xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, memmove, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/CmpInstAnalysis.h"
51 #include "llvm/Analysis/LoopAccessAnalysis.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemoryLocation.h"
55 #include "llvm/Analysis/MemorySSA.h"
56 #include "llvm/Analysis/MemorySSAUpdater.h"
57 #include "llvm/Analysis/MustExecute.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/GlobalValue.h"
73 #include "llvm/IR/GlobalVariable.h"
74 #include "llvm/IR/IRBuilder.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PassManager.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/Transforms/Scalar.h"
95 #include "llvm/Transforms/Utils/BuildLibCalls.h"
96 #include "llvm/Transforms/Utils/Local.h"
97 #include "llvm/Transforms/Utils/LoopUtils.h"
98 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
99 #include <algorithm>
100 #include <cassert>
101 #include <cstdint>
102 #include <utility>
103 #include <vector>
104 
105 using namespace llvm;
106 
107 #define DEBUG_TYPE "loop-idiom"
108 
109 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
110 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
111 STATISTIC(
112     NumShiftUntilBitTest,
113     "Number of uncountable loops recognized as 'shift until bitttest' idiom");
114 
115 bool DisableLIRP::All;
116 static cl::opt<bool, true>
117     DisableLIRPAll("disable-" DEBUG_TYPE "-all",
118                    cl::desc("Options to disable Loop Idiom Recognize Pass."),
119                    cl::location(DisableLIRP::All), cl::init(false),
120                    cl::ReallyHidden);
121 
122 bool DisableLIRP::Memset;
123 static cl::opt<bool, true>
124     DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
125                       cl::desc("Proceed with loop idiom recognize pass, but do "
126                                "not convert loop(s) to memset."),
127                       cl::location(DisableLIRP::Memset), cl::init(false),
128                       cl::ReallyHidden);
129 
130 bool DisableLIRP::Memcpy;
131 static cl::opt<bool, true>
132     DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
133                       cl::desc("Proceed with loop idiom recognize pass, but do "
134                                "not convert loop(s) to memcpy."),
135                       cl::location(DisableLIRP::Memcpy), cl::init(false),
136                       cl::ReallyHidden);
137 
138 static cl::opt<bool> UseLIRCodeSizeHeurs(
139     "use-lir-code-size-heurs",
140     cl::desc("Use loop idiom recognition code size heuristics when compiling"
141              "with -Os/-Oz"),
142     cl::init(true), cl::Hidden);
143 
144 namespace {
145 
146 class LoopIdiomRecognize {
147   Loop *CurLoop = nullptr;
148   AliasAnalysis *AA;
149   DominatorTree *DT;
150   LoopInfo *LI;
151   ScalarEvolution *SE;
152   TargetLibraryInfo *TLI;
153   const TargetTransformInfo *TTI;
154   const DataLayout *DL;
155   OptimizationRemarkEmitter &ORE;
156   bool ApplyCodeSizeHeuristics;
157   std::unique_ptr<MemorySSAUpdater> MSSAU;
158 
159 public:
160   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
161                               LoopInfo *LI, ScalarEvolution *SE,
162                               TargetLibraryInfo *TLI,
163                               const TargetTransformInfo *TTI, MemorySSA *MSSA,
164                               const DataLayout *DL,
165                               OptimizationRemarkEmitter &ORE)
166       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
167     if (MSSA)
168       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
169   }
170 
171   bool runOnLoop(Loop *L);
172 
173 private:
174   using StoreList = SmallVector<StoreInst *, 8>;
175   using StoreListMap = MapVector<Value *, StoreList>;
176 
177   StoreListMap StoreRefsForMemset;
178   StoreListMap StoreRefsForMemsetPattern;
179   StoreList StoreRefsForMemcpy;
180   bool HasMemset;
181   bool HasMemsetPattern;
182   bool HasMemcpy;
183 
184   /// Return code for isLegalStore()
185   enum LegalStoreKind {
186     None = 0,
187     Memset,
188     MemsetPattern,
189     Memcpy,
190     UnorderedAtomicMemcpy,
191     DontUse // Dummy retval never to be used. Allows catching errors in retval
192             // handling.
193   };
194 
195   /// \name Countable Loop Idiom Handling
196   /// @{
197 
198   bool runOnCountableLoop();
199   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
200                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
201 
202   void collectStores(BasicBlock *BB);
203   LegalStoreKind isLegalStore(StoreInst *SI);
204   enum class ForMemset { No, Yes };
205   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
206                          ForMemset For);
207   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
208 
209   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
210                                MaybeAlign StoreAlignment, Value *StoredVal,
211                                Instruction *TheStore,
212                                SmallPtrSetImpl<Instruction *> &Stores,
213                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
214                                bool NegStride, bool IsLoopMemset = false);
215   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
216   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
217                                  bool IsLoopMemset = false);
218 
219   /// @}
220   /// \name Noncountable Loop Idiom Handling
221   /// @{
222 
223   bool runOnNoncountableLoop();
224 
225   bool recognizePopcount();
226   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
227                                PHINode *CntPhi, Value *Var);
228   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
229   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
230                                 Instruction *CntInst, PHINode *CntPhi,
231                                 Value *Var, Instruction *DefX,
232                                 const DebugLoc &DL, bool ZeroCheck,
233                                 bool IsCntPhiUsedOutsideLoop);
234 
235   bool recognizeShiftUntilBitTest();
236 
237   /// @}
238 };
239 
240 class LoopIdiomRecognizeLegacyPass : public LoopPass {
241 public:
242   static char ID;
243 
244   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
245     initializeLoopIdiomRecognizeLegacyPassPass(
246         *PassRegistry::getPassRegistry());
247   }
248 
249   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
250     if (DisableLIRP::All)
251       return false;
252 
253     if (skipLoop(L))
254       return false;
255 
256     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
257     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
258     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
259     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
260     TargetLibraryInfo *TLI =
261         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
262             *L->getHeader()->getParent());
263     const TargetTransformInfo *TTI =
264         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
265             *L->getHeader()->getParent());
266     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
267     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
268     MemorySSA *MSSA = nullptr;
269     if (MSSAAnalysis)
270       MSSA = &MSSAAnalysis->getMSSA();
271 
272     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
273     // pass.  Function analyses need to be preserved across loop transformations
274     // but ORE cannot be preserved (see comment before the pass definition).
