xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp (revision 517e52b6c21ccff22c46df0dcd15c19baee3d86c)
1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
24 #include "llvm/Analysis/ScalarEvolution.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Scalar.h"
46 #include "llvm/Transforms/Utils.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 #include <cassert>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "loop-interchange"
56 
57 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
58 
59 static cl::opt<int> LoopInterchangeCostThreshold(
60     "loop-interchange-threshold", cl::init(0), cl::Hidden,
61     cl::desc("Interchange if you gain more than this number"));
62 
63 namespace {
64 
65 using LoopVector = SmallVector<Loop *, 8>;
66 
67 // TODO: Check if we can use a sparse matrix here.
68 using CharMatrix = std::vector<std::vector<char>>;
69 
70 } // end anonymous namespace
71 
72 // Maximum number of dependencies that can be handled in the dependency matrix.
73 static const unsigned MaxMemInstrCount = 100;
74 
75 // Maximum loop depth supported.
76 static const unsigned MaxLoopNestDepth = 10;
77 
78 #ifdef DUMP_DEP_MATRICIES
79 static void printDepMatrix(CharMatrix &DepMatrix) {
80   for (auto &Row : DepMatrix) {
81     for (auto D : Row)
82       LLVM_DEBUG(dbgs() << D << " ");
83     LLVM_DEBUG(dbgs() << "\n");
84   }
85 }
86 #endif
87 
88 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
89                                      Loop *L, DependenceInfo *DI) {
90   using ValueVector = SmallVector<Value *, 16>;
91 
92   ValueVector MemInstr;
93 
94   // For each block.
95   for (BasicBlock *BB : L->blocks()) {
96     // Scan the BB and collect legal loads and stores.
97     for (Instruction &I : *BB) {
98       if (!isa<Instruction>(I))
99         return false;
100       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
101         if (!Ld->isSimple())
102           return false;
103         MemInstr.push_back(&I);
104       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
105         if (!St->isSimple())
106           return false;
107         MemInstr.push_back(&I);
108       }
109     }
110   }
111 
112   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
113                     << " Loads and Stores to analyze\n");
114 
115   ValueVector::iterator I, IE, J, JE;
116 
117   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
118     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
119       std::vector<char> Dep;
120       Instruction *Src = cast<Instruction>(*I);
121       Instruction *Dst = cast<Instruction>(*J);
122       if (Src == Dst)
123         continue;
124       // Ignore Input dependencies.
125       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
126         continue;
127       // Track Output, Flow, and Anti dependencies.
128       if (auto D = DI->depends(Src, Dst, true)) {
129         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
130         LLVM_DEBUG(StringRef DepType =
131                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
132                    dbgs() << "Found " << DepType
133                           << " dependency between Src and Dst\n"
134                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
135         unsigned Levels = D->getLevels();
136         char Direction;
137         for (unsigned II = 1; II <= Levels; ++II) {
138           const SCEV *Distance = D->getDistance(II);
139           const SCEVConstant *SCEVConst =
140               dyn_cast_or_null<SCEVConstant>(Distance);
141           if (SCEVConst) {
142             const ConstantInt *CI = SCEVConst->getValue();
143             if (CI->isNegative())
144               Direction = '<';
145             else if (CI->isZero())
146               Direction = '=';
147             else
148               Direction = '>';
149             Dep.push_back(Direction);
150           } else if (D->isScalar(II)) {
151             Direction = 'S';
152             Dep.push_back(Direction);
153           } else {
154             unsigned Dir = D->getDirection(II);
155             if (Dir == Dependence::DVEntry::LT ||
156                 Dir == Dependence::DVEntry::LE)
157               Direction = '<';
158             else if (Dir == Dependence::DVEntry::GT ||
159                      Dir == Dependence::DVEntry::GE)
160               Direction = '>';
161             else if (Dir == Dependence::DVEntry::EQ)
162               Direction = '=';
163             else
164               Direction = '*';
165             Dep.push_back(Direction);
166           }
167         }
168         while (Dep.size() != Level) {
169           Dep.push_back('I');
170         }
171 
172         DepMatrix.push_back(Dep);
173         if (DepMatrix.size() > MaxMemInstrCount) {
174           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
175                             << " dependencies inside loop\n");
176           return false;
177         }
178       }
179     }
180   }
181 
182   return true;
183 }
184 
185 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
186 // matrix by exchanging the two columns.
187 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
188                                     unsigned ToIndx) {
189   unsigned numRows = DepMatrix.size();
190   for (unsigned i = 0; i < numRows; ++i) {
191     char TmpVal = DepMatrix[i][ToIndx];
192     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
193     DepMatrix[i][FromIndx] = TmpVal;
194   }
195 }
196 
197 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
198 // '>'
199 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
200                                    unsigned Column) {
201   for (unsigned i = 0; i <= Column; ++i) {
202     if (DepMatrix[Row][i] == '<')
203       return false;
204     if (DepMatrix[Row][i] == '>')
205       return true;
206   }
207   // All dependencies were '=','S' or 'I'
208   return false;
209 }
210 
211 // Checks if no dependence exist in the dependency matrix in Row before Column.
212 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
213                                  unsigned Column) {
214   for (unsigned i = 0; i < Column; ++i) {
215     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
216         DepMatrix[Row][i] != 'I')
217       return false;
218   }
219   return true;
220 }
221 
222 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
223                                 unsigned OuterLoopId, char InnerDep,
224                                 char OuterDep) {
225   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
226     return false;
227 
228   if (InnerDep == OuterDep)
229     return true;
230 
231   // It is legal to interchange if and only if after interchange no row has a
232   // '>' direction as the leftmost non-'='.
233 
234   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
235     return true;
236 
237   if (InnerDep == '<')
238     return true;
239 
240   if (InnerDep == '>') {
241     // If OuterLoopId represents outermost loop then interchanging will make the
242     // 1st dependency as '>'
243     if (OuterLoopId == 0)
244       return false;
245 
246     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
247     // interchanging will result in this row having an outermost non '='
248     // dependency of '>'
249     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
250       return true;
251   }
252 
253   return false;
254 }
255 
256 // Checks if it is legal to interchange 2 loops.
257 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
258 // if the direction matrix, after the same permutation is applied to its
259 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
260 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
261                                       unsigned InnerLoopId,
262                                       unsigned OuterLoopId) {
263   unsigned NumRows = DepMatrix.size();
264   // For each row check if it is valid to interchange.
