeader()) 771 << "Only outer loops with 1 induction variable can be " 772 "interchanged currently."; 773 }); 774 return true; 775 } 776 777 Inductions.clear(); 778 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 779 LLVM_DEBUG( 780 dbgs() << "Only inner loops with induction or reduction PHI nodes " 781 << "are supported currently.\n"); 782 ORE->emit([&]() { 783 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 784 InnerLoop->getStartLoc(), 785 InnerLoop->getHeader()) 786 << "Only inner loops with induction or reduction PHI nodes can be" 787 " interchange currently."; 788 }); 789 return true; 790 } 791 792 // TODO: Currently we handle only loops with 1 induction variable. 793 if (Inductions.size() != 1) { 794 LLVM_DEBUG( 795 dbgs() << "We currently only support loops with 1 induction variable." 796 << "Failed to interchange due to current limitation\n"); 797 ORE->emit([&]() { 798 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 799 InnerLoop->getStartLoc(), 800 InnerLoop->getHeader()) 801 << "Only inner loops with 1 induction variable can be " 802 "interchanged currently."; 803 }); 804 return true; 805 } 806 InnerInductionVar = Inductions.pop_back_val(); 807 808 // TODO: Triangular loops are not handled for now. 809 if (!isLoopStructureUnderstood(InnerInductionVar)) { 810 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 811 ORE->emit([&]() { 812 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 813 InnerLoop->getStartLoc(), 814 InnerLoop->getHeader()) 815 << "Inner loop structure not understood currently."; 816 }); 817 return true; 818 } 819 820 // TODO: Current limitation: Since we split the inner loop latch at the point 821 // were induction variable is incremented (induction.next); We cannot have 822 // more than 1 user of induction.next since it would result in broken code 823 // after split. 824 // e.g. 825 // for(i=0;i<N;i++) { 826 // for(j = 0;j<M;j++) { 827 // A[j+1][i+2] = A[j][i]+k; 828 // } 829 // } 830 Instruction *InnerIndexVarInc = nullptr; 831 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 832 InnerIndexVarInc = 833 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 834 else 835 InnerIndexVarInc = 836 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 837 838 if (!InnerIndexVarInc) { 839 LLVM_DEBUG( 840 dbgs() << "Did not find an instruction to increment the induction " 841 << "variable.\n"); 842 ORE->emit([&]() { 843 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 844 InnerLoop->getStartLoc(), 845 InnerLoop->getHeader()) 846 << "The inner loop does not increment the induction variable."; 847 }); 848 return true; 849 } 850 851 // Since we split the inner loop latch on this induction variable. Make sure 852 // we do not have any instruction between the induction variable and branch 853 // instruction. 854 855 bool FoundInduction = false; 856 for (const Instruction &I : 857 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 858 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 859 isa<ZExtInst>(I)) 860 continue; 861 862 // We found an instruction. If this is not induction variable then it is not 863 // safe to split this loop latch. 864 if (!I.isIdenticalTo(InnerIndexVarInc)) { 865 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 866 << "variable increment and branch.\n"); 867 ORE->emit([&]() { 868 return OptimizationRemarkMissed( 869 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 870 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 871 << "Found unsupported instruction between induction variable " 872 "increment and branch."; 873 }); 874 return true; 875 } 876 877 FoundInduction = true; 878 break; 879 } 880 // The loop latch ended and we didn't find the induction variable return as 881 // current limitation. 882 if (!FoundInduction) { 883 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 884 ORE->emit([&]() { 885 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 886 InnerLoop->getStartLoc(), 887 InnerLoop->getHeader()) 888 << "Did not find the induction variable."; 889 }); 890 return true; 891 } 892 return false; 893 } 894 895 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 896 // users are either reduction PHIs or PHIs outside the outer loop (which means 897 // the we are only interested in the final value after the loop). 898 static bool 899 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 900 SmallPtrSetImpl<PHINode *> &Reductions) { 901 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 902 for (PHINode &PHI : InnerExit->phis()) { 903 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 904 if (PHI.getNumIncomingValues() > 1) 905 return false; 906 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 907 PHINode *PN = dyn_cast<PHINode>(U); 908 return !PN || 909 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 910 })) { 911 return false; 912 } 913 } 914 return true; 915 } 916 917 // We currently support LCSSA PHI nodes in the outer loop exit, if their 918 // incoming values do not come from the outer loop latch or if the 919 // outer loop latch has a single predecessor. In that case, the value will 920 // be available if both the inner and outer loop conditions are true, which 921 // will still be true after interchanging. If we have multiple predecessor, 922 // that may not be the case, e.g. because the outer loop latch may be executed 923 // if the inner loop is not executed. 