1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This Pass handles loop interchange transform. 10 // This pass interchanges loops to provide a more cache-friendly memory access 11 // patterns. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/Analysis/DependenceAnalysis.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Analysis/LoopPass.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/Analysis/ScalarEvolution.h" 24 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/Pass.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Scalar.h" 43 #include "llvm/Transforms/Utils.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopUtils.h" 46 #include <cassert> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "loop-interchange" 53 54 STATISTIC(LoopsInterchanged, "Number of loops interchanged"); 55 56 static cl::opt<int> LoopInterchangeCostThreshold( 57 "loop-interchange-threshold", cl::init(0), cl::Hidden, 58 cl::desc("Interchange if you gain more than this number")); 59 60 namespace { 61 62 using LoopVector = SmallVector<Loop *, 8>; 63 64 // TODO: Check if we can use a sparse matrix here. 65 using CharMatrix = std::vector<std::vector<char>>; 66 67 } // end anonymous namespace 68 69 // Maximum number of dependencies that can be handled in the dependency matrix. 70 static const unsigned MaxMemInstrCount = 100; 71 72 // Maximum loop depth supported. 73 static const unsigned MaxLoopNestDepth = 10; 74 75 #ifdef DUMP_DEP_MATRICIES 76 static void printDepMatrix(CharMatrix &DepMatrix) { 77 for (auto &Row : DepMatrix) { 78 for (auto D : Row) 79 LLVM_DEBUG(dbgs() << D << " "); 80 LLVM_DEBUG(dbgs() << "\n"); 81 } 82 } 83 #endif 84 85 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, 86 Loop *L, DependenceInfo *DI) { 87 using ValueVector = SmallVector<Value *, 16>; 88 89 ValueVector MemInstr; 90 91 // For each block. 92 for (BasicBlock *BB : L->blocks()) { 93 // Scan the BB and collect legal loads and stores. 94 for (Instruction &I : *BB) { 95 if (!isa<Instruction>(I)) 96 return false; 97 if (auto *Ld = dyn_cast<LoadInst>(&I)) { 98 if (!Ld->isSimple()) 99 return false; 100 MemInstr.push_back(&I); 101 } else if (auto *St = dyn_cast<StoreInst>(&I)) { 102 if (!St->isSimple()) 103 return false; 104 MemInstr.push_back(&I); 105 } 106 } 107 } 108 109 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() 110 << " Loads and Stores to analyze\n"); 111 112 ValueVector::iterator I, IE, J, JE; 113 114 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { 115 for (J = I, JE = MemInstr.end(); J != JE; ++J) { 116 std::vector<char> Dep; 117 Instruction *Src = cast<Instruction>(*I); 118 Instruction *Dst = cast<Instruction>(*J); 119 if (Src == Dst) 120 continue; 121 // Ignore Input dependencies. 122 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) 123 continue; 124 // Track Output, Flow, and Anti dependencies. 125 if (auto D = DI->depends(Src, Dst, true)) { 126 assert(D->isOrdered() && "Expected an output, flow or anti dep."); 127 LLVM_DEBUG(StringRef DepType = 128 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; 129 dbgs() << "Found " << DepType 130 << " dependency between Src and Dst\n" 131 << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); 132 unsigned Levels = D->getLevels(); 133 char Direction; 134 for (unsigned II = 1; II <= Levels; ++II) { 135 const SCEV *Distance = D->getDistance(II); 136 const SCEVConstant *SCEVConst = 137 dyn_cast_or_null<SCEVConstant>(Distance); 138 if (SCEVConst) { 139 const ConstantInt *CI = SCEVConst->getValue(); 140 if (CI->isNegative()) 141 Direction = '<'; 142 else if (CI->isZero()) 143 Direction = '='; 144 else 145 Direction = '>'; 146 Dep.push_back(Direction); 147 } else if (D->isScalar(II)) { 148 Direction = 'S'; 149 Dep.push_back(Direction); 150 } else { 151 unsigned Dir = D->getDirection(II); 152 if (Dir == Dependence::DVEntry::LT || 153 Dir == Dependence::DVEntry::LE) 154 Direction = '<'; 155 else if (Dir == Dependence::DVEntry::GT || 156 Dir == Dependence::DVEntry::GE) 157 Direction = '>'; 158 else if (Dir == Dependence::DVEntry::EQ) 159 Direction = '='; 160 else 161 Direction = '*'; 162 Dep.push_back(Direction); 163 } 164 } 165 while (Dep.size() != Level) { 166 Dep.push_back('I'); 167 } 168 169 DepMatrix.push_back(Dep); 170 if (DepMatrix.size() > MaxMemInstrCount) { 171 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount 172 << " dependencies inside loop\n"); 173 return false; 174 } 175 } 176 } 177 } 178 179 return true; 180 } 181 182 // A loop is moved from index 'from' to an index 'to'. Update the Dependence 183 // matrix by exchanging the two columns. 184 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, 185 unsigned ToIndx) { 186 unsigned numRows = DepMatrix.size(); 187 for (unsigned i = 0; i < numRows; ++i) { 188 char TmpVal = DepMatrix[i][ToIndx]; 189 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; 190 DepMatrix[i][FromIndx] = TmpVal; 191 } 192 } 193 194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is 195 // '>' 196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, 197 unsigned Column) { 198 for (unsigned i = 0; i <= Column; ++i) { 199 if (DepMatrix[Row][i] == '<') 200 return false; 201 if (DepMatrix[Row][i] == '>') 202 return true; 203 } 204 // All dependencies were '=','S' or 'I' 205 return false; 206 } 207 208 // Checks if no dependence exist in the dependency matrix in Row before Column. 209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, 210 unsigned Column) { 211 for (unsigned i = 0; i < Column; ++i) { 212 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && 213 DepMatrix[Row][i] != 'I') 214 return false; 215 } 216 return true; 217 } 218 219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, 220 unsigned OuterLoopId, char InnerDep, 221 char OuterDep) { 222 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) 223 return false; 224 225 if (InnerDep == OuterDep) 226 return true; 227 228 // It is legal to interchange if and only if after interchange no row has a 229 // '>' direction as the leftmost non-'='. 230 231 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') 232 return true; 233 234 if (InnerDep == '<') 235 return true; 236 237 if (InnerDep == '>') { 238 // If OuterLoopId represents outermost loop then interchanging will make the 239 // 1st dependency as '>' 240 if (OuterLoopId == 0) 241 return false; 242 243 // If all dependencies before OuterloopId are '=','S'or 'I'. Then 244 // interchanging will result in this row having an outermost non '=' 245 // dependency of '>' 246 if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) 247 return true; 248 } 249 250 return false; 251 } 252 253 // Checks if it is legal to interchange 2 loops. 