xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp (revision 972a253a57b6f144b0e4a3e2080a2a0076ec55a0)
1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopCacheAnalysis.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/LoopNestAnalysis.h"
24 #include "llvm/Analysis/LoopPass.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 #include <cassert>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "loop-interchange"
56 
57 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
58 
59 static cl::opt<int> LoopInterchangeCostThreshold(
60     "loop-interchange-threshold", cl::init(0), cl::Hidden,
61     cl::desc("Interchange if you gain more than this number"));
62 
63 namespace {
64 
65 using LoopVector = SmallVector<Loop *, 8>;
66 
67 // TODO: Check if we can use a sparse matrix here.
68 using CharMatrix = std::vector<std::vector<char>>;
69 
70 } // end anonymous namespace
71 
72 // Maximum number of dependencies that can be handled in the dependency matrix.
73 static const unsigned MaxMemInstrCount = 100;
74 
75 // Maximum loop depth supported.
76 static const unsigned MaxLoopNestDepth = 10;
77 
78 #ifdef DUMP_DEP_MATRICIES
79 static void printDepMatrix(CharMatrix &DepMatrix) {
80   for (auto &Row : DepMatrix) {
81     for (auto D : Row)
82       LLVM_DEBUG(dbgs() << D << " ");
83     LLVM_DEBUG(dbgs() << "\n");
84   }
85 }
86 #endif
87 
88 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
89                                      Loop *L, DependenceInfo *DI) {
90   using ValueVector = SmallVector<Value *, 16>;
91 
92   ValueVector MemInstr;
93 
94   // For each block.
95   for (BasicBlock *BB : L->blocks()) {
96     // Scan the BB and collect legal loads and stores.
97     for (Instruction &I : *BB) {
98       if (!isa<Instruction>(I))
99         return false;
100       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
101         if (!Ld->isSimple())
102           return false;
103         MemInstr.push_back(&I);
104       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
105         if (!St->isSimple())
106           return false;
107         MemInstr.push_back(&I);
108       }
109     }
110   }
111 
112   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
113                     << " Loads and Stores to analyze\n");
114 
115   ValueVector::iterator I, IE, J, JE;
116 
117   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
118     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
119       std::vector<char> Dep;
120       Instruction *Src = cast<Instruction>(*I);
121       Instruction *Dst = cast<Instruction>(*J);
122       // Ignore Input dependencies.
123       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
124         continue;
125       // Track Output, Flow, and Anti dependencies.
126       if (auto D = DI->depends(Src, Dst, true)) {
127         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
128         LLVM_DEBUG(StringRef DepType =
129                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
130                    dbgs() << "Found " << DepType
131                           << " dependency between Src and Dst\n"
132                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
133         unsigned Levels = D->getLevels();
134         char Direction;
135         for (unsigned II = 1; II <= Levels; ++II) {
136           const SCEV *Distance = D->getDistance(II);
137           const SCEVConstant *SCEVConst =
138               dyn_cast_or_null<SCEVConstant>(Distance);
139           if (SCEVConst) {
140             const ConstantInt *CI = SCEVConst->getValue();
141             if (CI->isNegative())
142               Direction = '<';
143             else if (CI->isZero())
144               Direction = '=';
145             else
146               Direction = '>';
147             Dep.push_back(Direction);
148           } else if (D->isScalar(II)) {
149             Direction = 'S';
150             Dep.push_back(Direction);
151           } else {
152             unsigned Dir = D->getDirection(II);
153             if (Dir == Dependence::DVEntry::LT ||
154                 Dir == Dependence::DVEntry::LE)
155               Direction = '<';
156             else if (Dir == Dependence::DVEntry::GT ||
157                      Dir == Dependence::DVEntry::GE)
158               Direction = '>';
159             else if (Dir == Dependence::DVEntry::EQ)
160               Direction = '=';
161             else
162               Direction = '*';
163             Dep.push_back(Direction);
164           }
165         }
166         while (Dep.size() != Level) {
167           Dep.push_back('I');
168         }
169 
170         DepMatrix.push_back(Dep);
171         if (DepMatrix.size() > MaxMemInstrCount) {
172           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
173                             << " dependencies inside loop\n");
174           return false;
175         }
176       }
177     }
178   }
179 
180   return true;
181 }
182 
183 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
184 // matrix by exchanging the two columns.
185 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
186                                     unsigned ToIndx) {
187   for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
188     std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
189 }
190 
191 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
192 // '>'
193 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
194                                    unsigned Column) {
195   for (unsigned i = 0; i <= Column; ++i) {
196     if (DepMatrix[Row][i] == '<')
197       return false;
198     if (DepMatrix[Row][i] == '>')
199       return true;
200   }
201   // All dependencies were '=','S' or 'I'
202   return false;
203 }
204 
205 // Checks if no dependence exist in the dependency matrix in Row before Column.
206 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
207                                  unsigned Column) {
208   for (unsigned i = 0; i < Column; ++i) {
209     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
210         DepMatrix[Row][i] != 'I')
211       return false;
212   }
213   return true;
214 }
215 
216 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
217                                 unsigned OuterLoopId, char InnerDep,
218                                 char OuterDep) {
219   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
220     return false;
221 
222   if (InnerDep == OuterDep)
223     return true;
224 
225   // It is legal to interchange if and only if after interchange no row has a
226   // '>' direction as the leftmost non-'='.
227 
228   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
229     return true;
230 
231   if (InnerDep == '<')
232     return true;
233 
234   if (InnerDep == '>') {
235     // If OuterLoopId represents outermost loop then interchanging will make the
236     // 1st dependency as '>'
237     if (OuterLoopId == 0)
238       return false;
239 
240     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
241     // interchanging will result in this row having an outermost non '='
242     // dependency of '>'
243     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
244       return true;
245   }
246 
247   return false;
248 }
249 
250 // Checks if it is legal to interchange 2 loops.
251 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
252 // if the direction matrix, after the same permutation is applied to its
253 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
254 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
255                                       unsigned InnerLoopId,
256                                       unsigned OuterLoopId) {
257   unsigned NumRows = DepMatrix.size();
258   // For each row check if it is valid to interchange.
259   for (unsigned Row = 0; Row < NumRows; ++Row) {
260     char InnerDep = DepMatrix[Row][InnerLoopId];
261     char OuterDep = DepMatrix[Row][OuterLoopId];
262     if (InnerDep == '*' || OuterDep == '*')
263       return false;
264     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
265       return false;
266   }
267   return true;
268 }
269 
270 static void populateWorklist(Loop &L, LoopVector &LoopList) {
271   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
272                     << L.getHeader()->getParent()->getName() << " Loop: %"
273                     << L.getHeader()->getName() << '\n');
274   assert(LoopList.empty() && "LoopList should initially be empty!");
275   Loop *CurrentLoop = &L;
276   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
277   while (!Vec->empty()) {
278     // The current loop has multiple subloops in it hence it is not tightly
279     // nested.