924 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 925 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 926 for (PHINode &PHI : LoopNestExit->phis()) { 927 // FIXME: We currently are not able to detect floating point reductions 928 // and have to use floating point PHIs as a proxy to prevent 929 // interchanging in the presence of floating point reductions. 930 if (PHI.getType()->isFloatingPointTy()) 931 return false; 932 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 933 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 934 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 935 continue; 936 937 // The incoming value is defined in the outer loop latch. Currently we 938 // only support that in case the outer loop latch has a single predecessor. 939 // This guarantees that the outer loop latch is executed if and only if 940 // the inner loop is executed (because tightlyNested() guarantees that the 941 // outer loop header only branches to the inner loop or the outer loop 942 // latch). 943 // FIXME: We could weaken this logic and allow multiple predecessors, 944 // if the values are produced outside the loop latch. We would need 945 // additional logic to update the PHI nodes in the exit block as 946 // well. 947 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 948 return false; 949 } 950 } 951 return true; 952 } 953 954 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 955 unsigned OuterLoopId, 956 CharMatrix &DepMatrix) { 957 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 958 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 959 << " and OuterLoopId = " << OuterLoopId 960 << " due to dependence\n"); 961 ORE->emit([&]() { 962 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 963 InnerLoop->getStartLoc(), 964 InnerLoop->getHeader()) 965 << "Cannot interchange loops due to dependences."; 966 }); 967 return false; 968 } 969 // Check if outer and inner loop contain legal instructions only. 970 for (auto *BB : OuterLoop->blocks()) 971 for (Instruction &I : BB->instructionsWithoutDebug()) 972 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 973 // readnone functions do not prevent interchanging. 974 if (CI->doesNotReadMemory()) 975 continue; 976 LLVM_DEBUG( 977 dbgs() << "Loops with call instructions cannot be interchanged " 978 << "safely."); 979 ORE->emit([&]() { 980 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 981 CI->getDebugLoc(), 982 CI->getParent()) 983 << "Cannot interchange loops due to call instruction."; 984 }); 985 986 return false; 987 } 988 989 // TODO: The loops could not be interchanged due to current limitations in the 990 // transform module. 991 if (currentLimitations()) { 992 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 993 return false; 994 } 995 996 // Check if the loops are tightly nested. 997 if (!tightlyNested(OuterLoop, InnerLoop)) { 998 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 999 ORE->emit([&]() { 1000 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1001 InnerLoop->getStartLoc(), 1002 InnerLoop->getHeader()) 1003 << "Cannot interchange loops because they are not tightly " 1004 "nested."; 1005 }); 1006 return false; 1007 } 1008 1009 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1010 OuterInnerReductions)) { 1011 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1012 ORE->emit([&]() { 1013 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1014 InnerLoop->getStartLoc(), 1015 InnerLoop->getHeader()) 1016 << "Found unsupported PHI node in loop exit."; 1017 }); 1018 return false; 1019 } 1020 1021 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1022 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1023 ORE->emit([&]() { 1024 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1025 OuterLoop->getStartLoc(), 1026 OuterLoop->getHeader()) 1027 << "Found unsupported PHI node in loop exit."; 1028 }); 1029 return false; 1030 } 1031 1032 return true; 1033 } 1034 1035 int LoopInterchangeProfitability::getInstrOrderCost() { 1036 unsigned GoodOrder, BadOrder; 1037 BadOrder = GoodOrder = 0; 1038 for (BasicBlock *BB : InnerLoop->blocks()) { 1039 for (Instruction &Ins : *BB) { 1040 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1041 unsigned NumOp = GEP->getNumOperands(); 1042 bool FoundInnerInduction = false; 1043 bool FoundOuterInduction = false; 1044 for (unsigned i = 0; i < NumOp; ++i) { 1045 // Skip operands that are not SCEV-able. 1046 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1047 continue; 1048 1049 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1050 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1051 if (!AR) 1052 continue; 1053 1054 // If we find the inner induction after an outer induction e.g. 1055 // for(int i=0;i<N;i++) 1056 // for(int j=0;j<N;j++) 1057 // A[i][j] = A[i-1][j-1]+k; 1058 // then it is a good order. 