1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/LoopInterchange.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Analysis/DependenceAnalysis.h" 21 #include "llvm/Analysis/LoopCacheAnalysis.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/LoopNestAnalysis.h" 24 #include "llvm/Analysis/LoopPass.h" 25 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DiagnosticInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/InstrTypes.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Scalar/LoopPassManager.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopUtils.h" 46 #include <cassert> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "loop-interchange" 53 54 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 55 56 static cl::opt<int> LoopInterchangeCostThreshold( 57 "loop-interchange-threshold", cl::init(0), cl::Hidden, 58 cl::desc("Interchange if you gain more than this number")); 59 60 namespace { 61 62 using LoopVector = SmallVector<Loop *, 8>; 63 64 // TODO: Check if we can use a sparse matrix here. 65 using CharMatrix = std::vector<std::vector<char>>; 66 67 } // end anonymous namespace 68 69 // Maximum number of dependencies that can be handled in the dependency matrix. 70 static const unsigned MaxMemInstrCount = 100; 71 72 // Maximum loop depth supported. 73 static const unsigned MaxLoopNestDepth = 10; 74 75 #ifdef DUMP_DEP_MATRICIES 76 static void printDepMatrix(CharMatrix &DepMatrix) { 77 for (auto &Row : DepMatrix) { 78 for (auto D : Row) 79 LLVM_DEBUG(dbgs() << D << " "); 80 LLVM_DEBUG(dbgs() << "\n"); 81 } 82 } 83 #endif 84 85 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 86 Loop *L, DependenceInfo *DI, 87 ScalarEvolution *SE) { 88 using ValueVector = SmallVector<Value *, 16>; 89 90 ValueVector MemInstr; 91 92 // For each block. 93 for (BasicBlock *BB : L->blocks()) { 94 // Scan the BB and collect legal loads and stores. 95 for (Instruction &I : *BB) { 96 if (!isa<Instruction>(I)) 97 return false; 98 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 99 if (!Ld->isSimple()) 100 return false; 101 MemInstr.push_back(&I); 102 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 103 if (!St->isSimple()) 104 return false; 105 MemInstr.push_back(&I); 106 } 107 } 108 } 109 110 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 111 << " Loads and Stores to analyze\n"); 112 113 ValueVector::iterator I, IE, J, JE; 114 115 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 116 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 117 std::vector<char> Dep; 118 Instruction *Src = cast<Instruction>(*I); 119 Instruction *Dst = cast<Instruction>(*J); 120 // Ignore Input dependencies. 121 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 122 continue; 123 // Track Output, Flow, and Anti dependencies. 124 if (auto D = DI->depends(Src, Dst, true)) { 125 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 126 // If the direction vector is negative, normalize it to 127 // make it non-negative. 128 if (D->normalize(SE)) 129 LLVM_DEBUG(dbgs() << "Negative dependence vector normalized.\n"); 130 LLVM_DEBUG(StringRef DepType = 131 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 132 dbgs() << "Found " << DepType 133 << " dependency between Src and Dst\n" 134 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 135 unsigned Levels = D->getLevels(); 136 char Direction; 137 for (unsigned II = 1; II <= Levels; ++II) { 138 if (D->isScalar(II)) { 139 Direction = 'S'; 140 Dep.push_back(Direction); 141 } else { 142 unsigned Dir = D->getDirection(II); 143 if (Dir == Dependence::DVEntry::LT || 144 Dir == Dependence::DVEntry::LE) 145 Direction = '<'; 146 else if (Dir == Dependence::DVEntry::GT || 147 Dir == Dependence::DVEntry::GE) 148 Direction = '>'; 149 else if (Dir == Dependence::DVEntry::EQ) 150 Direction = '='; 151 else 152 Direction = '*'; 153 Dep.push_back(Direction); 154 } 155 } 156 while (Dep.size() != Level) { 157 Dep.push_back('I'); 158 } 159 160 DepMatrix.push_back(Dep); 161 if (DepMatrix.size() > MaxMemInstrCount) { 162 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 163 << " dependencies inside loop\n"); 164 return false; 165 } 166 } 167 } 168 } 169 170 return true; 171 } 172 173 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 174 // matrix by exchanging the two columns. 175 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 176 unsigned ToIndx) { 177 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I) 178 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]); 179 } 180 181 // After interchanging, check if the direction vector is valid. 182 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 183 // if the direction matrix, after the same permutation is applied to its 184 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 185 static bool isLexicographicallyPositive(std::vector<char> &DV) { 186 for (unsigned char Direction : DV) { 187 if (Direction == '<') 188 return true; 189 if (Direction == '>' || Direction == '*') 190 return false; 191 } 192 return true; 193 } 194 195 // Checks if it is legal to interchange 2 loops. 196 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 197 unsigned InnerLoopId, 198 unsigned OuterLoopId) { 199 unsigned NumRows = DepMatrix.size(); 200 std::vector<char> Cur; 201 // For each row check if it is valid to interchange. 202 for (unsigned Row = 0; Row < NumRows; ++Row) { 203 // Create temporary DepVector check its lexicographical order 204 // before and after swapping OuterLoop vs InnerLoop 205 Cur = DepMatrix[Row]; 206 if (!isLexicographicallyPositive(Cur)) 207 return false; 208 std::swap(Cur[InnerLoopId], Cur[OuterLoopId]); 209 if (!isLexicographicallyPositive(Cur)) 210 return false; 211 } 212 return true; 213 } 214 215 static void populateWorklist(Loop &L, LoopVector &LoopList) { 216 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 217 << L.getHeader()->getParent()->getName() << " Loop: %" 218 << L.getHeader()->getName() << '\n'); 219 assert(LoopList.empty() && "LoopList should initially be empty!"); 220 Loop *CurrentLoop = &L; 221 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 222 while (!Vec->empty()) { 223 // The current loop has multiple subloops in it hence it is not tightly 224 // nested. 225 // Discard all loops above it added into Worklist. 226 if (Vec->size() != 1) { 227 LoopList = {}; 228 return; 229 } 230 231 LoopList.push_back(CurrentLoop); 232 CurrentLoop = Vec->front(); 233 Vec = &CurrentLoop->getSubLoops(); 234 } 235 LoopList.push_back(CurrentLoop); 236 } 237 238 namespace { 239 240 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 241 class LoopInterchangeLegality { 242 public: 243 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 244 OptimizationRemarkEmitter *ORE) 245 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 246 247 /// Check if the loops can be interchanged. 248 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 249 CharMatrix &DepMatrix); 250 251 /// Discover induction PHIs in the header of \p L. Induction 252 /// PHIs are added to \p Inductions. 253 bool findInductions(Loop *L, SmallVectorImpl<PHINode *> &Inductions); 254 255 /// Check if the loop structure is understood. We do not handle triangular 256 /// loops for now. 257 bool isLoopStructureUnderstood(); 258 259 bool currentLimitations(); 260 261 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 262 return OuterInnerReductions; 263 } 264 265 const SmallVectorImpl<PHINode *> &getInnerLoopInductions() const { 266 return InnerLoopInductions; 267 } 268 269 private: 270 bool tightlyNested(Loop *Outer, Loop *Inner); 271 bool containsUnsafeInstructions(BasicBlock *BB); 272 273 /// Discover induction and reduction PHIs in the header of \p L. Induction 274 /// PHIs are added to \p Inductions, reductions are added to 275 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 276 /// to be passed as \p InnerLoop. 