280     // Discard all loops above it added into Worklist.
281     if (Vec->size() != 1) {
282       LoopList = {};
283       return;
284     }
285 
286     LoopList.push_back(CurrentLoop);
287     CurrentLoop = Vec->front();
288     Vec = &CurrentLoop->getSubLoops();
289   }
290   LoopList.push_back(CurrentLoop);
291 }
292 
293 namespace {
294 
295 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
296 class LoopInterchangeLegality {
297 public:
298   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
299                           OptimizationRemarkEmitter *ORE)
300       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
301 
302   /// Check if the loops can be interchanged.
303   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
304                            CharMatrix &DepMatrix);
305 
306   /// Discover induction PHIs in the header of \p L. Induction
307   /// PHIs are added to \p Inductions.
308   bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions);
309 
310   /// Check if the loop structure is understood. We do not handle triangular
311   /// loops for now.
312   bool isLoopStructureUnderstood();
313 
314   bool currentLimitations();
315 
316   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
317     return OuterInnerReductions;
318   }
319 
320   const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const {
321     return InnerLoopInductions;
322   }
323 
324 private:
325   bool tightlyNested(Loop *Outer, Loop *Inner);
326   bool containsUnsafeInstructions(BasicBlock *BB);
327 
328   /// Discover induction and reduction PHIs in the header of \p L. Induction
329   /// PHIs are added to \p Inductions, reductions are added to
330   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
331   /// to be passed as \p InnerLoop.
332   bool findInductionAndReductions(Loop *L,
333                                   SmallVector<PHINode *, 8> &Inductions,
334                                   Loop *InnerLoop);
335 
336   Loop *OuterLoop;
337   Loop *InnerLoop;
338 
339   ScalarEvolution *SE;
340 
341   /// Interface to emit optimization remarks.
342   OptimizationRemarkEmitter *ORE;
343 
344   /// Set of reduction PHIs taking part of a reduction across the inner and
345   /// outer loop.
346   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
347 
348   /// Set of inner loop induction PHIs
349   SmallVector<PHINode *, 8> InnerLoopInductions;
350 };
351 
352 /// LoopInterchangeProfitability checks if it is profitable to interchange the
353 /// loop.
354 class LoopInterchangeProfitability {
355 public:
356   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
357                                OptimizationRemarkEmitter *ORE)
358       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
359 
360   /// Check if the loop interchange is profitable.
361   bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop,
362                     unsigned InnerLoopId, unsigned OuterLoopId,
363                     CharMatrix &DepMatrix,
364                     const DenseMap<const Loop *, unsigned> &CostMap);
365 
366 private:
367   int getInstrOrderCost();
368 
369   Loop *OuterLoop;
370   Loop *InnerLoop;
371 
372   /// Scev analysis.
373   ScalarEvolution *SE;
374 
375   /// Interface to emit optimization remarks.
376   OptimizationRemarkEmitter *ORE;
377 };
378 
379 /// LoopInterchangeTransform interchanges the loop.
380 class LoopInterchangeTransform {
381 public:
382   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
383                            LoopInfo *LI, DominatorTree *DT,
384                            const LoopInterchangeLegality &LIL)
385       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
386 
387   /// Interchange OuterLoop and InnerLoop.
388   bool transform();
389   void restructureLoops(Loop *NewInner, Loop *NewOuter,
390                         BasicBlock *OrigInnerPreHeader,
391                         BasicBlock *OrigOuterPreHeader);
392   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
393 
394 private:
395   bool adjustLoopLinks();
396   bool adjustLoopBranches();
397 
398   Loop *OuterLoop;
399   Loop *InnerLoop;
400 
401   /// Scev analysis.
402   ScalarEvolution *SE;
403 
404   LoopInfo *LI;
405   DominatorTree *DT;
406 
407   const LoopInterchangeLegality &LIL;
408 };
409 
410 struct LoopInterchange {
411   ScalarEvolution *SE = nullptr;
412   LoopInfo *LI = nullptr;
413   DependenceInfo *DI = nullptr;
414   DominatorTree *DT = nullptr;
415   std::unique_ptr<CacheCost> CC = nullptr;
416 
417   /// Interface to emit optimization remarks.
418   OptimizationRemarkEmitter *ORE;
419 
420   LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
421                   DominatorTree *DT, std::unique_ptr<CacheCost> &CC,
422                   OptimizationRemarkEmitter *ORE)
423       : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {}
424 
425   bool run(Loop *L) {
426     if (L->getParentLoop())
427       return false;
428     SmallVector<Loop *, 8> LoopList;
429     populateWorklist(*L, LoopList);
430     return processLoopList(LoopList);
431   }
432 
433   bool run(LoopNest &LN) {
434     SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end());
435     for (unsigned I = 1; I < LoopList.size(); ++I)
436       if (LoopList[I]->getParentLoop() != LoopList[I - 1])
437         return false;
438     return processLoopList(LoopList);
439   }
440 
441   bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
442     for (Loop *L : LoopList) {
443       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
444       if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
445         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
446         return false;
447       }
448       if (L->getNumBackEdges() != 1) {
449         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
450         return false;
451       }
452       if (!L->getExitingBlock()) {
453         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
454         return false;
455       }
456     }
457     return true;
458   }
459 
460   unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
461     // TODO: Add a better heuristic to select the loop to be interchanged based
462     // on the dependence matrix. Currently we select the innermost loop.
463     return LoopList.size() - 1;
464   }
465 
466   bool processLoopList(SmallVectorImpl<Loop *> &LoopList) {
467     bool Changed = false;
468     unsigned LoopNestDepth = LoopList.size();
469     if (LoopNestDepth < 2) {
470       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
471       return false;
472     }
473     if (LoopNestDepth > MaxLoopNestDepth) {
474       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
475                         << MaxLoopNestDepth << "\n");
476       return false;
477     }
478     if (!isComputableLoopNest(LoopList)) {
479       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
480       return false;
481     }
482 
483     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
484                       << "\n");
485 
486     CharMatrix DependencyMatrix;
487     Loop *OuterMostLoop = *(LoopList.begin());
488     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
489                                   OuterMostLoop, DI)) {
490       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
491       return false;
492     }
493 #ifdef DUMP_DEP_MATRICIES
494     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
495     printDepMatrix(DependencyMatrix);
496 #endif
497 
498     // Get the Outermost loop exit.
499     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
500     if (!LoopNestExit) {
501       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
502       return false;
503     }
504 
505     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
506     // Obtain the loop vector returned from loop cache analysis beforehand,
507     // and put each <Loop, index> pair into a map for constant time query
508     // later. Indices in loop vector reprsent the optimal order of the
509     // corresponding loop, e.g., given a loopnest with depth N, index 0
510     // indicates the loop should be placed as the outermost loop and index N
511     // indicates the loop should be placed as the innermost loop.
512     //
513     // For the old pass manager CacheCost would be null.
