1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopCacheAnalysis.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/LoopNestAnalysis.h" 24 #include "llvm/Analysis/LoopPass.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include <cassert> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "loop-interchange" 56 57 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 58 59 static cl::opt<int> LoopInterchangeCostThreshold( 60 "loop-interchange-threshold", cl::init(0), cl::Hidden, 61 cl::desc("Interchange if you gain more than this number")); 62 63 namespace { 64 65 using LoopVector = SmallVector<Loop *, 8>; 66 67 // TODO: Check if we can use a sparse matrix here. 68 using CharMatrix = std::vector<std::vector<char>>; 69 70 } // end anonymous namespace 71 72 // Maximum number of dependencies that can be handled in the dependency matrix. 73 static const unsigned MaxMemInstrCount = 100; 74 75 // Maximum loop depth supported. 76 static const unsigned MaxLoopNestDepth = 10; 77 78 #ifdef DUMP_DEP_MATRICIES 79 static void printDepMatrix(CharMatrix &DepMatrix) { 80 for (auto &Row : DepMatrix) { 81 for (auto D : Row) 82 LLVM_DEBUG(dbgs() << D << " "); 83 LLVM_DEBUG(dbgs() << "\n"); 84 } 85 } 86 #endif 87 88 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 89 Loop *L, DependenceInfo *DI) { 90 using ValueVector = SmallVector<Value *, 16>; 91 92 ValueVector MemInstr; 93 94 // For each block. 95 for (BasicBlock *BB : L->blocks()) { 96 // Scan the BB and collect legal loads and stores. 97 for (Instruction &I : *BB) { 98 if (!isa<Instruction>(I)) 99 return false; 100 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 101 if (!Ld->isSimple()) 102 return false; 103 MemInstr.push_back(&I); 104 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 105 if (!St->isSimple()) 106 return false; 107 MemInstr.push_back(&I); 108 } 109 } 110 } 111 112 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 113 << " Loads and Stores to analyze\n"); 114 115 ValueVector::iterator I, IE, J, JE; 116 117 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 118 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 119 std::vector<char> Dep; 120 Instruction *Src = cast<Instruction>(*I); 121 Instruction *Dst = cast<Instruction>(*J); 122 // Ignore Input dependencies. 123 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 124 continue; 125 // Track Output, Flow, and Anti dependencies. 126 if (auto D = DI->depends(Src, Dst, true)) { 127 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 128 LLVM_DEBUG(StringRef DepType = 129 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 130 dbgs() << "Found " << DepType 131 << " dependency between Src and Dst\n" 132 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 133 unsigned Levels = D->getLevels(); 134 char Direction; 135 for (unsigned II = 1; II <= Levels; ++II) { 136 const SCEV *Distance = D->getDistance(II); 137 const SCEVConstant *SCEVConst = 138 dyn_cast_or_null<SCEVConstant>(Distance); 139 if (SCEVConst) { 140 const ConstantInt *CI = SCEVConst->getValue(); 141 if (CI->isNegative()) 142 Direction = '<'; 143 else if (CI->isZero()) 144 Direction = '='; 145 else 146 Direction = '>'; 147 Dep.push_back(Direction); 148 } else if (D->isScalar(II)) { 149 Direction = 'S'; 150 Dep.push_back(Direction); 151 } else { 152 unsigned Dir = D->getDirection(II); 153 if (Dir == Dependence::DVEntry::LT || 154 Dir == Dependence::DVEntry::LE) 155 Direction = '<'; 156 else if (Dir == Dependence::DVEntry::GT || 157 Dir == Dependence::DVEntry::GE) 158 Direction = '>'; 159 else if (Dir == Dependence::DVEntry::EQ) 160 Direction = '='; 161 else 162 Direction = '*'; 163 Dep.push_back(Direction); 164 } 165 } 166 while (Dep.size() != Level) { 167 Dep.push_back('I'); 168 } 169 170 DepMatrix.push_back(Dep); 171 if (DepMatrix.size() > MaxMemInstrCount) { 172 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 173 << " dependencies inside loop\n"); 174 return false; 175 } 176 } 177 } 178 } 179 180 return true; 181 } 182 183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 184 // matrix by exchanging the two columns. 185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 186 unsigned ToIndx) { 187 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 188 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 189 } 190 191 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 192 // '>' 193 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 194 unsigned Column) { 195 for (unsigned i = 0; i <= Column; ++i) { 196 if (DepMatrix[Row][i] == '<') 197 return false; 198 if (DepMatrix[Row][i] == '>') 199 return true; 200 } 201 // All dependencies were '=','S' or 'I' 202 return false; 203 } 204 205 // Checks if no dependence exist in the dependency matrix in Row before Column. 206 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 207 unsigned Column) { 208 for (unsigned i = 0; i < Column; ++i) { 209 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 210 DepMatrix[Row][i] != 'I') 211 return false; 212 } 213 return true; 214 } 215 216 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 217 unsigned OuterLoopId, char InnerDep, 218 char OuterDep) { 219 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 220 return false; 221 222 if (InnerDep == OuterDep) 223 return true; 224 225 // It is legal to interchange if and only if after interchange no row has a 226 // '>' direction as the leftmost non-'='. 227 228 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 229 return true; 230 231 if (InnerDep == '<') 232 return true; 233 234 if (InnerDep == '>') { 235 // If OuterLoopId represents outermost loop then interchanging will make the 236 // 1st dependency as '>' 237 if (OuterLoopId == 0) 238 return false; 239 240 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 241 // interchanging will result in this row having an outermost non '=' 242 // dependency of '>' 243 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 244 return true; 245 } 246 247 return false; 248 } 249 250 // Checks if it is legal to interchange 2 loops. 251 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 252 // if the direction matrix, after the same permutation is applied to its 253 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 254 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 255 unsigned InnerLoopId, 256 unsigned OuterLoopId) { 257 unsigned NumRows = DepMatrix.size(); 258 // For each row check if it is valid to interchange. 259 for (unsigned Row = 0; Row < NumRows; ++Row) { 260 char InnerDep = DepMatrix[Row][InnerLoopId]; 261 char OuterDep = DepMatrix[Row][OuterLoopId]; 262 if (InnerDep == '*' || OuterDep == '*') 263 return false; 264 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 265 return false; 266 } 267 return true; 268 } 269 270 static void populateWorklist(Loop &L, LoopVector &LoopList) { 271 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 272 << L.getHeader()->getParent()->getName() << " Loop: %" 273 << L.getHeader()->getName() << '\n'); 274 assert(LoopList.empty() && "LoopList should initially be empty!"); 275 Loop *CurrentLoop = &L; 276 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 277 while (!Vec->empty()) { 278 // The current loop has multiple subloops in it hence it is not tightly 279 // nested. 280 // Discard all loops above it added into Worklist. 281 if (Vec->size() != 1) { 282 LoopList = {}; 283 return; 284 } 285 286 LoopList.push_back(CurrentLoop); 287 CurrentLoop = Vec->front(); 288 Vec = &CurrentLoop->getSubLoops(); 289 } 290 LoopList.push_back(CurrentLoop); 291 } 292 293 namespace { 294 295 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 296 class LoopInterchangeLegality { 297 public: 298 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 299 OptimizationRemarkEmitter *ORE) 300 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 301 302 /// Check if the loops can be interchanged. 