277 bool findInductionAndReductions(Loop *L, 278 SmallVector<PHINode *, 8> &Inductions, 279 Loop *InnerLoop); 280 281 Loop *OuterLoop; 282 Loop *InnerLoop; 283 284 ScalarEvolution *SE; 285 286 /// Interface to emit optimization remarks. 287 OptimizationRemarkEmitter *ORE; 288 289 /// Set of reduction PHIs taking part of a reduction across the inner and 290 /// outer loop. 291 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 292 293 /// Set of inner loop induction PHIs 294 SmallVector<PHINode *, 8> InnerLoopInductions; 295 }; 296 297 /// LoopInterchangeProfitability checks if it is profitable to interchange the 298 /// loop. 299 class LoopInterchangeProfitability { 300 public: 301 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 302 OptimizationRemarkEmitter *ORE) 303 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 304 305 /// Check if the loop interchange is profitable. 306 bool isProfitable(const Loop *InnerLoop, const Loop *OuterLoop, 307 unsigned InnerLoopId, unsigned OuterLoopId, 308 CharMatrix &DepMatrix, 309 const DenseMap<const Loop *, unsigned> &CostMap, 310 std::unique_ptr<CacheCost> &CC); 311 312 private: 313 int getInstrOrderCost(); 314 std::optional<bool> isProfitablePerLoopCacheAnalysis( 315 const DenseMap<const Loop *, unsigned> &CostMap, 316 std::unique_ptr<CacheCost> &CC); 317 std::optional<bool> isProfitablePerInstrOrderCost(); 318 std::optional<bool> isProfitableForVectorization(unsigned InnerLoopId, 319 unsigned OuterLoopId, 320 CharMatrix &DepMatrix); 321 Loop *OuterLoop; 322 Loop *InnerLoop; 323 324 /// Scev analysis. 325 ScalarEvolution *SE; 326 327 /// Interface to emit optimization remarks. 328 OptimizationRemarkEmitter *ORE; 329 }; 330 331 /// LoopInterchangeTransform interchanges the loop. 332 class LoopInterchangeTransform { 333 public: 334 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 335 LoopInfo *LI, DominatorTree *DT, 336 const LoopInterchangeLegality &LIL) 337 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {} 338 339 /// Interchange OuterLoop and InnerLoop. 340 bool transform(); 341 void restructureLoops(Loop *NewInner, Loop *NewOuter, 342 BasicBlock *OrigInnerPreHeader, 343 BasicBlock *OrigOuterPreHeader); 344 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 345 346 private: 347 bool adjustLoopLinks(); 348 bool adjustLoopBranches(); 349 350 Loop *OuterLoop; 351 Loop *InnerLoop; 352 353 /// Scev analysis. 354 ScalarEvolution *SE; 355 356 LoopInfo *LI; 357 DominatorTree *DT; 358 359 const LoopInterchangeLegality &LIL; 360 }; 361 362 struct LoopInterchange { 363 ScalarEvolution *SE = nullptr; 364 LoopInfo *LI = nullptr; 365 DependenceInfo *DI = nullptr; 366 DominatorTree *DT = nullptr; 367 std::unique_ptr<CacheCost> CC = nullptr; 368 369 /// Interface to emit optimization remarks. 370 OptimizationRemarkEmitter *ORE; 371 372 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI, 373 DominatorTree *DT, std::unique_ptr<CacheCost> &CC, 374 OptimizationRemarkEmitter *ORE) 375 : SE(SE), LI(LI), DI(DI), DT(DT), CC(std::move(CC)), ORE(ORE) {} 376 377 bool run(Loop *L) { 378 if (L->getParentLoop()) 379 return false; 380 SmallVector<Loop *, 8> LoopList; 381 populateWorklist(*L, LoopList); 382 return processLoopList(LoopList); 383 } 384 385 bool run(LoopNest &LN) { 386 SmallVector<Loop *, 8> LoopList(LN.getLoops().begin(), LN.getLoops().end()); 387 for (unsigned I = 1; I < LoopList.size(); ++I) 388 if (LoopList[I]->getParentLoop() != LoopList[I - 1]) 389 return false; 390 return processLoopList(LoopList); 391 } 392 393 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) { 394 for (Loop *L : LoopList) { 395 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 396 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) { 397 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 398 return false; 399 } 400 if (L->getNumBackEdges() != 1) { 401 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 402 return false; 403 } 404 if (!L->getExitingBlock()) { 405 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 406 return false; 407 } 408 } 409 return true; 410 } 411 412 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) { 413 // TODO: Add a better heuristic to select the loop to be interchanged based 414 // on the dependence matrix. Currently we select the innermost loop. 415 return LoopList.size() - 1; 416 } 417 418 bool processLoopList(SmallVectorImpl<Loop *> &LoopList) { 419 bool Changed = false; 420 unsigned LoopNestDepth = LoopList.size(); 421 if (LoopNestDepth < 2) { 422 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 423 return false; 424 } 425 if (LoopNestDepth > MaxLoopNestDepth) { 426 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 427 << MaxLoopNestDepth << "\n"); 428 return false; 429 } 430 if (!isComputableLoopNest(LoopList)) { 431 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 432 return false; 433 } 434 435 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 436 << "\n"); 437 438 CharMatrix DependencyMatrix; 439 Loop *OuterMostLoop = *(LoopList.begin()); 440 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 441 OuterMostLoop, DI, SE)) { 442 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 443 return false; 444 } 445 #ifdef DUMP_DEP_MATRICIES 446 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 447 printDepMatrix(DependencyMatrix); 448 #endif 449 450 // Get the Outermost loop exit. 451 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 452 if (!LoopNestExit) { 453 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 454 return false; 455 } 456 457 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 458 // Obtain the loop vector returned from loop cache analysis beforehand, 459 // and put each <Loop, index> pair into a map for constant time query 460 // later. Indices in loop vector reprsent the optimal order of the 461 // corresponding loop, e.g., given a loopnest with depth N, index 0 462 // indicates the loop should be placed as the outermost loop and index N 463 // indicates the loop should be placed as the innermost loop. 464 // 465 // For the old pass manager CacheCost would be null. 466 DenseMap<const Loop *, unsigned> CostMap; 467 if (CC != nullptr) { 468 const auto &LoopCosts = CC->getLoopCosts(); 469 for (unsigned i = 0; i < LoopCosts.size(); i++) { 470 CostMap[LoopCosts[i].first] = i; 471 } 472 } 473 // We try to achieve the globally optimal memory access for the loopnest, 474 // and do interchange based on a bubble-sort fasion. We start from 475 // the innermost loop, move it outwards to the best possible position 476 // and repeat this process. 477 for (unsigned j = SelecLoopId; j > 0; j--) { 478 bool ChangedPerIter = false; 479 for (unsigned i = SelecLoopId; i > SelecLoopId - j; i--) { 480 bool Interchanged = processLoop(LoopList[i], LoopList[i - 1], i, i - 1, 481 DependencyMatrix, CostMap); 482 if (!Interchanged) 483 continue; 484 // Loops interchanged, update LoopList accordingly. 485 std::swap(LoopList[i - 1], LoopList[i]); 486 // Update the DependencyMatrix 487 interChangeDependencies(DependencyMatrix, i, i - 1); 488 #ifdef DUMP_DEP_MATRICIES 489 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 490 printDepMatrix(DependencyMatrix); 491 #endif 492 ChangedPerIter |= Interchanged; 493 Changed |= Interchanged; 494 } 495 // Early abort if there was no interchange during an entire round of 496 // moving loops outwards. 