514     DenseMap<const Loop *, unsigned> CostMap;
515     if (CC != nullptr) {
516       const auto &LoopCosts = CC->getLoopCosts();
517       for (unsigned i = 0; i < LoopCosts.size(); i++) {
518         CostMap[LoopCosts[i].first] = i;
519       }
520     }
521     // We try to achieve the globally optimal memory access for the loopnest,
522     // and do interchange based on a bubble-sort fasion. We start from
523     // the innermost loop, move it outwards to the best possible position
524     // and repeat this process.
525     for (unsigned j = SelecLoopId; j > 0; j--) {
526       bool ChangedPerIter = false;
527       for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) {
528         bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1,
529                                         DependencyMatrix, CostMap);
530         if (!Interchanged)
531           continue;
532         // Loops interchanged, update LoopList accordingly.
533         std::swap(LoopList[i - 1], LoopList[i]);
534         // Update the DependencyMatrix
535         interChangeDependencies(DependencyMatrix, i, i - 1);
536 #ifdef DUMP_DEP_MATRICIES
537         LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
538         printDepMatrix(DependencyMatrix);
539 #endif
540         ChangedPerIter |= Interchanged;
541         Changed |= Interchanged;
542       }
543       // Early abort if there was no interchange during an entire round of
544       // moving loops outwards.
545       if (!ChangedPerIter)
546         break;
547     }
548     return Changed;
549   }
550 
551   bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
552                    unsigned OuterLoopId,
553                    std::vector<std::vector<char>> &DependencyMatrix,
554                    const DenseMap<const Loop *, unsigned> &CostMap) {
555     LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
556                       << " and OuterLoopId = " << OuterLoopId << "\n");
557     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
558     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
559       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
560       return false;
561     }
562     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
563     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
564     if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId,
565                           DependencyMatrix, CostMap)) {
566       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
567       return false;
568     }
569 
570     ORE->emit([&]() {
571       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
572                                 InnerLoop->getStartLoc(),
573                                 InnerLoop->getHeader())
574              << "Loop interchanged with enclosing loop.";
575     });
576 
577     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
578     LIT.transform();
579     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
580     LoopsInterchanged++;
581 
582     assert(InnerLoop->isLCSSAForm(*DT) &&
583            "Inner loop not left in LCSSA form after loop interchange!");
584     assert(OuterLoop->isLCSSAForm(*DT) &&
585            "Outer loop not left in LCSSA form after loop interchange!");
586 
587     return true;
588   }
589 };
590 
591 } // end anonymous namespace
592 
593 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
594   return any_of(*BB, [](const Instruction &I) {
595     return I.mayHaveSideEffects() || I.mayReadFromMemory();
596   });
597 }
598 
599 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
600   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
601   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
602   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
603 
604   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
605 
606   // A perfectly nested loop will not have any branch in between the outer and
607   // inner block i.e. outer header will branch to either inner preheader and
608   // outerloop latch.
609   BranchInst *OuterLoopHeaderBI =
610       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
611   if (!OuterLoopHeaderBI)
612     return false;
613 
614   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
615     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
616         Succ != OuterLoopLatch)
617       return false;
618 
619   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
620   // We do not have any basic block in between now make sure the outer header
621   // and outer loop latch doesn't contain any unsafe instructions.
622   if (containsUnsafeInstructions(OuterLoopHeader) ||
623       containsUnsafeInstructions(OuterLoopLatch))
624     return false;
625 
626   // Also make sure the inner loop preheader does not contain any unsafe
627   // instructions. Note that all instructions in the preheader will be moved to
628   // the outer loop header when interchanging.
629   if (InnerLoopPreHeader != OuterLoopHeader &&
630       containsUnsafeInstructions(InnerLoopPreHeader))
631     return false;
632 
633   BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
634   // Ensure the inner loop exit block flows to the outer loop latch possibly
635   // through empty blocks.
636   const BasicBlock &SuccInner =
637       LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
638   if (&SuccInner != OuterLoopLatch) {
639     LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
640                       << " does not lead to the outer loop latch.\n";);
641     return false;
642   }
643   // The inner loop exit block does flow to the outer loop latch and not some
644   // other BBs, now make sure it contains safe instructions, since it will be
645   // moved into the (new) inner loop after interchange.
646   if (containsUnsafeInstructions(InnerLoopExit))
647     return false;
648 
649   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
650   // We have a perfect loop nest.
651   return true;
652 }
653 
654 bool LoopInterchangeLegality::isLoopStructureUnderstood() {
655   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
656   for (PHINode *InnerInduction : InnerLoopInductions) {
657     unsigned Num = InnerInduction->getNumOperands();
658     for (unsigned i = 0; i < Num; ++i) {
659       Value *Val = InnerInduction->getOperand(i);
660       if (isa<Constant>(Val))
661         continue;
662       Instruction *I = dyn_cast<Instruction>(Val);
663       if (!I)
664         return false;
665       // TODO: Handle triangular loops.
666       // e.g. for(int i=0;i<N;i++)
667       //        for(int j=i;j<N;j++)
668       unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
669       if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
670               InnerLoopPreheader &&
671           !OuterLoop->isLoopInvariant(I)) {
672         return false;
673       }
674     }
675   }
676 
677   // TODO: Handle triangular loops of another form.
678   // e.g. for(int i=0;i<N;i++)
679   //        for(int j=0;j<i;j++)
680   // or,
681   //      for(int i=0;i<N;i++)
682   //        for(int j=0;j*i<N;j++)
683   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
684   BranchInst *InnerLoopLatchBI =
685       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
686   if (!InnerLoopLatchBI->isConditional())
687     return false;
688   if (CmpInst *InnerLoopCmp =
689           dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
690     Value *Op0 = InnerLoopCmp->getOperand(0);
691     Value *Op1 = InnerLoopCmp->getOperand(1);
692 
693     // LHS and RHS of the inner loop exit condition, e.g.,
694     // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
695     Value *Left = nullptr;
696     Value *Right = nullptr;
697 
698     // Check if V only involves inner loop induction variable.
699     // Return true if V is InnerInduction, or a cast from
700     // InnerInduction, or a binary operator that involves
701     // InnerInduction and a constant.
702     std::function<bool(Value *)> IsPathToInnerIndVar;
703     IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool {
704       if (llvm::is_contained(InnerLoopInductions, V))
705         return true;
706       if (isa<Constant>(V))
707         return true;
708       const Instruction *I = dyn_cast<Instruction>(V);
709       if (!I)
710         return false;
711       if (isa<CastInst>(I))
712         return IsPathToInnerIndVar(I->getOperand(0));
713       if (isa<BinaryOperator>(I))
714         return IsPathToInnerIndVar(I->getOperand(0)) &&
715                IsPathToInnerIndVar(I->getOperand(1));
716       return false;
717     };
718 
719     // In case of multiple inner loop indvars, it is okay if LHS and RHS
720     // are both inner indvar related variables.