1059 if (AR->getLoop() == InnerLoop) { 1060 // We found an InnerLoop induction after OuterLoop induction. It is 1061 // a good order. 1062 FoundInnerInduction = true; 1063 if (FoundOuterInduction) { 1064 GoodOrder++; 1065 break; 1066 } 1067 } 1068 // If we find the outer induction after an inner induction e.g. 1069 // for(int i=0;i<N;i++) 1070 // for(int j=0;j<N;j++) 1071 // A[j][i] = A[j-1][i-1]+k; 1072 // then it is a bad order. 1073 if (AR->getLoop() == OuterLoop) { 1074 // We found an OuterLoop induction after InnerLoop induction. It is 1075 // a bad order. 1076 FoundOuterInduction = true; 1077 if (FoundInnerInduction) { 1078 BadOrder++; 1079 break; 1080 } 1081 } 1082 } 1083 } 1084 } 1085 } 1086 return GoodOrder - BadOrder; 1087 } 1088 1089 static bool isProfitableForVectorization(unsigned InnerLoopId, 1090 unsigned OuterLoopId, 1091 CharMatrix &DepMatrix) { 1092 // TODO: Improve this heuristic to catch more cases. 1093 // If the inner loop is loop independent or doesn't carry any dependency it is 1094 // profitable to move this to outer position. 1095 for (auto &Row : DepMatrix) { 1096 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1097 return false; 1098 // TODO: We need to improve this heuristic. 1099 if (Row[OuterLoopId] != '=') 1100 return false; 1101 } 1102 // If outer loop has dependence and inner loop is loop independent then it is 1103 // profitable to interchange to enable parallelism. 1104 // If there are no dependences, interchanging will not improve anything. 1105 return !DepMatrix.empty(); 1106 } 1107 1108 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1109 unsigned OuterLoopId, 1110 CharMatrix &DepMatrix) { 1111 // TODO: Add better profitability checks. 1112 // e.g 1113 // 1) Construct dependency matrix and move the one with no loop carried dep 1114 // inside to enable vectorization. 1115 1116 // This is rough cost estimation algorithm. It counts the good and bad order 1117 // of induction variables in the instruction and allows reordering if number 1118 // of bad orders is more than good. 1119 int Cost = getInstrOrderCost(); 1120 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1121 if (Cost < -LoopInterchangeCostThreshold) 1122 return true; 1123 1124 // It is not profitable as per current cache profitability model. But check if 1125 // we can move this loop outside to improve parallelism. 1126 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1127 return true; 1128 1129 ORE->emit([&]() { 1130 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1131 InnerLoop->getStartLoc(), 1132 InnerLoop->getHeader()) 1133 << "Interchanging loops is too costly (cost=" 1134 << ore::NV("Cost", Cost) << ", threshold=" 1135 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1136 << ") and it does not improve parallelism."; 1137 }); 1138 return false; 1139 } 1140 1141 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1142 Loop *InnerLoop) { 1143 for (Loop *L : *OuterLoop) 1144 if (L == InnerLoop) { 1145 OuterLoop->removeChildLoop(L); 1146 return; 1147 } 1148 llvm_unreachable("Couldn't find loop"); 1149 } 1150 1151 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1152 /// new inner and outer loop after interchanging: NewInner is the original 1153 /// outer loop and NewOuter is the original inner loop. 1154 /// 1155 /// Before interchanging, we have the following structure 1156 /// Outer preheader 1157 // Outer header 1158 // Inner preheader 1159 // Inner header 1160 // Inner body 1161 // Inner latch 1162 // outer bbs 1163 // Outer latch 1164 // 1165 // After interchanging: 1166 // Inner preheader 1167 // Inner header 1168 // Outer preheader 1169 // Outer header 1170 // Inner body 1171 // outer bbs 1172 // Outer latch 1173 // Inner latch 1174 void LoopInterchangeTransform::restructureLoops( 1175 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1176 BasicBlock *OrigOuterPreHeader) { 1177 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1178 // The original inner loop preheader moves from the new inner loop to 1179 // the parent loop, if there is one. 1180 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1181 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1182 1183 // Switch the loop levels. 1184 if (OuterLoopParent) { 1185 // Remove the loop from its parent loop. 1186 removeChildLoop(OuterLoopParent, NewInner); 1187 removeChildLoop(NewInner, NewOuter); 1188 OuterLoopParent->addChildLoop(NewOuter); 1189 } else { 1190 removeChildLoop(NewInner, NewOuter); 1191 LI->changeTopLevelLoop(NewInner, NewOuter); 1192 } 1193 while (!NewOuter->isInnermost()) 1194 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1195 NewOuter->addChildLoop(NewInner); 1196 1197 // BBs from the original inner loop. 1198 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1199 1200 // Add BBs from the original outer loop to the original inner loop (excluding 1201 // BBs already in inner loop) 1202 for (BasicBlock *BB : NewInner->blocks()) 1203 if (LI->getLoopFor(BB) == NewInner) 1204 NewOuter->addBlockEntry(BB); 1205 1206 // Now remove inner loop header and latch from the new inner loop and move 1207 // other BBs (the loop body) to the new inner loop. 1208 BasicBlock *OuterHeader = NewOuter->getHeader(); 1209 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1210 for (BasicBlock *BB : OrigInnerBBs) { 1211 // Nothing will change for BBs in child loops. 