497 if (!ChangedPerIter) 498 break; 499 } 500 return Changed; 501 } 502 503 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId, 504 unsigned OuterLoopId, 505 std::vector<std::vector<char>> &DependencyMatrix, 506 const DenseMap<const Loop *, unsigned> &CostMap) { 507 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId 508 << " and OuterLoopId = " << OuterLoopId << "\n"); 509 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 510 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 511 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 512 return false; 513 } 514 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 515 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 516 if (!LIP.isProfitable(InnerLoop, OuterLoop, InnerLoopId, OuterLoopId, 517 DependencyMatrix, CostMap, CC)) { 518 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 519 return false; 520 } 521 522 ORE->emit([&]() { 523 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 524 InnerLoop->getStartLoc(), 525 InnerLoop->getHeader()) 526 << "Loop interchanged with enclosing loop."; 527 }); 528 529 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL); 530 LIT.transform(); 531 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 532 LoopsInterchanged++; 533 534 llvm::formLCSSARecursively(*OuterLoop, *DT, LI, SE); 535 return true; 536 } 537 }; 538 539 } // end anonymous namespace 540 541 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 542 return any_of(*BB, [](const Instruction &I) { 543 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 544 }); 545 } 546 547 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 548 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 549 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 550 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 551 552 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 553 554 // A perfectly nested loop will not have any branch in between the outer and 555 // inner block i.e. outer header will branch to either inner preheader and 556 // outerloop latch. 557 BranchInst *OuterLoopHeaderBI = 558 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 559 if (!OuterLoopHeaderBI) 560 return false; 561 562 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 563 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 564 Succ != OuterLoopLatch) 565 return false; 566 567 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 568 // We do not have any basic block in between now make sure the outer header 569 // and outer loop latch doesn't contain any unsafe instructions. 570 if (containsUnsafeInstructions(OuterLoopHeader) || 571 containsUnsafeInstructions(OuterLoopLatch)) 572 return false; 573 574 // Also make sure the inner loop preheader does not contain any unsafe 575 // instructions. Note that all instructions in the preheader will be moved to 576 // the outer loop header when interchanging. 577 if (InnerLoopPreHeader != OuterLoopHeader && 578 containsUnsafeInstructions(InnerLoopPreHeader)) 579 return false; 580 581 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock(); 582 // Ensure the inner loop exit block flows to the outer loop latch possibly 583 // through empty blocks. 584 const BasicBlock &SuccInner = 585 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch); 586 if (&SuccInner != OuterLoopLatch) { 587 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit 588 << " does not lead to the outer loop latch.\n";); 589 return false; 590 } 591 // The inner loop exit block does flow to the outer loop latch and not some 592 // other BBs, now make sure it contains safe instructions, since it will be 593 // moved into the (new) inner loop after interchange. 594 if (containsUnsafeInstructions(InnerLoopExit)) 595 return false; 596 597 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 598 // We have a perfect loop nest. 599 return true; 600 } 601 602 bool LoopInterchangeLegality::isLoopStructureUnderstood() { 603 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 604 for (PHINode *InnerInduction : InnerLoopInductions) { 605 unsigned Num = InnerInduction->getNumOperands(); 606 for (unsigned i = 0; i < Num; ++i) { 607 Value *Val = InnerInduction->getOperand(i); 608 if (isa<Constant>(Val)) 609 continue; 610 Instruction *I = dyn_cast<Instruction>(Val); 611 if (!I) 612 return false; 613 // TODO: Handle triangular loops. 614 // e.g. for(int i=0;i<N;i++) 615 // for(int j=i;j<N;j++) 616 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 617 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 618 InnerLoopPreheader && 619 !OuterLoop->isLoopInvariant(I)) { 620 return false; 621 } 622 } 623 } 624 625 // TODO: Handle triangular loops of another form. 626 // e.g. for(int i=0;i<N;i++) 627 // for(int j=0;j<i;j++) 628 // or, 629 // for(int i=0;i<N;i++) 630 // for(int j=0;j*i<N;j++) 631 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 632 BranchInst *InnerLoopLatchBI = 633 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 634 if (!InnerLoopLatchBI->isConditional()) 635 return false; 636 if (CmpInst *InnerLoopCmp = 637 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) { 638 Value *Op0 = InnerLoopCmp->getOperand(0); 639 Value *Op1 = InnerLoopCmp->getOperand(1); 640 641 // LHS and RHS of the inner loop exit condition, e.g., 642 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i. 643 Value *Left = nullptr; 644 Value *Right = nullptr; 645 646 // Check if V only involves inner loop induction variable. 647 // Return true if V is InnerInduction, or a cast from 648 // InnerInduction, or a binary operator that involves 649 // InnerInduction and a constant. 650 std::function<bool(Value *)> IsPathToInnerIndVar; 651 IsPathToInnerIndVar = [this, &IsPathToInnerIndVar](const Value *V) -> bool { 652 if (llvm::is_contained(InnerLoopInductions, V)) 653 return true; 654 if (isa<Constant>(V)) 655 return true; 656 const Instruction *I = dyn_cast<Instruction>(V); 657 if (!I) 658 return false; 659 if (isa<CastInst>(I)) 660 return IsPathToInnerIndVar(I->getOperand(0)); 661 if (isa<BinaryOperator>(I)) 662 return IsPathToInnerIndVar(I->getOperand(0)) && 663 IsPathToInnerIndVar(I->getOperand(1)); 664 return false; 665 }; 666 667 // In case of multiple inner loop indvars, it is okay if LHS and RHS 668 // are both inner indvar related variables. 669 if (IsPathToInnerIndVar(Op0) && IsPathToInnerIndVar(Op1)) 670 return true; 671 672 // Otherwise we check if the cmp instruction compares an inner indvar 673 // related variable (Left) with a outer loop invariant (Right). 674 if (IsPathToInnerIndVar(Op0) && !isa<Constant>(Op0)) { 675 Left = Op0; 676 Right = Op1; 677 } else if (IsPathToInnerIndVar(Op1) && !isa<Constant>(Op1)) { 678 Left = Op1; 679 Right = Op0; 680 } 681 682 if (Left == nullptr) 683 return false; 684 685 const SCEV *S = SE->getSCEV(Right); 686 if (!SE->isLoopInvariant(S, OuterLoop)) 687 return false; 688 } 689 690 return true; 691 } 692 693 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 694 // value. 695 static Value *followLCSSA(Value *SV) { 696 PHINode *PHI = dyn_cast<PHINode>(SV); 697 if (!PHI) 698 return SV; 699 700 if (PHI->getNumIncomingValues() != 1) 701 return SV; 702 return followLCSSA(PHI->getIncomingValue(0)); 703 } 704 705 // Check V's users to see if it is involved in a reduction in L. 706 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 707 // Reduction variables cannot be constants. 708 if (isa<Constant>(V)) 709 return nullptr; 710 711 for (Value *User : V->users()) { 712 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 713 if (PHI->getNumIncomingValues() == 1) 714 continue; 715 RecurrenceDescriptor RD; 716 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) { 717 // Detect floating point reduction only when it can be reordered. 718 if (RD.getExactFPMathInst() != nullptr) 719 return nullptr; 720 return PHI; 721 } 722 return nullptr; 723 } 724 } 725 726 return nullptr; 727 } 728 729 bool LoopInterchangeLegality::findInductionAndReductions( 730 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 731 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 732 return false; 733 for (PHINode &PHI : L->getHeader()->phis()) { 734 InductionDescriptor ID; 735 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 736 Inductions.push_back(&PHI); 737 else { 738 // PHIs in inner loops need to be part of a reduction in the outer loop, 739 // discovered when checking the PHIs of the outer loop earlier. 