1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/CmpInstAnalysis.h" 51 #include "llvm/Analysis/LoopAccessAnalysis.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemoryLocation.h" 55 #include "llvm/Analysis/MemorySSA.h" 56 #include "llvm/Analysis/MemorySSAUpdater.h" 57 #include "llvm/Analysis/MustExecute.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugLoc.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/GlobalValue.h" 72 #include "llvm/IR/GlobalVariable.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/User.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/IR/ValueHandle.h" 87 #include "llvm/Support/Casting.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/InstructionCost.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Utils/BuildLibCalls.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/LoopUtils.h" 95 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <utility> 100 #include <vector> 101 102 using namespace llvm; 103 104 #define DEBUG_TYPE "loop-idiom" 105 106 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 107 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 108 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores"); 109 STATISTIC( 110 NumShiftUntilBitTest, 111 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 112 STATISTIC(NumShiftUntilZero, 113 "Number of uncountable loops recognized as 'shift until zero' idiom"); 114 115 bool DisableLIRP::All; 116 static cl::opt<bool, true> 117 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 118 cl::desc("Options to disable Loop Idiom Recognize Pass."), 119 cl::location(DisableLIRP::All), cl::init(false), 120 cl::ReallyHidden); 121 122 bool DisableLIRP::Memset; 123 static cl::opt<bool, true> 124 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 125 cl::desc("Proceed with loop idiom recognize pass, but do " 126 "not convert loop(s) to memset."), 127 cl::location(DisableLIRP::Memset), cl::init(false), 128 cl::ReallyHidden); 129 130 bool DisableLIRP::Memcpy; 131 static cl::opt<bool, true> 132 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 133 cl::desc("Proceed with loop idiom recognize pass, but do " 134 "not convert loop(s) to memcpy."), 135 cl::location(DisableLIRP::Memcpy), cl::init(false), 136 cl::ReallyHidden); 137 138 static cl::opt<bool> UseLIRCodeSizeHeurs( 139 "use-lir-code-size-heurs", 140 cl::desc("Use loop idiom recognition code size heuristics when compiling" 141 "with -Os/-Oz"), 142 cl::init(true), cl::Hidden); 143 144 namespace { 145 146 class LoopIdiomRecognize { 147 Loop *CurLoop = nullptr; 148 AliasAnalysis *AA; 149 DominatorTree *DT; 150 LoopInfo *LI; 151 ScalarEvolution *SE; 152 TargetLibraryInfo *TLI; 153 const TargetTransformInfo *TTI; 154 const DataLayout *DL; 155 OptimizationRemarkEmitter &ORE; 156 bool ApplyCodeSizeHeuristics; 157 std::unique_ptr<MemorySSAUpdater> MSSAU; 158 159 public: 160 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 161 LoopInfo *LI, ScalarEvolution *SE, 162 TargetLibraryInfo *TLI, 163 const TargetTransformInfo *TTI, MemorySSA *MSSA, 164 const DataLayout *DL, 165 OptimizationRemarkEmitter &ORE) 166 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 167 if (MSSA) 168 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 169 } 170 171 bool runOnLoop(Loop *L); 172 173 private: 174 using StoreList = SmallVector<StoreInst *, 8>; 175 using StoreListMap = MapVector<Value *, StoreList>; 176 177 StoreListMap StoreRefsForMemset; 178 StoreListMap StoreRefsForMemsetPattern; 179 StoreList StoreRefsForMemcpy; 180 bool HasMemset; 181 bool HasMemsetPattern; 182 bool HasMemcpy; 183 184 /// Return code for isLegalStore() 185 enum LegalStoreKind { 186 None = 0, 187 Memset, 188 MemsetPattern, 189 Memcpy, 190 UnorderedAtomicMemcpy, 191 DontUse // Dummy retval never to be used. Allows catching errors in retval 192 // handling. 193 }; 194 195 /// \name Countable Loop Idiom Handling 196 /// @{ 197 198 bool runOnCountableLoop(); 199 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 200 SmallVectorImpl<BasicBlock *> &ExitBlocks); 201 202 void collectStores(BasicBlock *BB); 203 LegalStoreKind isLegalStore(StoreInst *SI); 204 enum class ForMemset { No, Yes }; 205 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 206 ForMemset For); 207 208 template <typename MemInst> 209 bool processLoopMemIntrinsic( 210 BasicBlock *BB, 211 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 212 const SCEV *BECount); 213 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); 214 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 215 216 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, 217 MaybeAlign StoreAlignment, Value *StoredVal, 218 Instruction *TheStore, 219 SmallPtrSetImpl<Instruction *> &Stores, 220 const SCEVAddRecExpr *Ev, const SCEV *BECount, 221 bool IsNegStride, bool IsLoopMemset = false); 222 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 223 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, 224 const SCEV *StoreSize, MaybeAlign StoreAlign, 225 MaybeAlign LoadAlign, Instruction *TheStore, 226 Instruction *TheLoad, 227 const SCEVAddRecExpr *StoreEv, 228 const SCEVAddRecExpr *LoadEv, 229 const SCEV *BECount); 230 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 231 bool IsLoopMemset = false); 232 233 /// @} 234 /// \name Noncountable Loop Idiom Handling 235 /// @{ 236 237 bool runOnNoncountableLoop(); 238 239 bool recognizePopcount(); 240 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 241 PHINode *CntPhi, Value *Var); 242 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 243 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 244 Instruction *CntInst, PHINode *CntPhi, 245 Value *Var, Instruction *DefX, 246 const DebugLoc &DL, bool ZeroCheck, 247 bool IsCntPhiUsedOutsideLoop); 248 249 bool recognizeShiftUntilBitTest(); 250 bool recognizeShiftUntilZero(); 251 252 /// @} 253 }; 254 } // end anonymous namespace 255 256 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 257 LoopStandardAnalysisResults &AR, 258 LPMUpdater &) { 259 if (DisableLIRP::All) 260 return PreservedAnalyses::all(); 261 262 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 263 264 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 265 // pass. Function analyses need to be preserved across loop transformations 266 // but ORE cannot be preserved (see comment before the pass definition). 267 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 268 269 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 270 AR.MSSA, DL, ORE); 271 if (!LIR.runOnLoop(&L)) 272 return PreservedAnalyses::all(); 273 274 auto PA = getLoopPassPreservedAnalyses(); 275 if (AR.MSSA) 276 PA.preserve<MemorySSAAnalysis>(); 277 return PA; 278 } 279 280 static void deleteDeadInstruction(Instruction *I) { 281 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 282 I->eraseFromParent(); 283 } 284 285 //===----------------------------------------------------------------------===// 286 // 287 // Implementation of LoopIdiomRecognize 288 // 289 //===----------------------------------------------------------------------===// 290 291 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 292 CurLoop = L; 293 // If the loop could not be converted to canonical form, it must have an 294 // indirectbr in it, just give up. 295 if (!L->getLoopPreheader()) 296 return false; 297 298 // Disable loop idiom recognition if the function's name is a common idiom. 299 StringRef Name = L->getHeader()->getParent()->getName(); 300 if (Name == "memset" || Name == "memcpy") 301 return false; 302 303 // Determine if code size heuristics need to be applied. 304 ApplyCodeSizeHeuristics = 305 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 306 307 HasMemset = TLI->has(LibFunc_memset); 308 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 309 HasMemcpy = TLI->has(LibFunc_memcpy); 310 311 if (HasMemset || HasMemsetPattern || HasMemcpy) 312 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 313 return runOnCountableLoop(); 314 315 return runOnNoncountableLoop(); 316 } 317 318 bool LoopIdiomRecognize::runOnCountableLoop() { 319 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 320 assert(!isa<SCEVCouldNotCompute>(BECount) && 321 "runOnCountableLoop() called on a loop without a predictable" 322 "backedge-taken count"); 323 324 // If this loop executes exactly one time, then it should be peeled, not 325 // optimized by this pass. 326 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 327 if (BECst->getAPInt() == 0) 328 return false; 329 330 SmallVector<BasicBlock *, 8> ExitBlocks; 331 CurLoop->getUniqueExitBlocks(ExitBlocks); 332 333 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 334 << CurLoop->getHeader()->getParent()->getName() 335 << "] Countable Loop %" << CurLoop->getHeader()->getName() 336 << "\n"); 337 338 // The following transforms hoist stores/memsets into the loop pre-header. 339 // Give up if the loop has instructions that may throw. 340 SimpleLoopSafetyInfo SafetyInfo; 341 SafetyInfo.computeLoopSafetyInfo(CurLoop); 342 if (SafetyInfo.anyBlockMayThrow()) 343 return false; 344 345 bool MadeChange = false; 346 347 // Scan all the blocks in the loop that are not in subloops. 348 for (auto *BB : CurLoop->getBlocks()) { 349 // Ignore blocks in subloops. 350 if (LI->getLoopFor(BB) != CurLoop) 351 continue; 352 353 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 354 } 355 return MadeChange; 356 } 357 358 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 359 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 360 return ConstStride->getAPInt(); 361 } 362 363 /// getMemSetPatternValue - If a strided store of the specified value is safe to 364 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 365 /// be passed in. Otherwise, return null. 366 /// 367 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 368 /// just replicate their input array and then pass on to memset_pattern16. 369 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 370 // FIXME: This could check for UndefValue because it can be merged into any 371 // other valid pattern. 372 373 // If the value isn't a constant, we can't promote it to being in a constant 374 // array. We could theoretically do a store to an alloca or something, but 375 // that doesn't seem worthwhile. 376 Constant *C = dyn_cast<Constant>(V); 377 if (!C || isa<ConstantExpr>(C)) 378 return nullptr; 379 380 // Only handle simple values that are a power of two bytes in size. 381 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 382 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 383 return nullptr; 384 385 // Don't care enough about darwin/ppc to implement this. 386 if (DL->isBigEndian()) 387 return nullptr; 388 389 // Convert to size in bytes. 390 Size /= 8; 391 392 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 393 // if the top and bottom are the same (e.g. for vectors and large integers). 394 if (Size > 16) 395 return nullptr; 396 397 // If the constant is exactly 16 bytes, just use it. 398 if (Size == 16) 399 return C; 400 401 // Otherwise, we'll use an array of the constants. 402 unsigned ArraySize = 16 / Size; 403 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 404 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 405 } 406 407 LoopIdiomRecognize::LegalStoreKind 408 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 409 // Don't touch volatile stores. 410 if (SI->isVolatile()) 411 return LegalStoreKind::None; 412 // We only want simple or unordered-atomic stores. 413 if (!SI->isUnordered()) 414 return LegalStoreKind::None; 415 416 // Avoid merging nontemporal stores. 417 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 418 return LegalStoreKind::None; 419 420 Value *StoredVal = SI->getValueOperand(); 421 Value *StorePtr = SI->getPointerOperand(); 422 423 // Don't convert stores of non-integral pointer types to memsets (which stores 424 // integers). 425 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 426 return LegalStoreKind::None; 427 428 // Reject stores that are so large that they overflow an unsigned. 429 // When storing out scalable vectors we bail out for now, since the code 430 // below currently only works for constant strides. 431 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 432 if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) || 433 (SizeInBits.getFixedValue() >> 32) != 0) 434 return LegalStoreKind::None; 435 436 // See if the pointer expression is an AddRec like {base,+,1} on the current 437 // loop, which indicates a strided store. If we have something else, it's a 438 // random store we can't handle. 439 const SCEVAddRecExpr *StoreEv = 440 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 441 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 442 return LegalStoreKind::None; 443 444 // Check to see if we have a constant stride. 445 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 446 return LegalStoreKind::None; 447 448 // See if the store can be turned into a memset. 