303 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 304 CharMatrix &DepMatrix); 305 306 /// Discover induction PHIs in the header of \p L. Induction 307 /// PHIs are added to \p Inductions. 308 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions); 309 310 /// Check if the loop structure is understood. We do not handle triangular 311 /// loops for now. 312 bool isLoopStructureUnderstood(); 313 314 bool currentLimitations(); 315 316 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 317 return OuterInnerReductions; 318 } 319 320 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const { 321 return InnerLoopInductions; 322 } 323 324 private: 325 bool tightlyNested(Loop *Outer, Loop *Inner); 326 bool containsUnsafeInstructions(BasicBlock *BB); 327 328 /// Discover induction and reduction PHIs in the header of \p L. Induction 329 /// PHIs are added to \p Inductions, reductions are added to 330 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 331 /// to be passed as \p InnerLoop. 332 bool findInductionAndReductions(Loop *L, 333 SmallVector<PHINode *, 8> &Inductions, 334 Loop *InnerLoop); 335 336 Loop *OuterLoop; 337 Loop *InnerLoop; 338 339 ScalarEvolution *SE; 340 341 /// Interface to emit optimization remarks. 342 OptimizationRemarkEmitter *ORE; 343 344 /// Set of reduction PHIs taking part of a reduction across the inner and 345 /// outer loop. 346 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 347 348 /// Set of inner loop induction PHIs 349 SmallVector<PHINode *, 8> InnerLoopInductions; 350 }; 351 352 /// LoopInterchangeProfitability checks if it is profitable to interchange the 353 /// loop. 354 class LoopInterchangeProfitability { 355 public: 356 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 357 OptimizationRemarkEmitter *ORE) 358 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 359 360 /// Check if the loop interchange is profitable. 361 bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop, 362 unsigned InnerLoopId, unsigned OuterLoopId, 363 CharMatrix &DepMatrix, 364 const DenseMap<const Loop *, unsigned> &CostMap); 365 366 private: 367 int getInstrOrderCost(); 368 369 Loop *OuterLoop; 370 Loop *InnerLoop; 371 372 /// Scev analysis. 373 ScalarEvolution *SE; 374 375 /// Interface to emit optimization remarks. 376 OptimizationRemarkEmitter *ORE; 377 }; 378 379 /// LoopInterchangeTransform interchanges the loop. 380 class LoopInterchangeTransform { 381 public: 382 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 383 LoopInfo *LI, DominatorTree *DT, 384 const LoopInterchangeLegality &LIL) 385 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 386 387 /// Interchange OuterLoop and InnerLoop. 388 bool transform(); 389 void restructureLoops(Loop *NewInner, Loop *NewOuter, 390 BasicBlock *OrigInnerPreHeader, 391 BasicBlock *OrigOuterPreHeader); 392 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 393 394 private: 395 bool adjustLoopLinks(); 396 bool adjustLoopBranches(); 397 398 Loop *OuterLoop; 399 Loop *InnerLoop; 400 401 /// Scev analysis. 402 ScalarEvolution *SE; 403 404 LoopInfo *LI; 405 DominatorTree *DT; 406 407 const LoopInterchangeLegality &LIL; 408 }; 409 410 struct LoopInterchange { 411 ScalarEvolution *SE = nullptr; 412 LoopInfo *LI = nullptr; 413 DependenceInfo *DI = nullptr; 414 DominatorTree *DT = nullptr; 415 std::unique_ptr<CacheCost> CC = nullptr; 416 417 /// Interface to emit optimization remarks. 418 OptimizationRemarkEmitter *ORE; 419 420 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 421 DominatorTree *DT, std::unique_ptr<CacheCost> &CC, 422 OptimizationRemarkEmitter *ORE) 423 : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {} 424 425 bool run(Loop *L) { 426 if (L->getParentLoop()) 427 return false; 428 SmallVector<Loop *, 8> LoopList; 429 populateWorklist(*L, LoopList); 430 return processLoopList(LoopList); 431 } 432 433 bool run(LoopNest &LN) { 434 SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end()); 435 for (unsigned I = 1; I < LoopList.size(); ++I) 436 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 437 return false; 438 return processLoopList(LoopList); 439 } 440 441 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 442 for (Loop *L : LoopList) { 443 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 444 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 445 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 446 return false; 447 } 448 if (L->getNumBackEdges() != 1) { 449 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 450 return false; 451 } 452 if (!L->getExitingBlock()) { 453 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 454 return false; 455 } 456 } 457 return true; 458 } 459 460 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 461 // TODO: Add a better heuristic to select the loop to be interchanged based 462 // on the dependence matrix. Currently we select the innermost loop. 463 return LoopList.size() - 1; 464 } 465 466 bool processLoopList(SmallVectorImpl<Loop *> &LoopList) { 467 bool Changed = false; 468 unsigned LoopNestDepth = LoopList.size(); 469 if (LoopNestDepth < 2) { 470 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 471 return false; 472 } 473 if (LoopNestDepth > MaxLoopNestDepth) { 474 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 475 << MaxLoopNestDepth << "\n"); 476 return false; 477 } 478 if (!isComputableLoopNest(LoopList)) { 479 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 480 return false; 481 } 482 483 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 484 << "\n"); 485 486 CharMatrix DependencyMatrix; 487 Loop *OuterMostLoop = *(LoopList.begin()); 488 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 489 OuterMostLoop, DI)) { 490 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 491 return false; 492 } 493 #ifdef DUMP_DEP_MATRICIES 494 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 495 printDepMatrix(DependencyMatrix); 496 #endif 497 498 // Get the Outermost loop exit. 499 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 500 if (!LoopNestExit) { 501 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 502 return false; 503 } 504 505 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 506 // Obtain the loop vector returned from loop cache analysis beforehand, 507 // and put each <Loop, index> pair into a map for constant time query 508 // later. Indices in loop vector reprsent the optimal order of the 509 // corresponding loop, e.g., given a loopnest with depth N, index 0 510 // indicates the loop should be placed as the outermost loop and index N 511 // indicates the loop should be placed as the innermost loop. 512 // 513 // For the old pass manager CacheCost would be null. 514 DenseMap<const Loop *, unsigned> CostMap; 515 if (CC != nullptr) { 516 const auto &LoopCosts = CC->getLoopCosts(); 517 for (unsigned i = 0; i < LoopCosts.size(); i++) { 518 CostMap[LoopCosts[i].first] = i; 519 } 520 } 521 // We try to achieve the globally optimal memory access for the loopnest, 522 // and do interchange based on a bubble-sort fasion. We start from 523 // the innermost loop, move it outwards to the best possible position 524 // and repeat this process. 525 for (unsigned j = SelecLoopId; j > 0; j--) { 526 bool ChangedPerIter = false; 527 for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) { 528 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1, 529 DependencyMatrix, CostMap); 530 if (!Interchanged) 531 continue; 532 // Loops interchanged, update LoopList accordingly. 