721     if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1))
722       return true;
723 
724     // Otherwise we check if the cmp instruction compares an inner indvar
725     // related variable (Left) with a outer loop invariant (Right).
726     if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) {
727       Left = Op0;
728       Right = Op1;
729     } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) {
730       Left = Op1;
731       Right = Op0;
732     }
733 
734     if (Left == nullptr)
735       return false;
736 
737     const SCEV *S = SE->getSCEV(Right);
738     if (!SE->isLoopInvariant(S, OuterLoop))
739       return false;
740   }
741 
742   return true;
743 }
744 
745 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
746 // value.
747 static Value *followLCSSA(Value *SV) {
748   PHINode *PHI = dyn_cast<PHINode>(SV);
749   if (!PHI)
750     return SV;
751 
752   if (PHI->getNumIncomingValues() != 1)
753     return SV;
754   return followLCSSA(PHI->getIncomingValue(0));
755 }
756 
757 // Check V's users to see if it is involved in a reduction in L.
758 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
759   // Reduction variables cannot be constants.
760   if (isa<Constant>(V))
761     return nullptr;
762 
763   for (Value *User : V->users()) {
764     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
765       if (PHI->getNumIncomingValues() == 1)
766         continue;
767       RecurrenceDescriptor RD;
768       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) {
769         // Detect floating point reduction only when it can be reordered.
770         if (RD.getExactFPMathInst() != nullptr)
771           return nullptr;
772         return PHI;
773       }
774       return nullptr;
775     }
776   }
777 
778   return nullptr;
779 }
780 
781 bool LoopInterchangeLegality::findInductionAndReductions(
782     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
783   if (!L->getLoopLatch() || !L->getLoopPredecessor())
784     return false;
785   for (PHINode &PHI : L->getHeader()->phis()) {
786     RecurrenceDescriptor RD;
787     InductionDescriptor ID;
788     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
789       Inductions.push_back(&PHI);
790     else {
791       // PHIs in inner loops need to be part of a reduction in the outer loop,
792       // discovered when checking the PHIs of the outer loop earlier.
793       if (!InnerLoop) {
794         if (!OuterInnerReductions.count(&PHI)) {
795           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
796                                "across the outer loop.\n");
797           return false;
798         }
799       } else {
800         assert(PHI.getNumIncomingValues() == 2 &&
801                "Phis in loop header should have exactly 2 incoming values");
802         // Check if we have a PHI node in the outer loop that has a reduction
803         // result from the inner loop as an incoming value.
804         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
805         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
806         if (!InnerRedPhi ||
807             !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
808           LLVM_DEBUG(
809               dbgs()
810               << "Failed to recognize PHI as an induction or reduction.\n");
811           return false;
812         }
813         OuterInnerReductions.insert(&PHI);
814         OuterInnerReductions.insert(InnerRedPhi);
815       }
816     }
817   }
818   return true;
819 }
820 
821 // This function indicates the current limitations in the transform as a result
822 // of which we do not proceed.
823 bool LoopInterchangeLegality::currentLimitations() {
824   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
825 
826   // transform currently expects the loop latches to also be the exiting
827   // blocks.
828   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
829       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
830       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
831       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
832     LLVM_DEBUG(
833         dbgs() << "Loops where the latch is not the exiting block are not"
834                << " supported currently.\n");
835     ORE->emit([&]() {
836       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
837                                       OuterLoop->getStartLoc(),
838                                       OuterLoop->getHeader())
839              << "Loops where the latch is not the exiting block cannot be"
840                 " interchange currently.";
841     });
842     return true;
843   }
844 
845   SmallVector<PHINode *, 8> Inductions;
846   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
847     LLVM_DEBUG(
848         dbgs() << "Only outer loops with induction or reduction PHI nodes "
849                << "are supported currently.\n");
850     ORE->emit([&]() {
851       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
852                                       OuterLoop->getStartLoc(),
853                                       OuterLoop->getHeader())
854              << "Only outer loops with induction or reduction PHI nodes can be"
855                 " interchanged currently.";
856     });
857     return true;
858   }
859 
860   Inductions.clear();
861   if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
862     LLVM_DEBUG(
863         dbgs() << "Only inner loops with induction or reduction PHI nodes "
864                << "are supported currently.\n");
865     ORE->emit([&]() {
866       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
867                                       InnerLoop->getStartLoc(),
868                                       InnerLoop->getHeader())
869              << "Only inner loops with induction or reduction PHI nodes can be"
870                 " interchange currently.";
871     });
872     return true;
873   }
874 
875   // TODO: Triangular loops are not handled for now.
876   if (!isLoopStructureUnderstood()) {
877     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
878     ORE->emit([&]() {
879       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
880                                       InnerLoop->getStartLoc(),
881                                       InnerLoop->getHeader())
882              << "Inner loop structure not understood currently.";
883     });
884     return true;
885   }
886 
887   return false;
888 }
889 
890 bool LoopInterchangeLegality::findInductions(
891     Loop *L, SmallVectorImpl<PHINode *> &Inductions) {
892   for (PHINode &PHI : L->getHeader()->phis()) {
893     InductionDescriptor ID;
894     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
895       Inductions.push_back(&PHI);
896   }
897   return !Inductions.empty();
898 }
899 
900 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
901 // users are either reduction PHIs or PHIs outside the outer loop (which means
902 // the we are only interested in the final value after the loop).
903 static bool
904 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
905                               SmallPtrSetImpl<PHINode *> &Reductions) {
906   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
907   for (PHINode &PHI : InnerExit->phis()) {
908     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
909     if (PHI.getNumIncomingValues() > 1)
910       return false;
911     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
912           PHINode *PN = dyn_cast<PHINode>(U);
913           return !PN ||
914                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
915         })) {
916       return false;
917     }
918   }
919   return true;
920 }
921 
922 // We currently support LCSSA PHI nodes in the outer loop exit, if their
923 // incoming values do not come from the outer loop latch or if the
924 // outer loop latch has a single predecessor. In that case, the value will
925 // be available if both the inner and outer loop conditions are true, which
926 // will still be true after interchanging. If we have multiple predecessor,
927 // that may not be the case, e.g. because the outer loop latch may be executed
928 // if the inner loop is not executed.
929 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
930   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
931   for (PHINode &PHI : LoopNestExit->phis()) {
932     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
933       Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
934       if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
935         continue;
936 
937       // The incoming value is defined in the outer loop latch. Currently we
938       // only support that in case the outer loop latch has a single predecessor.
939       // This guarantees that the outer loop latch is executed if and only if
940       // the inner loop is executed (because tightlyNested() guarantees that the
941       // outer loop header only branches to the inner loop or the outer loop
942       // latch).
943       // FIXME: We could weaken this logic and allow multiple predecessors,
944       //        if the values are produced outside the loop latch. We would need
945       //        additional logic to update the PHI nodes in the exit block as
946       //        well.