265   for (unsigned Row = 0; Row < NumRows; ++Row) {
266     char InnerDep = DepMatrix[Row][InnerLoopId];
267     char OuterDep = DepMatrix[Row][OuterLoopId];
268     if (InnerDep == '*' || OuterDep == '*')
269       return false;
270     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
271       return false;
272   }
273   return true;
274 }
275 
276 static LoopVector populateWorklist(Loop &L) {
277   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
278                     << L.getHeader()->getParent()->getName() << " Loop: %"
279                     << L.getHeader()->getName() << '\n');
280   LoopVector LoopList;
281   Loop *CurrentLoop = &L;
282   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
283   while (!Vec->empty()) {
284     // The current loop has multiple subloops in it hence it is not tightly
285     // nested.
286     // Discard all loops above it added into Worklist.
287     if (Vec->size() != 1)
288       return {};
289 
290     LoopList.push_back(CurrentLoop);
291     CurrentLoop = Vec->front();
292     Vec = &CurrentLoop->getSubLoops();
293   }
294   LoopList.push_back(CurrentLoop);
295   return LoopList;
296 }
297 
298 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
299   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
300   if (InnerIndexVar)
301     return InnerIndexVar;
302   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
303     return nullptr;
304   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
305     PHINode *PhiVar = cast<PHINode>(I);
306     Type *PhiTy = PhiVar->getType();
307     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
308         !PhiTy->isPointerTy())
309       return nullptr;
310     const SCEVAddRecExpr *AddRec =
311         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
312     if (!AddRec || !AddRec->isAffine())
313       continue;
314     const SCEV *Step = AddRec->getStepRecurrence(*SE);
315     if (!isa<SCEVConstant>(Step))
316       continue;
317     // Found the induction variable.
318     // FIXME: Handle loops with more than one induction variable. Note that,
319     // currently, legality makes sure we have only one induction variable.
320     return PhiVar;
321   }
322   return nullptr;
323 }
324 
325 namespace {
326 
327 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
328 class LoopInterchangeLegality {
329 public:
330   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
331                           OptimizationRemarkEmitter *ORE)
332       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
333 
334   /// Check if the loops can be interchanged.
335   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
336                            CharMatrix &DepMatrix);
337 
338   /// Check if the loop structure is understood. We do not handle triangular
339   /// loops for now.
340   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
341 
342   bool currentLimitations();
343 
344   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
345     return OuterInnerReductions;
346   }
347 
348 private:
349   bool tightlyNested(Loop *Outer, Loop *Inner);
350   bool containsUnsafeInstructions(BasicBlock *BB);
351 
352   /// Discover induction and reduction PHIs in the header of \p L. Induction
353   /// PHIs are added to \p Inductions, reductions are added to
354   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
355   /// to be passed as \p InnerLoop.
356   bool findInductionAndReductions(Loop *L,
357                                   SmallVector<PHINode *, 8> &Inductions,
358                                   Loop *InnerLoop);
359 
360   Loop *OuterLoop;
361   Loop *InnerLoop;
362 
363   ScalarEvolution *SE;
364 
365   /// Interface to emit optimization remarks.
366   OptimizationRemarkEmitter *ORE;
367 
368   /// Set of reduction PHIs taking part of a reduction across the inner and
369   /// outer loop.
370   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
371 };
372 
373 /// LoopInterchangeProfitability checks if it is profitable to interchange the
374 /// loop.
375 class LoopInterchangeProfitability {
376 public:
377   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
378                                OptimizationRemarkEmitter *ORE)
379       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
380 
381   /// Check if the loop interchange is profitable.
382   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
383                     CharMatrix &DepMatrix);
384 
385 private:
386   int getInstrOrderCost();
387 
388   Loop *OuterLoop;
389   Loop *InnerLoop;
390 
391   /// Scev analysis.
392   ScalarEvolution *SE;
393 
394   /// Interface to emit optimization remarks.
395   OptimizationRemarkEmitter *ORE;
396 };
397 
398 /// LoopInterchangeTransform interchanges the loop.
399 class LoopInterchangeTransform {
400 public:
401   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
402                            LoopInfo *LI, DominatorTree *DT,
403                            BasicBlock *LoopNestExit,
404                            const LoopInterchangeLegality &LIL)
405       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
406         LoopExit(LoopNestExit), LIL(LIL) {}
407 
408   /// Interchange OuterLoop and InnerLoop.
409   bool transform();
410   void restructureLoops(Loop *NewInner, Loop *NewOuter,
411                         BasicBlock *OrigInnerPreHeader,
412                         BasicBlock *OrigOuterPreHeader);
413   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
414 
415 private:
416   bool adjustLoopLinks();
417   bool adjustLoopBranches();
418 
419   Loop *OuterLoop;
420   Loop *InnerLoop;
421 
422   /// Scev analysis.
423   ScalarEvolution *SE;
424 
425   LoopInfo *LI;
426   DominatorTree *DT;
427   BasicBlock *LoopExit;
428 
429   const LoopInterchangeLegality &LIL;
430 };
431 
432 struct LoopInterchange {
433   ScalarEvolution *SE = nullptr;
434   LoopInfo *LI = nullptr;
435   DependenceInfo *DI = nullptr;
436   DominatorTree *DT = nullptr;
437 
438   /// Interface to emit optimization remarks.
439   OptimizationRemarkEmitter *ORE;
440 
441   LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
442                   DominatorTree *DT, OptimizationRemarkEmitter *ORE)
443       : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
444 
445   bool run(Loop *L) {
446     if (L->getParentLoop())
447       return false;
448 
449     return processLoopList(populateWorklist(*L));
450   }
451 
452   bool isComputableLoopNest(LoopVector LoopList) {
453     for (Loop *L : LoopList) {
454       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
455       if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
456         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
457         return false;
458       }
459       if (L->getNumBackEdges() != 1) {
460         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
461         return false;
462       }
463       if (!L->getExitingBlock()) {
464         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
465         return false;
466       }
467     }
468     return true;
469   }
470 
471   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
472     // TODO: Add a better heuristic to select the loop to be interchanged based
473     // on the dependence matrix. Currently we select the innermost loop.