1212 if (LI->getLoopFor(BB) != NewOuter) 1213 continue; 1214 // Remove the new outer loop header and latch from the new inner loop. 1215 if (BB == OuterHeader || BB == OuterLatch) 1216 NewInner->removeBlockFromLoop(BB); 1217 else 1218 LI->changeLoopFor(BB, NewInner); 1219 } 1220 1221 // The preheader of the original outer loop becomes part of the new 1222 // outer loop. 1223 NewOuter->addBlockEntry(OrigOuterPreHeader); 1224 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1225 1226 // Tell SE that we move the loops around. 1227 SE->forgetLoop(NewOuter); 1228 SE->forgetLoop(NewInner); 1229 } 1230 1231 bool LoopInterchangeTransform::transform() { 1232 bool Transformed = false; 1233 Instruction *InnerIndexVar; 1234 1235 if (InnerLoop->getSubLoops().empty()) { 1236 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1237 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1238 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1239 if (!InductionPHI) { 1240 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1241 return false; 1242 } 1243 1244 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1245 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1246 else 1247 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1248 1249 // Ensure that InductionPHI is the first Phi node. 1250 if (&InductionPHI->getParent()->front() != InductionPHI) 1251 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1252 1253 // Create a new latch block for the inner loop. We split at the 1254 // current latch's terminator and then move the condition and all 1255 // operands that are not either loop-invariant or the induction PHI into the 1256 // new latch block. 1257 BasicBlock *NewLatch = 1258 SplitBlock(InnerLoop->getLoopLatch(), 1259 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1260 1261 SmallSetVector<Instruction *, 4> WorkList; 1262 unsigned i = 0; 1263 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { 1264 for (; i < WorkList.size(); i++) { 1265 // Duplicate instruction and move it the new latch. Update uses that 1266 // have been moved. 1267 Instruction *NewI = WorkList[i]->clone(); 1268 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1269 assert(!NewI->mayHaveSideEffects() && 1270 "Moving instructions with side-effects may change behavior of " 1271 "the loop nest!"); 1272 for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end(); 1273 UI != UE;) { 1274 Use &U = *UI++; 1275 Instruction *UserI = cast<Instruction>(U.getUser()); 1276 if (!InnerLoop->contains(UserI->getParent()) || 1277 UserI->getParent() == NewLatch || UserI == InductionPHI) 1278 U.set(NewI); 1279 } 1280 // Add operands of moved instruction to the worklist, except if they are 1281 // outside the inner loop or are the induction PHI. 1282 for (Value *Op : WorkList[i]->operands()) { 1283 Instruction *OpI = dyn_cast<Instruction>(Op); 1284 if (!OpI || 1285 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1286 OpI == InductionPHI) 1287 continue; 1288 WorkList.insert(OpI); 1289 } 1290 } 1291 }; 1292 1293 // FIXME: Should we interchange when we have a constant condition? 1294 Instruction *CondI = dyn_cast<Instruction>( 1295 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1296 ->getCondition()); 1297 if (CondI) 1298 WorkList.insert(CondI); 1299 MoveInstructions(); 1300 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1301 MoveInstructions(); 1302 1303 // Splits the inner loops phi nodes out into a separate basic block. 1304 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1305 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1306 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1307 } 1308 1309 // Instructions in the original inner loop preheader may depend on values 1310 // defined in the outer loop header. Move them there, because the original 1311 // inner loop preheader will become the entry into the interchanged loop nest. 1312 // Currently we move all instructions and rely on LICM to move invariant 1313 // instructions outside the loop nest. 1314 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1315 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1316 if (InnerLoopPreHeader != OuterLoopHeader) { 1317 SmallPtrSet<Instruction *, 4> NeedsMoving; 1318 for (Instruction &I : 1319 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1320 std::prev(InnerLoopPreHeader->end())))) 1321 I.moveBefore(OuterLoopHeader->getTerminator()); 1322 } 1323 1324 Transformed |= adjustLoopLinks(); 1325 if (!Transformed) { 1326 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1327 return false; 1328 } 1329 1330 return true; 1331 } 1332 1333 /// \brief Move all instructions except the terminator from FromBB right before 1334 /// InsertBefore 1335 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1336 auto &ToList = InsertBefore->getParent()->getInstList(); 1337 auto &FromList = FromBB->getInstList(); 1338 1339 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1340 FromBB->getTerminator()->getIterator()); 1341 } 1342 1343 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1344 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1345 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1346 // from BB1 afterwards. 