947       if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
948         return false;
949     }
950   }
951   return true;
952 }
953 
954 // In case of multi-level nested loops, it may occur that lcssa phis exist in
955 // the latch of InnerLoop, i.e., when defs of the incoming values are further
956 // inside the loopnest. Sometimes those incoming values are not available
957 // after interchange, since the original inner latch will become the new outer
958 // latch which may have predecessor paths that do not include those incoming
959 // values.
960 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
961 // multi-level loop nests.
962 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
963   if (InnerLoop->getSubLoops().empty())
964     return true;
965   // If the original outer latch has only one predecessor, then values defined
966   // further inside the looploop, e.g., in the innermost loop, will be available
967   // at the new outer latch after interchange.
968   if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
969     return true;
970 
971   // The outer latch has more than one predecessors, i.e., the inner
972   // exit and the inner header.
973   // PHI nodes in the inner latch are lcssa phis where the incoming values
974   // are defined further inside the loopnest. Check if those phis are used
975   // in the original inner latch. If that is the case then bail out since
976   // those incoming values may not be available at the new outer latch.
977   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
978   for (PHINode &PHI : InnerLoopLatch->phis()) {
979     for (auto *U : PHI.users()) {
980       Instruction *UI = cast<Instruction>(U);
981       if (InnerLoopLatch == UI->getParent())
982         return false;
983     }
984   }
985   return true;
986 }
987 
988 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
989                                                   unsigned OuterLoopId,
990                                                   CharMatrix &DepMatrix) {
991   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
992     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
993                       << " and OuterLoopId = " << OuterLoopId
994                       << " due to dependence\n");
995     ORE->emit([&]() {
996       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
997                                       InnerLoop->getStartLoc(),
998                                       InnerLoop->getHeader())
999              << "Cannot interchange loops due to dependences.";
1000     });
1001     return false;
1002   }
1003   // Check if outer and inner loop contain legal instructions only.
1004   for (auto *BB : OuterLoop->blocks())
1005     for (Instruction &I : BB->instructionsWithoutDebug())
1006       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1007         // readnone functions do not prevent interchanging.
1008         if (CI->onlyWritesMemory())
1009           continue;
1010         LLVM_DEBUG(
1011             dbgs() << "Loops with call instructions cannot be interchanged "
1012                    << "safely.");
1013         ORE->emit([&]() {
1014           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
1015                                           CI->getDebugLoc(),
1016                                           CI->getParent())
1017                  << "Cannot interchange loops due to call instruction.";
1018         });
1019 
1020         return false;
1021       }
1022 
1023   if (!findInductions(InnerLoop, InnerLoopInductions)) {
1024     LLVM_DEBUG(dbgs() << "Cound not find inner loop induction variables.\n");
1025     return false;
1026   }
1027 
1028   if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
1029     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
1030     ORE->emit([&]() {
1031       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
1032                                       InnerLoop->getStartLoc(),
1033                                       InnerLoop->getHeader())
1034              << "Cannot interchange loops because unsupported PHI nodes found "
1035                 "in inner loop latch.";
1036     });
1037     return false;
1038   }
1039 
1040   // TODO: The loops could not be interchanged due to current limitations in the
1041   // transform module.
1042   if (currentLimitations()) {
1043     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1044     return false;
1045   }
1046 
1047   // Check if the loops are tightly nested.
1048   if (!tightlyNested(OuterLoop, InnerLoop)) {
1049     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1050     ORE->emit([&]() {
1051       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1052                                       InnerLoop->getStartLoc(),
1053                                       InnerLoop->getHeader())
1054              << "Cannot interchange loops because they are not tightly "
1055                 "nested.";
1056     });
1057     return false;
1058   }
1059 
1060   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1061                                      OuterInnerReductions)) {
1062     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1063     ORE->emit([&]() {
1064       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1065                                       InnerLoop->getStartLoc(),
1066                                       InnerLoop->getHeader())
1067              << "Found unsupported PHI node in loop exit.";
1068     });
1069     return false;
1070   }
1071 
1072   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1073     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1074     ORE->emit([&]() {
1075       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1076                                       OuterLoop->getStartLoc(),
1077                                       OuterLoop->getHeader())
1078              << "Found unsupported PHI node in loop exit.";
1079     });
1080     return false;
1081   }
1082 
1083   return true;
1084 }
1085 
1086 int LoopInterchangeProfitability::getInstrOrderCost() {
1087   unsigned GoodOrder, BadOrder;
1088   BadOrder = GoodOrder = 0;
1089   for (BasicBlock *BB : InnerLoop->blocks()) {
1090     for (Instruction &Ins : *BB) {
1091       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1092         unsigned NumOp = GEP->getNumOperands();
1093         bool FoundInnerInduction = false;
1094         bool FoundOuterInduction = false;
1095         for (unsigned i = 0; i < NumOp; ++i) {
1096           // Skip operands that are not SCEV-able.
1097           if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1098             continue;
1099 
1100           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1101           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1102           if (!AR)
1103             continue;
1104 
1105           // If we find the inner induction after an outer induction e.g.
1106           // for(int i=0;i<N;i++)
1107           //   for(int j=0;j<N;j++)
1108           //     A[i][j] = A[i-1][j-1]+k;
1109           // then it is a good order.
1110           if (AR->getLoop() == InnerLoop) {
1111             // We found an InnerLoop induction after OuterLoop induction. It is
1112             // a good order.
1113             FoundInnerInduction = true;
1114             if (FoundOuterInduction) {
1115               GoodOrder++;
1116               break;
1117             }
1118           }
1119           // If we find the outer induction after an inner induction e.g.
1120           // for(int i=0;i<N;i++)
1121           //   for(int j=0;j<N;j++)
1122           //     A[j][i] = A[j-1][i-1]+k;
1123           // then it is a bad order.
1124           if (AR->getLoop() == OuterLoop) {
1125             // We found an OuterLoop induction after InnerLoop induction. It is
1126             // a bad order.
1127             FoundOuterInduction = true;
1128             if (FoundInnerInduction) {
1129               BadOrder++;
1130               break;
1131             }
1132           }
1133         }
1134       }
1135     }
1136   }
1137   return GoodOrder - BadOrder;
1138 }
1139 
1140 static bool isProfitableForVectorization(unsigned InnerLoopId,
1141                                          unsigned OuterLoopId,
1142                                          CharMatrix &DepMatrix) {
1143   // TODO: Improve this heuristic to catch more cases.
1144   // If the inner loop is loop independent or doesn't carry any dependency it is
1145   // profitable to move this to outer position.
1146   for (auto &Row : DepMatrix) {
1147     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1148       return false;
1149     // TODO: We need to improve this heuristic.
1150     if (Row[OuterLoopId] != '=')
1151       return false;
1152   }
1153   // If outer loop has dependence and inner loop is loop independent then it is
1154   // profitable to interchange to enable parallelism.
1155   // If there are no dependences, interchanging will not improve anything.