740 if (!InnerLoop) { 741 if (!OuterInnerReductions.count(&PHI)) { 742 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 743 "across the outer loop.\n"); 744 return false; 745 } 746 } else { 747 assert(PHI.getNumIncomingValues() == 2 && 748 "Phis in loop header should have exactly 2 incoming values"); 749 // Check if we have a PHI node in the outer loop that has a reduction 750 // result from the inner loop as an incoming value. 751 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 752 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 753 if (!InnerRedPhi || 754 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) { 755 LLVM_DEBUG( 756 dbgs() 757 << "Failed to recognize PHI as an induction or reduction.\n"); 758 return false; 759 } 760 OuterInnerReductions.insert(&PHI); 761 OuterInnerReductions.insert(InnerRedPhi); 762 } 763 } 764 } 765 return true; 766 } 767 768 // This function indicates the current limitations in the transform as a result 769 // of which we do not proceed. 770 bool LoopInterchangeLegality::currentLimitations() { 771 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 772 773 // transform currently expects the loop latches to also be the exiting 774 // blocks. 775 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 776 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 777 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 778 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 779 LLVM_DEBUG( 780 dbgs() << "Loops where the latch is not the exiting block are not" 781 << " supported currently.\n"); 782 ORE->emit([&]() { 783 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 784 OuterLoop->getStartLoc(), 785 OuterLoop->getHeader()) 786 << "Loops where the latch is not the exiting block cannot be" 787 " interchange currently."; 788 }); 789 return true; 790 } 791 792 SmallVector<PHINode *, 8> Inductions; 793 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 794 LLVM_DEBUG( 795 dbgs() << "Only outer loops with induction or reduction PHI nodes " 796 << "are supported currently.\n"); 797 ORE->emit([&]() { 798 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 799 OuterLoop->getStartLoc(), 800 OuterLoop->getHeader()) 801 << "Only outer loops with induction or reduction PHI nodes can be" 802 " interchanged currently."; 803 }); 804 return true; 805 } 806 807 Inductions.clear(); 808 // For multi-level loop nests, make sure that all phi nodes for inner loops 809 // at all levels can be recognized as a induction or reduction phi. Bail out 810 // if a phi node at a certain nesting level cannot be properly recognized. 811 Loop *CurLevelLoop = OuterLoop; 812 while (!CurLevelLoop->getSubLoops().empty()) { 813 // We already made sure that the loop nest is tightly nested. 814 CurLevelLoop = CurLevelLoop->getSubLoops().front(); 815 if (!findInductionAndReductions(CurLevelLoop, Inductions, nullptr)) { 816 LLVM_DEBUG( 817 dbgs() << "Only inner loops with induction or reduction PHI nodes " 818 << "are supported currently.\n"); 819 ORE->emit([&]() { 820 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 821 CurLevelLoop->getStartLoc(), 822 CurLevelLoop->getHeader()) 823 << "Only inner loops with induction or reduction PHI nodes can be" 824 " interchange currently."; 825 }); 826 return true; 827 } 828 } 829 830 // TODO: Triangular loops are not handled for now. 831 if (!isLoopStructureUnderstood()) { 832 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 833 ORE->emit([&]() { 834 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 835 InnerLoop->getStartLoc(), 836 InnerLoop->getHeader()) 837 << "Inner loop structure not understood currently."; 838 }); 839 return true; 840 } 841 842 return false; 843 } 844 845 bool LoopInterchangeLegality::findInductions( 846 Loop *L, SmallVectorImpl<PHINode *> &Inductions) { 847 for (PHINode &PHI : L->getHeader()->phis()) { 848 InductionDescriptor ID; 849 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 850 Inductions.push_back(&PHI); 851 } 852 return !Inductions.empty(); 853 } 854 855 // We currently only support LCSSA PHI nodes in the inner loop exit, if their 856 // users are either reduction PHIs or PHIs outside the outer loop (which means 857 // the we are only interested in the final value after the loop). 858 static bool 859 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL, 860 SmallPtrSetImpl<PHINode *> &Reductions) { 861 BasicBlock *InnerExit = OuterL->getUniqueExitBlock(); 862 for (PHINode &PHI : InnerExit->phis()) { 863 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 864 if (PHI.getNumIncomingValues() > 1) 865 return false; 866 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) { 867 PHINode *PN = dyn_cast<PHINode>(U); 868 return !PN || 869 (!Reductions.count(PN) && OuterL->contains(PN->getParent())); 870 })) { 871 return false; 872 } 873 } 874 return true; 875 } 876 877 // We currently support LCSSA PHI nodes in the outer loop exit, if their 878 // incoming values do not come from the outer loop latch or if the 879 // outer loop latch has a single predecessor. In that case, the value will 880 // be available if both the inner and outer loop conditions are true, which 881 // will still be true after interchanging. If we have multiple predecessor, 882 // that may not be the case, e.g. because the outer loop latch may be executed 883 // if the inner loop is not executed. 884 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 885 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 886 for (PHINode &PHI : LoopNestExit->phis()) { 887 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 888 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 889 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 890 continue; 891 892 // The incoming value is defined in the outer loop latch. Currently we 893 // only support that in case the outer loop latch has a single predecessor. 894 // This guarantees that the outer loop latch is executed if and only if 895 // the inner loop is executed (because tightlyNested() guarantees that the 896 // outer loop header only branches to the inner loop or the outer loop 897 // latch). 898 // FIXME: We could weaken this logic and allow multiple predecessors, 899 // if the values are produced outside the loop latch. We would need 900 // additional logic to update the PHI nodes in the exit block as 901 // well. 902 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 903 return false; 904 } 905 } 906 return true; 907 } 908 909 // In case of multi-level nested loops, it may occur that lcssa phis exist in 910 // the latch of InnerLoop, i.e., when defs of the incoming values are further 911 // inside the loopnest. Sometimes those incoming values are not available 912 // after interchange, since the original inner latch will become the new outer 913 // latch which may have predecessor paths that do not include those incoming 914 // values. 915 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of 916 // multi-level loop nests. 917 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 918 if (InnerLoop->getSubLoops().empty()) 919 return true; 920 // If the original outer latch has only one predecessor, then values defined 921 // further inside the looploop, e.g., in the innermost loop, will be available 922 // at the new outer latch after interchange. 923 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr) 924 return true; 925 926 // The outer latch has more than one predecessors, i.e., the inner 927 // exit and the inner header. 