254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only 255 // if the direction matrix, after the same permutation is applied to its 256 // columns, has no ">" direction as the leftmost non-"=" direction in any row. 257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, 258 unsigned InnerLoopId, 259 unsigned OuterLoopId) { 260 unsigned NumRows = DepMatrix.size(); 261 // For each row check if it is valid to interchange. 262 for (unsigned Row = 0; Row < NumRows; ++Row) { 263 char InnerDep = DepMatrix[Row][InnerLoopId]; 264 char OuterDep = DepMatrix[Row][OuterLoopId]; 265 if (InnerDep == '*' || OuterDep == '*') 266 return false; 267 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) 268 return false; 269 } 270 return true; 271 } 272 273 static LoopVector populateWorklist(Loop &L) { 274 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " 275 << L.getHeader()->getParent()->getName() << " Loop: %" 276 << L.getHeader()->getName() << '\n'); 277 LoopVector LoopList; 278 Loop *CurrentLoop = &L; 279 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); 280 while (!Vec->empty()) { 281 // The current loop has multiple subloops in it hence it is not tightly 282 // nested. 283 // Discard all loops above it added into Worklist. 284 if (Vec->size() != 1) 285 return {}; 286 287 LoopList.push_back(CurrentLoop); 288 CurrentLoop = Vec->front(); 289 Vec = &CurrentLoop->getSubLoops(); 290 } 291 LoopList.push_back(CurrentLoop); 292 return LoopList; 293 } 294 295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { 296 PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); 297 if (InnerIndexVar) 298 return InnerIndexVar; 299 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) 300 return nullptr; 301 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 302 PHINode *PhiVar = cast<PHINode>(I); 303 Type *PhiTy = PhiVar->getType(); 304 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 305 !PhiTy->isPointerTy()) 306 return nullptr; 307 const SCEVAddRecExpr *AddRec = 308 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); 309 if (!AddRec || !AddRec->isAffine()) 310 continue; 311 const SCEV *Step = AddRec->getStepRecurrence(*SE); 312 if (!isa<SCEVConstant>(Step)) 313 continue; 314 // Found the induction variable. 315 // FIXME: Handle loops with more than one induction variable. Note that, 316 // currently, legality makes sure we have only one induction variable. 317 return PhiVar; 318 } 319 return nullptr; 320 } 321 322 namespace { 323 324 /// LoopInterchangeLegality checks if it is legal to interchange the loop. 325 class LoopInterchangeLegality { 326 public: 327 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 328 OptimizationRemarkEmitter *ORE) 329 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 330 331 /// Check if the loops can be interchanged. 332 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, 333 CharMatrix &DepMatrix); 334 335 /// Check if the loop structure is understood. We do not handle triangular 336 /// loops for now. 337 bool isLoopStructureUnderstood(PHINode *InnerInductionVar); 338 339 bool currentLimitations(); 340 341 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { 342 return OuterInnerReductions; 343 } 344 345 private: 346 bool tightlyNested(Loop *Outer, Loop *Inner); 347 bool containsUnsafeInstructions(BasicBlock *BB); 348 349 /// Discover induction and reduction PHIs in the header of \p L. Induction 350 /// PHIs are added to \p Inductions, reductions are added to 351 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs 352 /// to be passed as \p InnerLoop. 353 bool findInductionAndReductions(Loop *L, 354 SmallVector<PHINode *, 8> &Inductions, 355 Loop *InnerLoop); 356 357 Loop *OuterLoop; 358 Loop *InnerLoop; 359 360 ScalarEvolution *SE; 361 362 /// Interface to emit optimization remarks. 363 OptimizationRemarkEmitter *ORE; 364 365 /// Set of reduction PHIs taking part of a reduction across the inner and 366 /// outer loop. 367 SmallPtrSet<PHINode *, 4> OuterInnerReductions; 368 }; 369 370 /// LoopInterchangeProfitability checks if it is profitable to interchange the 371 /// loop. 372 class LoopInterchangeProfitability { 373 public: 374 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 375 OptimizationRemarkEmitter *ORE) 376 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} 377 378 /// Check if the loop interchange is profitable. 379 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, 380 CharMatrix &DepMatrix); 381 382 private: 383 int getInstrOrderCost(); 384 385 Loop *OuterLoop; 386 Loop *InnerLoop; 387 388 /// Scev analysis. 389 ScalarEvolution *SE; 390 391 /// Interface to emit optimization remarks. 392 OptimizationRemarkEmitter *ORE; 393 }; 394 395 /// LoopInterchangeTransform interchanges the loop. 396 class LoopInterchangeTransform { 397 public: 398 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, 399 LoopInfo *LI, DominatorTree *DT, 400 BasicBlock *LoopNestExit, 401 const LoopInterchangeLegality &LIL) 402 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), 403 LoopExit(LoopNestExit), LIL(LIL) {} 404 405 /// Interchange OuterLoop and InnerLoop. 406 bool transform(); 407 void restructureLoops(Loop *NewInner, Loop *NewOuter, 408 BasicBlock *OrigInnerPreHeader, 409 BasicBlock *OrigOuterPreHeader); 410 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); 411 412 private: 413 void splitInnerLoopLatch(Instruction *); 414 void splitInnerLoopHeader(); 415 bool adjustLoopLinks(); 416 void adjustLoopPreheaders(); 417 bool adjustLoopBranches(); 418 419 Loop *OuterLoop; 420 Loop *InnerLoop; 421 422 /// Scev analysis. 423 ScalarEvolution *SE; 424 425 LoopInfo *LI; 426 DominatorTree *DT; 427 BasicBlock *LoopExit; 428 429 const LoopInterchangeLegality &LIL; 430 }; 431 432 // Main LoopInterchange Pass. 433 struct LoopInterchange : public LoopPass { 434 static char ID; 435 ScalarEvolution *SE = nullptr; 436 LoopInfo *LI = nullptr; 437 DependenceInfo *DI = nullptr; 438 DominatorTree *DT = nullptr; 439 440 /// Interface to emit optimization remarks. 