449 450 // If the stored value is a byte-wise value (like i32 -1), then it may be 451 // turned into a memset of i8 -1, assuming that all the consecutive bytes 452 // are stored. A store of i32 0x01020304 can never be turned into a memset, 453 // but it can be turned into memset_pattern if the target supports it. 454 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 455 456 // Note: memset and memset_pattern on unordered-atomic is yet not supported 457 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 458 459 // If we're allowed to form a memset, and the stored value would be 460 // acceptable for memset, use it. 461 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 462 // Verify that the stored value is loop invariant. If not, we can't 463 // promote the memset. 464 CurLoop->isLoopInvariant(SplatValue)) { 465 // It looks like we can use SplatValue. 466 return LegalStoreKind::Memset; 467 } 468 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 469 // Don't create memset_pattern16s with address spaces. 470 StorePtr->getType()->getPointerAddressSpace() == 0 && 471 getMemSetPatternValue(StoredVal, DL)) { 472 // It looks like we can use PatternValue! 473 return LegalStoreKind::MemsetPattern; 474 } 475 476 // Otherwise, see if the store can be turned into a memcpy. 477 if (HasMemcpy && !DisableLIRP::Memcpy) { 478 // Check to see if the stride matches the size of the store. If so, then we 479 // know that every byte is touched in the loop. 480 APInt Stride = getStoreStride(StoreEv); 481 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 482 if (StoreSize != Stride && StoreSize != -Stride) 483 return LegalStoreKind::None; 484 485 // The store must be feeding a non-volatile load. 486 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 487 488 // Only allow non-volatile loads 489 if (!LI || LI->isVolatile()) 490 return LegalStoreKind::None; 491 // Only allow simple or unordered-atomic loads 492 if (!LI->isUnordered()) 493 return LegalStoreKind::None; 494 495 // See if the pointer expression is an AddRec like {base,+,1} on the current 496 // loop, which indicates a strided load. If we have something else, it's a 497 // random load we can't handle. 498 const SCEVAddRecExpr *LoadEv = 499 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 500 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 501 return LegalStoreKind::None; 502 503 // The store and load must share the same stride. 504 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 505 return LegalStoreKind::None; 506 507 // Success. This store can be converted into a memcpy. 508 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 509 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 510 : LegalStoreKind::Memcpy; 511 } 512 // This store can't be transformed into a memset/memcpy. 513 return LegalStoreKind::None; 514 } 515 516 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 517 StoreRefsForMemset.clear(); 518 StoreRefsForMemsetPattern.clear(); 519 StoreRefsForMemcpy.clear(); 520 for (Instruction &I : *BB) { 521 StoreInst *SI = dyn_cast<StoreInst>(&I); 522 if (!SI) 523 continue; 524 525 // Make sure this is a strided store with a constant stride. 526 switch (isLegalStore(SI)) { 527 case LegalStoreKind::None: 528 // Nothing to do 529 break; 530 case LegalStoreKind::Memset: { 531 // Find the base pointer. 532 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 533 StoreRefsForMemset[Ptr].push_back(SI); 534 } break; 535 case LegalStoreKind::MemsetPattern: { 536 // Find the base pointer. 537 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 538 StoreRefsForMemsetPattern[Ptr].push_back(SI); 539 } break; 540 case LegalStoreKind::Memcpy: 541 case LegalStoreKind::UnorderedAtomicMemcpy: 542 StoreRefsForMemcpy.push_back(SI); 543 break; 544 default: 545 assert(false && "unhandled return value"); 546 break; 547 } 548 } 549 } 550 551 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 552 /// with the specified backedge count. This block is known to be in the current 553 /// loop and not in any subloops. 554 bool LoopIdiomRecognize::runOnLoopBlock( 555 BasicBlock *BB, const SCEV *BECount, 556 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 557 // We can only promote stores in this block if they are unconditionally 558 // executed in the loop. For a block to be unconditionally executed, it has 559 // to dominate all the exit blocks of the loop. Verify this now. 560 for (BasicBlock *ExitBlock : ExitBlocks) 561 if (!DT->dominates(BB, ExitBlock)) 562 return false; 563 564 bool MadeChange = false; 565 // Look for store instructions, which may be optimized to memset/memcpy. 566 collectStores(BB); 567 568 // Look for a single store or sets of stores with a common base, which can be 569 // optimized into a memset (memset_pattern). The latter most commonly happens 570 // with structs and handunrolled loops. 571 for (auto &SL : StoreRefsForMemset) 572 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 573 574 for (auto &SL : StoreRefsForMemsetPattern) 575 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 576 577 // Optimize the store into a memcpy, if it feeds an similarly strided load. 578 for (auto &SI : StoreRefsForMemcpy) 579 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 580 581 MadeChange |= processLoopMemIntrinsic<MemCpyInst>( 582 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); 583 MadeChange |= processLoopMemIntrinsic<MemSetInst>( 584 BB, &LoopIdiomRecognize::processLoopMemSet, BECount); 585 586 return MadeChange; 587 } 588 589 /// See if this store(s) can be promoted to a memset. 590 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 591 const SCEV *BECount, ForMemset For) { 592 // Try to find consecutive stores that can be transformed into memsets. 593 SetVector<StoreInst *> Heads, Tails; 594 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 595 596 // Do a quadratic search on all of the given stores and find 597 // all of the pairs of stores that follow each other. 598 SmallVector<unsigned, 16> IndexQueue; 599 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 600 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 601 602 Value *FirstStoredVal = SL[i]->getValueOperand(); 603 Value *FirstStorePtr = SL[i]->getPointerOperand(); 604 const SCEVAddRecExpr *FirstStoreEv = 605 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 606 APInt FirstStride = getStoreStride(FirstStoreEv); 607 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 608 609 // See if we can optimize just this store in isolation. 610 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 611 Heads.insert(SL[i]); 612 continue; 613 } 614 615 Value *FirstSplatValue = nullptr; 616 Constant *FirstPatternValue = nullptr; 617 618 if (For == ForMemset::Yes) 619 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 620 else 621 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 622 623 assert((FirstSplatValue || FirstPatternValue) && 624 "Expected either splat value or pattern value."); 625 626 IndexQueue.clear(); 627 // If a store has multiple consecutive store candidates, search Stores 628 // array according to the sequence: from i+1 to e, then from i-1 to 0. 629 // This is because usually pairing with immediate succeeding or preceding 630 // candidate create the best chance to find memset opportunity. 631 unsigned j = 0; 632 for (j = i + 1; j < e; ++j) 633 IndexQueue.push_back(j); 634 for (j = i; j > 0; --j) 635 IndexQueue.push_back(j - 1); 636 637 for (auto &k : IndexQueue) { 638 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 639 Value *SecondStorePtr = SL[k]->getPointerOperand(); 640 const SCEVAddRecExpr *SecondStoreEv = 641 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 642 APInt SecondStride = getStoreStride(SecondStoreEv); 643 644 if (FirstStride != SecondStride) 645 continue; 646 647 Value *SecondStoredVal = SL[k]->getValueOperand(); 648 Value *SecondSplatValue = nullptr; 649 Constant *SecondPatternValue = nullptr; 650 651 if (For == ForMemset::Yes) 652 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 653 else 654 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 655 656 assert((SecondSplatValue || SecondPatternValue) && 657 "Expected either splat value or pattern value."); 658 659 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 660 if (For == ForMemset::Yes) { 661 if (isa<UndefValue>(FirstSplatValue)) 662 FirstSplatValue = SecondSplatValue; 663 if (FirstSplatValue != SecondSplatValue) 664 continue; 665 } else { 666 if (isa<UndefValue>(FirstPatternValue)) 667 FirstPatternValue = SecondPatternValue; 668 if (FirstPatternValue != SecondPatternValue) 669 continue; 670 } 671 Tails.insert(SL[k]); 672 Heads.insert(SL[i]); 673 ConsecutiveChain[SL[i]] = SL[k]; 674 break; 675 } 676 } 677 } 678 679 // We may run into multiple chains that merge into a single chain. We mark the 680 // stores that we transformed so that we don't visit the same store twice. 681 SmallPtrSet<Value *, 16> TransformedStores; 682 bool Changed = false; 683 684 // For stores that start but don't end a link in the chain: 685 for (StoreInst *I : Heads) { 686 if (Tails.count(I)) 687 continue; 688 689 // We found a store instr that starts a chain. Now follow the chain and try 690 // to transform it. 691 SmallPtrSet<Instruction *, 8> AdjacentStores; 692 StoreInst *HeadStore = I; 693 unsigned StoreSize = 0; 694 695 // Collect the chain into a list. 696 while (Tails.count(I) || Heads.count(I)) { 697 if (TransformedStores.count(I)) 698 break; 699 AdjacentStores.insert(I); 700 701 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 702 // Move to the next value in the chain. 703 I = ConsecutiveChain[I]; 704 } 705 706 Value *StoredVal = HeadStore->getValueOperand(); 707 Value *StorePtr = HeadStore->getPointerOperand(); 708 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 709 APInt Stride = getStoreStride(StoreEv); 710 711 // Check to see if the stride matches the size of the stores. If so, then 712 // we know that every byte is touched in the loop. 713 if (StoreSize != Stride && StoreSize != -Stride) 714 continue; 715 716 bool IsNegStride = StoreSize == -Stride; 717 718 Type *IntIdxTy = DL->getIndexType(StorePtr->getType()); 719 const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize); 720 if (processLoopStridedStore(StorePtr, StoreSizeSCEV, 721 MaybeAlign(HeadStore->getAlign()), StoredVal, 722 HeadStore, AdjacentStores, StoreEv, BECount, 723 IsNegStride)) { 724 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 725 Changed = true; 726 } 727 } 728 729 return Changed; 730 } 731 732 /// processLoopMemIntrinsic - Template function for calling different processor 733 /// functions based on mem intrinsic type. 734 template <typename MemInst> 735 bool LoopIdiomRecognize::processLoopMemIntrinsic( 736 BasicBlock *BB, 737 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 738 const SCEV *BECount) { 739 bool MadeChange = false; 740 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 741 Instruction *Inst = &*I++; 742 // Look for memory instructions, which may be optimized to a larger one. 743 if (MemInst *MI = dyn_cast<MemInst>(Inst)) { 744 WeakTrackingVH InstPtr(&*I); 745 if (!(this->*Processor)(MI, BECount)) 746 continue; 747 MadeChange = true; 748 749 // If processing the instruction invalidated our iterator, start over from 750 // the top of the block. 751 if (!InstPtr) 752 I = BB->begin(); 753 } 754 } 755 return MadeChange; 756 } 757 758 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy 759 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, 760 const SCEV *BECount) { 761 // We can only handle non-volatile memcpys with a constant size. 762 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) 763 return false; 764 765 // If we're not allowed to hack on memcpy, we fail. 766 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) 767 return false; 768 769 Value *Dest = MCI->getDest(); 770 Value *Source = MCI->getSource(); 771 if (!Dest || !Source) 772 return false; 773 774 // See if the load and store pointer expressions are AddRec like {base,+,1} on 775 // the current loop, which indicates a strided load and store. If we have 776 // something else, it's a random load or store we can't handle. 777 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); 778 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 779 return false; 780 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); 781 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 782 return false; 783 784 // Reject memcpys that are so large that they overflow an unsigned. 