1156   return !DepMatrix.empty();
1157 }
1158 
1159 bool LoopInterchangeProfitability::isProfitable(
1160     const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId,
1161     unsigned OuterLoopId, CharMatrix &DepMatrix,
1162     const DenseMap<const Loop *, unsigned> &CostMap) {
1163   // TODO: Remove the legacy cost model.
1164 
1165   // This is the new cost model returned from loop cache analysis.
1166   // A smaller index means the loop should be placed an outer loop, and vice
1167   // versa.
1168   if (CostMap.find(InnerLoop) != CostMap.end() &&
1169       CostMap.find(OuterLoop) != CostMap.end()) {
1170     unsigned InnerIndex = 0, OuterIndex = 0;
1171     InnerIndex = CostMap.find(InnerLoop)->second;
1172     OuterIndex = CostMap.find(OuterLoop)->second;
1173     LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex
1174                       << ", OuterIndex = " << OuterIndex << "\n");
1175     if (InnerIndex < OuterIndex)
1176       return true;
1177   } else {
1178     // Legacy cost model: this is rough cost estimation algorithm. It counts the
1179     // good and bad order of induction variables in the instruction and allows
1180     // reordering if number of bad orders is more than good.
1181     int Cost = getInstrOrderCost();
1182     LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1183     if (Cost < -LoopInterchangeCostThreshold)
1184       return true;
1185   }
1186 
1187   // It is not profitable as per current cache profitability model. But check if
1188   // we can move this loop outside to improve parallelism.
1189   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1190     return true;
1191 
1192   ORE->emit([&]() {
1193     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1194                                     InnerLoop->getStartLoc(),
1195                                     InnerLoop->getHeader())
1196            << "Interchanging loops is too costly and it does not improve "
1197               "parallelism.";
1198   });
1199   return false;
1200 }
1201 
1202 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1203                                                Loop *InnerLoop) {
1204   for (Loop *L : *OuterLoop)
1205     if (L == InnerLoop) {
1206       OuterLoop->removeChildLoop(L);
1207       return;
1208     }
1209   llvm_unreachable("Couldn't find loop");
1210 }
1211 
1212 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1213 /// new inner and outer loop after interchanging: NewInner is the original
1214 /// outer loop and NewOuter is the original inner loop.
1215 ///
1216 /// Before interchanging, we have the following structure
1217 /// Outer preheader
1218 //  Outer header
1219 //    Inner preheader
1220 //    Inner header
1221 //      Inner body
1222 //      Inner latch
1223 //   outer bbs
1224 //   Outer latch
1225 //
1226 // After interchanging:
1227 // Inner preheader
1228 // Inner header
1229 //   Outer preheader
1230 //   Outer header
1231 //     Inner body
1232 //     outer bbs
1233 //     Outer latch
1234 //   Inner latch
1235 void LoopInterchangeTransform::restructureLoops(
1236     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1237     BasicBlock *OrigOuterPreHeader) {
1238   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1239   // The original inner loop preheader moves from the new inner loop to
1240   // the parent loop, if there is one.
1241   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1242   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1243 
1244   // Switch the loop levels.
1245   if (OuterLoopParent) {
1246     // Remove the loop from its parent loop.
1247     removeChildLoop(OuterLoopParent, NewInner);
1248     removeChildLoop(NewInner, NewOuter);
1249     OuterLoopParent->addChildLoop(NewOuter);
1250   } else {
1251     removeChildLoop(NewInner, NewOuter);
1252     LI->changeTopLevelLoop(NewInner, NewOuter);
1253   }
1254   while (!NewOuter->isInnermost())
1255     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1256   NewOuter->addChildLoop(NewInner);
1257 
1258   // BBs from the original inner loop.
1259   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1260 
1261   // Add BBs from the original outer loop to the original inner loop (excluding
1262   // BBs already in inner loop)
1263   for (BasicBlock *BB : NewInner->blocks())
1264     if (LI->getLoopFor(BB) == NewInner)
1265       NewOuter->addBlockEntry(BB);
1266 
1267   // Now remove inner loop header and latch from the new inner loop and move
1268   // other BBs (the loop body) to the new inner loop.
1269   BasicBlock *OuterHeader = NewOuter->getHeader();
1270   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1271   for (BasicBlock *BB : OrigInnerBBs) {
1272     // Nothing will change for BBs in child loops.
1273     if (LI->getLoopFor(BB) != NewOuter)
1274       continue;
1275     // Remove the new outer loop header and latch from the new inner loop.
1276     if (BB == OuterHeader || BB == OuterLatch)
1277       NewInner->removeBlockFromLoop(BB);
1278     else
1279       LI->changeLoopFor(BB, NewInner);
1280   }
1281 
1282   // The preheader of the original outer loop becomes part of the new
1283   // outer loop.
1284   NewOuter->addBlockEntry(OrigOuterPreHeader);
1285   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1286 
1287   // Tell SE that we move the loops around.
1288   SE->forgetLoop(NewOuter);
1289   SE->forgetLoop(NewInner);
1290 }
1291 
1292 bool LoopInterchangeTransform::transform() {
1293   bool Transformed = false;
1294 
1295   if (InnerLoop->getSubLoops().empty()) {
1296     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1297     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1298     auto &InductionPHIs = LIL.getInnerLoopInductions();
1299     if (InductionPHIs.empty()) {
1300       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1301       return false;
1302     }
1303 
1304     SmallVector<Instruction *, 8> InnerIndexVarList;
1305     for (PHINode *CurInductionPHI : InductionPHIs) {
1306       if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1307         InnerIndexVarList.push_back(
1308             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1)));
1309       else
1310         InnerIndexVarList.push_back(
1311             dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0)));
1312     }
1313 
1314     // Create a new latch block for the inner loop. We split at the
1315     // current latch's terminator and then move the condition and all
1316     // operands that are not either loop-invariant or the induction PHI into the
1317     // new latch block.
1318     BasicBlock *NewLatch =
1319         SplitBlock(InnerLoop->getLoopLatch(),
1320                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1321 
1322     SmallSetVector<Instruction *, 4> WorkList;
1323     unsigned i = 0;
1324     auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() {
1325       for (; i < WorkList.size(); i++) {
1326         // Duplicate instruction and move it the new latch. Update uses that
1327         // have been moved.
1328         Instruction *NewI = WorkList[i]->clone();
1329         NewI->insertBefore(NewLatch->getFirstNonPHI());
1330         assert(!NewI->mayHaveSideEffects() &&
1331                "Moving instructions with side-effects may change behavior of "
1332                "the loop nest!");
1333         for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1334           Instruction *UserI = cast<Instruction>(U.getUser());
1335           if (!InnerLoop->contains(UserI->getParent()) ||
1336               UserI->getParent() == NewLatch ||
1337               llvm::is_contained(InductionPHIs, UserI))
1338             U.set(NewI);
1339         }
1340         // Add operands of moved instruction to the worklist, except if they are
1341         // outside the inner loop or are the induction PHI.