474     return LoopList.size() - 1;
475   }
476 
477   bool processLoopList(LoopVector LoopList) {
478     bool Changed = false;
479     unsigned LoopNestDepth = LoopList.size();
480     if (LoopNestDepth < 2) {
481       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
482       return false;
483     }
484     if (LoopNestDepth > MaxLoopNestDepth) {
485       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
486                         << MaxLoopNestDepth << "\n");
487       return false;
488     }
489     if (!isComputableLoopNest(LoopList)) {
490       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
491       return false;
492     }
493 
494     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
495                       << "\n");
496 
497     CharMatrix DependencyMatrix;
498     Loop *OuterMostLoop = *(LoopList.begin());
499     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
500                                   OuterMostLoop, DI)) {
501       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
502       return false;
503     }
504 #ifdef DUMP_DEP_MATRICIES
505     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
506     printDepMatrix(DependencyMatrix);
507 #endif
508 
509     // Get the Outermost loop exit.
510     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
511     if (!LoopNestExit) {
512       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
513       return false;
514     }
515 
516     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
517     // Move the selected loop outwards to the best possible position.
518     for (unsigned i = SelecLoopId; i > 0; i--) {
519       bool Interchanged =
520           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
521       if (!Interchanged)
522         return Changed;
523       // Loops interchanged reflect the same in LoopList
524       std::swap(LoopList[i - 1], LoopList[i]);
525 
526       // Update the DependencyMatrix
527       interChangeDependencies(DependencyMatrix, i, i - 1);
528 #ifdef DUMP_DEP_MATRICIES
529       LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
530       printDepMatrix(DependencyMatrix);
531 #endif
532       Changed |= Interchanged;
533     }
534     return Changed;
535   }
536 
537   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
538                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
539                    std::vector<std::vector<char>> &DependencyMatrix) {
540     LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
541                       << " and OuterLoopId = " << OuterLoopId << "\n");
542     Loop *InnerLoop = LoopList[InnerLoopId];
543     Loop *OuterLoop = LoopList[OuterLoopId];
544 
545     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
546     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
547       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
548       return false;
549     }
550     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
551     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
552     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
553       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
554       return false;
555     }
556 
557     ORE->emit([&]() {
558       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
559                                 InnerLoop->getStartLoc(),
560                                 InnerLoop->getHeader())
561              << "Loop interchanged with enclosing loop.";
562     });
563 
564     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
565                                  LIL);
566     LIT.transform();
567     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
568     LoopsInterchanged++;
569 
570     assert(InnerLoop->isLCSSAForm(*DT) &&
571            "Inner loop not left in LCSSA form after loop interchange!");
572     assert(OuterLoop->isLCSSAForm(*DT) &&
573            "Outer loop not left in LCSSA form after loop interchange!");
574 
575     return true;
576   }
577 };
578 
579 } // end anonymous namespace
580 
581 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
582   return any_of(*BB, [](const Instruction &I) {
583     return I.mayHaveSideEffects() || I.mayReadFromMemory();
584   });
585 }
586 
587 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
588   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
589   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
590   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
591 
592   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
593 
594   // A perfectly nested loop will not have any branch in between the outer and
595   // inner block i.e. outer header will branch to either inner preheader and
596   // outerloop latch.
597   BranchInst *OuterLoopHeaderBI =
598       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
599   if (!OuterLoopHeaderBI)
600     return false;
601 
602   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
603     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
604         Succ != OuterLoopLatch)
605       return false;
606 
607   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
608   // We do not have any basic block in between now make sure the outer header
609   // and outer loop latch doesn't contain any unsafe instructions.
610   if (containsUnsafeInstructions(OuterLoopHeader) ||
611       containsUnsafeInstructions(OuterLoopLatch))
612     return false;
613 
614   // Also make sure the inner loop preheader does not contain any unsafe
615   // instructions. Note that all instructions in the preheader will be moved to
616   // the outer loop header when interchanging.
617   if (InnerLoopPreHeader != OuterLoopHeader &&
618       containsUnsafeInstructions(InnerLoopPreHeader))
619     return false;
620 
621   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
622   // We have a perfect loop nest.
623   return true;
624 }
625 
626 bool LoopInterchangeLegality::isLoopStructureUnderstood(
627     PHINode *InnerInduction) {
628   unsigned Num = InnerInduction->getNumOperands();
629   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
630   for (unsigned i = 0; i < Num; ++i) {
631     Value *Val = InnerInduction->getOperand(i);
632     if (isa<Constant>(Val))
633       continue;
634     Instruction *I = dyn_cast<Instruction>(Val);
635     if (!I)
636       return false;
637     // TODO: Handle triangular loops.
638     // e.g. for(int i=0;i<N;i++)
639     //        for(int j=i;j<N;j++)
640     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
641     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
642             InnerLoopPreheader &&
643         !OuterLoop->isLoopInvariant(I)) {
644       return false;
645     }
646   }
647   return true;
648 }
649 
650 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
651 // value.
652 static Value *followLCSSA(Value *SV) {
653   PHINode *PHI = dyn_cast<PHINode>(SV);
654   if (!PHI)
655     return SV;
656 
657   if (PHI->getNumIncomingValues() != 1)
658     return SV;
659   return followLCSSA(PHI->getIncomingValue(0));
660 }
661 
662 // Check V's users to see if it is involved in a reduction in L.
663 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
664   // Reduction variables cannot be constants.
665   if (isa<Constant>(V))
666     return nullptr;
667 
668   for (Value *User : V->users()) {
669     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
670       if (PHI->getNumIncomingValues() == 1)
671         continue;
672       RecurrenceDescriptor RD;
673       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
674         return PHI;
675       return nullptr;
676     }
677   }
678 
679   return nullptr;
680 }
681 
682 bool LoopInterchangeLegality::findInductionAndReductions(
683     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
684   if (!L->getLoopLatch() || !L->getLoopPredecessor())
685     return false;
686   for (PHINode &PHI : L->getHeader()->phis()) {
687     RecurrenceDescriptor RD;
688     InductionDescriptor ID;
689     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
690       Inductions.push_back(&PHI);
691     else {
692       // PHIs in inner loops need to be part of a reduction in the outer loop,
693       // discovered when checking the PHIs of the outer loop earlier.
694       if (!InnerLoop) {
695         if (!OuterInnerReductions.count(&PHI)) {
696           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
697                                "across the outer loop.\n");
698           return false;
699         }
700       } else {
701         assert(PHI.getNumIncomingValues() == 2 &&
702                "Phis in loop header should have exactly 2 incoming values");
703         // Check if we have a PHI node in the outer loop that has a reduction
704         // result from the inner loop as an incoming value.