785 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 786 if ((SizeInBytes >> 32) != 0) 787 return false; 788 789 // Check if the stride matches the size of the memcpy. If so, then we know 790 // that every byte is touched in the loop. 791 const SCEVConstant *ConstStoreStride = 792 dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 793 const SCEVConstant *ConstLoadStride = 794 dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); 795 if (!ConstStoreStride || !ConstLoadStride) 796 return false; 797 798 APInt StoreStrideValue = ConstStoreStride->getAPInt(); 799 APInt LoadStrideValue = ConstLoadStride->getAPInt(); 800 // Huge stride value - give up 801 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) 802 return false; 803 804 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { 805 ORE.emit([&]() { 806 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) 807 << ore::NV("Inst", "memcpy") << " in " 808 << ore::NV("Function", MCI->getFunction()) 809 << " function will not be hoisted: " 810 << ore::NV("Reason", "memcpy size is not equal to stride"); 811 }); 812 return false; 813 } 814 815 int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); 816 int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); 817 // Check if the load stride matches the store stride. 818 if (StoreStrideInt != LoadStrideInt) 819 return false; 820 821 return processLoopStoreOfLoopLoad( 822 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), 823 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, 824 BECount); 825 } 826 827 /// processLoopMemSet - See if this memset can be promoted to a large memset. 828 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 829 const SCEV *BECount) { 830 // We can only handle non-volatile memsets. 831 if (MSI->isVolatile()) 832 return false; 833 834 // If we're not allowed to hack on memset, we fail. 835 if (!HasMemset || DisableLIRP::Memset) 836 return false; 837 838 Value *Pointer = MSI->getDest(); 839 840 // See if the pointer expression is an AddRec like {base,+,1} on the current 841 // loop, which indicates a strided store. If we have something else, it's a 842 // random store we can't handle. 843 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 844 if (!Ev || Ev->getLoop() != CurLoop) 845 return false; 846 if (!Ev->isAffine()) { 847 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n"); 848 return false; 849 } 850 851 const SCEV *PointerStrideSCEV = Ev->getOperand(1); 852 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); 853 if (!PointerStrideSCEV || !MemsetSizeSCEV) 854 return false; 855 856 bool IsNegStride = false; 857 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); 858 859 if (IsConstantSize) { 860 // Memset size is constant. 861 // Check if the pointer stride matches the memset size. If so, then 862 // we know that every byte is touched in the loop. 863 LLVM_DEBUG(dbgs() << " memset size is constant\n"); 864 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 865 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 866 if (!ConstStride) 867 return false; 868 869 APInt Stride = ConstStride->getAPInt(); 870 if (SizeInBytes != Stride && SizeInBytes != -Stride) 871 return false; 872 873 IsNegStride = SizeInBytes == -Stride; 874 } else { 875 // Memset size is non-constant. 876 // Check if the pointer stride matches the memset size. 877 // To be conservative, the pass would not promote pointers that aren't in 878 // address space zero. Also, the pass only handles memset length and stride 879 // that are invariant for the top level loop. 880 LLVM_DEBUG(dbgs() << " memset size is non-constant\n"); 881 if (Pointer->getType()->getPointerAddressSpace() != 0) { 882 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " 883 << "abort\n"); 884 return false; 885 } 886 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { 887 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " 888 << "abort\n"); 889 return false; 890 } 891 892 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV 893 IsNegStride = PointerStrideSCEV->isNonConstantNegative(); 894 const SCEV *PositiveStrideSCEV = 895 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) 896 : PointerStrideSCEV; 897 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" 898 << " PositiveStrideSCEV: " << *PositiveStrideSCEV 899 << "\n"); 900 901 if (PositiveStrideSCEV != MemsetSizeSCEV) { 902 // If an expression is covered by the loop guard, compare again and 903 // proceed with optimization if equal. 904 const SCEV *FoldedPositiveStride = 905 SE->applyLoopGuards(PositiveStrideSCEV, CurLoop); 906 const SCEV *FoldedMemsetSize = 907 SE->applyLoopGuards(MemsetSizeSCEV, CurLoop); 908 909 LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n" 910 << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" 911 << " FoldedPositiveStride: " << *FoldedPositiveStride 912 << "\n"); 913 914 if (FoldedPositiveStride != FoldedMemsetSize) { 915 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n"); 916 return false; 917 } 918 } 919 } 920 921 // Verify that the memset value is loop invariant. If not, we can't promote 922 // the memset. 923 Value *SplatValue = MSI->getValue(); 924 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 925 return false; 926 927 SmallPtrSet<Instruction *, 1> MSIs; 928 MSIs.insert(MSI); 929 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), 930 MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev, 931 BECount, IsNegStride, /*IsLoopMemset=*/true); 932 } 933 934 /// mayLoopAccessLocation - Return true if the specified loop might access the 935 /// specified pointer location, which is a loop-strided access. The 'Access' 936 /// argument specifies what the verboten forms of access are (read or write). 937 static bool 938 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 939 const SCEV *BECount, const SCEV *StoreSizeSCEV, 940 AliasAnalysis &AA, 941 SmallPtrSetImpl<Instruction *> &IgnoredInsts) { 942 // Get the location that may be stored across the loop. Since the access is 943 // strided positively through memory, we say that the modified location starts 944 // at the pointer and has infinite size. 945 LocationSize AccessSize = LocationSize::afterPointer(); 946 947 // If the loop iterates a fixed number of times, we can refine the access size 948 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 949 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); 950 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 951 if (BECst && ConstSize) 952 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 953 ConstSize->getValue()->getZExtValue()); 954 955 // TODO: For this to be really effective, we have to dive into the pointer 956 // operand in the store. Store to &A[i] of 100 will always return may alias 957 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 958 // which will then no-alias a store to &A[100]. 959 MemoryLocation StoreLoc(Ptr, AccessSize); 960 961 for (BasicBlock *B : L->blocks()) 962 for (Instruction &I : *B) 963 if (!IgnoredInsts.contains(&I) && 964 isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access)) 965 return true; 966 return false; 967 } 968 969 // If we have a negative stride, Start refers to the end of the memory location 970 // we're trying to memset. Therefore, we need to recompute the base pointer, 971 // which is just Start - BECount*Size. 972 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 973 Type *IntPtr, const SCEV *StoreSizeSCEV, 974 ScalarEvolution *SE) { 975 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 976 if (!StoreSizeSCEV->isOne()) { 977 // index = back edge count * store size 978 Index = SE->getMulExpr(Index, 979 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 980 SCEV::FlagNUW); 981 } 982 // base pointer = start - index * store size 983 return SE->getMinusSCEV(Start, Index); 984 } 985 986 /// Compute the number of bytes as a SCEV from the backedge taken count. 987 /// 988 /// This also maps the SCEV into the provided type and tries to handle the 989 /// computation in a way that will fold cleanly. 990 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 991 const SCEV *StoreSizeSCEV, Loop *CurLoop, 992 const DataLayout *DL, ScalarEvolution *SE) { 993 const SCEV *TripCountSCEV = 994 SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop); 995 return SE->getMulExpr(TripCountSCEV, 996 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 997 SCEV::FlagNUW); 998 } 999 1000 /// processLoopStridedStore - We see a strided store of some value. If we can 1001 /// transform this into a memset or memset_pattern in the loop preheader, do so. 1002 bool LoopIdiomRecognize::processLoopStridedStore( 1003 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, 1004 Value *StoredVal, Instruction *TheStore, 1005 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 1006 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { 1007 Module *M = TheStore->getModule(); 1008 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 1009 Constant *PatternValue = nullptr; 1010 1011 if (!SplatValue) 1012 PatternValue = getMemSetPatternValue(StoredVal, DL); 1013 1014 assert((SplatValue || PatternValue) && 1015 "Expected either splat value or pattern value."); 1016 1017 // The trip count of the loop and the base pointer of the addrec SCEV is 1018 // guaranteed to be loop invariant, which means that it should dominate the 1019 // header. This allows us to insert code for it in the preheader. 1020 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 1021 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1022 IRBuilder<> Builder(Preheader->getTerminator()); 1023 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1024 SCEVExpanderCleaner ExpCleaner(Expander); 1025 1026 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 1027 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 1028 1029 bool Changed = false; 1030 const SCEV *Start = Ev->getStart(); 1031 // Handle negative strided loops. 1032 if (IsNegStride) 1033 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); 1034 1035 // TODO: ideally we should still be able to generate memset if SCEV expander 1036 // is taught to generate the dependencies at the latest point. 1037 if (!Expander.isSafeToExpand(Start)) 1038 return Changed; 1039 1040 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 1041 // this into a memset in the loop preheader now if we want. However, this 1042 // would be unsafe to do if there is anything else in the loop that may read 1043 // or write to the aliased location. Check for any overlap by generating the 1044 // base pointer and checking the region. 1045 Value *BasePtr = 1046 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 1047 1048 // From here on out, conservatively report to the pass manager that we've 1049 // changed the IR, even if we later clean up these added instructions. There 1050 // may be structural differences e.g. in the order of use lists not accounted 1051 // for in just a textual dump of the IR. This is written as a variable, even 1052 // though statically all the places this dominates could be replaced with 1053 // 'true', with the hope that anyone trying to be clever / "more precise" with 1054 // the return value will read this comment, and leave them alone. 1055 Changed = true; 1056 1057 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1058 StoreSizeSCEV, *AA, Stores)) 1059 return Changed; 1060 1061 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 1062 return Changed; 1063 1064 // Okay, everything looks good, insert the memset. 1065 1066 const SCEV *NumBytesS = 1067 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1068 1069 // TODO: ideally we should still be able to generate memset if SCEV expander 1070 // is taught to generate the dependencies at the latest point. 1071 if (!Expander.isSafeToExpand(NumBytesS)) 1072 return Changed; 1073 1074 Value *NumBytes = 1075 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1076 1077 if (!SplatValue && !isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)) 1078 return Changed; 1079 1080 AAMDNodes AATags = TheStore->getAAMetadata(); 1081 for (Instruction *Store : Stores) 1082 AATags = AATags.merge(Store->getAAMetadata()); 1083 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1084 AATags = AATags.extendTo(CI->getZExtValue()); 1085 else 1086 AATags = AATags.extendTo(-1); 1087 1088 CallInst *NewCall; 1089 if (SplatValue) { 1090 NewCall = Builder.CreateMemSet( 1091 BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment), 1092 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1093 } else { 1094 assert (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)); 1095 // Everything is emitted in default address space 1096 Type *Int8PtrTy = DestInt8PtrTy; 1097 1098 StringRef FuncName = "memset_pattern16"; 1099 FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16, 1100 Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy); 1101 inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI); 1102 1103 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1104 // an constant array of 16-bytes. Plop the value into a mergable global. 