928 // PHI nodes in the inner latch are lcssa phis where the incoming values 929 // are defined further inside the loopnest. Check if those phis are used 930 // in the original inner latch. If that is the case then bail out since 931 // those incoming values may not be available at the new outer latch. 932 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 933 for (PHINode &PHI : InnerLoopLatch->phis()) { 934 for (auto *U : PHI.users()) { 935 Instruction *UI = cast<Instruction>(U); 936 if (InnerLoopLatch == UI->getParent()) 937 return false; 938 } 939 } 940 return true; 941 } 942 943 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 944 unsigned OuterLoopId, 945 CharMatrix &DepMatrix) { 946 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 947 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 948 << " and OuterLoopId = " << OuterLoopId 949 << " due to dependence\n"); 950 ORE->emit([&]() { 951 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 952 InnerLoop->getStartLoc(), 953 InnerLoop->getHeader()) 954 << "Cannot interchange loops due to dependences."; 955 }); 956 return false; 957 } 958 // Check if outer and inner loop contain legal instructions only. 959 for (auto *BB : OuterLoop->blocks()) 960 for (Instruction &I : BB->instructionsWithoutDebug()) 961 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 962 // readnone functions do not prevent interchanging. 963 if (CI->onlyWritesMemory()) 964 continue; 965 LLVM_DEBUG( 966 dbgs() << "Loops with call instructions cannot be interchanged " 967 << "safely."); 968 ORE->emit([&]() { 969 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 970 CI->getDebugLoc(), 971 CI->getParent()) 972 << "Cannot interchange loops due to call instruction."; 973 }); 974 975 return false; 976 } 977 978 if (!findInductions(InnerLoop, InnerLoopInductions)) { 979 LLVM_DEBUG(dbgs() << "Could not find inner loop induction variables.\n"); 980 return false; 981 } 982 983 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) { 984 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n"); 985 ORE->emit([&]() { 986 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI", 987 InnerLoop->getStartLoc(), 988 InnerLoop->getHeader()) 989 << "Cannot interchange loops because unsupported PHI nodes found " 990 "in inner loop latch."; 991 }); 992 return false; 993 } 994 995 // TODO: The loops could not be interchanged due to current limitations in the 996 // transform module. 997 if (currentLimitations()) { 998 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 999 return false; 1000 } 1001 1002 // Check if the loops are tightly nested. 1003 if (!tightlyNested(OuterLoop, InnerLoop)) { 1004 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1005 ORE->emit([&]() { 1006 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1007 InnerLoop->getStartLoc(), 1008 InnerLoop->getHeader()) 1009 << "Cannot interchange loops because they are not tightly " 1010 "nested."; 1011 }); 1012 return false; 1013 } 1014 1015 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop, 1016 OuterInnerReductions)) { 1017 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n"); 1018 ORE->emit([&]() { 1019 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1020 InnerLoop->getStartLoc(), 1021 InnerLoop->getHeader()) 1022 << "Found unsupported PHI node in loop exit."; 1023 }); 1024 return false; 1025 } 1026 1027 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1028 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1029 ORE->emit([&]() { 1030 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1031 OuterLoop->getStartLoc(), 1032 OuterLoop->getHeader()) 1033 << "Found unsupported PHI node in loop exit."; 1034 }); 1035 return false; 1036 } 1037 1038 return true; 1039 } 1040 1041 int LoopInterchangeProfitability::getInstrOrderCost() { 1042 unsigned GoodOrder, BadOrder; 1043 BadOrder = GoodOrder = 0; 1044 for (BasicBlock *BB : InnerLoop->blocks()) { 1045 for (Instruction &Ins : *BB) { 1046 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1047 unsigned NumOp = GEP->getNumOperands(); 1048 bool FoundInnerInduction = false; 1049 bool FoundOuterInduction = false; 1050 for (unsigned i = 0; i < NumOp; ++i) { 1051 // Skip operands that are not SCEV-able. 1052 if (!SE->isSCEVable(GEP->getOperand(i)->getType())) 1053 continue; 1054 1055 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1056 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1057 if (!AR) 1058 continue; 1059 1060 // If we find the inner induction after an outer induction e.g. 1061 // for(int i=0;i<N;i++) 1062 // for(int j=0;j<N;j++) 1063 // A[i][j] = A[i-1][j-1]+k; 1064 // then it is a good order. 1065 if (AR->getLoop() == InnerLoop) { 1066 // We found an InnerLoop induction after OuterLoop induction. It is 1067 // a good order. 1068 FoundInnerInduction = true; 1069 if (FoundOuterInduction) { 1070 GoodOrder++; 1071 break; 1072 } 1073 } 1074 // If we find the outer induction after an inner induction e.g. 1075 // for(int i=0;i<N;i++) 1076 // for(int j=0;j<N;j++) 1077 // A[j][i] = A[j-1][i-1]+k; 1078 // then it is a bad order. 1079 if (AR->getLoop() == OuterLoop) { 1080 // We found an OuterLoop induction after InnerLoop induction. It is 1081 // a bad order. 1082 FoundOuterInduction = true; 1083 if (FoundInnerInduction) { 1084 BadOrder++; 1085 break; 1086 } 1087 } 1088 } 1089 } 1090 } 1091 } 1092 return GoodOrder - BadOrder; 1093 } 1094 1095 std::optional<bool> 1096 LoopInterchangeProfitability::isProfitablePerLoopCacheAnalysis( 1097 const DenseMap<const Loop *, unsigned> &CostMap, 1098 std::unique_ptr<CacheCost> &CC) { 1099 // This is the new cost model returned from loop cache analysis. 1100 // A smaller index means the loop should be placed an outer loop, and vice 1101 // versa. 1102 if (CostMap.contains(InnerLoop) && CostMap.contains(OuterLoop)) { 1103 unsigned InnerIndex = 0, OuterIndex = 0; 1104 InnerIndex = CostMap.find(InnerLoop)->second; 1105 OuterIndex = CostMap.find(OuterLoop)->second; 1106 LLVM_DEBUG(dbgs() << "InnerIndex = " << InnerIndex 1107 << ", OuterIndex = " << OuterIndex << "\n"); 1108 if (InnerIndex < OuterIndex) 1109 return std::optional<bool>(true); 1110 assert(InnerIndex != OuterIndex && "CostMap should assign unique " 1111 "numbers to each loop"); 1112 if (CC->getLoopCost(*OuterLoop) == CC->getLoopCost(*InnerLoop)) 1113 return std::nullopt; 1114 return std::optional<bool>(false); 1115 } 1116 return std::nullopt; 1117 } 1118 1119 std::optional<bool> 1120 LoopInterchangeProfitability::isProfitablePerInstrOrderCost() { 1121 // Legacy cost model: this is rough cost estimation algorithm. It counts the 1122 // good and bad order of induction variables in the instruction and allows 1123 // reordering if number of bad orders is more than good. 1124 int Cost = getInstrOrderCost(); 1125 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1126 if (Cost < 0 && Cost < LoopInterchangeCostThreshold) 1127 return std::optional<bool>(true); 1128 1129 return std::nullopt; 1130 } 1131 1132 std::optional<bool> LoopInterchangeProfitability::isProfitableForVectorization( 1133 unsigned InnerLoopId, unsigned OuterLoopId, CharMatrix &DepMatrix) { 1134 for (auto &Row : DepMatrix) { 1135 // If the inner loop is loop independent or doesn't carry any dependency 1136 // it is not profitable to move this to outer position, since we are 1137 // likely able to do inner loop vectorization already. 1138 if (Row[InnerLoopId] == 'I' || Row[InnerLoopId] == '=') 1139 return std::optional<bool>(false); 1140 1141 // If the outer loop is not loop independent it is not profitable to move 1142 // this to inner position, since doing so would not enable inner loop 1143 // parallelism. 1144 if (Row[OuterLoopId] != 'I' && Row[OuterLoopId] != '=') 1145 return std::optional<bool>(false); 1146 } 1147 // If inner loop has dependence and outer loop is loop independent then it 1148 // is/ profitable to interchange to enable inner loop parallelism. 