533 std::swap(LoopList[i - 1], LoopList[i]); 534 // Update the DependencyMatrix 535 interChangeDependencies(DependencyMatrix, i, i - 1); 536 #ifdef DUMP_DEP_MATRICIES 537 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 538 printDepMatrix(DependencyMatrix); 539 #endif 540 ChangedPerIter |= Interchanged; 541 Changed |= Interchanged; 542 } 543 // Early abort if there was no interchange during an entire round of 544 // moving loops outwards. 545 if (!ChangedPerIter) 546 break; 547 } 548 return Changed; 549 } 550 551 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 552 unsigned OuterLoopId, 553 std::vector<std::vector<char>> &DependencyMatrix, 554 const DenseMap<const Loop *, unsigned> &CostMap) { 555 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 556 << " and OuterLoopId = " << OuterLoopId << "\n"); 557 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 558 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 559 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 560 return false; 561 } 562 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 563 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 564 if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId, 565 DependencyMatrix, CostMap)) { 566 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 567 return false; 568 } 569 570 ORE->emit([&]() { 571 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 572 InnerLoop->getStartLoc(), 573 InnerLoop->getHeader()) 574 << "Loop interchanged with enclosing loop."; 575 }); 576 577 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 578 LIT.transform(); 579 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 580 LoopsInterchanged++; 581 582 assert(InnerLoop->isLCSSAForm(*DT) && 583 "Inner loop not left in LCSSA form after loop interchange!"); 584 assert(OuterLoop->isLCSSAForm(*DT) && 585 "Outer loop not left in LCSSA form after loop interchange!"); 586 587 return true; 588 } 589 }; 590 591 } // end anonymous namespace 592 593 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 594 return any_of(*BB, [](const Instruction &I) { 595 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 596 }); 597 } 598 599 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 600 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 601 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 602 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 603 604 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 605 606 // A perfectly nested loop will not have any branch in between the outer and 607 // inner block i.e. outer header will branch to either inner preheader and 608 // outerloop latch. 609 BranchInst *OuterLoopHeaderBI = 610 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 611 if (!OuterLoopHeaderBI) 612 return false; 613 614 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 615 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 616 Succ != OuterLoopLatch) 617 return false; 618 619 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 620 // We do not have any basic block in between now make sure the outer header 621 // and outer loop latch doesn't contain any unsafe instructions. 622 if (containsUnsafeInstructions(OuterLoopHeader) || 623 containsUnsafeInstructions(OuterLoopLatch)) 624 return false; 625 626 // Also make sure the inner loop preheader does not contain any unsafe 627 // instructions. Note that all instructions in the preheader will be moved to 628 // the outer loop header when interchanging. 629 if (InnerLoopPreHeader != OuterLoopHeader && 630 containsUnsafeInstructions(InnerLoopPreHeader)) 631 return false; 632 633 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 634 // Ensure the inner loop exit block flows to the outer loop latch possibly 635 // through empty blocks. 636 const BasicBlock &SuccInner = 637 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 638 if (&SuccInner != OuterLoopLatch) { 639 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 640 << " does not lead to the outer loop latch.\n";); 641 return false; 642 } 643 // The inner loop exit block does flow to the outer loop latch and not some 644 // other BBs, now make sure it contains safe instructions, since it will be 645 // moved into the (new) inner loop after interchange. 646 if (containsUnsafeInstructions(InnerLoopExit)) 647 return false; 648 649 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 650 // We have a perfect loop nest. 651 return true; 652 } 653 654 bool LoopInterchangeLegality::isLoopStructureUnderstood() { 655 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 656 for (PHINode *InnerInduction : InnerLoopInductions) { 657 unsigned Num = InnerInduction->getNumOperands(); 658 for (unsigned i = 0; i < Num; ++i) { 659 Value *Val = InnerInduction->getOperand(i); 660 if (isa<Constant>(Val)) 661 continue; 662 Instruction *I = dyn_cast<Instruction>(Val); 663 if (!I) 664 return false; 665 // TODO: Handle triangular loops. 666 // e.g. for(int i=0;i<N;i++) 667 // for(int j=i;j<N;j++) 668 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 669 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 670 InnerLoopPreheader && 671 !OuterLoop->isLoopInvariant(I)) { 672 return false; 673 } 674 } 675 } 676 677 // TODO: Handle triangular loops of another form. 678 // e.g. for(int i=0;i<N;i++) 679 // for(int j=0;j<i;j++) 680 // or, 681 // for(int i=0;i<N;i++) 682 // for(int j=0;j*i<N;j++) 683 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 684 BranchInst *InnerLoopLatchBI = 685 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 686 if (!InnerLoopLatchBI->isConditional()) 687 return false; 688 if (CmpInst *InnerLoopCmp = 689 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) { 690 Value *Op0 = InnerLoopCmp->getOperand(0); 691 Value *Op1 = InnerLoopCmp->getOperand(1); 692 693 // LHS and RHS of the inner loop exit condition, e.g., 694 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i. 695 Value *Left = nullptr; 696 Value *Right = nullptr; 697 698 // Check if V only involves inner loop induction variable. 699 // Return true if V is InnerInduction, or a cast from 700 // InnerInduction, or a binary operator that involves 701 // InnerInduction and a constant. 702 std::function<bool(Value *)> IsPathToInnerIndVar; 703 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool { 704 if (llvm::is_contained(InnerLoopInductions, V)) 705 return true; 706 if (isa<Constant>(V)) 707 return true; 708 const Instruction *I = dyn_cast<Instruction>(V); 709 if (!I) 710 return false; 711 if (isa<CastInst>(I)) 712 return IsPathToInnerIndVar(I->getOperand(0)); 713 if (isa<BinaryOperator>(I)) 714 return IsPathToInnerIndVar(I->getOperand(0)) && 715 IsPathToInnerIndVar(I->getOperand(1)); 716 return false; 717 }; 718 719 // In case of multiple inner loop indvars, it is okay if LHS and RHS 720 // are both inner indvar related variables. 721 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1)) 722 return true; 723 724 // Otherwise we check if the cmp instruction compares an inner indvar 725 // related variable (Left) with a outer loop invariant (Right). 726 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) { 727 Left = Op0; 728 Right = Op1; 729 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) { 730 Left = Op1; 731 Right = Op0; 732 } 733 734 if (Left == nullptr) 735 return false; 736 737 const SCEV *S = SE->getSCEV(Right); 738 if (!SE->isLoopInvariant(S, OuterLoop)) 739 return false; 740 } 741 742 return true; 743 } 744 745 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 746 // value. 747 static Value *followLCSSA(Value *SV) { 748 PHINode *PHI = dyn_cast<PHINode>(SV); 749 if (!PHI) 750 return SV; 751 752 if (PHI->getNumIncomingValues() != 1) 753 return SV; 754 return followLCSSA(PHI->getIncomingValue(0)); 755 } 756 757 // Check V's users to see if it is involved in a reduction in L. 758 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 759 // Reduction variables cannot be constants. 