1342         for (Value *Op : WorkList[i]->operands()) {
1343           Instruction *OpI = dyn_cast<Instruction>(Op);
1344           if (!OpI ||
1345               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1346               llvm::is_contained(InductionPHIs, OpI))
1347             continue;
1348           WorkList.insert(OpI);
1349         }
1350       }
1351     };
1352 
1353     // FIXME: Should we interchange when we have a constant condition?
1354     Instruction *CondI = dyn_cast<Instruction>(
1355         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1356             ->getCondition());
1357     if (CondI)
1358       WorkList.insert(CondI);
1359     MoveInstructions();
1360     for (Instruction *InnerIndexVar : InnerIndexVarList)
1361       WorkList.insert(cast<Instruction>(InnerIndexVar));
1362     MoveInstructions();
1363 
1364     // Splits the inner loops phi nodes out into a separate basic block.
1365     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1366     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1367     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1368   }
1369 
1370   // Instructions in the original inner loop preheader may depend on values
1371   // defined in the outer loop header. Move them there, because the original
1372   // inner loop preheader will become the entry into the interchanged loop nest.
1373   // Currently we move all instructions and rely on LICM to move invariant
1374   // instructions outside the loop nest.
1375   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1376   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1377   if (InnerLoopPreHeader != OuterLoopHeader) {
1378     SmallPtrSet<Instruction *, 4> NeedsMoving;
1379     for (Instruction &I :
1380          make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1381                                          std::prev(InnerLoopPreHeader->end()))))
1382       I.moveBefore(OuterLoopHeader->getTerminator());
1383   }
1384 
1385   Transformed |= adjustLoopLinks();
1386   if (!Transformed) {
1387     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1388     return false;
1389   }
1390 
1391   return true;
1392 }
1393 
1394 /// \brief Move all instructions except the terminator from FromBB right before
1395 /// InsertBefore
1396 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1397   auto &ToList = InsertBefore->getParent()->getInstList();
1398   auto &FromList = FromBB->getInstList();
1399 
1400   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1401                 FromBB->getTerminator()->getIterator());
1402 }
1403 
1404 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1405 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1406   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1407   // from BB1 afterwards.
1408   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1409   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1410   for (Instruction *I : TempInstrs)
1411     I->removeFromParent();
1412 
1413   // Move instructions from BB2 to BB1.
1414   moveBBContents(BB2, BB1->getTerminator());
1415 
1416   // Move instructions from TempInstrs to BB2.
1417   for (Instruction *I : TempInstrs)
1418     I->insertBefore(BB2->getTerminator());
1419 }
1420 
1421 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1422 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1423 // \p OldBB  is exactly once in BI's successor list.
1424 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1425                             BasicBlock *NewBB,
1426                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1427                             bool MustUpdateOnce = true) {
1428   assert((!MustUpdateOnce ||
1429           llvm::count_if(successors(BI),
1430                          [OldBB](BasicBlock *BB) {
1431                            return BB == OldBB;
1432                          }) == 1) && "BI must jump to OldBB exactly once.");
1433   bool Changed = false;
1434   for (Use &Op : BI->operands())
1435     if (Op == OldBB) {
1436       Op.set(NewBB);
1437       Changed = true;
1438     }
1439 
1440   if (Changed) {
1441     DTUpdates.push_back(
1442         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1443     DTUpdates.push_back(
1444         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1445   }
1446   assert(Changed && "Expected a successor to be updated");
1447 }
1448 
1449 // Move Lcssa PHIs to the right place.
1450 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1451                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1452                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1453                           Loop *InnerLoop, LoopInfo *LI) {
1454 
1455   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1456   // defined either in the header or latch. Those blocks will become header and
1457   // latch of the new outer loop, and the only possible users can PHI nodes
1458   // in the exit block of the loop nest or the outer loop header (reduction
1459   // PHIs, in that case, the incoming value must be defined in the inner loop
1460   // header). We can just substitute the user with the incoming value and remove
1461   // the PHI.
1462   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1463     assert(P.getNumIncomingValues() == 1 &&
1464            "Only loops with a single exit are supported!");
1465 
1466     // Incoming values are guaranteed be instructions currently.
1467     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1468     // In case of multi-level nested loops, follow LCSSA to find the incoming
1469     // value defined from the innermost loop.
1470     auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI));
1471     // Skip phis with incoming values from the inner loop body, excluding the
1472     // header and latch.
1473     if (IncIInnerMost->getParent() != InnerLatch &&
1474         IncIInnerMost->getParent() != InnerHeader)
1475       continue;
1476 
1477     assert(all_of(P.users(),
1478                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1479                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1480                             IncI->getParent() == InnerHeader) ||
1481                            cast<PHINode>(U)->getParent() == OuterExit;
1482                   }) &&
1483            "Can only replace phis iff the uses are in the loop nest exit or "
1484            "the incoming value is defined in the inner header (it will "
1485            "dominate all loop blocks after interchanging)");
1486     P.replaceAllUsesWith(IncI);
1487     P.eraseFromParent();
1488   }
1489 
1490   SmallVector<PHINode *, 8> LcssaInnerExit;
1491   for (PHINode &P : InnerExit->phis())
1492     LcssaInnerExit.push_back(&P);
1493 
1494   SmallVector<PHINode *, 8> LcssaInnerLatch;
1495   for (PHINode &P : InnerLatch->phis())
1496     LcssaInnerLatch.push_back(&P);
1497 
1498   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1499   // If a PHI node has users outside of InnerExit, it has a use outside the
1500   // interchanged loop and we have to preserve it. We move these to
1501   // InnerLatch, which will become the new exit block for the innermost
1502   // loop after interchanging.
1503   for (PHINode *P : LcssaInnerExit)
1504     P->moveBefore(InnerLatch->getFirstNonPHI());
1505 
1506   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1507   // and we have to move them to the new inner latch.
1508   for (PHINode *P : LcssaInnerLatch)
1509     P->moveBefore(InnerExit->getFirstNonPHI());
1510 
1511   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1512   // incoming values defined in the outer loop, we have to add a new PHI
1513   // in the inner loop latch, which became the exit block of the outer loop,
1514   // after interchanging.
1515   if (OuterExit) {
1516     for (PHINode &P : OuterExit->phis()) {
1517       if (P.getNumIncomingValues() != 1)
1518         continue;
1519       // Skip Phis with incoming values defined in the inner loop. Those should
1520       // already have been updated.
1521       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1522       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1523         continue;
1524 
1525       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1526       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1527       NewPhi->setIncomingBlock(0, OuterLatch);
1528       // We might have incoming edges from other BBs, i.e., the original outer
1529       // header.
1530       for (auto *Pred : predecessors(InnerLatch)) {
1531         if (Pred == OuterLatch)
1532           continue;
1533         NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1534       }
1535       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1536       P.setIncomingValue(0, NewPhi);
1537     }
1538   }
1539 
1540   // Now adjust the incoming blocks for the LCSSA PHIs.
1541   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1542   // with the new latch.