441 OptimizationRemarkEmitter *ORE; 442 443 LoopInterchange() : LoopPass(ID) { 444 initializeLoopInterchangePass(*PassRegistry::getPassRegistry()); 445 } 446 447 void getAnalysisUsage(AnalysisUsage &AU) const override { 448 AU.addRequired<DependenceAnalysisWrapperPass>(); 449 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 450 451 getLoopAnalysisUsage(AU); 452 } 453 454 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 455 if (skipLoop(L) || L->getParentLoop()) 456 return false; 457 458 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 459 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 460 DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 461 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 462 ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 463 464 return processLoopList(populateWorklist(*L)); 465 } 466 467 bool isComputableLoopNest(LoopVector LoopList) { 468 for (Loop *L : LoopList) { 469 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); 470 if (ExitCountOuter == SE->getCouldNotCompute()) { 471 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); 472 return false; 473 } 474 if (L->getNumBackEdges() != 1) { 475 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); 476 return false; 477 } 478 if (!L->getExitingBlock()) { 479 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); 480 return false; 481 } 482 } 483 return true; 484 } 485 486 unsigned selectLoopForInterchange(const LoopVector &LoopList) { 487 // TODO: Add a better heuristic to select the loop to be interchanged based 488 // on the dependence matrix. Currently we select the innermost loop. 489 return LoopList.size() - 1; 490 } 491 492 bool processLoopList(LoopVector LoopList) { 493 bool Changed = false; 494 unsigned LoopNestDepth = LoopList.size(); 495 if (LoopNestDepth < 2) { 496 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); 497 return false; 498 } 499 if (LoopNestDepth > MaxLoopNestDepth) { 500 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " 501 << MaxLoopNestDepth << "\n"); 502 return false; 503 } 504 if (!isComputableLoopNest(LoopList)) { 505 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); 506 return false; 507 } 508 509 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth 510 << "\n"); 511 512 CharMatrix DependencyMatrix; 513 Loop *OuterMostLoop = *(LoopList.begin()); 514 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, 515 OuterMostLoop, DI)) { 516 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); 517 return false; 518 } 519 #ifdef DUMP_DEP_MATRICIES 520 LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); 521 printDepMatrix(DependencyMatrix); 522 #endif 523 524 // Get the Outermost loop exit. 525 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); 526 if (!LoopNestExit) { 527 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); 528 return false; 529 } 530 531 unsigned SelecLoopId = selectLoopForInterchange(LoopList); 532 // Move the selected loop outwards to the best possible position. 533 for (unsigned i = SelecLoopId; i > 0; i--) { 534 bool Interchanged = 535 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); 536 if (!Interchanged) 537 return Changed; 538 // Loops interchanged reflect the same in LoopList 539 std::swap(LoopList[i - 1], LoopList[i]); 540 541 // Update the DependencyMatrix 542 interChangeDependencies(DependencyMatrix, i, i - 1); 543 #ifdef DUMP_DEP_MATRICIES 544 LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); 545 printDepMatrix(DependencyMatrix); 546 #endif 547 Changed |= Interchanged; 548 } 549 return Changed; 550 } 551 552 bool processLoop(LoopVector LoopList, unsigned InnerLoopId, 553 unsigned OuterLoopId, BasicBlock *LoopNestExit, 554 std::vector<std::vector<char>> &DependencyMatrix) { 555 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId 556 << " and OuterLoopId = " << OuterLoopId << "\n"); 557 Loop *InnerLoop = LoopList[InnerLoopId]; 558 Loop *OuterLoop = LoopList[OuterLoopId]; 559 560 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); 561 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { 562 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); 563 return false; 564 } 565 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); 566 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); 567 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { 568 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); 569 return false; 570 } 571 572 ORE->emit([&]() { 573 return OptimizationRemark(DEBUG_TYPE, "Interchanged", 574 InnerLoop->getStartLoc(), 575 InnerLoop->getHeader()) 576 << "Loop interchanged with enclosing loop."; 577 }); 578 579 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, 580 LIL); 581 LIT.transform(); 582 LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); 583 LoopsInterchanged++; 584 return true; 585 } 586 }; 587 588 } // end anonymous namespace 589 590 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { 591 return any_of(*BB, [](const Instruction &I) { 592 return I.mayHaveSideEffects() || I.mayReadFromMemory(); 593 }); 594 } 595 596 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { 597 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 598 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 599 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 600 601 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); 602 603 // A perfectly nested loop will not have any branch in between the outer and 604 // inner block i.e. outer header will branch to either inner preheader and 605 // outerloop latch. 606 BranchInst *OuterLoopHeaderBI = 607 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 608 if (!OuterLoopHeaderBI) 609 return false; 610 611 for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) 612 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && 613 Succ != OuterLoopLatch) 614 return false; 615 616 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); 617 // We do not have any basic block in between now make sure the outer header 618 // and outer loop latch doesn't contain any unsafe instructions. 619 if (containsUnsafeInstructions(OuterLoopHeader) || 620 containsUnsafeInstructions(OuterLoopLatch)) 621 return false; 622 623 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); 624 // We have a perfect loop nest. 625 return true; 626 } 627 628 bool LoopInterchangeLegality::isLoopStructureUnderstood( 629 PHINode *InnerInduction) { 630 unsigned Num = InnerInduction->getNumOperands(); 631 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); 632 for (unsigned i = 0; i < Num; ++i) { 633 Value *Val = InnerInduction->getOperand(i); 634 if (isa<Constant>(Val)) 635 continue; 636 Instruction *I = dyn_cast<Instruction>(Val); 637 if (!I) 638 return false; 639 // TODO: Handle triangular loops. 640 // e.g. for(int i=0;i<N;i++) 641 // for(int j=i;j<N;j++) 642 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); 643 if (InnerInduction->getIncomingBlock(IncomBlockIndx) == 644 InnerLoopPreheader && 645 !OuterLoop->isLoopInvariant(I)) { 646 return false; 647 } 648 } 649 return true; 650 } 651 652 // If SV is a LCSSA PHI node with a single incoming value, return the incoming 653 // value. 