760 if (isa<Constant>(V)) 761 return nullptr; 762 763 for (Value *User : V->users()) { 764 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 765 if (PHI->getNumIncomingValues() == 1) 766 continue; 767 RecurrenceDescriptor RD; 768 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) { 769 // Detect floating point reduction only when it can be reordered. 770 if (RD.getExactFPMathInst() != nullptr) 771 return nullptr; 772 return PHI; 773 } 774 return nullptr; 775 } 776 } 777 778 return nullptr; 779 } 780 781 bool LoopInterchangeLegality::findInductionAndReductions( 782 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 783 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 784 return false; 785 for (PHINode &PHI : L->getHeader()->phis()) { 786 RecurrenceDescriptor RD; 787 InductionDescriptor ID; 788 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 789 Inductions.push_back(&PHI); 790 else { 791 // PHIs in inner loops need to be part of a reduction in the outer loop, 792 // discovered when checking the PHIs of the outer loop earlier. 793 if (!InnerLoop) { 794 if (!OuterInnerReductions.count(&PHI)) { 795 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 796 "across the outer loop.\n"); 797 return false; 798 } 799 } else { 800 assert(PHI.getNumIncomingValues() == 2 && 801 "Phis in loop header should have exactly 2 incoming values"); 802 // Check if we have a PHI node in the outer loop that has a reduction 803 // result from the inner loop as an incoming value. 804 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 805 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 806 if (!InnerRedPhi || 807 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 808 LLVM_DEBUG( 809 dbgs() 810 << "Failed to recognize PHI as an induction or reduction.\n"); 811 return false; 812 } 813 OuterInnerReductions.insert(&PHI); 814 OuterInnerReductions.insert(InnerRedPhi); 815 } 816 } 817 } 818 return true; 819 } 820 821 // This function indicates the current limitations in the transform as a result 822 // of which we do not proceed. 823 bool LoopInterchangeLegality::currentLimitations() { 824 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 825 826 // transform currently expects the loop latches to also be the exiting 827 // blocks. 828 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 829 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 830 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 831 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 832 LLVM_DEBUG( 833 dbgs() << "Loops where the latch is not the exiting block are not" 834 << " supported currently.\n"); 835 ORE->emit([&]() { 836 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 837 OuterLoop->getStartLoc(), 838 OuterLoop->getHeader()) 839 << "Loops where the latch is not the exiting block cannot be" 840 " interchange currently."; 841 }); 842 return true; 843 } 844 845 SmallVector<PHINode *, 8> Inductions; 846 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 847 LLVM_DEBUG( 848 dbgs() << "Only outer loops with induction or reduction PHI nodes " 849 << "are supported currently.\n"); 850 ORE->emit([&]() { 851 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 852 OuterLoop->getStartLoc(), 853 OuterLoop->getHeader()) 854 << "Only outer loops with induction or reduction PHI nodes can be" 855 " interchanged currently."; 856 }); 857 return true; 858 } 859 860 Inductions.clear(); 861 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 862 LLVM_DEBUG( 863 dbgs() << "Only inner loops with induction or reduction PHI nodes " 864 << "are supported currently.\n"); 865 ORE->emit([&]() { 866 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 867 InnerLoop->getStartLoc(), 868 InnerLoop->getHeader()) 869 << "Only inner loops with induction or reduction PHI nodes can be" 870 " interchange currently."; 871 }); 872 return true; 873 } 874 875 // TODO: Triangular loops are not handled for now. 876 if (!isLoopStructureUnderstood()) { 877 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 878 ORE->emit([&]() { 879 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 880 InnerLoop->getStartLoc(), 881 InnerLoop->getHeader()) 882 << "Inner loop structure not understood currently."; 883 }); 884 return true; 885 } 886 887 return false; 888 } 889 890 bool LoopInterchangeLegality::findInductions( 891 Loop *L, SmallVectorImpl<PHINode *> &Inductions) { 892 for (PHINode &PHI : L->getHeader()->phis()) { 893 InductionDescriptor ID; 894 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 895 Inductions.push_back(&PHI); 896 } 897 return !Inductions.empty(); 898 } 899 900 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 901 // users are either reduction PHIs or PHIs outside the outer loop (which means 902 // the we are only interested in the final value after the loop). 903 static bool 904 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 905 SmallPtrSetImpl<PHINode *> &Reductions) { 906 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 907 for (PHINode &PHI : InnerExit->phis()) { 908 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 909 if (PHI.getNumIncomingValues() > 1) 910 return false; 911 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 912 PHINode *PN = dyn_cast<PHINode>(U); 913 return !PN || 914 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 915 })) { 916 return false; 917 } 918 } 919 return true; 920 } 921 922 // We currently support LCSSA PHI nodes in the outer loop exit, if their 923 // incoming values do not come from the outer loop latch or if the 924 // outer loop latch has a single predecessor. In that case, the value will 925 // be available if both the inner and outer loop conditions are true, which 926 // will still be true after interchanging. If we have multiple predecessor, 927 // that may not be the case, e.g. because the outer loop latch may be executed 928 // if the inner loop is not executed. 929 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 930 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 931 for (PHINode &PHI : LoopNestExit->phis()) { 932 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 933 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 934 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 935 continue; 936 937 // The incoming value is defined in the outer loop latch. Currently we 938 // only support that in case the outer loop latch has a single predecessor. 939 // This guarantees that the outer loop latch is executed if and only if 940 // the inner loop is executed (because tightlyNested() guarantees that the 941 // outer loop header only branches to the inner loop or the outer loop 942 // latch). 943 // FIXME: We could weaken this logic and allow multiple predecessors, 944 // if the values are produced outside the loop latch. We would need 945 // additional logic to update the PHI nodes in the exit block as 946 // well. 947 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 948 return false; 949 } 950 } 951 return true; 952 } 953 954 // In case of multi-level nested loops, it may occur that lcssa phis exist in 955 // the latch of InnerLoop, i.e., when defs of the incoming values are further 956 // inside the loopnest. Sometimes those incoming values are not available 957 // after interchange, since the original inner latch will become the new outer 958 // latch which may have predecessor paths that do not include those incoming 959 // values. 960 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of 961 // multi-level loop nests. 962 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 963 if (InnerLoop->getSubLoops().empty()) 964 return true; 965 // If the original outer latch has only one predecessor, then values defined 966 // further inside the looploop, e.g., in the innermost loop, will be available 967 // at the new outer latch after interchange. 