705         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
706         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
707         if (!InnerRedPhi ||
708             !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
709           LLVM_DEBUG(
710               dbgs()
711               << "Failed to recognize PHI as an induction or reduction.\n");
712           return false;
713         }
714         OuterInnerReductions.insert(&PHI);
715         OuterInnerReductions.insert(InnerRedPhi);
716       }
717     }
718   }
719   return true;
720 }
721 
722 // This function indicates the current limitations in the transform as a result
723 // of which we do not proceed.
724 bool LoopInterchangeLegality::currentLimitations() {
725   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
726   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
727 
728   // transform currently expects the loop latches to also be the exiting
729   // blocks.
730   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
731       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
732       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
733       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
734     LLVM_DEBUG(
735         dbgs() << "Loops where the latch is not the exiting block are not"
736                << " supported currently.\n");
737     ORE->emit([&]() {
738       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
739                                       OuterLoop->getStartLoc(),
740                                       OuterLoop->getHeader())
741              << "Loops where the latch is not the exiting block cannot be"
742                 " interchange currently.";
743     });
744     return true;
745   }
746 
747   PHINode *InnerInductionVar;
748   SmallVector<PHINode *, 8> Inductions;
749   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
750     LLVM_DEBUG(
751         dbgs() << "Only outer loops with induction or reduction PHI nodes "
752                << "are supported currently.\n");
753     ORE->emit([&]() {
754       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
755                                       OuterLoop->getStartLoc(),
756                                       OuterLoop->getHeader())
757              << "Only outer loops with induction or reduction PHI nodes can be"
758                 " interchanged currently.";
759     });
760     return true;
761   }
762 
763   // TODO: Currently we handle only loops with 1 induction variable.
764   if (Inductions.size() != 1) {
765     LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
766                       << "supported currently.\n");
767     ORE->emit([&]() {
768       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
769                                       OuterLoop->getStartLoc(),
770                                       OuterLoop->getHeader())
771              << "Only outer loops with 1 induction variable can be "
772                 "interchanged currently.";
773     });
774     return true;
775   }
776 
777   Inductions.clear();
778   if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
779     LLVM_DEBUG(
780         dbgs() << "Only inner loops with induction or reduction PHI nodes "
781                << "are supported currently.\n");
782     ORE->emit([&]() {
783       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
784                                       InnerLoop->getStartLoc(),
785                                       InnerLoop->getHeader())
786              << "Only inner loops with induction or reduction PHI nodes can be"
787                 " interchange currently.";
788     });
789     return true;
790   }
791 
792   // TODO: Currently we handle only loops with 1 induction variable.
793   if (Inductions.size() != 1) {
794     LLVM_DEBUG(
795         dbgs() << "We currently only support loops with 1 induction variable."
796                << "Failed to interchange due to current limitation\n");
797     ORE->emit([&]() {
798       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
799                                       InnerLoop->getStartLoc(),
800                                       InnerLoop->getHeader())
801              << "Only inner loops with 1 induction variable can be "
802                 "interchanged currently.";
803     });
804     return true;
805   }
806   InnerInductionVar = Inductions.pop_back_val();
807 
808   // TODO: Triangular loops are not handled for now.
809   if (!isLoopStructureUnderstood(InnerInductionVar)) {
810     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
811     ORE->emit([&]() {
812       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
813                                       InnerLoop->getStartLoc(),
814                                       InnerLoop->getHeader())
815              << "Inner loop structure not understood currently.";
816     });
817     return true;
818   }
819 
820   // TODO: Current limitation: Since we split the inner loop latch at the point
821   // were induction variable is incremented (induction.next); We cannot have
822   // more than 1 user of induction.next since it would result in broken code
823   // after split.
824   // e.g.
825   // for(i=0;i<N;i++) {
826   //    for(j = 0;j<M;j++) {
827   //      A[j+1][i+2] = A[j][i]+k;
828   //  }
829   // }
830   Instruction *InnerIndexVarInc = nullptr;
831   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
832     InnerIndexVarInc =
833         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
834   else
835     InnerIndexVarInc =
836         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
837 
838   if (!InnerIndexVarInc) {
839     LLVM_DEBUG(
840         dbgs() << "Did not find an instruction to increment the induction "
841                << "variable.\n");
842     ORE->emit([&]() {
843       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
844                                       InnerLoop->getStartLoc(),
845                                       InnerLoop->getHeader())
846              << "The inner loop does not increment the induction variable.";
847     });
848     return true;
849   }
850 
851   // Since we split the inner loop latch on this induction variable. Make sure
852   // we do not have any instruction between the induction variable and branch
853   // instruction.
854 
855   bool FoundInduction = false;
856   for (const Instruction &I :
857        llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
858     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
859         isa<ZExtInst>(I))
860       continue;
861 
862     // We found an instruction. If this is not induction variable then it is not
863     // safe to split this loop latch.
864     if (!I.isIdenticalTo(InnerIndexVarInc)) {
865       LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
866                         << "variable increment and branch.\n");
867       ORE->emit([&]() {
868         return OptimizationRemarkMissed(
869                    DEBUG_TYPE, "UnsupportedInsBetweenInduction",
870                    InnerLoop->getStartLoc(), InnerLoop->getHeader())
871                << "Found unsupported instruction between induction variable "
872                   "increment and branch.";
873       });
874       return true;
875     }
876 
877     FoundInduction = true;
878     break;
879   }
880   // The loop latch ended and we didn't find the induction variable return as
881   // current limitation.
882   if (!FoundInduction) {
883     LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
884     ORE->emit([&]() {
885       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
886                                       InnerLoop->getStartLoc(),
887                                       InnerLoop->getHeader())
888              << "Did not find the induction variable.";
889     });
890     return true;
891   }
892   return false;
893 }
894 
895 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
896 // users are either reduction PHIs or PHIs outside the outer loop (which means
897 // the we are only interested in the final value after the loop).
898 static bool
899 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
900                               SmallPtrSetImpl<PHINode *> &Reductions) {
901   BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
902   for (PHINode &PHI : InnerExit->phis()) {
903     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
904     if (PHI.getNumIncomingValues() > 1)
905       return false;
906     if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
907           PHINode *PN = dyn_cast<PHINode>(U);
908           return !PN ||
909                  (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
910         })) {
911       return false;
912     }
913   }
914   return true;
915 }
916 
917 // We currently support LCSSA PHI nodes in the outer loop exit, if their
918 // incoming values do not come from the outer loop latch or if the
919 // outer loop latch has a single predecessor. In that case, the value will
920 // be available if both the inner and outer loop conditions are true, which
921 // will still be true after interchanging. If we have multiple predecessor,
922 // that may not be the case, e.g. because the outer loop latch may be executed
923 // if the inner loop is not executed.