1149 // If there are no dependences, interchanging will not improve anything. 1150 return std::optional<bool>(!DepMatrix.empty()); 1151 } 1152 1153 bool LoopInterchangeProfitability::isProfitable( 1154 const Loop *InnerLoop, const Loop *OuterLoop, unsigned InnerLoopId, 1155 unsigned OuterLoopId, CharMatrix &DepMatrix, 1156 const DenseMap<const Loop *, unsigned> &CostMap, 1157 std::unique_ptr<CacheCost> &CC) { 1158 // isProfitable() is structured to avoid endless loop interchange. 1159 // If loop cache analysis could decide the profitability then, 1160 // profitability check will stop and return the analysis result. 1161 // If cache analysis failed to analyze the loopnest (e.g., 1162 // due to delinearization issues) then only check whether it is 1163 // profitable for InstrOrderCost. Likewise, if InstrOrderCost failed to 1164 // analysis the profitability then only, isProfitableForVectorization 1165 // will decide. 1166 std::optional<bool> shouldInterchange = 1167 isProfitablePerLoopCacheAnalysis(CostMap, CC); 1168 if (!shouldInterchange.has_value()) { 1169 shouldInterchange = isProfitablePerInstrOrderCost(); 1170 if (!shouldInterchange.has_value()) 1171 shouldInterchange = 1172 isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix); 1173 } 1174 if (!shouldInterchange.has_value()) { 1175 ORE->emit([&]() { 1176 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1177 InnerLoop->getStartLoc(), 1178 InnerLoop->getHeader()) 1179 << "Insufficient information to calculate the cost of loop for " 1180 "interchange."; 1181 }); 1182 return false; 1183 } else if (!shouldInterchange.value()) { 1184 ORE->emit([&]() { 1185 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1186 InnerLoop->getStartLoc(), 1187 InnerLoop->getHeader()) 1188 << "Interchanging loops is not considered to improve cache " 1189 "locality nor vectorization."; 1190 }); 1191 return false; 1192 } 1193 return true; 1194 } 1195 1196 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1197 Loop *InnerLoop) { 1198 for (Loop *L : *OuterLoop) 1199 if (L == InnerLoop) { 1200 OuterLoop->removeChildLoop(L); 1201 return; 1202 } 1203 llvm_unreachable("Couldn't find loop"); 1204 } 1205 1206 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1207 /// new inner and outer loop after interchanging: NewInner is the original 1208 /// outer loop and NewOuter is the original inner loop. 1209 /// 1210 /// Before interchanging, we have the following structure 1211 /// Outer preheader 1212 // Outer header 1213 // Inner preheader 1214 // Inner header 1215 // Inner body 1216 // Inner latch 1217 // outer bbs 1218 // Outer latch 1219 // 1220 // After interchanging: 1221 // Inner preheader 1222 // Inner header 1223 // Outer preheader 1224 // Outer header 1225 // Inner body 1226 // outer bbs 1227 // Outer latch 1228 // Inner latch 1229 void LoopInterchangeTransform::restructureLoops( 1230 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1231 BasicBlock *OrigOuterPreHeader) { 1232 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1233 // The original inner loop preheader moves from the new inner loop to 1234 // the parent loop, if there is one. 1235 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1236 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1237 1238 // Switch the loop levels. 1239 if (OuterLoopParent) { 1240 // Remove the loop from its parent loop. 1241 removeChildLoop(OuterLoopParent, NewInner); 1242 removeChildLoop(NewInner, NewOuter); 1243 OuterLoopParent->addChildLoop(NewOuter); 1244 } else { 1245 removeChildLoop(NewInner, NewOuter); 1246 LI->changeTopLevelLoop(NewInner, NewOuter); 1247 } 1248 while (!NewOuter->isInnermost()) 1249 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1250 NewOuter->addChildLoop(NewInner); 1251 1252 // BBs from the original inner loop. 1253 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1254 1255 // Add BBs from the original outer loop to the original inner loop (excluding 1256 // BBs already in inner loop) 1257 for (BasicBlock *BB : NewInner->blocks()) 1258 if (LI->getLoopFor(BB) == NewInner) 1259 NewOuter->addBlockEntry(BB); 1260 1261 // Now remove inner loop header and latch from the new inner loop and move 1262 // other BBs (the loop body) to the new inner loop. 1263 BasicBlock *OuterHeader = NewOuter->getHeader(); 1264 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1265 for (BasicBlock *BB : OrigInnerBBs) { 1266 // Nothing will change for BBs in child loops. 1267 if (LI->getLoopFor(BB) != NewOuter) 1268 continue; 1269 // Remove the new outer loop header and latch from the new inner loop. 1270 if (BB == OuterHeader || BB == OuterLatch) 1271 NewInner->removeBlockFromLoop(BB); 1272 else 1273 LI->changeLoopFor(BB, NewInner); 1274 } 1275 1276 // The preheader of the original outer loop becomes part of the new 1277 // outer loop. 1278 NewOuter->addBlockEntry(OrigOuterPreHeader); 1279 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1280 1281 // Tell SE that we move the loops around. 1282 SE->forgetLoop(NewOuter); 1283 } 1284 1285 bool LoopInterchangeTransform::transform() { 1286 bool Transformed = false; 1287 1288 if (InnerLoop->getSubLoops().empty()) { 1289 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1290 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); 1291 auto &InductionPHIs = LIL.getInnerLoopInductions(); 1292 if (InductionPHIs.empty()) { 1293 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1294 return false; 1295 } 1296 1297 SmallVector<Instruction *, 8> InnerIndexVarList; 1298 for (PHINode *CurInductionPHI : InductionPHIs) { 1299 if (CurInductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1300 InnerIndexVarList.push_back( 1301 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(1))); 1302 else 1303 InnerIndexVarList.push_back( 1304 dyn_cast<Instruction>(CurInductionPHI->getIncomingValue(0))); 1305 } 1306 1307 // Create a new latch block for the inner loop. We split at the 1308 // current latch's terminator and then move the condition and all 1309 // operands that are not either loop-invariant or the induction PHI into the 1310 // new latch block. 1311 BasicBlock *NewLatch = 1312 SplitBlock(InnerLoop->getLoopLatch(), 1313 InnerLoop->getLoopLatch()->getTerminator(), DT, LI); 1314 1315 SmallSetVector<Instruction *, 4> WorkList; 1316 unsigned i = 0; 1317 auto MoveInstructions = [&i, &WorkList, this, &InductionPHIs, NewLatch]() { 1318 for (; i < WorkList.size(); i++) { 1319 // Duplicate instruction and move it the new latch. Update uses that 1320 // have been moved. 1321 Instruction *NewI = WorkList[i]->clone(); 1322 NewI->insertBefore(NewLatch->getFirstNonPHI()); 1323 assert(!NewI->mayHaveSideEffects() && 1324 "Moving instructions with side-effects may change behavior of " 1325 "the loop nest!"); 1326 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) { 1327 Instruction *UserI = cast<Instruction>(U.getUser()); 1328 if (!InnerLoop->contains(UserI->getParent()) || 1329 UserI->getParent() == NewLatch || 1330 llvm::is_contained(InductionPHIs, UserI)) 1331 U.set(NewI); 1332 } 1333 // Add operands of moved instruction to the worklist, except if they are 1334 // outside the inner loop or are the induction PHI. 1335 for (Value *Op : WorkList[i]->operands()) { 1336 Instruction *OpI = dyn_cast<Instruction>(Op); 1337 if (!OpI || 1338 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || 1339 llvm::is_contained(InductionPHIs, OpI)) 1340 continue; 1341 WorkList.insert(OpI); 1342 } 1343 } 1344 }; 1345 1346 // FIXME: Should we interchange when we have a constant condition? 1347 Instruction *CondI = dyn_cast<Instruction>( 1348 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) 1349 ->getCondition()); 1350 if (CondI) 1351 WorkList.insert(CondI); 1352 MoveInstructions(); 1353 for (Instruction *InnerIndexVar : InnerIndexVarList) 1354 WorkList.insert(cast<Instruction>(InnerIndexVar)); 1355 MoveInstructions(); 1356 } 1357 1358 // Ensure the inner loop phi nodes have a separate basic block. 