1105 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1106 GlobalValue::PrivateLinkage, 1107 PatternValue, ".memset_pattern"); 1108 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1109 GV->setAlignment(Align(16)); 1110 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1111 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1112 1113 // Set the TBAA info if present. 1114 if (AATags.TBAA) 1115 NewCall->setMetadata(LLVMContext::MD_tbaa, AATags.TBAA); 1116 1117 if (AATags.Scope) 1118 NewCall->setMetadata(LLVMContext::MD_alias_scope, AATags.Scope); 1119 1120 if (AATags.NoAlias) 1121 NewCall->setMetadata(LLVMContext::MD_noalias, AATags.NoAlias); 1122 } 1123 1124 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1125 1126 if (MSSAU) { 1127 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1128 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1129 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1130 } 1131 1132 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1133 << " from store to: " << *Ev << " at: " << *TheStore 1134 << "\n"); 1135 1136 ORE.emit([&]() { 1137 OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore", 1138 NewCall->getDebugLoc(), Preheader); 1139 R << "Transformed loop-strided store in " 1140 << ore::NV("Function", TheStore->getFunction()) 1141 << " function into a call to " 1142 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1143 << "() intrinsic"; 1144 if (!Stores.empty()) 1145 R << ore::setExtraArgs(); 1146 for (auto *I : Stores) { 1147 R << ore::NV("FromBlock", I->getParent()->getName()) 1148 << ore::NV("ToBlock", Preheader->getName()); 1149 } 1150 return R; 1151 }); 1152 1153 // Okay, the memset has been formed. Zap the original store and anything that 1154 // feeds into it. 1155 for (auto *I : Stores) { 1156 if (MSSAU) 1157 MSSAU->removeMemoryAccess(I, true); 1158 deleteDeadInstruction(I); 1159 } 1160 if (MSSAU && VerifyMemorySSA) 1161 MSSAU->getMemorySSA()->verifyMemorySSA(); 1162 ++NumMemSet; 1163 ExpCleaner.markResultUsed(); 1164 return true; 1165 } 1166 1167 /// If the stored value is a strided load in the same loop with the same stride 1168 /// this may be transformable into a memcpy. This kicks in for stuff like 1169 /// for (i) A[i] = B[i]; 1170 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1171 const SCEV *BECount) { 1172 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1173 1174 Value *StorePtr = SI->getPointerOperand(); 1175 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1176 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1177 1178 // The store must be feeding a non-volatile load. 1179 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1180 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1181 1182 // See if the pointer expression is an AddRec like {base,+,1} on the current 1183 // loop, which indicates a strided load. If we have something else, it's a 1184 // random load we can't handle. 1185 Value *LoadPtr = LI->getPointerOperand(); 1186 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); 1187 1188 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); 1189 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, 1190 SI->getAlign(), LI->getAlign(), SI, LI, 1191 StoreEv, LoadEv, BECount); 1192 } 1193 1194 namespace { 1195 class MemmoveVerifier { 1196 public: 1197 explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, 1198 const DataLayout &DL) 1199 : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset( 1200 LoadBasePtr.stripPointerCasts(), LoadOff, DL)), 1201 BP2(llvm::GetPointerBaseWithConstantOffset( 1202 StoreBasePtr.stripPointerCasts(), StoreOff, DL)), 1203 IsSameObject(BP1 == BP2) {} 1204 1205 bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, 1206 const Instruction &TheLoad, 1207 bool IsMemCpy) const { 1208 if (IsMemCpy) { 1209 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1210 // for negative stride. 1211 if ((!IsNegStride && LoadOff <= StoreOff) || 1212 (IsNegStride && LoadOff >= StoreOff)) 1213 return false; 1214 } else { 1215 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1216 // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. 1217 int64_t LoadSize = 1218 DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8; 1219 if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) 1220 return false; 1221 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || 1222 (IsNegStride && LoadOff + LoadSize > StoreOff)) 1223 return false; 1224 } 1225 return true; 1226 } 1227 1228 private: 1229 const DataLayout &DL; 1230 int64_t LoadOff = 0; 1231 int64_t StoreOff = 0; 1232 const Value *BP1; 1233 const Value *BP2; 1234 1235 public: 1236 const bool IsSameObject; 1237 }; 1238 } // namespace 1239 1240 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( 1241 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, 1242 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, 1243 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, 1244 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { 1245 1246 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to 1247 // conservatively bail here, since otherwise we may have to transform 1248 // llvm.memcpy.inline into llvm.memcpy which is illegal. 1249 if (isa<MemCpyInlineInst>(TheStore)) 1250 return false; 1251 1252 // The trip count of the loop and the base pointer of the addrec SCEV is 1253 // guaranteed to be loop invariant, which means that it should dominate the 1254 // header. This allows us to insert code for it in the preheader. 1255 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1256 IRBuilder<> Builder(Preheader->getTerminator()); 1257 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1258 1259 SCEVExpanderCleaner ExpCleaner(Expander); 1260 1261 bool Changed = false; 1262 const SCEV *StrStart = StoreEv->getStart(); 1263 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); 1264 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1265 1266 APInt Stride = getStoreStride(StoreEv); 1267 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1268 1269 // TODO: Deal with non-constant size; Currently expect constant store size 1270 assert(ConstStoreSize && "store size is expected to be a constant"); 1271 1272 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); 1273 bool IsNegStride = StoreSize == -Stride; 1274 1275 // Handle negative strided loops. 1276 if (IsNegStride) 1277 StrStart = 1278 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1279 1280 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1281 // this into a memcpy in the loop preheader now if we want. However, this 1282 // would be unsafe to do if there is anything else in the loop that may read 1283 // or write the memory region we're storing to. This includes the load that 1284 // feeds the stores. Check for an alias by generating the base address and 1285 // checking everything. 1286 Value *StoreBasePtr = Expander.expandCodeFor( 1287 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1288 1289 // From here on out, conservatively report to the pass manager that we've 1290 // changed the IR, even if we later clean up these added instructions. There 1291 // may be structural differences e.g. in the order of use lists not accounted 1292 // for in just a textual dump of the IR. This is written as a variable, even 1293 // though statically all the places this dominates could be replaced with 1294 // 'true', with the hope that anyone trying to be clever / "more precise" with 1295 // the return value will read this comment, and leave them alone. 1296 Changed = true; 1297 1298 SmallPtrSet<Instruction *, 2> IgnoredInsts; 1299 IgnoredInsts.insert(TheStore); 1300 1301 bool IsMemCpy = isa<MemCpyInst>(TheStore); 1302 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; 1303 1304 bool LoopAccessStore = 1305 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1306 StoreSizeSCEV, *AA, IgnoredInsts); 1307 if (LoopAccessStore) { 1308 // For memmove case it's not enough to guarantee that loop doesn't access 1309 // TheStore and TheLoad. Additionally we need to make sure that TheStore is 1310 // the only user of TheLoad. 1311 if (!TheLoad->hasOneUse()) 1312 return Changed; 1313 IgnoredInsts.insert(TheLoad); 1314 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, 1315 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { 1316 ORE.emit([&]() { 1317 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", 1318 TheStore) 1319 << ore::NV("Inst", InstRemark) << " in " 1320 << ore::NV("Function", TheStore->getFunction()) 1321 << " function will not be hoisted: " 1322 << ore::NV("Reason", "The loop may access store location"); 1323 }); 1324 return Changed; 1325 } 1326 IgnoredInsts.erase(TheLoad); 1327 } 1328 1329 const SCEV *LdStart = LoadEv->getStart(); 1330 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); 1331 1332 // Handle negative strided loops. 1333 if (IsNegStride) 1334 LdStart = 1335 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1336 1337 // For a memcpy, we have to make sure that the input array is not being 1338 // mutated by the loop. 1339 Value *LoadBasePtr = Expander.expandCodeFor( 1340 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1341 1342 // If the store is a memcpy instruction, we must check if it will write to 1343 // the load memory locations. So remove it from the ignored stores. 1344 MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); 1345 if (IsMemCpy && !Verifier.IsSameObject) 1346 IgnoredInsts.erase(TheStore); 1347 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1348 StoreSizeSCEV, *AA, IgnoredInsts)) { 1349 ORE.emit([&]() { 1350 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad) 1351 << ore::NV("Inst", InstRemark) << " in " 1352 << ore::NV("Function", TheStore->getFunction()) 1353 << " function will not be hoisted: " 1354 << ore::NV("Reason", "The loop may access load location"); 1355 }); 1356 return Changed; 1357 } 1358 1359 bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; 1360 if (UseMemMove) 1361 if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad, 1362 IsMemCpy)) 1363 return Changed; 1364 1365 if (avoidLIRForMultiBlockLoop()) 1366 return Changed; 1367 1368 // Okay, everything is safe, we can transform this! 1369 1370 const SCEV *NumBytesS = 1371 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1372 1373 Value *NumBytes = 1374 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1375 1376 AAMDNodes AATags = TheLoad->getAAMetadata(); 1377 AAMDNodes StoreAATags = TheStore->getAAMetadata(); 1378 AATags = AATags.merge(StoreAATags); 1379 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1380 AATags = AATags.extendTo(CI->getZExtValue()); 1381 else 1382 AATags = AATags.extendTo(-1); 1383 1384 CallInst *NewCall = nullptr; 1385 // Check whether to generate an unordered atomic memcpy: 1386 // If the load or store are atomic, then they must necessarily be unordered 1387 // by previous checks. 1388 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { 1389 if (UseMemMove) 1390 NewCall = Builder.CreateMemMove( 1391 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, 1392 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1393 else 1394 NewCall = 1395 Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, 1396 NumBytes, /*isVolatile=*/false, AATags.TBAA, 1397 AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); 1398 } else { 1399 // For now don't support unordered atomic memmove. 1400 if (UseMemMove) 1401 return Changed; 1402 // We cannot allow unaligned ops for unordered load/store, so reject 1403 // anything where the alignment isn't at least the element size. 1404 assert((StoreAlign && LoadAlign) && 1405 "Expect unordered load/store to have align."); 1406 if (*StoreAlign < StoreSize || *LoadAlign < StoreSize) 1407 return Changed; 1408 1409 // If the element.atomic memcpy is not lowered into explicit 1410 // loads/stores later, then it will be lowered into an element-size 1411 // specific lib call. If the lib call doesn't exist for our store size, then 1412 // we shouldn't generate the memcpy. 