1347 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1348 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1349 for (Instruction *I : TempInstrs) 1350 I->removeFromParent(); 1351 1352 // Move instructions from BB2 to BB1. 1353 moveBBContents(BB2, BB1->getTerminator()); 1354 1355 // Move instructions from TempInstrs to BB2. 1356 for (Instruction *I : TempInstrs) 1357 I->insertBefore(BB2->getTerminator()); 1358 } 1359 1360 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1361 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1362 // \p OldBB is exactly once in BI's successor list. 1363 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1364 BasicBlock *NewBB, 1365 std::vector<DominatorTree::UpdateType> &DTUpdates, 1366 bool MustUpdateOnce = true) { 1367 assert((!MustUpdateOnce || 1368 llvm::count_if(successors(BI), 1369 [OldBB](BasicBlock *BB) { 1370 return BB == OldBB; 1371 }) == 1) && "BI must jump to OldBB exactly once."); 1372 bool Changed = false; 1373 for (Use &Op : BI->operands()) 1374 if (Op == OldBB) { 1375 Op.set(NewBB); 1376 Changed = true; 1377 } 1378 1379 if (Changed) { 1380 DTUpdates.push_back( 1381 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1382 DTUpdates.push_back( 1383 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1384 } 1385 assert(Changed && "Expected a successor to be updated"); 1386 } 1387 1388 // Move Lcssa PHIs to the right place. 1389 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1390 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1391 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1392 Loop *InnerLoop, LoopInfo *LI) { 1393 1394 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1395 // defined either in the header or latch. Those blocks will become header and 1396 // latch of the new outer loop, and the only possible users can PHI nodes 1397 // in the exit block of the loop nest or the outer loop header (reduction 1398 // PHIs, in that case, the incoming value must be defined in the inner loop 1399 // header). We can just substitute the user with the incoming value and remove 1400 // the PHI. 1401 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1402 assert(P.getNumIncomingValues() == 1 && 1403 "Only loops with a single exit are supported!"); 1404 1405 // Incoming values are guaranteed be instructions currently. 1406 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1407 // Skip phis with incoming values from the inner loop body, excluding the 1408 // header and latch. 1409 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1410 continue; 1411 1412 assert(all_of(P.users(), 1413 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1414 return (cast<PHINode>(U)->getParent() == OuterHeader && 1415 IncI->getParent() == InnerHeader) || 1416 cast<PHINode>(U)->getParent() == OuterExit; 1417 }) && 1418 "Can only replace phis iff the uses are in the loop nest exit or " 1419 "the incoming value is defined in the inner header (it will " 1420 "dominate all loop blocks after interchanging)"); 1421 P.replaceAllUsesWith(IncI); 1422 P.eraseFromParent(); 1423 } 1424 1425 SmallVector<PHINode *, 8> LcssaInnerExit; 1426 for (PHINode &P : InnerExit->phis()) 1427 LcssaInnerExit.push_back(&P); 1428 1429 SmallVector<PHINode *, 8> LcssaInnerLatch; 1430 for (PHINode &P : InnerLatch->phis()) 1431 LcssaInnerLatch.push_back(&P); 1432 1433 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1434 // If a PHI node has users outside of InnerExit, it has a use outside the 1435 // interchanged loop and we have to preserve it. We move these to 1436 // InnerLatch, which will become the new exit block for the innermost 1437 // loop after interchanging. 1438 for (PHINode *P : LcssaInnerExit) 1439 P->moveBefore(InnerLatch->getFirstNonPHI()); 1440 1441 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1442 // and we have to move them to the new inner latch. 1443 for (PHINode *P : LcssaInnerLatch) 1444 P->moveBefore(InnerExit->getFirstNonPHI()); 1445 1446 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1447 // incoming values defined in the outer loop, we have to add a new PHI 1448 // in the inner loop latch, which became the exit block of the outer loop, 1449 // after interchanging. 