968 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) 969 return true; 970 971 // The outer latch has more than one predecessors, i.e., the inner 972 // exit and the inner header. 973 // PHI nodes in the inner latch are lcssa phis where the incoming values 974 // are defined further inside the loopnest. Check if those phis are used 975 // in the original inner latch. If that is the case then bail out since 976 // those incoming values may not be available at the new outer latch. 977 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 978 for (PHINode &PHI : InnerLoopLatch->phis()) { 979 for (auto *U : PHI.users()) { 980 Instruction *UI = cast<Instruction>(U); 981 if (InnerLoopLatch == UI->getParent()) 982 return false; 983 } 984 } 985 return true; 986 } 987 988 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 989 unsigned OuterLoopId, 990 CharMatrix &DepMatrix) { 991 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 992 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 993 << " and OuterLoopId = " << OuterLoopId 994 << " due to dependence\n"); 995 ORE->emit([&]() { 996 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 997 InnerLoop->getStartLoc(), 998 InnerLoop->getHeader()) 999 << "Cannot interchange loops due to dependences."; 1000 }); 1001 return false; 1002 } 1003 // Check if outer and inner loop contain legal instructions only. 1004 for (auto *BB : OuterLoop->blocks()) 1005 for (Instruction &I : BB->instructionsWithoutDebug()) 1006 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1007 // readnone functions do not prevent interchanging. 1008 if (CI->onlyWritesMemory()) 1009 continue; 1010 LLVM_DEBUG( 1011 dbgs() << "Loops with call instructions cannot be interchanged " 1012 << "safely."); 1013 ORE->emit([&]() { 1014 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 1015 CI->getDebugLoc(), 1016 CI->getParent()) 1017 << "Cannot interchange loops due to call instruction."; 1018 }); 1019 1020 return false; 1021 } 1022 1023 if (!findInductions(InnerLoop, InnerLoopInductions)) { 1024 LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n"); 1025 return false; 1026 } 1027 1028 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { 1029 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); 1030 ORE->emit([&]() { 1031 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", 1032 InnerLoop->getStartLoc(), 1033 InnerLoop->getHeader()) 1034 << "Cannot interchange loops because unsupported PHI nodes found " 1035 "in inner loop latch."; 1036 }); 1037 return false; 1038 } 1039 1040 // TODO: The loops could not be interchanged due to current limitations in the 1041 // transform module. 1042 if (currentLimitations()) { 1043 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1044 return false; 1045 } 1046 1047 // Check if the loops are tightly nested. 1048 if (!tightlyNested(OuterLoop, InnerLoop)) { 1049 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1050 ORE->emit([&]() { 1051 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1052 InnerLoop->getStartLoc(), 1053 InnerLoop->getHeader()) 1054 << "Cannot interchange loops because they are not tightly " 1055 "nested."; 1056 }); 1057 return false; 1058 } 1059 1060 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1061 OuterInnerReductions)) { 1062 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1063 ORE->emit([&]() { 1064 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1065 InnerLoop->getStartLoc(), 1066 InnerLoop->getHeader()) 1067 << "Found unsupported PHI node in loop exit."; 1068 }); 1069 return false; 1070 } 1071 1072 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1073 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1074 ORE->emit([&]() { 1075 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1076 OuterLoop->getStartLoc(), 1077 OuterLoop->getHeader()) 1078 << "Found unsupported PHI node in loop exit."; 1079 }); 1080 return false; 1081 } 1082 1083 return true; 1084 } 1085 1086 int LoopInterchangeProfitability::getInstrOrderCost() { 1087 unsigned GoodOrder, BadOrder; 1088 BadOrder = GoodOrder = 0; 1089 for (BasicBlock *BB : InnerLoop->blocks()) { 1090 for (Instruction &Ins : *BB) { 1091 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1092 unsigned NumOp = GEP->getNumOperands(); 1093 bool FoundInnerInduction = false; 1094 bool FoundOuterInduction = false; 1095 for (unsigned i = 0; i < NumOp; ++i) { 1096 // Skip operands that are not SCEV-able. 1097 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1098 continue; 1099 1100 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1101 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1102 if (!AR) 1103 continue; 1104 1105 // If we find the inner induction after an outer induction e.g. 1106 // for(int i=0;i<N;i++) 1107 // for(int j=0;j<N;j++) 1108 // A[i][j] = A[i-1][j-1]+k; 1109 // then it is a good order. 1110 if (AR->getLoop() == InnerLoop) { 1111 // We found an InnerLoop induction after OuterLoop induction. It is 1112 // a good order. 1113 FoundInnerInduction = true; 1114 if (FoundOuterInduction) { 1115 GoodOrder++; 1116 break; 1117 } 1118 } 1119 // If we find the outer induction after an inner induction e.g. 1120 // for(int i=0;i<N;i++) 1121 // for(int j=0;j<N;j++) 1122 // A[j][i] = A[j-1][i-1]+k; 1123 // then it is a bad order. 1124 if (AR->getLoop() == OuterLoop) { 1125 // We found an OuterLoop induction after InnerLoop induction. It is 1126 // a bad order. 1127 FoundOuterInduction = true; 1128 if (FoundInnerInduction) { 1129 BadOrder++; 1130 break; 1131 } 1132 } 1133 } 1134 } 1135 } 1136 } 1137 return GoodOrder - BadOrder; 1138 } 1139 1140 static bool isProfitableForVectorization(unsigned InnerLoopId, 1141 unsigned OuterLoopId, 1142 CharMatrix &DepMatrix) { 1143 // TODO: Improve this heuristic to catch more cases. 1144 // If the inner loop is loop independent or doesn't carry any dependency it is 1145 // profitable to move this to outer position. 1146 for (auto &Row : DepMatrix) { 1147 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1148 return false; 1149 // TODO: We need to improve this heuristic. 1150 if (Row[OuterLoopId] != '=') 1151 return false; 1152 } 1153 // If outer loop has dependence and inner loop is loop independent then it is 1154 // profitable to interchange to enable parallelism. 1155 // If there are no dependences, interchanging will not improve anything. 1156 return !DepMatrix.empty(); 1157 } 1158 1159 bool LoopInterchangeProfitability::isProfitable( 1160 const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId, 1161 unsigned OuterLoopId, CharMatrix &DepMatrix, 1162 const DenseMap<const Loop *, unsigned> &CostMap) { 1163 // TODO: Remove the legacy cost model. 1164 1165 // This is the new cost model returned from loop cache analysis. 1166 // A smaller index means the loop should be placed an outer loop, and vice 1167 // versa. 1168 if (CostMap.find(InnerLoop) != CostMap.end() && 1169 CostMap.find(OuterLoop) != CostMap.end()) { 1170 unsigned InnerIndex = 0, OuterIndex = 0; 1171 InnerIndex = CostMap.find(InnerLoop)->second; 1172 OuterIndex = CostMap.find(OuterLoop)->second; 1173 LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex 1174 << ", OuterIndex = " << OuterIndex << "\n"); 1175 if (InnerIndex < OuterIndex) 1176 return true; 1177 } else { 1178 // Legacy cost model: this is rough cost estimation algorithm. It counts the 1179 // good and bad order of induction variables in the instruction and allows 1180 // reordering if number of bad orders is more than good. 1181 int Cost = getInstrOrderCost(); 1182 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1183 if (Cost < -LoopInterchangeCostThreshold) 1184 return true; 1185 } 1186 1187 // It is not profitable as per current cache profitability model. But check if 1188 // we can move this loop outside to improve parallelism. 