924 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
925   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
926   for (PHINode &PHI : LoopNestExit->phis()) {
927     //  FIXME: We currently are not able to detect floating point reductions
928     //         and have to use floating point PHIs as a proxy to prevent
929     //         interchanging in the presence of floating point reductions.
930     if (PHI.getType()->isFloatingPointTy())
931       return false;
932     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
933      Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
934      if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
935        continue;
936 
937      // The incoming value is defined in the outer loop latch. Currently we
938      // only support that in case the outer loop latch has a single predecessor.
939      // This guarantees that the outer loop latch is executed if and only if
940      // the inner loop is executed (because tightlyNested() guarantees that the
941      // outer loop header only branches to the inner loop or the outer loop
942      // latch).
943      // FIXME: We could weaken this logic and allow multiple predecessors,
944      //        if the values are produced outside the loop latch. We would need
945      //        additional logic to update the PHI nodes in the exit block as
946      //        well.
947      if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
948        return false;
949     }
950   }
951   return true;
952 }
953 
954 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
955                                                   unsigned OuterLoopId,
956                                                   CharMatrix &DepMatrix) {
957   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
958     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
959                       << " and OuterLoopId = " << OuterLoopId
960                       << " due to dependence\n");
961     ORE->emit([&]() {
962       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
963                                       InnerLoop->getStartLoc(),
964                                       InnerLoop->getHeader())
965              << "Cannot interchange loops due to dependences.";
966     });
967     return false;
968   }
969   // Check if outer and inner loop contain legal instructions only.
970   for (auto *BB : OuterLoop->blocks())
971     for (Instruction &I : BB->instructionsWithoutDebug())
972       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
973         // readnone functions do not prevent interchanging.
974         if (CI->doesNotReadMemory())
975           continue;
976         LLVM_DEBUG(
977             dbgs() << "Loops with call instructions cannot be interchanged "
978                    << "safely.");
979         ORE->emit([&]() {
980           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
981                                           CI->getDebugLoc(),
982                                           CI->getParent())
983                  << "Cannot interchange loops due to call instruction.";
984         });
985 
986         return false;
987       }
988 
989   // TODO: The loops could not be interchanged due to current limitations in the
990   // transform module.
991   if (currentLimitations()) {
992     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
993     return false;
994   }
995 
996   // Check if the loops are tightly nested.
997   if (!tightlyNested(OuterLoop, InnerLoop)) {
998     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
999     ORE->emit([&]() {
1000       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1001                                       InnerLoop->getStartLoc(),
1002                                       InnerLoop->getHeader())
1003              << "Cannot interchange loops because they are not tightly "
1004                 "nested.";
1005     });
1006     return false;
1007   }
1008 
1009   if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1010                                      OuterInnerReductions)) {
1011     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1012     ORE->emit([&]() {
1013       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1014                                       InnerLoop->getStartLoc(),
1015                                       InnerLoop->getHeader())
1016              << "Found unsupported PHI node in loop exit.";
1017     });
1018     return false;
1019   }
1020 
1021   if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1022     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1023     ORE->emit([&]() {
1024       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1025                                       OuterLoop->getStartLoc(),
1026                                       OuterLoop->getHeader())
1027              << "Found unsupported PHI node in loop exit.";
1028     });
1029     return false;
1030   }
1031 
1032   return true;
1033 }
1034 
1035 int LoopInterchangeProfitability::getInstrOrderCost() {
1036   unsigned GoodOrder, BadOrder;
1037   BadOrder = GoodOrder = 0;
1038   for (BasicBlock *BB : InnerLoop->blocks()) {
1039     for (Instruction &Ins : *BB) {
1040       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1041         unsigned NumOp = GEP->getNumOperands();
1042         bool FoundInnerInduction = false;
1043         bool FoundOuterInduction = false;
1044         for (unsigned i = 0; i < NumOp; ++i) {
1045           // Skip operands that are not SCEV-able.
1046           if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1047             continue;
1048 
1049           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1050           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1051           if (!AR)
1052             continue;
1053 
1054           // If we find the inner induction after an outer induction e.g.
1055           // for(int i=0;i<N;i++)
1056           //   for(int j=0;j<N;j++)
1057           //     A[i][j] = A[i-1][j-1]+k;
1058           // then it is a good order.
1059           if (AR->getLoop() == InnerLoop) {
1060             // We found an InnerLoop induction after OuterLoop induction. It is
1061             // a good order.
1062             FoundInnerInduction = true;
1063             if (FoundOuterInduction) {
1064               GoodOrder++;
1065               break;
1066             }
1067           }
1068           // If we find the outer induction after an inner induction e.g.
1069           // for(int i=0;i<N;i++)
1070           //   for(int j=0;j<N;j++)
1071           //     A[j][i] = A[j-1][i-1]+k;
1072           // then it is a bad order.
1073           if (AR->getLoop() == OuterLoop) {
1074             // We found an OuterLoop induction after InnerLoop induction. It is
1075             // a bad order.
1076             FoundOuterInduction = true;
1077             if (FoundInnerInduction) {
1078               BadOrder++;
1079               break;
1080             }
1081           }
1082         }
1083       }
1084     }
1085   }
1086   return GoodOrder - BadOrder;
1087 }
1088 
1089 static bool isProfitableForVectorization(unsigned InnerLoopId,
1090                                          unsigned OuterLoopId,
1091                                          CharMatrix &DepMatrix) {
1092   // TODO: Improve this heuristic to catch more cases.
1093   // If the inner loop is loop independent or doesn't carry any dependency it is
1094   // profitable to move this to outer position.
1095   for (auto &Row : DepMatrix) {
1096     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1097       return false;
1098     // TODO: We need to improve this heuristic.
1099     if (Row[OuterLoopId] != '=')
1100       return false;
1101   }
1102   // If outer loop has dependence and inner loop is loop independent then it is
1103   // profitable to interchange to enable parallelism.
1104   // If there are no dependences, interchanging will not improve anything.
1105   return !DepMatrix.empty();
1106 }
1107 
1108 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1109                                                 unsigned OuterLoopId,
1110                                                 CharMatrix &DepMatrix) {
1111   // TODO: Add better profitability checks.