1413 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1414 return Changed; 1415 1416 // Create the call. 1417 // Note that unordered atomic loads/stores are *required* by the spec to 1418 // have an alignment but non-atomic loads/stores may not. 1419 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1420 StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize, 1421 AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); 1422 } 1423 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1424 1425 if (MSSAU) { 1426 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1427 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1428 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1429 } 1430 1431 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" 1432 << " from load ptr=" << *LoadEv << " at: " << *TheLoad 1433 << "\n" 1434 << " from store ptr=" << *StoreEv << " at: " << *TheStore 1435 << "\n"); 1436 1437 ORE.emit([&]() { 1438 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1439 NewCall->getDebugLoc(), Preheader) 1440 << "Formed a call to " 1441 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1442 << "() intrinsic from " << ore::NV("Inst", InstRemark) 1443 << " instruction in " << ore::NV("Function", TheStore->getFunction()) 1444 << " function" 1445 << ore::setExtraArgs() 1446 << ore::NV("FromBlock", TheStore->getParent()->getName()) 1447 << ore::NV("ToBlock", Preheader->getName()); 1448 }); 1449 1450 // Okay, a new call to memcpy/memmove has been formed. Zap the original store 1451 // and anything that feeds into it. 1452 if (MSSAU) 1453 MSSAU->removeMemoryAccess(TheStore, true); 1454 deleteDeadInstruction(TheStore); 1455 if (MSSAU && VerifyMemorySSA) 1456 MSSAU->getMemorySSA()->verifyMemorySSA(); 1457 if (UseMemMove) 1458 ++NumMemMove; 1459 else 1460 ++NumMemCpy; 1461 ExpCleaner.markResultUsed(); 1462 return true; 1463 } 1464 1465 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1466 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1467 // 1468 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1469 bool IsLoopMemset) { 1470 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1471 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1472 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1473 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1474 << " avoided: multi-block top-level loop\n"); 1475 return true; 1476 } 1477 } 1478 1479 return false; 1480 } 1481 1482 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1483 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1484 << CurLoop->getHeader()->getParent()->getName() 1485 << "] Noncountable Loop %" 1486 << CurLoop->getHeader()->getName() << "\n"); 1487 1488 return recognizePopcount() || recognizeAndInsertFFS() || 1489 recognizeShiftUntilBitTest() || recognizeShiftUntilZero(); 1490 } 1491 1492 /// Check if the given conditional branch is based on the comparison between 1493 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1494 /// true), the control yields to the loop entry. If the branch matches the 1495 /// behavior, the variable involved in the comparison is returned. This function 1496 /// will be called to see if the precondition and postcondition of the loop are 1497 /// in desirable form. 1498 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1499 bool JmpOnZero = false) { 1500 if (!BI || !BI->isConditional()) 1501 return nullptr; 1502 1503 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1504 if (!Cond) 1505 return nullptr; 1506 1507 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1508 if (!CmpZero || !CmpZero->isZero()) 1509 return nullptr; 1510 1511 BasicBlock *TrueSucc = BI->getSuccessor(0); 1512 BasicBlock *FalseSucc = BI->getSuccessor(1); 1513 if (JmpOnZero) 1514 std::swap(TrueSucc, FalseSucc); 1515 1516 ICmpInst::Predicate Pred = Cond->getPredicate(); 1517 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1518 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1519 return Cond->getOperand(0); 1520 1521 return nullptr; 1522 } 1523 1524 // Check if the recurrence variable `VarX` is in the right form to create 1525 // the idiom. Returns the value coerced to a PHINode if so. 1526 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1527 BasicBlock *LoopEntry) { 1528 auto *PhiX = dyn_cast<PHINode>(VarX); 1529 if (PhiX && PhiX->getParent() == LoopEntry && 1530 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1531 return PhiX; 1532 return nullptr; 1533 } 1534 1535 /// Return true iff the idiom is detected in the loop. 1536 /// 1537 /// Additionally: 1538 /// 1) \p CntInst is set to the instruction counting the population bit. 1539 /// 2) \p CntPhi is set to the corresponding phi node. 1540 /// 3) \p Var is set to the value whose population bits are being counted. 1541 /// 1542 /// The core idiom we are trying to detect is: 1543 /// \code 1544 /// if (x0 != 0) 1545 /// goto loop-exit // the precondition of the loop 1546 /// cnt0 = init-val; 1547 /// do { 1548 /// x1 = phi (x0, x2); 1549 /// cnt1 = phi(cnt0, cnt2); 1550 /// 1551 /// cnt2 = cnt1 + 1; 1552 /// ... 1553 /// x2 = x1 & (x1 - 1); 1554 /// ... 1555 /// } while(x != 0); 1556 /// 1557 /// loop-exit: 1558 /// \endcode 1559 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1560 Instruction *&CntInst, PHINode *&CntPhi, 1561 Value *&Var) { 1562 // step 1: Check to see if the look-back branch match this pattern: 1563 // "if (a!=0) goto loop-entry". 1564 BasicBlock *LoopEntry; 1565 Instruction *DefX2, *CountInst; 1566 Value *VarX1, *VarX0; 1567 PHINode *PhiX, *CountPhi; 1568 1569 DefX2 = CountInst = nullptr; 1570 VarX1 = VarX0 = nullptr; 1571 PhiX = CountPhi = nullptr; 1572 LoopEntry = *(CurLoop->block_begin()); 1573 1574 // step 1: Check if the loop-back branch is in desirable form. 1575 { 1576 if (Value *T = matchCondition( 1577 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1578 DefX2 = dyn_cast<Instruction>(T); 1579 else 1580 return false; 1581 } 1582 1583 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1584 { 1585 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1586 return false; 1587 1588 BinaryOperator *SubOneOp; 1589 1590 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1591 VarX1 = DefX2->getOperand(1); 1592 else { 1593 VarX1 = DefX2->getOperand(0); 1594 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1595 } 1596 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1597 return false; 1598 1599 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1600 if (!Dec || 1601 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1602 (SubOneOp->getOpcode() == Instruction::Add && 1603 Dec->isMinusOne()))) { 1604 return false; 1605 } 1606 } 1607 1608 // step 3: Check the recurrence of variable X 1609 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1610 if (!PhiX) 1611 return false; 1612 1613 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1614 { 1615 CountInst = nullptr; 1616 for (Instruction &Inst : llvm::make_range( 1617 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1618 if (Inst.getOpcode() != Instruction::Add) 1619 continue; 1620 1621 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1622 if (!Inc || !Inc->isOne()) 1623 continue; 1624 1625 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1626 if (!Phi) 1627 continue; 1628 1629 // Check if the result of the instruction is live of the loop. 1630 bool LiveOutLoop = false; 1631 for (User *U : Inst.users()) { 1632 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1633 LiveOutLoop = true; 1634 break; 1635 } 1636 } 1637 1638 if (LiveOutLoop) { 1639 CountInst = &Inst; 1640 CountPhi = Phi; 1641 break; 1642 } 1643 } 1644 1645 if (!CountInst) 1646 return false; 1647 } 1648 1649 // step 5: check if the precondition is in this form: 1650 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1651 { 1652 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1653 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1654 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1655 return false; 1656 1657 CntInst = CountInst; 1658 CntPhi = CountPhi; 1659 Var = T; 1660 } 1661 1662 return true; 1663 } 1664 1665 /// Return true if the idiom is detected in the loop. 1666 /// 1667 /// Additionally: 1668 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1669 /// or nullptr if there is no such. 1670 /// 2) \p CntPhi is set to the corresponding phi node 1671 /// or nullptr if there is no such. 1672 /// 3) \p Var is set to the value whose CTLZ could be used. 1673 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1674 /// 1675 /// The core idiom we are trying to detect is: 1676 /// \code 1677 /// if (x0 == 0) 1678 /// goto loop-exit // the precondition of the loop 1679 /// cnt0 = init-val; 1680 /// do { 1681 /// x = phi (x0, x.next); //PhiX 1682 /// cnt = phi(cnt0, cnt.next); 1683 /// 1684 /// cnt.next = cnt + 1; 1685 /// ... 1686 /// x.next = x >> 1; // DefX 1687 /// ... 1688 /// } while(x.next != 0); 1689 /// 1690 /// loop-exit: 1691 /// \endcode 1692 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1693 Intrinsic::ID &IntrinID, Value *&InitX, 1694 Instruction *&CntInst, PHINode *&CntPhi, 1695 Instruction *&DefX) { 1696 BasicBlock *LoopEntry; 1697 Value *VarX = nullptr; 1698 1699 DefX = nullptr; 1700 CntInst = nullptr; 1701 CntPhi = nullptr; 1702 LoopEntry = *(CurLoop->block_begin()); 1703 1704 // step 1: Check if the loop-back branch is in desirable form. 1705 if (Value *T = matchCondition( 1706 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1707 DefX = dyn_cast<Instruction>(T); 1708 else 1709 return false; 1710 1711 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1712 if (!DefX || !DefX->isShift()) 1713 return false; 1714 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1715 Intrinsic::ctlz; 1716 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1717 if (!Shft || !Shft->isOne()) 1718 return false; 1719 VarX = DefX->getOperand(0); 1720 1721 // step 3: Check the recurrence of variable X 1722 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1723 if (!PhiX) 1724 return false; 1725 1726 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1727 1728 // Make sure the initial value can't be negative otherwise the ashr in the 1729 // loop might never reach zero which would make the loop infinite. 1730 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1731 return false; 1732 1733 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1734 // or cnt.next = cnt + -1. 1735 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1736 // then all uses of "cnt.next" could be optimized to the trip count 1737 // plus "cnt0". Currently it is not optimized. 1738 // This step could be used to detect POPCNT instruction: 1739 // cnt.next = cnt + (x.next & 1) 1740 for (Instruction &Inst : llvm::make_range( 1741 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1742 if (Inst.getOpcode() != Instruction::Add) 1743 continue; 1744 1745 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1746 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1747 continue; 1748 1749 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1750 if (!Phi) 1751 continue; 1752 1753 CntInst = &Inst; 1754 CntPhi = Phi; 1755 break; 1756 } 1757 if (!CntInst) 1758 return false; 1759 1760 return true; 1761 } 1762 1763 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1764 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1765 /// trip count returns true; otherwise, returns false. 1766 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1767 // Give up if the loop has multiple blocks or multiple backedges. 1768 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1769 return false; 1770 1771 Intrinsic::ID IntrinID; 1772 Value *InitX; 1773 Instruction *DefX = nullptr; 1774 PHINode *CntPhi = nullptr; 1775 Instruction *CntInst = nullptr; 1776 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1777 // this is always 6. 1778 size_t IdiomCanonicalSize = 6; 1779 1780 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1781 CntInst, CntPhi, DefX)) 1782 return false; 1783 1784 bool IsCntPhiUsedOutsideLoop = false; 1785 for (User *U : CntPhi->users()) 1786 if (!CurLoop->contains(cast<Instruction>(U))) { 1787 IsCntPhiUsedOutsideLoop = true; 1788 break; 1789 } 1790 bool IsCntInstUsedOutsideLoop = false; 1791 for (User *U : CntInst->users()) 1792 if (!CurLoop->contains(cast<Instruction>(U))) { 1793 IsCntInstUsedOutsideLoop = true; 1794 break; 1795 } 1796 // If both CntInst and CntPhi are used outside the loop the profitability 1797 // is questionable. 1798 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1799 return false; 1800 1801 // For some CPUs result of CTLZ(X) intrinsic is undefined 1802 // when X is 0. If we can not guarantee X != 0, we need to check this 1803 // when expand. 1804 bool ZeroCheck = false; 1805 // It is safe to assume Preheader exist as it was checked in 1806 // parent function RunOnLoop. 1807 BasicBlock *PH = CurLoop->getLoopPreheader(); 1808 1809 // If we are using the count instruction outside the loop, make sure we 1810 // have a zero check as a precondition. Without the check the loop would run 1811 // one iteration for before any check of the input value. This means 0 and 1 1812 // would have identical behavior in the original loop and thus 1813 if (!IsCntPhiUsedOutsideLoop) { 1814 auto *PreCondBB = PH->getSinglePredecessor(); 1815 if (!PreCondBB) 1816 return false; 1817 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1818 if (!PreCondBI) 1819 return false; 1820 if (matchCondition(PreCondBI, PH) != InitX) 1821 return false; 1822 ZeroCheck = true; 1823 } 1824 1825 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1826 // profitable if we delete the loop. 1827 1828 // the loop has only 6 instructions: 1829 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1830 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1831 // %shr = ashr %n.addr.0, 1 1832 // %tobool = icmp eq %shr, 0 1833 // %inc = add nsw %i.0, 1 1834 // br i1 %tobool 1835 1836 const Value *Args[] = {InitX, 1837 ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; 1838 1839 // @llvm.dbg doesn't count as they have no semantic effect. 