1189 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1190 return true; 1191 1192 ORE->emit([&]() { 1193 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1194 InnerLoop->getStartLoc(), 1195 InnerLoop->getHeader()) 1196 << "Interchanging loops is too costly and it does not improve " 1197 "parallelism."; 1198 }); 1199 return false; 1200 } 1201 1202 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1203 Loop *InnerLoop) { 1204 for (Loop *L : *OuterLoop) 1205 if (L == InnerLoop) { 1206 OuterLoop->removeChildLoop(L); 1207 return; 1208 } 1209 llvm_unreachable("Couldn't find loop"); 1210 } 1211 1212 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1213 /// new inner and outer loop after interchanging: NewInner is the original 1214 /// outer loop and NewOuter is the original inner loop. 1215 /// 1216 /// Before interchanging, we have the following structure 1217 /// Outer preheader 1218 // Outer header 1219 // Inner preheader 1220 // Inner header 1221 // Inner body 1222 // Inner latch 1223 // outer bbs 1224 // Outer latch 1225 // 1226 // After interchanging: 1227 // Inner preheader 1228 // Inner header 1229 // Outer preheader 1230 // Outer header 1231 // Inner body 1232 // outer bbs 1233 // Outer latch 1234 // Inner latch 1235 void LoopInterchangeTransform::restructureLoops( 1236 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1237 BasicBlock *OrigOuterPreHeader) { 1238 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1239 // The original inner loop preheader moves from the new inner loop to 1240 // the parent loop, if there is one. 1241 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1242 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1243 1244 // Switch the loop levels. 1245 if (OuterLoopParent) { 1246 // Remove the loop from its parent loop. 1247 removeChildLoop(OuterLoopParent, NewInner); 1248 removeChildLoop(NewInner, NewOuter); 1249 OuterLoopParent->addChildLoop(NewOuter); 1250 } else { 1251 removeChildLoop(NewInner, NewOuter); 1252 LI->changeTopLevelLoop(NewInner, NewOuter); 1253 } 1254 while (!NewOuter->isInnermost()) 1255 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1256 NewOuter->addChildLoop(NewInner); 1257 1258 // BBs from the original inner loop. 1259 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1260 1261 // Add BBs from the original outer loop to the original inner loop (excluding 1262 // BBs already in inner loop) 1263 for (BasicBlock *BB : NewInner->blocks()) 1264 if (LI->getLoopFor(BB) == NewInner) 1265 NewOuter->addBlockEntry(BB); 1266 1267 // Now remove inner loop header and latch from the new inner loop and move 1268 // other BBs (the loop body) to the new inner loop. 1269 BasicBlock *OuterHeader = NewOuter->getHeader(); 1270 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1271 for (BasicBlock *BB : OrigInnerBBs) { 1272 // Nothing will change for BBs in child loops. 1273 if (LI->getLoopFor(BB) != NewOuter) 1274 continue; 1275 // Remove the new outer loop header and latch from the new inner loop. 1276 if (BB == OuterHeader || BB == OuterLatch) 1277 NewInner->removeBlockFromLoop(BB); 1278 else 1279 LI->changeLoopFor(BB, NewInner); 1280 } 1281 1282 // The preheader of the original outer loop becomes part of the new 1283 // outer loop. 1284 NewOuter->addBlockEntry(OrigOuterPreHeader); 1285 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1286 1287 // Tell SE that we move the loops around. 1288 SE->forgetLoop(NewOuter); 1289 SE->forgetLoop(NewInner); 1290 } 1291 1292 bool LoopInterchangeTransform::transform() { 1293 bool Transformed = false; 1294 1295 if (InnerLoop->getSubLoops().empty()) { 1296 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1297 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1298 auto &InductionPHIs = LIL.getInnerLoopInductions(); 1299 if (InductionPHIs.empty()) { 1300 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1301 return false; 1302 } 1303 1304 SmallVector<Instruction *, 8> InnerIndexVarList; 1305 for (PHINode *CurInductionPHI : InductionPHIs) { 1306 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1307 InnerIndexVarList.push_back( 1308 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1))); 1309 else 1310 InnerIndexVarList.push_back( 1311 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0))); 1312 } 1313 1314 // Create a new latch block for the inner loop. We split at the 1315 // current latch's terminator and then move the condition and all 1316 // operands that are not either loop-invariant or the induction PHI into the 1317 // new latch block. 1318 BasicBlock *NewLatch = 1319 SplitBlock(InnerLoop->getLoopLatch(), 1320 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1321 1322 SmallSetVector<Instruction *, 4> WorkList; 1323 unsigned i = 0; 1324 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() { 1325 for (; i < WorkList.size(); i++) { 1326 // Duplicate instruction and move it the new latch. Update uses that 1327 // have been moved. 1328 Instruction *NewI = WorkList[i]->clone(); 1329 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1330 assert(!NewI->mayHaveSideEffects() && 1331 "Moving instructions with side-effects may change behavior of " 1332 "the loop nest!"); 1333 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1334 Instruction *UserI = cast<Instruction>(U.getUser()); 1335 if (!InnerLoop->contains(UserI->getParent()) || 1336 UserI->getParent() == NewLatch || 1337 llvm::is_contained(InductionPHIs, UserI)) 1338 U.set(NewI); 1339 } 1340 // Add operands of moved instruction to the worklist, except if they are 1341 // outside the inner loop or are the induction PHI. 1342 for (Value *Op : WorkList[i]->operands()) { 1343 Instruction *OpI = dyn_cast<Instruction>(Op); 1344 if (!OpI || 1345 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1346 llvm::is_contained(InductionPHIs, OpI)) 1347 continue; 1348 WorkList.insert(OpI); 1349 } 1350 } 1351 }; 1352 1353 // FIXME: Should we interchange when we have a constant condition? 1354 Instruction *CondI = dyn_cast<Instruction>( 1355 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1356 ->getCondition()); 1357 if (CondI) 1358 WorkList.insert(CondI); 1359 MoveInstructions(); 1360 for (Instruction *InnerIndexVar : InnerIndexVarList) 1361 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1362 MoveInstructions(); 1363 1364 // Splits the inner loops phi nodes out into a separate basic block. 1365 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1366 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1367 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1368 } 1369 1370 // Instructions in the original inner loop preheader may depend on values 1371 // defined in the outer loop header. Move them there, because the original 1372 // inner loop preheader will become the entry into the interchanged loop nest. 1373 // Currently we move all instructions and rely on LICM to move invariant 1374 // instructions outside the loop nest. 1375 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1376 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1377 if (InnerLoopPreHeader != OuterLoopHeader) { 1378 SmallPtrSet<Instruction *, 4> NeedsMoving; 1379 for (Instruction &I : 1380 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1381 std::prev(InnerLoopPreHeader->end())))) 1382 I.moveBefore(OuterLoopHeader->getTerminator()); 1383 } 1384 1385 Transformed |= adjustLoopLinks(); 1386 if (!Transformed) { 1387 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1388 return false; 1389 } 1390 1391 return true; 1392 } 1393 1394 /// \brief Move all instructions except the terminator from FromBB right before 1395 /// InsertBefore 1396 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1397 auto &ToList = InsertBefore->getParent()->getInstList(); 1398 auto &FromList = FromBB->getInstList(); 1399 1400 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1401 FromBB->getTerminator()->getIterator()); 1402 } 1403 1404 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1405 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1406 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1407 // from BB1 afterwards. 