1359 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1360 if (InnerLoopHeader->getFirstNonPHI() != InnerLoopHeader->getTerminator()) { 1361 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1362 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1363 } 1364 1365 // Instructions in the original inner loop preheader may depend on values 1366 // defined in the outer loop header. Move them there, because the original 1367 // inner loop preheader will become the entry into the interchanged loop nest. 1368 // Currently we move all instructions and rely on LICM to move invariant 1369 // instructions outside the loop nest. 1370 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1371 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1372 if (InnerLoopPreHeader != OuterLoopHeader) { 1373 SmallPtrSet<Instruction *, 4> NeedsMoving; 1374 for (Instruction &I : 1375 make_early_inc_range(make_range(InnerLoopPreHeader->begin(), 1376 std::prev(InnerLoopPreHeader->end())))) 1377 I.moveBeforePreserving(OuterLoopHeader->getTerminator()); 1378 } 1379 1380 Transformed |= adjustLoopLinks(); 1381 if (!Transformed) { 1382 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1383 return false; 1384 } 1385 1386 return true; 1387 } 1388 1389 /// \brief Move all instructions except the terminator from FromBB right before 1390 /// InsertBefore 1391 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1392 BasicBlock *ToBB = InsertBefore->getParent(); 1393 1394 ToBB->splice(InsertBefore->getIterator(), FromBB, FromBB->begin(), 1395 FromBB->getTerminator()->getIterator()); 1396 } 1397 1398 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact. 1399 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) { 1400 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them 1401 // from BB1 afterwards. 1402 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; }); 1403 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end())); 1404 for (Instruction *I : TempInstrs) 1405 I->removeFromParent(); 1406 1407 // Move instructions from BB2 to BB1. 1408 moveBBContents(BB2, BB1->getTerminator()); 1409 1410 // Move instructions from TempInstrs to BB2. 1411 for (Instruction *I : TempInstrs) 1412 I->insertBefore(BB2->getTerminator()); 1413 } 1414 1415 // Update BI to jump to NewBB instead of OldBB. Records updates to the 1416 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that 1417 // \p OldBB is exactly once in BI's successor list. 1418 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1419 BasicBlock *NewBB, 1420 std::vector<DominatorTree::UpdateType> &DTUpdates, 1421 bool MustUpdateOnce = true) { 1422 assert((!MustUpdateOnce || 1423 llvm::count_if(successors(BI), 1424 [OldBB](BasicBlock *BB) { 1425 return BB == OldBB; 1426 }) == 1) && "BI must jump to OldBB exactly once."); 1427 bool Changed = false; 1428 for (Use &Op : BI->operands()) 1429 if (Op == OldBB) { 1430 Op.set(NewBB); 1431 Changed = true; 1432 } 1433 1434 if (Changed) { 1435 DTUpdates.push_back( 1436 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1437 DTUpdates.push_back( 1438 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1439 } 1440 assert(Changed && "Expected a successor to be updated"); 1441 } 1442 1443 // Move Lcssa PHIs to the right place. 1444 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1445 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1446 BasicBlock *OuterLatch, BasicBlock *OuterExit, 1447 Loop *InnerLoop, LoopInfo *LI) { 1448 1449 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1450 // defined either in the header or latch. Those blocks will become header and 1451 // latch of the new outer loop, and the only possible users can PHI nodes 1452 // in the exit block of the loop nest or the outer loop header (reduction 1453 // PHIs, in that case, the incoming value must be defined in the inner loop 1454 // header). We can just substitute the user with the incoming value and remove 1455 // the PHI. 1456 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1457 assert(P.getNumIncomingValues() == 1 && 1458 "Only loops with a single exit are supported!"); 1459 1460 // Incoming values are guaranteed be instructions currently. 1461 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1462 // In case of multi-level nested loops, follow LCSSA to find the incoming 1463 // value defined from the innermost loop. 1464 auto IncIInnerMost = cast<Instruction>(followLCSSA(IncI)); 1465 // Skip phis with incoming values from the inner loop body, excluding the 1466 // header and latch. 1467 if (IncIInnerMost->getParent() != InnerLatch && 1468 IncIInnerMost->getParent() != InnerHeader) 1469 continue; 1470 1471 assert(all_of(P.users(), 1472 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1473 return (cast<PHINode>(U)->getParent() == OuterHeader && 1474 IncI->getParent() == InnerHeader) || 1475 cast<PHINode>(U)->getParent() == OuterExit; 1476 }) && 1477 "Can only replace phis iff the uses are in the loop nest exit or " 1478 "the incoming value is defined in the inner header (it will " 1479 "dominate all loop blocks after interchanging)"); 1480 P.replaceAllUsesWith(IncI); 1481 P.eraseFromParent(); 1482 } 1483 1484 SmallVector<PHINode *, 8> LcssaInnerExit; 1485 for (PHINode &P : InnerExit->phis()) 1486 LcssaInnerExit.push_back(&P); 1487 1488 SmallVector<PHINode *, 8> LcssaInnerLatch; 1489 for (PHINode &P : InnerLatch->phis()) 1490 LcssaInnerLatch.push_back(&P); 1491 1492 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1493 // If a PHI node has users outside of InnerExit, it has a use outside the 1494 // interchanged loop and we have to preserve it. We move these to 1495 // InnerLatch, which will become the new exit block for the innermost 1496 // loop after interchanging. 1497 for (PHINode *P : LcssaInnerExit) 1498 P->moveBefore(InnerLatch->getFirstNonPHI()); 1499 1500 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1501 // and we have to move them to the new inner latch. 1502 for (PHINode *P : LcssaInnerLatch) 1503 P->moveBefore(InnerExit->getFirstNonPHI()); 1504 1505 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1506 // incoming values defined in the outer loop, we have to add a new PHI 1507 // in the inner loop latch, which became the exit block of the outer loop, 1508 // after interchanging. 1509 if (OuterExit) { 1510 for (PHINode &P : OuterExit->phis()) { 1511 if (P.getNumIncomingValues() != 1) 1512 continue; 1513 // Skip Phis with incoming values defined in the inner loop. Those should 1514 // already have been updated. 1515 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1516 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop) 1517 continue; 1518 1519 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1520 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1521 NewPhi->setIncomingBlock(0, OuterLatch); 1522 // We might have incoming edges from other BBs, i.e., the original outer 1523 // header. 1524 for (auto *Pred : predecessors(InnerLatch)) { 1525 if (Pred == OuterLatch) 1526 continue; 1527 NewPhi->addIncoming(P.getIncomingValue(0), Pred); 1528 } 1529 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1530 P.setIncomingValue(0, NewPhi); 1531 } 1532 } 1533 1534 // Now adjust the incoming blocks for the LCSSA PHIs. 1535 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1536 // with the new latch. 