1112   // e.g
1113   // 1) Construct dependency matrix and move the one with no loop carried dep
1114   //    inside to enable vectorization.
1115 
1116   // This is rough cost estimation algorithm. It counts the good and bad order
1117   // of induction variables in the instruction and allows reordering if number
1118   // of bad orders is more than good.
1119   int Cost = getInstrOrderCost();
1120   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1121   if (Cost < -LoopInterchangeCostThreshold)
1122     return true;
1123 
1124   // It is not profitable as per current cache profitability model. But check if
1125   // we can move this loop outside to improve parallelism.
1126   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1127     return true;
1128 
1129   ORE->emit([&]() {
1130     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1131                                     InnerLoop->getStartLoc(),
1132                                     InnerLoop->getHeader())
1133            << "Interchanging loops is too costly (cost="
1134            << ore::NV("Cost", Cost) << ", threshold="
1135            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1136            << ") and it does not improve parallelism.";
1137   });
1138   return false;
1139 }
1140 
1141 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1142                                                Loop *InnerLoop) {
1143   for (Loop *L : *OuterLoop)
1144     if (L == InnerLoop) {
1145       OuterLoop->removeChildLoop(L);
1146       return;
1147     }
1148   llvm_unreachable("Couldn't find loop");
1149 }
1150 
1151 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1152 /// new inner and outer loop after interchanging: NewInner is the original
1153 /// outer loop and NewOuter is the original inner loop.
1154 ///
1155 /// Before interchanging, we have the following structure
1156 /// Outer preheader
1157 //  Outer header
1158 //    Inner preheader
1159 //    Inner header
1160 //      Inner body
1161 //      Inner latch
1162 //   outer bbs
1163 //   Outer latch
1164 //
1165 // After interchanging:
1166 // Inner preheader
1167 // Inner header
1168 //   Outer preheader
1169 //   Outer header
1170 //     Inner body
1171 //     outer bbs
1172 //     Outer latch
1173 //   Inner latch
1174 void LoopInterchangeTransform::restructureLoops(
1175     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1176     BasicBlock *OrigOuterPreHeader) {
1177   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1178   // The original inner loop preheader moves from the new inner loop to
1179   // the parent loop, if there is one.
1180   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1181   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1182 
1183   // Switch the loop levels.
1184   if (OuterLoopParent) {
1185     // Remove the loop from its parent loop.
1186     removeChildLoop(OuterLoopParent, NewInner);
1187     removeChildLoop(NewInner, NewOuter);
1188     OuterLoopParent->addChildLoop(NewOuter);
1189   } else {
1190     removeChildLoop(NewInner, NewOuter);
1191     LI->changeTopLevelLoop(NewInner, NewOuter);
1192   }
1193   while (!NewOuter->isInnermost())
1194     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1195   NewOuter->addChildLoop(NewInner);
1196 
1197   // BBs from the original inner loop.
1198   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1199 
1200   // Add BBs from the original outer loop to the original inner loop (excluding
1201   // BBs already in inner loop)
1202   for (BasicBlock *BB : NewInner->blocks())
1203     if (LI->getLoopFor(BB) == NewInner)
1204       NewOuter->addBlockEntry(BB);
1205 
1206   // Now remove inner loop header and latch from the new inner loop and move
1207   // other BBs (the loop body) to the new inner loop.
1208   BasicBlock *OuterHeader = NewOuter->getHeader();
1209   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1210   for (BasicBlock *BB : OrigInnerBBs) {
1211     // Nothing will change for BBs in child loops.
1212     if (LI->getLoopFor(BB) != NewOuter)
1213       continue;
1214     // Remove the new outer loop header and latch from the new inner loop.
1215     if (BB == OuterHeader || BB == OuterLatch)
1216       NewInner->removeBlockFromLoop(BB);
1217     else
1218       LI->changeLoopFor(BB, NewInner);
1219   }
1220 
1221   // The preheader of the original outer loop becomes part of the new
1222   // outer loop.
1223   NewOuter->addBlockEntry(OrigOuterPreHeader);
1224   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1225 
1226   // Tell SE that we move the loops around.
1227   SE->forgetLoop(NewOuter);
1228   SE->forgetLoop(NewInner);
1229 }
1230 
1231 bool LoopInterchangeTransform::transform() {
1232   bool Transformed = false;
1233   Instruction *InnerIndexVar;
1234 
1235   if (InnerLoop->getSubLoops().empty()) {
1236     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1237     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1238     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1239     if (!InductionPHI) {
1240       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1241       return false;
1242     }
1243 
1244     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1245       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1246     else
1247       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1248 
1249     // Ensure that InductionPHI is the first Phi node.
1250     if (&InductionPHI->getParent()->front() != InductionPHI)
1251       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1252 
1253     // Create a new latch block for the inner loop. We split at the
1254     // current latch's terminator and then move the condition and all
1255     // operands that are not either loop-invariant or the induction PHI into the
1256     // new latch block.
1257     BasicBlock *NewLatch =
1258         SplitBlock(InnerLoop->getLoopLatch(),
1259                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1260 
1261     SmallSetVector<Instruction *, 4> WorkList;
1262     unsigned i = 0;
1263     auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
1264       for (; i < WorkList.size(); i++) {
1265         // Duplicate instruction and move it the new latch. Update uses that
1266         // have been moved.
1267         Instruction *NewI = WorkList[i]->clone();
1268         NewI->insertBefore(NewLatch->getFirstNonPHI());
1269         assert(!NewI->mayHaveSideEffects() &&
1270                "Moving instructions with side-effects may change behavior of "
1271                "the loop nest!");
1272         for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end();
1273              UI != UE;) {
1274           Use &U = *UI++;
1275           Instruction *UserI = cast<Instruction>(U.getUser());
1276           if (!InnerLoop->contains(UserI->getParent()) ||
1277               UserI->getParent() == NewLatch || UserI == InductionPHI)
1278             U.set(NewI);
1279         }
1280         // Add operands of moved instruction to the worklist, except if they are
1281         // outside the inner loop or are the induction PHI.
1282         for (Value *Op : WorkList[i]->operands()) {
1283           Instruction *OpI = dyn_cast<Instruction>(Op);
1284           if (!OpI ||
1285               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1286               OpI == InductionPHI)
1287             continue;
1288           WorkList.insert(OpI);
1289         }
1290       }
1291     };
1292 
1293     // FIXME: Should we interchange when we have a constant condition?