1408 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1409 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1410 for (Instruction *I : TempInstrs) 1411 I->removeFromParent(); 1412 1413 // Move instructions from BB2 to BB1. 1414 moveBBContents(BB2, BB1->getTerminator()); 1415 1416 // Move instructions from TempInstrs to BB2. 1417 for (Instruction *I : TempInstrs) 1418 I->insertBefore(BB2->getTerminator()); 1419 } 1420 1421 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1422 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1423 // \p OldBB is exactly once in BI's successor list. 1424 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1425 BasicBlock *NewBB, 1426 std::vector<DominatorTree::UpdateType> &DTUpdates, 1427 bool MustUpdateOnce = true) { 1428 assert((!MustUpdateOnce || 1429 llvm::count_if(successors(BI), 1430 [OldBB](BasicBlock *BB) { 1431 return BB == OldBB; 1432 }) == 1) && "BI must jump to OldBB exactly once."); 1433 bool Changed = false; 1434 for (Use &Op : BI->operands()) 1435 if (Op == OldBB) { 1436 Op.set(NewBB); 1437 Changed = true; 1438 } 1439 1440 if (Changed) { 1441 DTUpdates.push_back( 1442 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1443 DTUpdates.push_back( 1444 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1445 } 1446 assert(Changed && "Expected a successor to be updated"); 1447 } 1448 1449 // Move Lcssa PHIs to the right place. 1450 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1451 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1452 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1453 Loop *InnerLoop, LoopInfo *LI) { 1454 1455 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1456 // defined either in the header or latch. Those blocks will become header and 1457 // latch of the new outer loop, and the only possible users can PHI nodes 1458 // in the exit block of the loop nest or the outer loop header (reduction 1459 // PHIs, in that case, the incoming value must be defined in the inner loop 1460 // header). We can just substitute the user with the incoming value and remove 1461 // the PHI. 1462 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1463 assert(P.getNumIncomingValues() == 1 && 1464 "Only loops with a single exit are supported!"); 1465 1466 // Incoming values are guaranteed be instructions currently. 1467 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1468 // In case of multi-level nested loops, follow LCSSA to find the incoming 1469 // value defined from the innermost loop. 1470 auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI)); 1471 // Skip phis with incoming values from the inner loop body, excluding the 1472 // header and latch. 1473 if (IncIInnerMost->getParent() != InnerLatch && 1474 IncIInnerMost->getParent() != InnerHeader) 1475 continue; 1476 1477 assert(all_of(P.users(), 1478 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1479 return (cast<PHINode>(U)->getParent() == OuterHeader && 1480 IncI->getParent() == InnerHeader) || 1481 cast<PHINode>(U)->getParent() == OuterExit; 1482 }) && 1483 "Can only replace phis iff the uses are in the loop nest exit or " 1484 "the incoming value is defined in the inner header (it will " 1485 "dominate all loop blocks after interchanging)"); 1486 P.replaceAllUsesWith(IncI); 1487 P.eraseFromParent(); 1488 } 1489 1490 SmallVector<PHINode *, 8> LcssaInnerExit; 1491 for (PHINode &P : InnerExit->phis()) 1492 LcssaInnerExit.push_back(&P); 1493 1494 SmallVector<PHINode *, 8> LcssaInnerLatch; 1495 for (PHINode &P : InnerLatch->phis()) 1496 LcssaInnerLatch.push_back(&P); 1497 1498 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1499 // If a PHI node has users outside of InnerExit, it has a use outside the 1500 // interchanged loop and we have to preserve it. We move these to 1501 // InnerLatch, which will become the new exit block for the innermost 1502 // loop after interchanging. 1503 for (PHINode *P : LcssaInnerExit) 1504 P->moveBefore(InnerLatch->getFirstNonPHI()); 1505 1506 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1507 // and we have to move them to the new inner latch. 1508 for (PHINode *P : LcssaInnerLatch) 1509 P->moveBefore(InnerExit->getFirstNonPHI()); 1510 1511 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1512 // incoming values defined in the outer loop, we have to add a new PHI 1513 // in the inner loop latch, which became the exit block of the outer loop, 1514 // after interchanging. 1515 if (OuterExit) { 1516 for (PHINode &P : OuterExit->phis()) { 1517 if (P.getNumIncomingValues() != 1) 1518 continue; 1519 // Skip Phis with incoming values defined in the inner loop. Those should 1520 // already have been updated. 1521 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1522 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1523 continue; 1524 1525 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1526 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1527 NewPhi->setIncomingBlock(0, OuterLatch); 1528 // We might have incoming edges from other BBs, i.e., the original outer 1529 // header. 1530 for (auto *Pred : predecessors(InnerLatch)) { 1531 if (Pred == OuterLatch) 1532 continue; 1533 NewPhi->addIncoming(P.getIncomingValue(0), Pred); 1534 } 1535 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1536 P.setIncomingValue(0, NewPhi); 1537 } 1538 } 1539 1540 // Now adjust the incoming blocks for the LCSSA PHIs. 1541 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1542 // with the new latch. 1543 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1544 } 1545 1546 bool LoopInterchangeTransform::adjustLoopBranches() { 1547 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1548 std::vector<DominatorTree::UpdateType> DTUpdates; 1549 1550 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1551 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1552 1553 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1554 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1555 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1556 // Ensure that both preheaders do not contain PHI nodes and have single 1557 // predecessors. This allows us to move them easily. We use 1558 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1559 // preheaders do not satisfy those conditions. 1560 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1561 !OuterLoopPreHeader->getUniquePredecessor()) 1562 OuterLoopPreHeader = 1563 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1564 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1565 InnerLoopPreHeader = 1566 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1567 1568 // Adjust the loop preheader 1569 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1570 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1571 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1572 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1573 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1574 BasicBlock *InnerLoopLatchPredecessor = 1575 InnerLoopLatch->getUniquePredecessor(); 1576 BasicBlock *InnerLoopLatchSuccessor; 1577 BasicBlock *OuterLoopLatchSuccessor; 1578 1579 BranchInst *OuterLoopLatchBI = 1580 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1581 BranchInst *InnerLoopLatchBI = 1582 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1583 BranchInst *OuterLoopHeaderBI = 1584 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1585 BranchInst *InnerLoopHeaderBI = 1586 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1587 1588 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1589 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1590 !InnerLoopHeaderBI) 1591 return false; 1592 1593 BranchInst *InnerLoopLatchPredecessorBI = 1594 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1595 BranchInst *OuterLoopPredecessorBI = 1596 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1597 1598 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1599 return false; 1600 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1601 if (!InnerLoopHeaderSuccessor) 1602 return false; 1603 1604 // Adjust Loop Preheader and headers. 