1537 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1538 } 1539 1540 bool LoopInterchangeTransform::adjustLoopBranches() { 1541 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1542 std::vector<DominatorTree::UpdateType> DTUpdates; 1543 1544 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1545 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1546 1547 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1548 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1549 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1550 // Ensure that both preheaders do not contain PHI nodes and have single 1551 // predecessors. This allows us to move them easily. We use 1552 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1553 // preheaders do not satisfy those conditions. 1554 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1555 !OuterLoopPreHeader->getUniquePredecessor()) 1556 OuterLoopPreHeader = 1557 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1558 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1559 InnerLoopPreHeader = 1560 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1561 1562 // Adjust the loop preheader 1563 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1564 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1565 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1566 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1567 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1568 BasicBlock *InnerLoopLatchPredecessor = 1569 InnerLoopLatch->getUniquePredecessor(); 1570 BasicBlock *InnerLoopLatchSuccessor; 1571 BasicBlock *OuterLoopLatchSuccessor; 1572 1573 BranchInst *OuterLoopLatchBI = 1574 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1575 BranchInst *InnerLoopLatchBI = 1576 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1577 BranchInst *OuterLoopHeaderBI = 1578 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1579 BranchInst *InnerLoopHeaderBI = 1580 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1581 1582 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1583 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1584 !InnerLoopHeaderBI) 1585 return false; 1586 1587 BranchInst *InnerLoopLatchPredecessorBI = 1588 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1589 BranchInst *OuterLoopPredecessorBI = 1590 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1591 1592 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1593 return false; 1594 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1595 if (!InnerLoopHeaderSuccessor) 1596 return false; 1597 1598 // Adjust Loop Preheader and headers. 1599 // The branches in the outer loop predecessor and the outer loop header can 1600 // be unconditional branches or conditional branches with duplicates. Consider 1601 // this when updating the successors. 1602 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1603 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false); 1604 // The outer loop header might or might not branch to the outer latch. 1605 // We are guaranteed to branch to the inner loop preheader. 1606 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) { 1607 // In this case the outerLoopHeader should branch to the InnerLoopLatch. 1608 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch, 1609 DTUpdates, 1610 /*MustUpdateOnce=*/false); 1611 } 1612 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1613 InnerLoopHeaderSuccessor, DTUpdates, 1614 /*MustUpdateOnce=*/false); 1615 1616 // Adjust reduction PHI's now that the incoming block has changed. 1617 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1618 OuterLoopHeader); 1619 1620 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1621 OuterLoopPreHeader, DTUpdates); 1622 1623 // -------------Adjust loop latches----------- 1624 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1625 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1626 else 1627 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1628 1629 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1630 InnerLoopLatchSuccessor, DTUpdates); 1631 1632 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1633 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1634 else 1635 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1636 1637 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1638 OuterLoopLatchSuccessor, DTUpdates); 1639 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1640 DTUpdates); 1641 1642 DT->applyUpdates(DTUpdates); 1643 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1644 OuterLoopPreHeader); 1645 1646 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1647 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(), 1648 InnerLoop, LI); 1649 // For PHIs in the exit block of the outer loop, outer's latch has been 1650 // replaced by Inners'. 1651 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1652 1653 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1654 // Now update the reduction PHIs in the inner and outer loop headers. 1655 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1656 for (PHINode &PHI : InnerLoopHeader->phis()) 1657 if (OuterInnerReductions.contains(&PHI)) 1658 InnerLoopPHIs.push_back(&PHI); 1659 1660 for (PHINode &PHI : OuterLoopHeader->phis()) 1661 if (OuterInnerReductions.contains(&PHI)) 1662 OuterLoopPHIs.push_back(&PHI); 1663 1664 // Now move the remaining reduction PHIs from outer to inner loop header and 1665 // vice versa. The PHI nodes must be part of a reduction across the inner and 1666 // outer loop and all the remains to do is and updating the incoming blocks. 1667 for (PHINode *PHI : OuterLoopPHIs) { 1668 LLVM_DEBUG(dbgs() << "Outer loop reduction PHIs:\n"; PHI->dump();); 1669 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1670 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1671 } 1672 for (PHINode *PHI : InnerLoopPHIs) { 1673 LLVM_DEBUG(dbgs() << "Inner loop reduction PHIs:\n"; PHI->dump();); 1674 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1675 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node"); 1676 } 1677 1678 // Update the incoming blocks for moved PHI nodes. 1679 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1680 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1681 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1682 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1683 1684 // Values defined in the outer loop header could be used in the inner loop 1685 // latch. In that case, we need to create LCSSA phis for them, because after 1686 // interchanging they will be defined in the new inner loop and used in the 1687 // new outer loop. 1688 SmallVector<Instruction *, 4> MayNeedLCSSAPhis; 1689 for (Instruction &I : 1690 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end()))) 1691 MayNeedLCSSAPhis.push_back(&I); 1692 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE); 1693 1694 return true; 1695 } 1696 1697 bool LoopInterchangeTransform::adjustLoopLinks() { 1698 // Adjust all branches in the inner and outer loop. 1699 bool Changed = adjustLoopBranches(); 1700 if (Changed) { 1701 // We have interchanged the preheaders so we need to interchange the data in 1702 // the preheaders as well. This is because the content of the inner 1703 // preheader was previously executed inside the outer loop. 1704 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1705 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1706 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader); 1707 } 1708 return Changed; 1709 } 1710 1711 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN, 1712 LoopAnalysisManager &AM, 1713 LoopStandardAnalysisResults &AR, 1714 LPMUpdater &U) { 1715 Function &F = *LN.getParent(); 1716 1717 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI); 1718 std::unique_ptr<CacheCost> CC = 1719 CacheCost::getCacheCost(LN.getOutermostLoop(), AR, DI); 1720 OptimizationRemarkEmitter ORE(&F); 1721 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, CC, &ORE).run(LN)) 1722 return PreservedAnalyses::all(); 1723 U.markLoopNestChanged(true); 1724 return getLoopPassPreservedAnalyses(); 1725 } 1726