1543   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1544 }
1545 
1546 bool LoopInterchangeTransform::adjustLoopBranches() {
1547   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1548   std::vector<DominatorTree::UpdateType> DTUpdates;
1549 
1550   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1551   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1552 
1553   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1554          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1555          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1556   // Ensure that both preheaders do not contain PHI nodes and have single
1557   // predecessors. This allows us to move them easily. We use
1558   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1559   // preheaders do not satisfy those conditions.
1560   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1561       !OuterLoopPreHeader->getUniquePredecessor())
1562     OuterLoopPreHeader =
1563         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1564   if (InnerLoopPreHeader == OuterLoop->getHeader())
1565     InnerLoopPreHeader =
1566         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1567 
1568   // Adjust the loop preheader
1569   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1570   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1571   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1572   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1573   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1574   BasicBlock *InnerLoopLatchPredecessor =
1575       InnerLoopLatch->getUniquePredecessor();
1576   BasicBlock *InnerLoopLatchSuccessor;
1577   BasicBlock *OuterLoopLatchSuccessor;
1578 
1579   BranchInst *OuterLoopLatchBI =
1580       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1581   BranchInst *InnerLoopLatchBI =
1582       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1583   BranchInst *OuterLoopHeaderBI =
1584       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1585   BranchInst *InnerLoopHeaderBI =
1586       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1587 
1588   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1589       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1590       !InnerLoopHeaderBI)
1591     return false;
1592 
1593   BranchInst *InnerLoopLatchPredecessorBI =
1594       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1595   BranchInst *OuterLoopPredecessorBI =
1596       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1597 
1598   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1599     return false;
1600   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1601   if (!InnerLoopHeaderSuccessor)
1602     return false;
1603 
1604   // Adjust Loop Preheader and headers.
1605   // The branches in the outer loop predecessor and the outer loop header can
1606   // be unconditional branches or conditional branches with duplicates. Consider
1607   // this when updating the successors.
1608   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1609                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1610   // The outer loop header might or might not branch to the outer latch.
1611   // We are guaranteed to branch to the inner loop preheader.
1612   if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1613     // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1614     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1615                     DTUpdates,
1616                     /*MustUpdateOnce=*/false);
1617   }
1618   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1619                   InnerLoopHeaderSuccessor, DTUpdates,
1620                   /*MustUpdateOnce=*/false);
1621 
1622   // Adjust reduction PHI's now that the incoming block has changed.
1623   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1624                                                OuterLoopHeader);
1625 
1626   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1627                   OuterLoopPreHeader, DTUpdates);
1628 
1629   // -------------Adjust loop latches-----------
1630   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1631     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1632   else
1633     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1634 
1635   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1636                   InnerLoopLatchSuccessor, DTUpdates);
1637 
1638   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1639     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1640   else
1641     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1642 
1643   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1644                   OuterLoopLatchSuccessor, DTUpdates);
1645   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1646                   DTUpdates);
1647 
1648   DT->applyUpdates(DTUpdates);
1649   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1650                    OuterLoopPreHeader);
1651 
1652   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1653                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1654                 InnerLoop, LI);
1655   // For PHIs in the exit block of the outer loop, outer's latch has been
1656   // replaced by Inners'.
1657   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1658 
1659   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1660   // Now update the reduction PHIs in the inner and outer loop headers.
1661   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1662   for (PHINode &PHI : InnerLoopHeader->phis())
1663     if (OuterInnerReductions.contains(&PHI))
1664       InnerLoopPHIs.push_back(&PHI);
1665 
1666   for (PHINode &PHI : OuterLoopHeader->phis())
1667     if (OuterInnerReductions.contains(&PHI))
1668       OuterLoopPHIs.push_back(&PHI);
1669 
1670   // Now move the remaining reduction PHIs from outer to inner loop header and
1671   // vice versa. The PHI nodes must be part of a reduction across the inner and
1672   // outer loop and all the remains to do is and updating the incoming blocks.
1673   for (PHINode *PHI : OuterLoopPHIs) {
1674     LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump(););
1675     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1676     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1677   }
1678   for (PHINode *PHI : InnerLoopPHIs) {
1679     LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump(););
1680     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1681     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1682   }
1683 
1684   // Update the incoming blocks for moved PHI nodes.
1685   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1686   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1687   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1688   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1689 
1690   // Values defined in the outer loop header could be used in the inner loop
1691   // latch. In that case, we need to create LCSSA phis for them, because after
1692   // interchanging they will be defined in the new inner loop and used in the
1693   // new outer loop.
1694   IRBuilder<> Builder(OuterLoopHeader->getContext());
1695   SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1696   for (Instruction &I :
1697        make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1698     MayNeedLCSSAPhis.push_back(&I);
1699   formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1700 
1701   return true;
1702 }
1703 
1704 bool LoopInterchangeTransform::adjustLoopLinks() {
1705   // Adjust all branches in the inner and outer loop.
1706   bool Changed = adjustLoopBranches();
1707   if (Changed) {
1708     // We have interchanged the preheaders so we need to interchange the data in
1709     // the preheaders as well. This is because the content of the inner
1710     // preheader was previously executed inside the outer loop.
1711     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1712     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1713     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1714   }
1715   return Changed;
1716 }
1717 
1718 namespace {
1719 /// Main LoopInterchange Pass.
1720 struct LoopInterchangeLegacyPass : public LoopPass {
1721   static char ID;
1722 
1723   LoopInterchangeLegacyPass() : LoopPass(ID) {
1724     initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1725   }
1726 
1727   void getAnalysisUsage(AnalysisUsage &AU) const override {
1728     AU.addRequired<DependenceAnalysisWrapperPass>();
1729     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1730 
1731     getLoopAnalysisUsage(AU);
1732   }
1733 
1734   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1735     if (skipLoop(L))
1736       return false;
1737 
1738     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1739     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1740     auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1741     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1742     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1743     std::unique_ptr<CacheCost> CC = nullptr;
1744     return LoopInterchange(SE, LI, DI, DT, CC, ORE).run(L);
1745   }
1746 };
1747 } // namespace
1748 
1749 char LoopInterchangeLegacyPass::ID = 0;
1750 
1751 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1752                       "Interchanges loops for cache reuse", false, false)
1753 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1754 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1755 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1756 
1757 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1758                     "Interchanges loops for cache reuse", false, false)
1759 
1760 Pass *llvm::createLoopInterchangePass() {
1761   return new LoopInterchangeLegacyPass();
1762 }
1763 
1764 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1765                                            LoopAnalysisManager &AM,
1766                                            LoopStandardAnalysisResults &AR,
1767                                            LPMUpdater &U) {
1768   Function &F = *LN.getParent();
1769 
1770   DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1771   std::unique_ptr<CacheCost> CC =
1772       CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI);
1773   OptimizationRemarkEmitter ORE(&F);
1774   if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN))
1775     return PreservedAnalyses::all();
1776   return getLoopPassPreservedAnalyses();
1777 }
1778