1840 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1841 uint32_t HeaderSize = 1842 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1843 1844 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1845 InstructionCost Cost = 1846 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1847 if (HeaderSize != IdiomCanonicalSize && 1848 Cost > TargetTransformInfo::TCC_Basic) 1849 return false; 1850 1851 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1852 DefX->getDebugLoc(), ZeroCheck, 1853 IsCntPhiUsedOutsideLoop); 1854 return true; 1855 } 1856 1857 /// Recognizes a population count idiom in a non-countable loop. 1858 /// 1859 /// If detected, transforms the relevant code to issue the popcount intrinsic 1860 /// function call, and returns true; otherwise, returns false. 1861 bool LoopIdiomRecognize::recognizePopcount() { 1862 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1863 return false; 1864 1865 // Counting population are usually conducted by few arithmetic instructions. 1866 // Such instructions can be easily "absorbed" by vacant slots in a 1867 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1868 // in a compact loop. 1869 1870 // Give up if the loop has multiple blocks or multiple backedges. 1871 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1872 return false; 1873 1874 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1875 if (LoopBody->size() >= 20) { 1876 // The loop is too big, bail out. 1877 return false; 1878 } 1879 1880 // It should have a preheader containing nothing but an unconditional branch. 1881 BasicBlock *PH = CurLoop->getLoopPreheader(); 1882 if (!PH || &PH->front() != PH->getTerminator()) 1883 return false; 1884 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1885 if (!EntryBI || EntryBI->isConditional()) 1886 return false; 1887 1888 // It should have a precondition block where the generated popcount intrinsic 1889 // function can be inserted. 1890 auto *PreCondBB = PH->getSinglePredecessor(); 1891 if (!PreCondBB) 1892 return false; 1893 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1894 if (!PreCondBI || PreCondBI->isUnconditional()) 1895 return false; 1896 1897 Instruction *CntInst; 1898 PHINode *CntPhi; 1899 Value *Val; 1900 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1901 return false; 1902 1903 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1904 return true; 1905 } 1906 1907 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1908 const DebugLoc &DL) { 1909 Value *Ops[] = {Val}; 1910 Type *Tys[] = {Val->getType()}; 1911 1912 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1913 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1914 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1915 CI->setDebugLoc(DL); 1916 1917 return CI; 1918 } 1919 1920 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1921 const DebugLoc &DL, bool ZeroCheck, 1922 Intrinsic::ID IID) { 1923 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; 1924 Type *Tys[] = {Val->getType()}; 1925 1926 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1927 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 1928 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1929 CI->setDebugLoc(DL); 1930 1931 return CI; 1932 } 1933 1934 /// Transform the following loop (Using CTLZ, CTTZ is similar): 1935 /// loop: 1936 /// CntPhi = PHI [Cnt0, CntInst] 1937 /// PhiX = PHI [InitX, DefX] 1938 /// CntInst = CntPhi + 1 1939 /// DefX = PhiX >> 1 1940 /// LOOP_BODY 1941 /// Br: loop if (DefX != 0) 1942 /// Use(CntPhi) or Use(CntInst) 1943 /// 1944 /// Into: 1945 /// If CntPhi used outside the loop: 1946 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1947 /// Count = CountPrev + 1 1948 /// else 1949 /// Count = BitWidth(InitX) - CTLZ(InitX) 1950 /// loop: 1951 /// CntPhi = PHI [Cnt0, CntInst] 1952 /// PhiX = PHI [InitX, DefX] 1953 /// PhiCount = PHI [Count, Dec] 1954 /// CntInst = CntPhi + 1 1955 /// DefX = PhiX >> 1 1956 /// Dec = PhiCount - 1 1957 /// LOOP_BODY 1958 /// Br: loop if (Dec != 0) 1959 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1960 /// or 1961 /// Use(Count + Cnt0) // Use(CntInst) 1962 /// 1963 /// If LOOP_BODY is empty the loop will be deleted. 1964 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1965 void LoopIdiomRecognize::transformLoopToCountable( 1966 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 1967 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 1968 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1969 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1970 1971 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 1972 IRBuilder<> Builder(PreheaderBr); 1973 Builder.SetCurrentDebugLocation(DL); 1974 1975 // If there are no uses of CntPhi crate: 1976 // Count = BitWidth - CTLZ(InitX); 1977 // NewCount = Count; 1978 // If there are uses of CntPhi create: 1979 // NewCount = BitWidth - CTLZ(InitX >> 1); 1980 // Count = NewCount + 1; 1981 Value *InitXNext; 1982 if (IsCntPhiUsedOutsideLoop) { 1983 if (DefX->getOpcode() == Instruction::AShr) 1984 InitXNext = Builder.CreateAShr(InitX, 1); 1985 else if (DefX->getOpcode() == Instruction::LShr) 1986 InitXNext = Builder.CreateLShr(InitX, 1); 1987 else if (DefX->getOpcode() == Instruction::Shl) // cttz 1988 InitXNext = Builder.CreateShl(InitX, 1); 1989 else 1990 llvm_unreachable("Unexpected opcode!"); 1991 } else 1992 InitXNext = InitX; 1993 Value *Count = 1994 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 1995 Type *CountTy = Count->getType(); 1996 Count = Builder.CreateSub( 1997 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); 1998 Value *NewCount = Count; 1999 if (IsCntPhiUsedOutsideLoop) 2000 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); 2001 2002 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); 2003 2004 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 2005 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 2006 // If the counter was being incremented in the loop, add NewCount to the 2007 // counter's initial value, but only if the initial value is not zero. 2008 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2009 if (!InitConst || !InitConst->isZero()) 2010 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2011 } else { 2012 // If the count was being decremented in the loop, subtract NewCount from 2013 // the counter's initial value. 2014 NewCount = Builder.CreateSub(CntInitVal, NewCount); 2015 } 2016 2017 // Step 2: Insert new IV and loop condition: 2018 // loop: 2019 // ... 2020 // PhiCount = PHI [Count, Dec] 2021 // ... 2022 // Dec = PhiCount - 1 2023 // ... 2024 // Br: loop if (Dec != 0) 2025 BasicBlock *Body = *(CurLoop->block_begin()); 2026 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2027 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2028 2029 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front()); 2030 2031 Builder.SetInsertPoint(LbCond); 2032 Instruction *TcDec = cast<Instruction>(Builder.CreateSub( 2033 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); 2034 2035 TcPhi->addIncoming(Count, Preheader); 2036 TcPhi->addIncoming(TcDec, Body); 2037 2038 CmpInst::Predicate Pred = 2039 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 2040 LbCond->setPredicate(Pred); 2041 LbCond->setOperand(0, TcDec); 2042 LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); 2043 2044 // Step 3: All the references to the original counter outside 2045 // the loop are replaced with the NewCount 2046 if (IsCntPhiUsedOutsideLoop) 2047 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 2048 else 2049 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2050 2051 // step 4: Forget the "non-computable" trip-count SCEV associated with the 2052 // loop. The loop would otherwise not be deleted even if it becomes empty. 2053 SE->forgetLoop(CurLoop); 2054 } 2055 2056 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 2057 Instruction *CntInst, 2058 PHINode *CntPhi, Value *Var) { 2059 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 2060 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 2061 const DebugLoc &DL = CntInst->getDebugLoc(); 2062 2063 // Assuming before transformation, the loop is following: 2064 // if (x) // the precondition 2065 // do { cnt++; x &= x - 1; } while(x); 2066 2067 // Step 1: Insert the ctpop instruction at the end of the precondition block 2068 IRBuilder<> Builder(PreCondBr); 2069 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 2070 { 2071 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 2072 NewCount = PopCntZext = 2073 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 2074 2075 if (NewCount != PopCnt) 2076 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2077 2078 // TripCnt is exactly the number of iterations the loop has 2079 TripCnt = NewCount; 2080 2081 // If the population counter's initial value is not zero, insert Add Inst. 2082 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 2083 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2084 if (!InitConst || !InitConst->isZero()) { 2085 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2086 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2087 } 2088 } 2089 2090 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 2091 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 2092 // function would be partial dead code, and downstream passes will drag 2093 // it back from the precondition block to the preheader. 2094 { 2095 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 2096 2097 Value *Opnd0 = PopCntZext; 2098 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 2099 if (PreCond->getOperand(0) != Var) 2100 std::swap(Opnd0, Opnd1); 2101 2102 ICmpInst *NewPreCond = cast<ICmpInst>( 2103 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 2104 PreCondBr->setCondition(NewPreCond); 2105 2106 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 2107 } 2108 2109 // Step 3: Note that the population count is exactly the trip count of the 2110 // loop in question, which enable us to convert the loop from noncountable 2111 // loop into a countable one. The benefit is twofold: 2112 // 2113 // - If the loop only counts population, the entire loop becomes dead after 2114 // the transformation. It is a lot easier to prove a countable loop dead 2115 // than to prove a noncountable one. (In some C dialects, an infinite loop 2116 // isn't dead even if it computes nothing useful. In general, DCE needs 2117 // to prove a noncountable loop finite before safely delete it.) 2118 // 2119 // - If the loop also performs something else, it remains alive. 2120 // Since it is transformed to countable form, it can be aggressively 2121 // optimized by some optimizations which are in general not applicable 2122 // to a noncountable loop. 2123 // 2124 // After this step, this loop (conceptually) would look like following: 2125 // newcnt = __builtin_ctpop(x); 2126 // t = newcnt; 2127 // if (x) 2128 // do { cnt++; x &= x-1; t--) } while (t > 0); 2129 BasicBlock *Body = *(CurLoop->block_begin()); 2130 { 2131 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2132 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2133 Type *Ty = TripCnt->getType(); 2134 2135 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 2136 2137 Builder.SetInsertPoint(LbCond); 2138 Instruction *TcDec = cast<Instruction>( 2139 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 2140 "tcdec", false, true)); 2141 2142 TcPhi->addIncoming(TripCnt, PreHead); 2143 TcPhi->addIncoming(TcDec, Body); 2144 2145 CmpInst::Predicate Pred = 2146 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 2147 LbCond->setPredicate(Pred); 2148 LbCond->setOperand(0, TcDec); 2149 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 2150 } 2151 2152 // Step 4: All the references to the original population counter outside 2153 // the loop are replaced with the NewCount -- the value returned from 2154 // __builtin_ctpop(). 2155 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2156 2157 // step 5: Forget the "non-computable" trip-count SCEV associated with the 2158 // loop. The loop would otherwise not be deleted even if it becomes empty. 2159 SE->forgetLoop(CurLoop); 2160 } 2161 2162 /// Match loop-invariant value. 2163 template <typename SubPattern_t> struct match_LoopInvariant { 2164 SubPattern_t SubPattern; 2165 const Loop *L; 2166 2167 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 2168 : SubPattern(SP), L(L) {} 2169 2170 template <typename ITy> bool match(ITy *V) { 2171 return L->isLoopInvariant(V) && SubPattern.match(V); 2172 } 2173 }; 2174 2175 /// Matches if the value is loop-invariant. 2176 template <typename Ty> 2177 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 2178 return match_LoopInvariant<Ty>(M, L); 2179 } 2180 2181 /// Return true if the idiom is detected in the loop. 2182 /// 2183 /// The core idiom we are trying to detect is: 2184 /// \code 2185 /// entry: 2186 /// <...