1294     Instruction *CondI = dyn_cast<Instruction>(
1295         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1296             ->getCondition());
1297     if (CondI)
1298       WorkList.insert(CondI);
1299     MoveInstructions();
1300     WorkList.insert(cast<Instruction>(InnerIndexVar));
1301     MoveInstructions();
1302 
1303     // Splits the inner loops phi nodes out into a separate basic block.
1304     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1305     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1306     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1307   }
1308 
1309   // Instructions in the original inner loop preheader may depend on values
1310   // defined in the outer loop header. Move them there, because the original
1311   // inner loop preheader will become the entry into the interchanged loop nest.
1312   // Currently we move all instructions and rely on LICM to move invariant
1313   // instructions outside the loop nest.
1314   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1315   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1316   if (InnerLoopPreHeader != OuterLoopHeader) {
1317     SmallPtrSet<Instruction *, 4> NeedsMoving;
1318     for (Instruction &I :
1319          make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1320                                          std::prev(InnerLoopPreHeader->end()))))
1321       I.moveBefore(OuterLoopHeader->getTerminator());
1322   }
1323 
1324   Transformed |= adjustLoopLinks();
1325   if (!Transformed) {
1326     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1327     return false;
1328   }
1329 
1330   return true;
1331 }
1332 
1333 /// \brief Move all instructions except the terminator from FromBB right before
1334 /// InsertBefore
1335 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1336   auto &ToList = InsertBefore->getParent()->getInstList();
1337   auto &FromList = FromBB->getInstList();
1338 
1339   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1340                 FromBB->getTerminator()->getIterator());
1341 }
1342 
1343 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1344 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1345   // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1346   // from BB1 afterwards.
1347   auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1348   SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1349   for (Instruction *I : TempInstrs)
1350     I->removeFromParent();
1351 
1352   // Move instructions from BB2 to BB1.
1353   moveBBContents(BB2, BB1->getTerminator());
1354 
1355   // Move instructions from TempInstrs to BB2.
1356   for (Instruction *I : TempInstrs)
1357     I->insertBefore(BB2->getTerminator());
1358 }
1359 
1360 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1361 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1362 // \p OldBB  is exactly once in BI's successor list.
1363 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1364                             BasicBlock *NewBB,
1365                             std::vector<DominatorTree::UpdateType> &DTUpdates,
1366                             bool MustUpdateOnce = true) {
1367   assert((!MustUpdateOnce ||
1368           llvm::count_if(successors(BI),
1369                          [OldBB](BasicBlock *BB) {
1370                            return BB == OldBB;
1371                          }) == 1) && "BI must jump to OldBB exactly once.");
1372   bool Changed = false;
1373   for (Use &Op : BI->operands())
1374     if (Op == OldBB) {
1375       Op.set(NewBB);
1376       Changed = true;
1377     }
1378 
1379   if (Changed) {
1380     DTUpdates.push_back(
1381         {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1382     DTUpdates.push_back(
1383         {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1384   }
1385   assert(Changed && "Expected a successor to be updated");
1386 }
1387 
1388 // Move Lcssa PHIs to the right place.
1389 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1390                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1391                           BasicBlock *OuterLatch, BasicBlock *OuterExit,
1392                           Loop *InnerLoop, LoopInfo *LI) {
1393 
1394   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1395   // defined either in the header or latch. Those blocks will become header and
1396   // latch of the new outer loop, and the only possible users can PHI nodes
1397   // in the exit block of the loop nest or the outer loop header (reduction
1398   // PHIs, in that case, the incoming value must be defined in the inner loop
1399   // header). We can just substitute the user with the incoming value and remove
1400   // the PHI.
1401   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1402     assert(P.getNumIncomingValues() == 1 &&
1403            "Only loops with a single exit are supported!");
1404 
1405     // Incoming values are guaranteed be instructions currently.
1406     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1407     // Skip phis with incoming values from the inner loop body, excluding the
1408     // header and latch.
1409     if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1410       continue;
1411 
1412     assert(all_of(P.users(),
1413                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1414                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1415                             IncI->getParent() == InnerHeader) ||
1416                            cast<PHINode>(U)->getParent() == OuterExit;
1417                   }) &&
1418            "Can only replace phis iff the uses are in the loop nest exit or "
1419            "the incoming value is defined in the inner header (it will "
1420            "dominate all loop blocks after interchanging)");
1421     P.replaceAllUsesWith(IncI);
1422     P.eraseFromParent();
1423   }
1424 
1425   SmallVector<PHINode *, 8> LcssaInnerExit;
1426   for (PHINode &P : InnerExit->phis())
1427     LcssaInnerExit.push_back(&P);
1428 
1429   SmallVector<PHINode *, 8> LcssaInnerLatch;
1430   for (PHINode &P : InnerLatch->phis())
1431     LcssaInnerLatch.push_back(&P);
1432 
1433   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1434   // If a PHI node has users outside of InnerExit, it has a use outside the
1435   // interchanged loop and we have to preserve it. We move these to
1436   // InnerLatch, which will become the new exit block for the innermost
1437   // loop after interchanging.
1438   for (PHINode *P : LcssaInnerExit)
1439     P->moveBefore(InnerLatch->getFirstNonPHI());
1440 
1441   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1442   // and we have to move them to the new inner latch.
1443   for (PHINode *P : LcssaInnerLatch)
1444     P->moveBefore(InnerExit->getFirstNonPHI());
1445 
1446   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1447   // incoming values defined in the outer loop, we have to add a new PHI
1448   // in the inner loop latch, which became the exit block of the outer loop,
1449   // after interchanging.
1450   if (OuterExit) {
1451     for (PHINode &P : OuterExit->phis()) {
1452       if (P.getNumIncomingValues() != 1)
1453         continue;
1454       // Skip Phis with incoming values defined in the inner loop. Those should
1455       // already have been updated.
1456       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1457       if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1458         continue;
1459 
1460       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1461       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1462       NewPhi->setIncomingBlock(0, OuterLatch);
1463       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1464       P.setIncomingValue(0, NewPhi);
1465     }
1466   }
1467 
1468   // Now adjust the incoming blocks for the LCSSA PHIs.
1469   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1470   // with the new latch.