1450 if (OuterExit) { 1451 for (PHINode &P : OuterExit->phis()) { 1452 if (P.getNumIncomingValues() != 1) 1453 continue; 1454 // Skip Phis with incoming values defined in the inner loop. Those should 1455 // already have been updated. 1456 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1457 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1458 continue; 1459 1460 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1461 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1462 NewPhi->setIncomingBlock(0, OuterLatch); 1463 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1464 P.setIncomingValue(0, NewPhi); 1465 } 1466 } 1467 1468 // Now adjust the incoming blocks for the LCSSA PHIs. 1469 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1470 // with the new latch. 1471 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1472 } 1473 1474 bool LoopInterchangeTransform::adjustLoopBranches() { 1475 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1476 std::vector<DominatorTree::UpdateType> DTUpdates; 1477 1478 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1479 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1480 1481 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1482 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1483 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1484 // Ensure that both preheaders do not contain PHI nodes and have single 1485 // predecessors. This allows us to move them easily. We use 1486 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1487 // preheaders do not satisfy those conditions. 1488 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1489 !OuterLoopPreHeader->getUniquePredecessor()) 1490 OuterLoopPreHeader = 1491 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1492 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1493 InnerLoopPreHeader = 1494 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1495 1496 // Adjust the loop preheader 1497 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1498 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1499 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1500 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1501 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1502 BasicBlock *InnerLoopLatchPredecessor = 1503 InnerLoopLatch->getUniquePredecessor(); 1504 BasicBlock *InnerLoopLatchSuccessor; 1505 BasicBlock *OuterLoopLatchSuccessor; 1506 1507 BranchInst *OuterLoopLatchBI = 1508 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1509 BranchInst *InnerLoopLatchBI = 1510 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1511 BranchInst *OuterLoopHeaderBI = 1512 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1513 BranchInst *InnerLoopHeaderBI = 1514 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1515 1516 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1517 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1518 !InnerLoopHeaderBI) 1519 return false; 1520 1521 BranchInst *InnerLoopLatchPredecessorBI = 1522 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1523 BranchInst *OuterLoopPredecessorBI = 1524 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1525 1526 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1527 return false; 1528 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1529 if (!InnerLoopHeaderSuccessor) 1530 return false; 1531 1532 // Adjust Loop Preheader and headers. 1533 // The branches in the outer loop predecessor and the outer loop header can 1534 // be unconditional branches or conditional branches with duplicates. Consider 1535 // this when updating the successors. 1536 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1537 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1538 // The outer loop header might or might not branch to the outer latch. 1539 // We are guaranteed to branch to the inner loop preheader. 1540 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) 1541 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates, 1542 /*MustUpdateOnce=*/false); 1543 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1544 InnerLoopHeaderSuccessor, DTUpdates, 1545 /*MustUpdateOnce=*/false); 1546 1547 // Adjust reduction PHI's now that the incoming block has changed. 1548 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1549 OuterLoopHeader); 1550 1551 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1552 OuterLoopPreHeader, DTUpdates); 1553 1554 // -------------Adjust loop latches----------- 1555 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1556 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1557 else 1558 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1559 1560 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1561 InnerLoopLatchSuccessor, DTUpdates); 1562 1563 1564 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1565 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1566 else 1567 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1568 1569 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1570 OuterLoopLatchSuccessor, DTUpdates); 1571 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1572 DTUpdates); 1573 1574 DT->applyUpdates(DTUpdates); 1575 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1576 OuterLoopPreHeader); 1577 1578 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1579 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1580 InnerLoop, LI); 1581 // For PHIs in the exit block of the outer loop, outer's latch has been 1582 // replaced by Inners'. 