654 static Value *followLCSSA(Value *SV) { 655 PHINode *PHI = dyn_cast<PHINode>(SV); 656 if (!PHI) 657 return SV; 658 659 if (PHI->getNumIncomingValues() != 1) 660 return SV; 661 return followLCSSA(PHI->getIncomingValue(0)); 662 } 663 664 // Check V's users to see if it is involved in a reduction in L. 665 static PHINode *findInnerReductionPhi(Loop *L, Value *V) { 666 for (Value *User : V->users()) { 667 if (PHINode *PHI = dyn_cast<PHINode>(User)) { 668 if (PHI->getNumIncomingValues() == 1) 669 continue; 670 RecurrenceDescriptor RD; 671 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) 672 return PHI; 673 return nullptr; 674 } 675 } 676 677 return nullptr; 678 } 679 680 bool LoopInterchangeLegality::findInductionAndReductions( 681 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { 682 if (!L->getLoopLatch() || !L->getLoopPredecessor()) 683 return false; 684 for (PHINode &PHI : L->getHeader()->phis()) { 685 RecurrenceDescriptor RD; 686 InductionDescriptor ID; 687 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) 688 Inductions.push_back(&PHI); 689 else { 690 // PHIs in inner loops need to be part of a reduction in the outer loop, 691 // discovered when checking the PHIs of the outer loop earlier. 692 if (!InnerLoop) { 693 if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end()) { 694 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " 695 "across the outer loop.\n"); 696 return false; 697 } 698 } else { 699 assert(PHI.getNumIncomingValues() == 2 && 700 "Phis in loop header should have exactly 2 incoming values"); 701 // Check if we have a PHI node in the outer loop that has a reduction 702 // result from the inner loop as an incoming value. 703 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); 704 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); 705 if (!InnerRedPhi || 706 !llvm::any_of(InnerRedPhi->incoming_values(), 707 [&PHI](Value *V) { return V == &PHI; })) { 708 LLVM_DEBUG( 709 dbgs() 710 << "Failed to recognize PHI as an induction or reduction.\n"); 711 return false; 712 } 713 OuterInnerReductions.insert(&PHI); 714 OuterInnerReductions.insert(InnerRedPhi); 715 } 716 } 717 } 718 return true; 719 } 720 721 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) { 722 for (PHINode &PHI : Block->phis()) { 723 // Reduction lcssa phi will have only 1 incoming block that from loop latch. 724 if (PHI.getNumIncomingValues() > 1) 725 return false; 726 Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0)); 727 if (!Ins) 728 return false; 729 // Incoming value for lcssa phi's in outer loop exit can only be inner loop 730 // exits lcssa phi else it would not be tightly nested. 731 if (!isa<PHINode>(Ins) && isOuterLoopExitBlock) 732 return false; 733 } 734 return true; 735 } 736 737 // This function indicates the current limitations in the transform as a result 738 // of which we do not proceed. 739 bool LoopInterchangeLegality::currentLimitations() { 740 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 741 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 742 743 // transform currently expects the loop latches to also be the exiting 744 // blocks. 745 if (InnerLoop->getExitingBlock() != InnerLoopLatch || 746 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || 747 !isa<BranchInst>(InnerLoopLatch->getTerminator()) || 748 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { 749 LLVM_DEBUG( 750 dbgs() << "Loops where the latch is not the exiting block are not" 751 << " supported currently.\n"); 752 ORE->emit([&]() { 753 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", 754 OuterLoop->getStartLoc(), 755 OuterLoop->getHeader()) 756 << "Loops where the latch is not the exiting block cannot be" 757 " interchange currently."; 758 }); 759 return true; 760 } 761 762 PHINode *InnerInductionVar; 763 SmallVector<PHINode *, 8> Inductions; 764 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { 765 LLVM_DEBUG( 766 dbgs() << "Only outer loops with induction or reduction PHI nodes " 767 << "are supported currently.\n"); 768 ORE->emit([&]() { 769 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", 770 OuterLoop->getStartLoc(), 771 OuterLoop->getHeader()) 772 << "Only outer loops with induction or reduction PHI nodes can be" 773 " interchanged currently."; 774 }); 775 return true; 776 } 777 778 // TODO: Currently we handle only loops with 1 induction variable. 779 if (Inductions.size() != 1) { 780 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " 781 << "supported currently.\n"); 782 ORE->emit([&]() { 783 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", 784 OuterLoop->getStartLoc(), 785 OuterLoop->getHeader()) 786 << "Only outer loops with 1 induction variable can be " 787 "interchanged currently."; 788 }); 789 return true; 790 } 791 792 Inductions.clear(); 793 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { 794 LLVM_DEBUG( 795 dbgs() << "Only inner loops with induction or reduction PHI nodes " 796 << "are supported currently.\n"); 797 ORE->emit([&]() { 798 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", 799 InnerLoop->getStartLoc(), 800 InnerLoop->getHeader()) 801 << "Only inner loops with induction or reduction PHI nodes can be" 802 " interchange currently."; 803 }); 804 return true; 805 } 806 807 // TODO: Currently we handle only loops with 1 induction variable. 808 if (Inductions.size() != 1) { 809 LLVM_DEBUG( 810 dbgs() << "We currently only support loops with 1 induction variable." 811 << "Failed to interchange due to current limitation\n"); 812 ORE->emit([&]() { 813 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", 814 InnerLoop->getStartLoc(), 815 InnerLoop->getHeader()) 816 << "Only inner loops with 1 induction variable can be " 817 "interchanged currently."; 818 }); 819 return true; 820 } 821 InnerInductionVar = Inductions.pop_back_val(); 822 823 // TODO: Triangular loops are not handled for now. 824 if (!isLoopStructureUnderstood(InnerInductionVar)) { 825 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); 826 ORE->emit([&]() { 827 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", 828 InnerLoop->getStartLoc(), 829 InnerLoop->getHeader()) 830 << "Inner loop structure not understood currently."; 831 }); 832 return true; 833 } 834 835 // TODO: We only handle LCSSA PHI's corresponding to reduction for now. 836 BasicBlock *InnerExit = InnerLoop->getExitBlock(); 837 if (!containsSafePHI(InnerExit, false)) { 838 LLVM_DEBUG( 839 dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n"); 840 ORE->emit([&]() { 841 return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner", 842 InnerLoop->getStartLoc(), 843 InnerLoop->getHeader()) 844 << "Only inner loops with LCSSA PHIs can be interchange " 845 "currently."; 846 }); 847 return true; 848 } 849 850 // TODO: Current limitation: Since we split the inner loop latch at the point 851 // were induction variable is incremented (induction.next); We cannot have 852 // more than 1 user of induction.next since it would result in broken code 853 // after split. 854 // e.g. 855 // for(i=0;i<N;i++) { 856 // for(j = 0;j<M;j++) { 857 // A[j+1][i+2] = A[j][i]+k; 858 // } 859 // } 860 Instruction *InnerIndexVarInc = nullptr; 861 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) 862 InnerIndexVarInc = 863 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); 864 else 865 InnerIndexVarInc = 866 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); 867 868 if (!InnerIndexVarInc) { 869 LLVM_DEBUG( 870 dbgs() << "Did not find an instruction to increment the induction " 871 << "variable.