1605 // The branches in the outer loop predecessor and the outer loop header can 1606 // be unconditional branches or conditional branches with duplicates. Consider 1607 // this when updating the successors. 1608 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1609 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1610 // The outer loop header might or might not branch to the outer latch. 1611 // We are guaranteed to branch to the inner loop preheader. 1612 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1613 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1614 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1615 DTUpdates, 1616 /*MustUpdateOnce=*/false); 1617 } 1618 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1619 InnerLoopHeaderSuccessor, DTUpdates, 1620 /*MustUpdateOnce=*/false); 1621 1622 // Adjust reduction PHI's now that the incoming block has changed. 1623 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1624 OuterLoopHeader); 1625 1626 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1627 OuterLoopPreHeader, DTUpdates); 1628 1629 // -------------Adjust loop latches----------- 1630 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1631 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1632 else 1633 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1634 1635 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1636 InnerLoopLatchSuccessor, DTUpdates); 1637 1638 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1639 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1640 else 1641 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1642 1643 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1644 OuterLoopLatchSuccessor, DTUpdates); 1645 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1646 DTUpdates); 1647 1648 DT->applyUpdates(DTUpdates); 1649 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1650 OuterLoopPreHeader); 1651 1652 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1653 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1654 InnerLoop, LI); 1655 // For PHIs in the exit block of the outer loop, outer's latch has been 1656 // replaced by Inners'. 1657 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1658 1659 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1660 // Now update the reduction PHIs in the inner and outer loop headers. 1661 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1662 for (PHINode &PHI : InnerLoopHeader->phis()) 1663 if (OuterInnerReductions.contains(&PHI)) 1664 InnerLoopPHIs.push_back(&PHI); 1665 1666 for (PHINode &PHI : OuterLoopHeader->phis()) 1667 if (OuterInnerReductions.contains(&PHI)) 1668 OuterLoopPHIs.push_back(&PHI); 1669 1670 // Now move the remaining reduction PHIs from outer to inner loop header and 1671 // vice versa. The PHI nodes must be part of a reduction across the inner and 1672 // outer loop and all the remains to do is and updating the incoming blocks. 1673 for (PHINode *PHI : OuterLoopPHIs) { 1674 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump();); 1675 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1676 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1677 } 1678 for (PHINode *PHI : InnerLoopPHIs) { 1679 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump();); 1680 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1681 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1682 } 1683 1684 // Update the incoming blocks for moved PHI nodes. 1685 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1686 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1687 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1688 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1689 1690 // Values defined in the outer loop header could be used in the inner loop 1691 // latch. In that case, we need to create LCSSA phis for them, because after 1692 // interchanging they will be defined in the new inner loop and used in the 1693 // new outer loop. 1694 IRBuilder<> Builder(OuterLoopHeader->getContext()); 1695 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1696 for (Instruction &I : 1697 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1698 MayNeedLCSSAPhis.push_back(&I); 1699 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder); 1700 1701 return true; 1702 } 1703 1704 bool LoopInterchangeTransform::adjustLoopLinks() { 1705 // Adjust all branches in the inner and outer loop. 1706 bool Changed = adjustLoopBranches(); 1707 if (Changed) { 1708 // We have interchanged the preheaders so we need to interchange the data in 1709 // the preheaders as well. This is because the content of the inner 1710 // preheader was previously executed inside the outer loop. 1711 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1712 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1713 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1714 } 1715 return Changed; 1716 } 1717 1718 namespace { 1719 /// Main LoopInterchange Pass. 1720 struct LoopInterchangeLegacyPass : public LoopPass { 1721 static char ID; 1722 1723 LoopInterchangeLegacyPass() : LoopPass(ID) { 1724 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry()); 1725 } 1726 1727 void getAnalysisUsage(AnalysisUsage &AU) const override { 1728 AU.addRequired<DependenceAnalysisWrapperPass>(); 1729 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1730 1731 getLoopAnalysisUsage(AU); 1732 } 1733 1734 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1735 if (skipLoop(L)) 1736 return false; 1737 1738 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1739 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1740 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1741 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1742 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1743 std::unique_ptr<CacheCost> CC = nullptr; 1744 return LoopInterchange(SE, LI, DI, DT, CC, ORE).run(L); 1745 } 1746 }; 1747 } // namespace 1748 1749 char LoopInterchangeLegacyPass::ID = 0; 1750 1751 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange", 1752 "Interchanges loops for cache reuse", false, false) 1753 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1754 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1755 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1756 1757 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange", 1758 "Interchanges loops for cache reuse", false, false) 1759 1760 Pass *llvm::createLoopInterchangePass() { 1761 return new LoopInterchangeLegacyPass(); 1762 } 1763 1764 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1765 LoopAnalysisManager &AM, 1766 LoopStandardAnalysisResults &AR, 1767 LPMUpdater &U) { 1768 Function &F = *LN.getParent(); 1769 1770 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1771 std::unique_ptr<CacheCost> CC = 1772 CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI); 1773 OptimizationRemarkEmitter ORE(&F); 1774 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN)) 1775 return PreservedAnalyses::all(); 1776 return getLoopPassPreservedAnalyses(); 1777 } 1778