> 2187 /// %bitmask = shl i32 1, %bitpos 2188 /// br label %loop 2189 /// 2190 /// loop: 2191 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2192 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2193 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2194 /// %x.next = shl i32 %x.curr, 1 2195 /// <...> 2196 /// br i1 %x.curr.isbitunset, label %loop, label %end 2197 /// 2198 /// end: 2199 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2200 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2201 /// <...> 2202 /// \endcode 2203 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 2204 Value *&BitMask, Value *&BitPos, 2205 Value *&CurrX, Instruction *&NextX) { 2206 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2207 " Performing shift-until-bittest idiom detection.\n"); 2208 2209 // Give up if the loop has multiple blocks or multiple backedges. 2210 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2211 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2212 return false; 2213 } 2214 2215 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2216 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2217 assert(LoopPreheaderBB && "There is always a loop preheader."); 2218 2219 using namespace PatternMatch; 2220 2221 // Step 1: Check if the loop backedge is in desirable form. 2222 2223 ICmpInst::Predicate Pred; 2224 Value *CmpLHS, *CmpRHS; 2225 BasicBlock *TrueBB, *FalseBB; 2226 if (!match(LoopHeaderBB->getTerminator(), 2227 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 2228 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 2229 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2230 return false; 2231 } 2232 2233 // Step 2: Check if the backedge's condition is in desirable form. 2234 2235 auto MatchVariableBitMask = [&]() { 2236 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2237 match(CmpLHS, 2238 m_c_And(m_Value(CurrX), 2239 m_CombineAnd( 2240 m_Value(BitMask), 2241 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 2242 CurLoop)))); 2243 }; 2244 auto MatchConstantBitMask = [&]() { 2245 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2246 match(CmpLHS, m_And(m_Value(CurrX), 2247 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2248 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2249 }; 2250 auto MatchDecomposableConstantBitMask = [&]() { 2251 APInt Mask; 2252 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && 2253 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && 2254 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && 2255 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); 2256 }; 2257 2258 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2259 !MatchDecomposableConstantBitMask()) { 2260 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2261 return false; 2262 } 2263 2264 // Step 3: Check if the recurrence is in desirable form. 2265 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2266 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2267 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2268 return false; 2269 } 2270 2271 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2272 NextX = 2273 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2274 2275 assert(CurLoop->isLoopInvariant(BaseX) && 2276 "Expected BaseX to be avaliable in the preheader!"); 2277 2278 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2279 // FIXME: support right-shift? 2280 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2281 return false; 2282 } 2283 2284 // Step 4: Check if the backedge's destinations are in desirable form. 2285 2286 assert(ICmpInst::isEquality(Pred) && 2287 "Should only get equality predicates here."); 2288 2289 // cmp-br is commutative, so canonicalize to a single variant. 2290 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2291 Pred = ICmpInst::getInversePredicate(Pred); 2292 std::swap(TrueBB, FalseBB); 2293 } 2294 2295 // We expect to exit loop when comparison yields false, 2296 // so when it yields true we should branch back to loop header. 2297 if (TrueBB != LoopHeaderBB) { 2298 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2299 return false; 2300 } 2301 2302 // Okay, idiom checks out. 2303 return true; 2304 } 2305 2306 /// Look for the following loop: 2307 /// \code 2308 /// entry: 2309 /// <...> 2310 /// %bitmask = shl i32 1, %bitpos 2311 /// br label %loop 2312 /// 2313 /// loop: 2314 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2315 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2316 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2317 /// %x.next = shl i32 %x.curr, 1 2318 /// <...> 2319 /// br i1 %x.curr.isbitunset, label %loop, label %end 2320 /// 2321 /// end: 2322 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2323 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2324 /// <...> 2325 /// \endcode 2326 /// 2327 /// And transform it into: 2328 /// \code 2329 /// entry: 2330 /// %bitmask = shl i32 1, %bitpos 2331 /// %lowbitmask = add i32 %bitmask, -1 2332 /// %mask = or i32 %lowbitmask, %bitmask 2333 /// %x.masked = and i32 %x, %mask 2334 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2335 /// i1 true) 2336 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2337 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2338 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2339 /// %tripcount = add i32 %backedgetakencount, 1 2340 /// %x.curr = shl i32 %x, %backedgetakencount 2341 /// %x.next = shl i32 %x, %tripcount 2342 /// br label %loop 2343 /// 2344 /// loop: 2345 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2346 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2347 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2348 /// <...> 2349 /// br i1 %loop.ivcheck, label %end, label %loop 2350 /// 2351 /// end: 2352 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2353 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2354 /// <...> 2355 /// \endcode 2356 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2357 bool MadeChange = false; 2358 2359 Value *X, *BitMask, *BitPos, *XCurr; 2360 Instruction *XNext; 2361 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2362 XNext)) { 2363 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2364 " shift-until-bittest idiom detection failed.\n"); 2365 return MadeChange; 2366 } 2367 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2368 2369 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2370 // but is it profitable to transform? 2371 2372 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2373 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2374 assert(LoopPreheaderBB && "There is always a loop preheader."); 2375 2376 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2377 assert(SuccessorBB && "There is only a single successor."); 2378 2379 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2380 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2381 2382 Intrinsic::ID IntrID = Intrinsic::ctlz; 2383 Type *Ty = X->getType(); 2384 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2385 2386 TargetTransformInfo::TargetCostKind CostKind = 2387 TargetTransformInfo::TCK_SizeAndLatency; 2388 2389 // The rewrite is considered to be unprofitable iff and only iff the 2390 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2391 // making the loop countable, even if nothing else changes. 2392 IntrinsicCostAttributes Attrs( 2393 IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getTrue()}); 2394 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2395 if (Cost > TargetTransformInfo::TCC_Basic) { 2396 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2397 " Intrinsic is too costly, not beneficial\n"); 2398 return MadeChange; 2399 } 2400 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2401 TargetTransformInfo::TCC_Basic) { 2402 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2403 return MadeChange; 2404 } 2405 2406 // Ok, transform appears worthwhile. 2407 MadeChange = true; 2408 2409 if (!isGuaranteedNotToBeUndefOrPoison(BitPos)) { 2410 // BitMask may be computed from BitPos, Freeze BitPos so we can increase 2411 // it's use count. 2412 Instruction *InsertPt = nullptr; 2413 if (auto *BitPosI = dyn_cast<Instruction>(BitPos)) 2414 InsertPt = BitPosI->getInsertionPointAfterDef(); 2415 else 2416 InsertPt = &*DT->getRoot()->getFirstNonPHIOrDbgOrAlloca(); 2417 if (!InsertPt) 2418 return false; 2419 FreezeInst *BitPosFrozen = 2420 new FreezeInst(BitPos, BitPos->getName() + ".fr", InsertPt); 2421 BitPos->replaceUsesWithIf(BitPosFrozen, [BitPosFrozen](Use &U) { 2422 return U.getUser() != BitPosFrozen; 2423 }); 2424 BitPos = BitPosFrozen; 2425 } 2426 2427 // Step 1: Compute the loop trip count. 2428 2429 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2430 BitPos->getName() + ".lowbitmask"); 2431 Value *Mask = 2432 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2433 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2434 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2435 IntrID, Ty, {XMasked, /*is_zero_poison=*/Builder.getTrue()}, 2436 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2437 Value *XMaskedNumActiveBits = Builder.CreateSub( 2438 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2439 XMasked->getName() + ".numactivebits", /*HasNUW=*/true, 2440 /*HasNSW=*/Bitwidth != 2); 2441 Value *XMaskedLeadingOnePos = 2442 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2443 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, 2444 /*HasNSW=*/Bitwidth > 2); 2445 2446 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2447 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", 2448 /*HasNUW=*/true, /*HasNSW=*/true); 2449 // We know loop's backedge-taken count, but what's loop's trip count? 2450 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2451 Value *LoopTripCount = 2452 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2453 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2454 /*HasNSW=*/Bitwidth != 2); 2455 2456 // Step 2: Compute the recurrence's final value without a loop. 2457 2458 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2459 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2460 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2461 NewX->takeName(XCurr); 2462 if (auto *I = dyn_cast<Instruction>(NewX)) 2463 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2464 2465 Value *NewXNext; 2466 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2467 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2468 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2469 // that isn't the case, we'll need to emit an alternative, safe IR. 2470 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2471 PatternMatch::match( 2472 BitPos, PatternMatch::m_SpecificInt_ICMP( 2473 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2474 Ty->getScalarSizeInBits() - 1)))) 2475 NewXNext = Builder.CreateShl(X, LoopTripCount); 2476 else { 2477 // Otherwise, just additionally shift by one. It's the smallest solution, 2478 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2479 // and select 0 instead. 2480 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2481 } 2482 2483 NewXNext->takeName(XNext); 2484 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2485 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2486 2487 // Step 3: Adjust the successor basic block to recieve the computed 2488 // recurrence's final value instead of the recurrence itself. 2489 2490 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2491 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2492 2493 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2494 2495 // The new canonical induction variable. 2496 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2497 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2498 2499 // The induction itself. 2500 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2501 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2502 auto *IVNext = 2503 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 2504 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2505 2506 // The loop trip count check. 2507 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2508 CurLoop->getName() + ".ivcheck"); 2509 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2510 LoopHeaderBB->getTerminator()->eraseFromParent(); 2511 2512 // Populate the IV PHI. 2513 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2514 IV->addIncoming(IVNext, LoopHeaderBB); 2515 2516 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2517 // loop. The loop would otherwise not be deleted even if it becomes empty. 2518 2519 SE->forgetLoop(CurLoop); 2520 2521 // Other passes will take care of actually deleting the loop if possible. 