1471   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1472 }
1473 
1474 bool LoopInterchangeTransform::adjustLoopBranches() {
1475   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1476   std::vector<DominatorTree::UpdateType> DTUpdates;
1477 
1478   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1479   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1480 
1481   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1482          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1483          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1484   // Ensure that both preheaders do not contain PHI nodes and have single
1485   // predecessors. This allows us to move them easily. We use
1486   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1487   // preheaders do not satisfy those conditions.
1488   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1489       !OuterLoopPreHeader->getUniquePredecessor())
1490     OuterLoopPreHeader =
1491         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1492   if (InnerLoopPreHeader == OuterLoop->getHeader())
1493     InnerLoopPreHeader =
1494         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1495 
1496   // Adjust the loop preheader
1497   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1498   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1499   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1500   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1501   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1502   BasicBlock *InnerLoopLatchPredecessor =
1503       InnerLoopLatch->getUniquePredecessor();
1504   BasicBlock *InnerLoopLatchSuccessor;
1505   BasicBlock *OuterLoopLatchSuccessor;
1506 
1507   BranchInst *OuterLoopLatchBI =
1508       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1509   BranchInst *InnerLoopLatchBI =
1510       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1511   BranchInst *OuterLoopHeaderBI =
1512       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1513   BranchInst *InnerLoopHeaderBI =
1514       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1515 
1516   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1517       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1518       !InnerLoopHeaderBI)
1519     return false;
1520 
1521   BranchInst *InnerLoopLatchPredecessorBI =
1522       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1523   BranchInst *OuterLoopPredecessorBI =
1524       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1525 
1526   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1527     return false;
1528   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1529   if (!InnerLoopHeaderSuccessor)
1530     return false;
1531 
1532   // Adjust Loop Preheader and headers.
1533   // The branches in the outer loop predecessor and the outer loop header can
1534   // be unconditional branches or conditional branches with duplicates. Consider
1535   // this when updating the successors.
1536   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1537                   InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1538   // The outer loop header might or might not branch to the outer latch.
1539   // We are guaranteed to branch to the inner loop preheader.
1540   if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch))
1541     updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates,
1542                     /*MustUpdateOnce=*/false);
1543   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1544                   InnerLoopHeaderSuccessor, DTUpdates,
1545                   /*MustUpdateOnce=*/false);
1546 
1547   // Adjust reduction PHI's now that the incoming block has changed.
1548   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1549                                                OuterLoopHeader);
1550 
1551   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1552                   OuterLoopPreHeader, DTUpdates);
1553 
1554   // -------------Adjust loop latches-----------
1555   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1556     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1557   else
1558     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1559 
1560   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1561                   InnerLoopLatchSuccessor, DTUpdates);
1562 
1563 
1564   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1565     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1566   else
1567     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1568 
1569   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1570                   OuterLoopLatchSuccessor, DTUpdates);
1571   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1572                   DTUpdates);
1573 
1574   DT->applyUpdates(DTUpdates);
1575   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1576                    OuterLoopPreHeader);
1577 
1578   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1579                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1580                 InnerLoop, LI);
1581   // For PHIs in the exit block of the outer loop, outer's latch has been
1582   // replaced by Inners'.
1583   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1584 
1585   // Now update the reduction PHIs in the inner and outer loop headers.
1586   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1587   for (PHINode &PHI : drop_begin(InnerLoopHeader->phis()))
1588     InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1589   for (PHINode &PHI : drop_begin(OuterLoopHeader->phis()))
1590     OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1591 
1592   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1593   (void)OuterInnerReductions;
1594 
1595   // Now move the remaining reduction PHIs from outer to inner loop header and
1596   // vice versa. The PHI nodes must be part of a reduction across the inner and
1597   // outer loop and all the remains to do is and updating the incoming blocks.
1598   for (PHINode *PHI : OuterLoopPHIs) {
1599     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1600     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1601   }
1602   for (PHINode *PHI : InnerLoopPHIs) {
1603     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1604     assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1605   }
1606 
1607   // Update the incoming blocks for moved PHI nodes.
1608   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1609   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1610   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1611   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1612 
1613   // Values defined in the outer loop header could be used in the inner loop
1614   // latch. In that case, we need to create LCSSA phis for them, because after
1615   // interchanging they will be defined in the new inner loop and used in the
1616   // new outer loop.
1617   IRBuilder<> Builder(OuterLoopHeader->getContext());
1618   SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1619   for (Instruction &I :
1620        make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1621     MayNeedLCSSAPhis.push_back(&I);
1622   formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1623 
1624   return true;
1625 }
1626 
1627 bool LoopInterchangeTransform::adjustLoopLinks() {
1628   // Adjust all branches in the inner and outer loop.
1629   bool Changed = adjustLoopBranches();
1630   if (Changed) {
1631     // We have interchanged the preheaders so we need to interchange the data in
1632     // the preheaders as well. This is because the content of the inner
1633     // preheader was previously executed inside the outer loop.
1634     BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1635     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1636     swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1637   }
1638   return Changed;
1639 }
1640 
1641 /// Main LoopInterchange Pass.
1642 struct LoopInterchangeLegacyPass : public LoopPass {
1643   static char ID;
1644 
1645   LoopInterchangeLegacyPass() : LoopPass(ID) {
1646     initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1647   }
1648 
1649   void getAnalysisUsage(AnalysisUsage &AU) const override {
1650     AU.addRequired<DependenceAnalysisWrapperPass>();
1651     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1652 
1653     getLoopAnalysisUsage(AU);
1654   }
1655 
1656   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1657     if (skipLoop(L))
1658       return false;
1659 
1660     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1661     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1662     auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1663     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1664     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1665 
1666     return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
1667   }
1668 };
1669 
1670 char LoopInterchangeLegacyPass::ID = 0;
1671 
1672 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1673                       "Interchanges loops for cache reuse", false, false)
1674 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1675 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1676 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1677 
1678 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1679                     "Interchanges loops for cache reuse", false, false)
1680 
1681 Pass *llvm::createLoopInterchangePass() {
1682   return new LoopInterchangeLegacyPass();
1683 }
1684 
1685 PreservedAnalyses LoopInterchangePass::run(Loop &L, LoopAnalysisManager &AM,
1686                                            LoopStandardAnalysisResults &AR,
1687                                            LPMUpdater &U) {
1688   Function &F = *L.getHeader()->getParent();
1689 
1690   DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1691   OptimizationRemarkEmitter ORE(&F);
1692   if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(&L))
1693     return PreservedAnalyses::all();
1694   return getLoopPassPreservedAnalyses();
1695 }
1696