\n"); 872 ORE->emit([&]() { 873 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", 874 InnerLoop->getStartLoc(), 875 InnerLoop->getHeader()) 876 << "The inner loop does not increment the induction variable."; 877 }); 878 return true; 879 } 880 881 // Since we split the inner loop latch on this induction variable. Make sure 882 // we do not have any instruction between the induction variable and branch 883 // instruction. 884 885 bool FoundInduction = false; 886 for (const Instruction &I : 887 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { 888 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || 889 isa<ZExtInst>(I)) 890 continue; 891 892 // We found an instruction. If this is not induction variable then it is not 893 // safe to split this loop latch. 894 if (!I.isIdenticalTo(InnerIndexVarInc)) { 895 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " 896 << "variable increment and branch.\n"); 897 ORE->emit([&]() { 898 return OptimizationRemarkMissed( 899 DEBUG_TYPE, "UnsupportedInsBetweenInduction", 900 InnerLoop->getStartLoc(), InnerLoop->getHeader()) 901 << "Found unsupported instruction between induction variable " 902 "increment and branch."; 903 }); 904 return true; 905 } 906 907 FoundInduction = true; 908 break; 909 } 910 // The loop latch ended and we didn't find the induction variable return as 911 // current limitation. 912 if (!FoundInduction) { 913 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); 914 ORE->emit([&]() { 915 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", 916 InnerLoop->getStartLoc(), 917 InnerLoop->getHeader()) 918 << "Did not find the induction variable."; 919 }); 920 return true; 921 } 922 return false; 923 } 924 925 // We currently support LCSSA PHI nodes in the outer loop exit, if their 926 // incoming values do not come from the outer loop latch or if the 927 // outer loop latch has a single predecessor. In that case, the value will 928 // be available if both the inner and outer loop conditions are true, which 929 // will still be true after interchanging. If we have multiple predecessor, 930 // that may not be the case, e.g. because the outer loop latch may be executed 931 // if the inner loop is not executed. 932 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { 933 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); 934 for (PHINode &PHI : LoopNestExit->phis()) { 935 // FIXME: We currently are not able to detect floating point reductions 936 // and have to use floating point PHIs as a proxy to prevent 937 // interchanging in the presence of floating point reductions. 938 if (PHI.getType()->isFloatingPointTy()) 939 return false; 940 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { 941 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); 942 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) 943 continue; 944 945 // The incoming value is defined in the outer loop latch. Currently we 946 // only support that in case the outer loop latch has a single predecessor. 947 // This guarantees that the outer loop latch is executed if and only if 948 // the inner loop is executed (because tightlyNested() guarantees that the 949 // outer loop header only branches to the inner loop or the outer loop 950 // latch). 951 // FIXME: We could weaken this logic and allow multiple predecessors, 952 // if the values are produced outside the loop latch. We would need 953 // additional logic to update the PHI nodes in the exit block as 954 // well. 955 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) 956 return false; 957 } 958 } 959 return true; 960 } 961 962 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, 963 unsigned OuterLoopId, 964 CharMatrix &DepMatrix) { 965 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { 966 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId 967 << " and OuterLoopId = " << OuterLoopId 968 << " due to dependence\n"); 969 ORE->emit([&]() { 970 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", 971 InnerLoop->getStartLoc(), 972 InnerLoop->getHeader()) 973 << "Cannot interchange loops due to dependences."; 974 }); 975 return false; 976 } 977 // Check if outer and inner loop contain legal instructions only. 978 for (auto *BB : OuterLoop->blocks()) 979 for (Instruction &I : BB->instructionsWithoutDebug()) 980 if (CallInst *CI = dyn_cast<CallInst>(&I)) { 981 // readnone functions do not prevent interchanging. 982 if (CI->doesNotReadMemory()) 983 continue; 984 LLVM_DEBUG( 985 dbgs() << "Loops with call instructions cannot be interchanged " 986 << "safely."); 987 ORE->emit([&]() { 988 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", 989 CI->getDebugLoc(), 990 CI->getParent()) 991 << "Cannot interchange loops due to call instruction."; 992 }); 993 994 return false; 995 } 996 997 // TODO: The loops could not be interchanged due to current limitations in the 998 // transform module. 999 if (currentLimitations()) { 1000 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); 1001 return false; 1002 } 1003 1004 // Check if the loops are tightly nested. 1005 if (!tightlyNested(OuterLoop, InnerLoop)) { 1006 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); 1007 ORE->emit([&]() { 1008 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", 1009 InnerLoop->getStartLoc(), 1010 InnerLoop->getHeader()) 1011 << "Cannot interchange loops because they are not tightly " 1012 "nested."; 1013 }); 1014 return false; 1015 } 1016 1017 if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) { 1018 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); 1019 ORE->emit([&]() { 1020 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", 1021 OuterLoop->getStartLoc(), 1022 OuterLoop->getHeader()) 1023 << "Found unsupported PHI node in loop exit."; 1024 }); 1025 return false; 1026 } 1027 1028 return true; 1029 } 1030 1031 int LoopInterchangeProfitability::getInstrOrderCost() { 1032 unsigned GoodOrder, BadOrder; 1033 BadOrder = GoodOrder = 0; 1034 for (BasicBlock *BB : InnerLoop->blocks()) { 1035 for (Instruction &Ins : *BB) { 1036 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { 1037 unsigned NumOp = GEP->getNumOperands(); 1038 bool FoundInnerInduction = false; 1039 bool FoundOuterInduction = false; 1040 for (unsigned i = 0; i < NumOp; ++i) { 1041 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); 1042 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); 1043 if (!AR) 1044 continue; 1045 1046 // If we find the inner induction after an outer induction e.g. 1047 // for(int i=0;i<N;i++) 1048 // for(int j=0;j<N;j++) 1049 // A[i][j] = A[i-1][j-1]+k; 1050 // then it is a good order. 