2522 2523 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2524 2525 ++NumShiftUntilBitTest; 2526 return MadeChange; 2527 } 2528 2529 /// Return true if the idiom is detected in the loop. 2530 /// 2531 /// The core idiom we are trying to detect is: 2532 /// \code 2533 /// entry: 2534 /// <...> 2535 /// %start = <...> 2536 /// %extraoffset = <...> 2537 /// <...> 2538 /// br label %for.cond 2539 /// 2540 /// loop: 2541 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2542 /// %nbits = add nsw i8 %iv, %extraoffset 2543 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2544 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2545 /// %iv.next = add i8 %iv, 1 2546 /// <...> 2547 /// br i1 %val.shifted.iszero, label %end, label %loop 2548 /// 2549 /// end: 2550 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2551 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2552 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2553 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2554 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2555 /// <...> 2556 /// \endcode 2557 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, 2558 Instruction *&ValShiftedIsZero, 2559 Intrinsic::ID &IntrinID, Instruction *&IV, 2560 Value *&Start, Value *&Val, 2561 const SCEV *&ExtraOffsetExpr, 2562 bool &InvertedCond) { 2563 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2564 " Performing shift-until-zero idiom detection.\n"); 2565 2566 // Give up if the loop has multiple blocks or multiple backedges. 2567 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2568 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2569 return false; 2570 } 2571 2572 Instruction *ValShifted, *NBits, *IVNext; 2573 Value *ExtraOffset; 2574 2575 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2576 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2577 assert(LoopPreheaderBB && "There is always a loop preheader."); 2578 2579 using namespace PatternMatch; 2580 2581 // Step 1: Check if the loop backedge, condition is in desirable form. 2582 2583 ICmpInst::Predicate Pred; 2584 BasicBlock *TrueBB, *FalseBB; 2585 if (!match(LoopHeaderBB->getTerminator(), 2586 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), 2587 m_BasicBlock(FalseBB))) || 2588 !match(ValShiftedIsZero, 2589 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || 2590 !ICmpInst::isEquality(Pred)) { 2591 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2592 return false; 2593 } 2594 2595 // Step 2: Check if the comparison's operand is in desirable form. 2596 // FIXME: Val could be a one-input PHI node, which we should look past. 2597 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), 2598 m_Instruction(NBits)))) { 2599 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); 2600 return false; 2601 } 2602 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz 2603 : Intrinsic::ctlz; 2604 2605 // Step 3: Check if the shift amount is in desirable form. 2606 2607 if (match(NBits, m_c_Add(m_Instruction(IV), 2608 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2609 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) 2610 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); 2611 else if (match(NBits, 2612 m_Sub(m_Instruction(IV), 2613 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2614 NBits->hasNoSignedWrap()) 2615 ExtraOffsetExpr = SE->getSCEV(ExtraOffset); 2616 else { 2617 IV = NBits; 2618 ExtraOffsetExpr = SE->getZero(NBits->getType()); 2619 } 2620 2621 // Step 4: Check if the recurrence is in desirable form. 2622 auto *IVPN = dyn_cast<PHINode>(IV); 2623 if (!IVPN || IVPN->getParent() != LoopHeaderBB) { 2624 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2625 return false; 2626 } 2627 2628 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); 2629 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); 2630 2631 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { 2632 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2633 return false; 2634 } 2635 2636 // Step 4: Check if the backedge's destinations are in desirable form. 2637 2638 assert(ICmpInst::isEquality(Pred) && 2639 "Should only get equality predicates here."); 2640 2641 // cmp-br is commutative, so canonicalize to a single variant. 2642 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; 2643 if (InvertedCond) { 2644 Pred = ICmpInst::getInversePredicate(Pred); 2645 std::swap(TrueBB, FalseBB); 2646 } 2647 2648 // We expect to exit loop when comparison yields true, 2649 // so when it yields false we should branch back to loop header. 2650 if (FalseBB != LoopHeaderBB) { 2651 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2652 return false; 2653 } 2654 2655 // The new, countable, loop will certainly only run a known number of 2656 // iterations, It won't be infinite. But the old loop might be infinite 2657 // under certain conditions. For logical shifts, the value will become zero 2658 // after at most bitwidth(%Val) loop iterations. However, for arithmetic 2659 // right-shift, iff the sign bit was set, the value will never become zero, 2660 // and the loop may never finish. 2661 if (ValShifted->getOpcode() == Instruction::AShr && 2662 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { 2663 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); 2664 return false; 2665 } 2666 2667 // Okay, idiom checks out. 2668 return true; 2669 } 2670 2671 /// Look for the following loop: 2672 /// \code 2673 /// entry: 2674 /// <...> 2675 /// %start = <...> 2676 /// %extraoffset = <...> 2677 /// <...> 2678 /// br label %for.cond 2679 /// 2680 /// loop: 2681 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2682 /// %nbits = add nsw i8 %iv, %extraoffset 2683 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2684 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2685 /// %iv.next = add i8 %iv, 1 2686 /// <...> 2687 /// br i1 %val.shifted.iszero, label %end, label %loop 2688 /// 2689 /// end: 2690 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2691 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2692 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2693 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2694 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2695 /// <...> 2696 /// \endcode 2697 /// 2698 /// And transform it into: 2699 /// \code 2700 /// entry: 2701 /// <...> 2702 /// %start = <...> 2703 /// %extraoffset = <...> 2704 /// <...> 2705 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) 2706 /// %val.numactivebits = sub i8 8, %val.numleadingzeros 2707 /// %extraoffset.neg = sub i8 0, %extraoffset 2708 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg 2709 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) 2710 /// %loop.tripcount = sub i8 %iv.final, %start 2711 /// br label %loop 2712 /// 2713 /// loop: 2714 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] 2715 /// %loop.iv.next = add i8 %loop.iv, 1 2716 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount 2717 /// %iv = add i8 %loop.iv, %start 2718 /// <...> 2719 /// br i1 %loop.ivcheck, label %end, label %loop 2720 /// 2721 /// end: 2722 /// %iv.res = phi i8 [ %iv.final, %loop ] <...> 2723 /// <...> 2724 /// \endcode 2725 bool LoopIdiomRecognize::recognizeShiftUntilZero() { 2726 bool MadeChange = false; 2727 2728 Instruction *ValShiftedIsZero; 2729 Intrinsic::ID IntrID; 2730 Instruction *IV; 2731 Value *Start, *Val; 2732 const SCEV *ExtraOffsetExpr; 2733 bool InvertedCond; 2734 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, 2735 Start, Val, ExtraOffsetExpr, InvertedCond)) { 2736 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2737 " shift-until-zero idiom detection failed.\n"); 2738 return MadeChange; 2739 } 2740 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); 2741 2742 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2743 // but is it profitable to transform? 2744 2745 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2746 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2747 assert(LoopPreheaderBB && "There is always a loop preheader."); 2748 2749 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2750 assert(SuccessorBB && "There is only a single successor."); 2751 2752 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2753 Builder.SetCurrentDebugLocation(IV->getDebugLoc()); 2754 2755 Type *Ty = Val->getType(); 2756 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2757 2758 TargetTransformInfo::TargetCostKind CostKind = 2759 TargetTransformInfo::TCK_SizeAndLatency; 2760 2761 // The rewrite is considered to be unprofitable iff and only iff the 2762 // intrinsic we'll use are not cheap. Note that we are okay with *just* 2763 // making the loop countable, even if nothing else changes. 2764 IntrinsicCostAttributes Attrs( 2765 IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getFalse()}); 2766 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2767 if (Cost > TargetTransformInfo::TCC_Basic) { 2768 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2769 " Intrinsic is too costly, not beneficial\n"); 2770 return MadeChange; 2771 } 2772 2773 // Ok, transform appears worthwhile. 2774 MadeChange = true; 2775 2776 bool OffsetIsZero = false; 2777 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) 2778 OffsetIsZero = ExtraOffsetExprC->isZero(); 2779 2780 // Step 1: Compute the loop's final IV value / trip count. 2781 2782 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( 2783 IntrID, Ty, {Val, /*is_zero_poison=*/Builder.getFalse()}, 2784 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); 2785 Value *ValNumActiveBits = Builder.CreateSub( 2786 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, 2787 Val->getName() + ".numactivebits", /*HasNUW=*/true, 2788 /*HasNSW=*/Bitwidth != 2); 2789 2790 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 2791 Expander.setInsertPoint(&*Builder.GetInsertPoint()); 2792 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); 2793 2794 Value *ValNumActiveBitsOffset = Builder.CreateAdd( 2795 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", 2796 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); 2797 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, 2798 {ValNumActiveBitsOffset, Start}, 2799 /*FMFSource=*/nullptr, "iv.final"); 2800 2801 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( 2802 IVFinal, Start, CurLoop->getName() + ".backedgetakencount", 2803 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); 2804 // FIXME: or when the offset was `add nuw` 2805 2806 // We know loop's backedge-taken count, but what's loop's trip count? 2807 Value *LoopTripCount = 2808 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2809 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2810 /*HasNSW=*/Bitwidth != 2); 2811 2812 // Step 2: Adjust the successor basic block to recieve the original 2813 // induction variable's final value instead of the orig. IV itself. 2814 2815 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); 2816 2817 // Step 3: Rewrite the loop into a countable form, with canonical IV. 2818 2819 // The new canonical induction variable. 2820 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2821 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2822 2823 // The induction itself. 2824 Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI()); 2825 auto *CIVNext = 2826 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", 2827 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2828 2829 // The loop trip count check. 2830 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, 2831 CurLoop->getName() + ".ivcheck"); 2832 auto *NewIVCheck = CIVCheck; 2833 if (InvertedCond) { 2834 NewIVCheck = Builder.CreateNot(CIVCheck); 2835 NewIVCheck->takeName(ValShiftedIsZero); 2836 } 2837 2838 // The original IV, but rebased to be an offset to the CIV. 2839 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, 2840 /*HasNSW=*/true); // FIXME: what about NUW? 2841 IVDePHId->takeName(IV); 2842 2843 // The loop terminator. 2844 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2845 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); 2846 LoopHeaderBB->getTerminator()->eraseFromParent(); 2847 2848 // Populate the IV PHI. 2849 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2850 CIV->addIncoming(CIVNext, LoopHeaderBB); 2851 2852 // Step 4: Forget the "non-computable" trip-count SCEV associated with the 2853 // loop. The loop would otherwise not be deleted even if it becomes empty. 2854 2855 SE->forgetLoop(CurLoop); 2856 2857 // Step 5: Try to cleanup the loop's body somewhat. 2858 IV->replaceAllUsesWith(IVDePHId); 2859 IV->eraseFromParent(); 2860 2861 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); 2862 ValShiftedIsZero->eraseFromParent(); 2863 2864 // Other passes will take care of actually deleting the loop if possible. 2865 2866 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); 2867 2868 ++NumShiftUntilZero; 2869 return MadeChange; 2870 } 2871