1583 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1584 1585 // Now update the reduction PHIs in the inner and outer loop headers. 1586 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1587 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis())) 1588 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1589 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis())) 1590 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1591 1592 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1593 (void)OuterInnerReductions; 1594 1595 // Now move the remaining reduction PHIs from outer to inner loop header and 1596 // vice versa. The PHI nodes must be part of a reduction across the inner and 1597 // outer loop and all the remains to do is and updating the incoming blocks. 1598 for (PHINode *PHI : OuterLoopPHIs) { 1599 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1600 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1601 } 1602 for (PHINode *PHI : InnerLoopPHIs) { 1603 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1604 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1605 } 1606 1607 // Update the incoming blocks for moved PHI nodes. 1608 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1609 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1610 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1611 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1612 1613 // Values defined in the outer loop header could be used in the inner loop 1614 // latch. In that case, we need to create LCSSA phis for them, because after 1615 // interchanging they will be defined in the new inner loop and used in the 1616 // new outer loop. 1617 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1618 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1619 for (Instruction &I : 1620 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1621 MayNeedLCSSAPhis.push_back(&I); 1622 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1623 1624 return true; 1625 } 1626 1627 bool LoopInterchangeTransform::adjustLoopLinks() { 1628 // Adjust all branches in the inner and outer loop. 1629 bool Changed = adjustLoopBranches(); 1630 if (Changed) { 1631 // We have interchanged the preheaders so we need to interchange the data in 1632 // the preheaders as well. This is because the content of the inner 1633 // preheader was previously executed inside the outer loop. 1634 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1635 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1636 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1637 } 1638 return Changed; 1639 } 1640 1641 /// Main LoopInterchange Pass. 1642 struct LoopInterchangeLegacyPass : public LoopPass { 1643 static char ID; 1644 1645 LoopInterchangeLegacyPass() : LoopPass(ID) { 1646 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1647 } 1648 1649 void getAnalysisUsage(AnalysisUsage &AU) const override { 1650 AU.addRequired<DependenceAnalysisWrapperPass>(); 1651 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1652 1653 getLoopAnalysisUsage(AU); 1654 } 1655 1656 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1657 if (skipLoop(L)) 1658 return false; 1659 1660 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1661 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1662 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1663 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1664 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1665 1666 return LoopInterchange(SE, LI, DI, DT, ORE).run(L); 1667 } 1668 }; 1669 1670 char LoopInterchangeLegacyPass::ID = 0; 1671 1672 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1673 "Interchanges loops for cache reuse", false, false) 1674 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1675 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1676 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1677 1678 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1679 "Interchanges loops for cache reuse", false, false) 1680 1681 Pass *llvm::createLoopInterchangePass() { 1682 return new LoopInterchangeLegacyPass(); 1683 } 1684 1685 PreservedAnalyses LoopInterchangePass::run(Loop &L, LoopAnalysisManager &AM, 1686 LoopStandardAnalysisResults &AR, 1687 LPMUpdater &U) { 1688 Function &F = *L.getHeader()->getParent(); 1689 1690 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1691 OptimizationRemarkEmitter ORE(&F); 1692 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(&L)) 1693 return PreservedAnalyses::all(); 1694 return getLoopPassPreservedAnalyses(); 1695 } 1696