1051 if (AR->getLoop() == InnerLoop) { 1052 // We found an InnerLoop induction after OuterLoop induction. It is 1053 // a good order. 1054 FoundInnerInduction = true; 1055 if (FoundOuterInduction) { 1056 GoodOrder++; 1057 break; 1058 } 1059 } 1060 // If we find the outer induction after an inner induction e.g. 1061 // for(int i=0;i<N;i++) 1062 // for(int j=0;j<N;j++) 1063 // A[j][i] = A[j-1][i-1]+k; 1064 // then it is a bad order. 1065 if (AR->getLoop() == OuterLoop) { 1066 // We found an OuterLoop induction after InnerLoop induction. It is 1067 // a bad order. 1068 FoundOuterInduction = true; 1069 if (FoundInnerInduction) { 1070 BadOrder++; 1071 break; 1072 } 1073 } 1074 } 1075 } 1076 } 1077 } 1078 return GoodOrder - BadOrder; 1079 } 1080 1081 static bool isProfitableForVectorization(unsigned InnerLoopId, 1082 unsigned OuterLoopId, 1083 CharMatrix &DepMatrix) { 1084 // TODO: Improve this heuristic to catch more cases. 1085 // If the inner loop is loop independent or doesn't carry any dependency it is 1086 // profitable to move this to outer position. 1087 for (auto &Row : DepMatrix) { 1088 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') 1089 return false; 1090 // TODO: We need to improve this heuristic. 1091 if (Row[OuterLoopId] != '=') 1092 return false; 1093 } 1094 // If outer loop has dependence and inner loop is loop independent then it is 1095 // profitable to interchange to enable parallelism. 1096 // If there are no dependences, interchanging will not improve anything. 1097 return !DepMatrix.empty(); 1098 } 1099 1100 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, 1101 unsigned OuterLoopId, 1102 CharMatrix &DepMatrix) { 1103 // TODO: Add better profitability checks. 1104 // e.g 1105 // 1) Construct dependency matrix and move the one with no loop carried dep 1106 // inside to enable vectorization. 1107 1108 // This is rough cost estimation algorithm. It counts the good and bad order 1109 // of induction variables in the instruction and allows reordering if number 1110 // of bad orders is more than good. 1111 int Cost = getInstrOrderCost(); 1112 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); 1113 if (Cost < -LoopInterchangeCostThreshold) 1114 return true; 1115 1116 // It is not profitable as per current cache profitability model. But check if 1117 // we can move this loop outside to improve parallelism. 1118 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) 1119 return true; 1120 1121 ORE->emit([&]() { 1122 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", 1123 InnerLoop->getStartLoc(), 1124 InnerLoop->getHeader()) 1125 << "Interchanging loops is too costly (cost=" 1126 << ore::NV("Cost", Cost) << ", threshold=" 1127 << ore::NV("Threshold", LoopInterchangeCostThreshold) 1128 << ") and it does not improve parallelism."; 1129 }); 1130 return false; 1131 } 1132 1133 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, 1134 Loop *InnerLoop) { 1135 for (Loop *L : *OuterLoop) 1136 if (L == InnerLoop) { 1137 OuterLoop->removeChildLoop(L); 1138 return; 1139 } 1140 llvm_unreachable("Couldn't find loop"); 1141 } 1142 1143 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the 1144 /// new inner and outer loop after interchanging: NewInner is the original 1145 /// outer loop and NewOuter is the original inner loop. 1146 /// 1147 /// Before interchanging, we have the following structure 1148 /// Outer preheader 1149 // Outer header 1150 // Inner preheader 1151 // Inner header 1152 // Inner body 1153 // Inner latch 1154 // outer bbs 1155 // Outer latch 1156 // 1157 // After interchanging: 1158 // Inner preheader 1159 // Inner header 1160 // Outer preheader 1161 // Outer header 1162 // Inner body 1163 // outer bbs 1164 // Outer latch 1165 // Inner latch 1166 void LoopInterchangeTransform::restructureLoops( 1167 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, 1168 BasicBlock *OrigOuterPreHeader) { 1169 Loop *OuterLoopParent = OuterLoop->getParentLoop(); 1170 // The original inner loop preheader moves from the new inner loop to 1171 // the parent loop, if there is one. 1172 NewInner->removeBlockFromLoop(OrigInnerPreHeader); 1173 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); 1174 1175 // Switch the loop levels. 1176 if (OuterLoopParent) { 1177 // Remove the loop from its parent loop. 1178 removeChildLoop(OuterLoopParent, NewInner); 1179 removeChildLoop(NewInner, NewOuter); 1180 OuterLoopParent->addChildLoop(NewOuter); 1181 } else { 1182 removeChildLoop(NewInner, NewOuter); 1183 LI->changeTopLevelLoop(NewInner, NewOuter); 1184 } 1185 while (!NewOuter->empty()) 1186 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); 1187 NewOuter->addChildLoop(NewInner); 1188 1189 // BBs from the original inner loop. 1190 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); 1191 1192 // Add BBs from the original outer loop to the original inner loop (excluding 1193 // BBs already in inner loop) 1194 for (BasicBlock *BB : NewInner->blocks()) 1195 if (LI->getLoopFor(BB) == NewInner) 1196 NewOuter->addBlockEntry(BB); 1197 1198 // Now remove inner loop header and latch from the new inner loop and move 1199 // other BBs (the loop body) to the new inner loop. 1200 BasicBlock *OuterHeader = NewOuter->getHeader(); 1201 BasicBlock *OuterLatch = NewOuter->getLoopLatch(); 1202 for (BasicBlock *BB : OrigInnerBBs) { 1203 // Nothing will change for BBs in child loops. 1204 if (LI->getLoopFor(BB) != NewOuter) 1205 continue; 1206 // Remove the new outer loop header and latch from the new inner loop. 1207 if (BB == OuterHeader || BB == OuterLatch) 1208 NewInner->removeBlockFromLoop(BB); 1209 else 1210 LI->changeLoopFor(BB, NewInner); 1211 } 1212 1213 // The preheader of the original outer loop becomes part of the new 1214 // outer loop. 1215 NewOuter->addBlockEntry(OrigOuterPreHeader); 1216 LI->changeLoopFor(OrigOuterPreHeader, NewOuter); 1217 1218 // Tell SE that we move the loops around. 1219 SE->forgetLoop(NewOuter); 1220 SE->forgetLoop(NewInner); 1221 } 1222 1223 bool LoopInterchangeTransform::transform() { 1224 bool Transformed = false; 1225 Instruction *InnerIndexVar; 1226 1227 if (InnerLoop->getSubLoops().empty()) { 1228 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1229 LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n"); 1230 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); 1231 if (!InductionPHI) { 1232 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); 1233 return false; 1234 } 1235 1236 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) 1237 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); 1238 else 1239 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); 1240 1241 // Ensure that InductionPHI is the first Phi node. 1242 if (&InductionPHI->getParent()->front() != InductionPHI) 1243 InductionPHI->moveBefore(&InductionPHI->getParent()->front()); 1244 1245 // Split at the place were the induction variable is 1246 // incremented/decremented. 1247 // TODO: This splitting logic may not work always. Fix this. 1248 splitInnerLoopLatch(InnerIndexVar); 1249 LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n"); 1250 1251 // Splits the inner loops phi nodes out into a separate basic block. 1252 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1253 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); 1254 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); 1255 } 1256 1257 Transformed |= adjustLoopLinks(); 1258 if (!Transformed) { 1259 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); 1260 return false; 1261 } 1262 1263 return true; 1264 } 1265 1266 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) { 1267 SplitBlock(InnerLoop->getLoopLatch(), Inc, DT, LI); 1268 } 1269 1270 /// \brief Move all instructions except the terminator from FromBB right before 1271 /// InsertBefore 1272 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { 1273 auto &ToList = InsertBefore->getParent()->getInstList(); 1274 auto &FromList = FromBB->getInstList(); 1275 1276 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), 1277 FromBB->getTerminator()->getIterator()); 1278 } 1279 1280 /// Update BI to jump to NewBB instead of OldBB. Records updates to 1281 /// the dominator tree in DTUpdates, if DT should be preserved. 1282 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, 1283 BasicBlock *NewBB, 1284 std::vector<DominatorTree::UpdateType> &DTUpdates) { 1285 assert(llvm::count_if(successors(BI), 1286 [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 && 1287 "BI must jump to OldBB at most once."); 1288 for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) { 1289 if (BI->getSuccessor(i) == OldBB) { 1290 BI->setSuccessor(i, NewBB); 1291 1292 DTUpdates.push_back( 1293 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); 1294 DTUpdates.push_back( 1295 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); 1296 break; 1297 } 1298 } 1299 } 1300 1301 // Move Lcssa PHIs to the right place. 1302 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, 1303 BasicBlock *InnerLatch, BasicBlock *OuterHeader, 1304 BasicBlock *OuterLatch, BasicBlock *OuterExit) { 1305 1306 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are 1307 // defined either in the header or latch. Those blocks will become header and 1308 // latch of the new outer loop, and the only possible users can PHI nodes 1309 // in the exit block of the loop nest or the outer loop header (reduction 1310 // PHIs, in that case, the incoming value must be defined in the inner loop 1311 // header). We can just substitute the user with the incoming value and remove 1312 // the PHI. 1313 for (PHINode &P : make_early_inc_range(InnerExit->phis())) { 1314 assert(P.getNumIncomingValues() == 1 && 1315 "Only loops with a single exit are supported!"); 1316 1317 // Incoming values are guaranteed be instructions currently. 1318 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); 1319 // Skip phis with incoming values from the inner loop body, excluding the 1320 // header and latch. 1321 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) 1322 continue; 1323 1324 assert(all_of(P.users(), 1325 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { 1326 return (cast<PHINode>(U)->getParent() == OuterHeader && 1327 IncI->getParent() == InnerHeader) || 1328 cast<PHINode>(U)->getParent() == OuterExit; 1329 }) && 1330 "Can only replace phis iff the uses are in the loop nest exit or " 1331 "the incoming value is defined in the inner header (it will " 1332 "dominate all loop blocks after interchanging)"); 1333 P.replaceAllUsesWith(IncI); 1334 P.eraseFromParent(); 1335 } 1336 1337 SmallVector<PHINode *, 8> LcssaInnerExit; 1338 for (PHINode &P : InnerExit->phis()) 1339 LcssaInnerExit.push_back(&P); 1340 1341 SmallVector<PHINode *, 8> LcssaInnerLatch; 1342 for (PHINode &P : InnerLatch->phis()) 1343 LcssaInnerLatch.push_back(&P); 1344 1345 // Lcssa PHIs for values used outside the inner loop are in InnerExit. 1346 // If a PHI node has users outside of InnerExit, it has a use outside the 1347 // interchanged loop and we have to preserve it. We move these to 1348 // InnerLatch, which will become the new exit block for the innermost 1349 // loop after interchanging. 1350 for (PHINode *P : LcssaInnerExit) 1351 P->moveBefore(InnerLatch->getFirstNonPHI()); 1352 1353 // If the inner loop latch contains LCSSA PHIs, those come from a child loop 1354 // and we have to move them to the new inner latch. 1355 for (PHINode *P : LcssaInnerLatch) 1356 P->moveBefore(InnerExit->getFirstNonPHI()); 1357 1358 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have 1359 // incoming values from the outer latch or header, we have to add a new PHI 1360 // in the inner loop latch, which became the exit block of the outer loop, 1361 // after interchanging. 1362 if (OuterExit) { 1363 for (PHINode &P : OuterExit->phis()) { 1364 if (P.getNumIncomingValues() != 1) 1365 continue; 1366 // Skip Phis with incoming values not defined in the outer loop's header 1367 // and latch. Also skip incoming phis defined in the latch. Those should 1368 // already have been updated. 1369 auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); 1370 if (!I || ((I->getParent() != OuterLatch || isa<PHINode>(I)) && 1371 I->getParent() != OuterHeader)) 1372 continue; 1373 1374 PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); 1375 NewPhi->setIncomingValue(0, P.getIncomingValue(0)); 1376 NewPhi->setIncomingBlock(0, OuterLatch); 1377 NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); 1378 P.setIncomingValue(0, NewPhi); 1379 } 1380 } 1381 1382 // Now adjust the incoming blocks for the LCSSA PHIs. 1383 // For PHIs moved from Inner's exit block, we need to replace Inner's latch 1384 // with the new latch. 1385 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); 1386 } 1387 1388 bool LoopInterchangeTransform::adjustLoopBranches() { 1389 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); 1390 std::vector<DominatorTree::UpdateType> DTUpdates; 1391 1392 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1393 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1394 1395 assert(OuterLoopPreHeader != OuterLoop->getHeader() && 1396 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && 1397 InnerLoopPreHeader && "Guaranteed by loop-simplify form"); 1398 // Ensure that both preheaders do not contain PHI nodes and have single 1399 // predecessors. This allows us to move them easily. We use 1400 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing 1401 // preheaders do not satisfy those conditions. 1402 if (isa<PHINode>(OuterLoopPreHeader->begin()) || 1403 !OuterLoopPreHeader->getUniquePredecessor()) 1404 OuterLoopPreHeader = 1405 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); 1406 if (InnerLoopPreHeader == OuterLoop->getHeader()) 1407 InnerLoopPreHeader = 1408 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); 1409 1410 // Adjust the loop preheader 1411 BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); 1412 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1413 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); 1414 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); 1415 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); 1416 BasicBlock *InnerLoopLatchPredecessor = 1417 InnerLoopLatch->getUniquePredecessor(); 1418 BasicBlock *InnerLoopLatchSuccessor; 1419 BasicBlock *OuterLoopLatchSuccessor; 1420 1421 BranchInst *OuterLoopLatchBI = 1422 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); 1423 BranchInst *InnerLoopLatchBI = 1424 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); 1425 BranchInst *OuterLoopHeaderBI = 1426 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); 1427 BranchInst *InnerLoopHeaderBI = 1428 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); 1429 1430 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || 1431 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || 1432 !InnerLoopHeaderBI) 1433 return false; 1434 1435 BranchInst *InnerLoopLatchPredecessorBI = 1436 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); 1437 BranchInst *OuterLoopPredecessorBI = 1438 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); 1439 1440 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) 1441 return false; 1442 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); 1443 if (!InnerLoopHeaderSuccessor) 1444 return false; 1445 1446 // Adjust Loop Preheader and headers 1447 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, 1448 InnerLoopPreHeader, DTUpdates); 1449 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates); 1450 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, 1451 InnerLoopHeaderSuccessor, DTUpdates); 1452 1453 // Adjust reduction PHI's now that the incoming block has changed. 1454 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, 1455 OuterLoopHeader); 1456 1457 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, 1458 OuterLoopPreHeader, DTUpdates); 1459 1460 // -------------Adjust loop latches----------- 1461 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) 1462 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); 1463 else 1464 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); 1465 1466 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, 1467 InnerLoopLatchSuccessor, DTUpdates); 1468 1469 1470 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) 1471 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); 1472 else 1473 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); 1474 1475 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, 1476 OuterLoopLatchSuccessor, DTUpdates); 1477 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, 1478 DTUpdates); 1479 1480 DT->applyUpdates(DTUpdates); 1481 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, 1482 OuterLoopPreHeader); 1483 1484 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, 1485 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock()); 1486 // For PHIs in the exit block of the outer loop, outer's latch has been 1487 // replaced by Inners'. 1488 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1489 1490 // Now update the reduction PHIs in the inner and outer loop headers. 1491 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; 1492 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1)) 1493 InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); 1494 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1)) 1495 OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); 1496 1497 auto &OuterInnerReductions = LIL.getOuterInnerReductions(); 1498 (void)OuterInnerReductions; 1499 1500 // Now move the remaining reduction PHIs from outer to inner loop header and 1501 // vice versa. The PHI nodes must be part of a reduction across the inner and 1502 // outer loop and all the remains to do is and updating the incoming blocks. 1503 for (PHINode *PHI : OuterLoopPHIs) { 1504 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); 1505 assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() && 1506 "Expected a reduction PHI node"); 1507 } 1508 for (PHINode *PHI : InnerLoopPHIs) { 1509 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); 1510 assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() && 1511 "Expected a reduction PHI node"); 1512 } 1513 1514 // Update the incoming blocks for moved PHI nodes. 1515 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); 1516 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); 1517 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); 1518 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); 1519 1520 return true; 1521 } 1522 1523 void LoopInterchangeTransform::adjustLoopPreheaders() { 1524 // We have interchanged the preheaders so we need to interchange the data in 1525 // the preheader as well. 1526 // This is because the content of inner preheader was previously executed 1527 // inside the outer loop. 1528 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); 1529 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); 1530 BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); 1531 BranchInst *InnerTermBI = 1532 cast<BranchInst>(InnerLoopPreHeader->getTerminator()); 1533 1534 // These instructions should now be executed inside the loop. 1535 // Move instruction into a new block after outer header. 1536 moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator()); 1537 // These instructions were not executed previously in the loop so move them to 1538 // the older inner loop preheader. 1539 moveBBContents(OuterLoopPreHeader, InnerTermBI); 1540 } 1541 1542 bool LoopInterchangeTransform::adjustLoopLinks() { 1543 // Adjust all branches in the inner and outer loop. 1544 bool Changed = adjustLoopBranches(); 1545 if (Changed) 1546 adjustLoopPreheaders(); 1547 return Changed; 1548 } 1549 1550 char LoopInterchange::ID = 0; 1551 1552 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange", 1553 "Interchanges loops for cache reuse", false, false) 1554 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1555 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1556 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1557 1558 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange", 1559 "Interchanges loops for cache reuse", false, false) 1560 1561 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); } 1562