275     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
276 
277     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
278     return LIR.runOnLoop(L);
279   }
280 
281   /// This transformation requires natural loop information & requires that
282   /// loop preheaders be inserted into the CFG.
283   void getAnalysisUsage(AnalysisUsage &AU) const override {
284     AU.addRequired<TargetLibraryInfoWrapperPass>();
285     AU.addRequired<TargetTransformInfoWrapperPass>();
286     AU.addPreserved<MemorySSAWrapperPass>();
287     getLoopAnalysisUsage(AU);
288   }
289 };
290 
291 } // end anonymous namespace
292 
293 char LoopIdiomRecognizeLegacyPass::ID = 0;
294 
295 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
296                                               LoopStandardAnalysisResults &AR,
297                                               LPMUpdater &) {
298   if (DisableLIRP::All)
299     return PreservedAnalyses::all();
300 
301   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
302 
303   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
304   // pass.  Function analyses need to be preserved across loop transformations
305   // but ORE cannot be preserved (see comment before the pass definition).
306   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
307 
308   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
309                          AR.MSSA, DL, ORE);
310   if (!LIR.runOnLoop(&L))
311     return PreservedAnalyses::all();
312 
313   auto PA = getLoopPassPreservedAnalyses();
314   if (AR.MSSA)
315     PA.preserve<MemorySSAAnalysis>();
316   return PA;
317 }
318 
319 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
320                       "Recognize loop idioms", false, false)
321 INITIALIZE_PASS_DEPENDENCY(LoopPass)
322 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
323 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
324 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
325                     "Recognize loop idioms", false, false)
326 
327 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
328 
329 static void deleteDeadInstruction(Instruction *I) {
330   I->replaceAllUsesWith(UndefValue::get(I->getType()));
331   I->eraseFromParent();
332 }
333 
334 //===----------------------------------------------------------------------===//
335 //
336 //          Implementation of LoopIdiomRecognize
337 //
338 //===----------------------------------------------------------------------===//
339 
340 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
341   CurLoop = L;
342   // If the loop could not be converted to canonical form, it must have an
343   // indirectbr in it, just give up.
344   if (!L->getLoopPreheader())
345     return false;
346 
347   // Disable loop idiom recognition if the function's name is a common idiom.
348   StringRef Name = L->getHeader()->getParent()->getName();
349   if (Name == "memset" || Name == "memcpy")
350     return false;
351 
352   // Determine if code size heuristics need to be applied.
353   ApplyCodeSizeHeuristics =
354       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
355 
356   HasMemset = TLI->has(LibFunc_memset);
357   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
358   HasMemcpy = TLI->has(LibFunc_memcpy);
359 
360   if (HasMemset || HasMemsetPattern || HasMemcpy)
361     if (SE->hasLoopInvariantBackedgeTakenCount(L))
362       return runOnCountableLoop();
363 
364   return runOnNoncountableLoop();
365 }
366 
367 bool LoopIdiomRecognize::runOnCountableLoop() {
368   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
369   assert(!isa<SCEVCouldNotCompute>(BECount) &&
370          "runOnCountableLoop() called on a loop without a predictable"
371          "backedge-taken count");
372 
373   // If this loop executes exactly one time, then it should be peeled, not
374   // optimized by this pass.
375   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
376     if (BECst->getAPInt() == 0)
377       return false;
378 
379   SmallVector<BasicBlock *, 8> ExitBlocks;
380   CurLoop->getUniqueExitBlocks(ExitBlocks);
381 
382   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
383                     << CurLoop->getHeader()->getParent()->getName()
384                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
385                     << "\n");
386 
387   // The following transforms hoist stores/memsets into the loop pre-header.
388   // Give up if the loop has instructions that may throw.
389   SimpleLoopSafetyInfo SafetyInfo;
390   SafetyInfo.computeLoopSafetyInfo(CurLoop);
391   if (SafetyInfo.anyBlockMayThrow())
392     return false;
393 
394   bool MadeChange = false;
395 
396   // Scan all the blocks in the loop that are not in subloops.
397   for (auto *BB : CurLoop->getBlocks()) {
398     // Ignore blocks in subloops.
399     if (LI->getLoopFor(BB) != CurLoop)
400       continue;
401 
402     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
403   }
404   return MadeChange;
405 }
406 
407 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
408   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
409   return ConstStride->getAPInt();
410 }
411 
412 /// getMemSetPatternValue - If a strided store of the specified value is safe to
413 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
414 /// be passed in.  Otherwise, return null.
415 ///
416 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
417 /// just replicate their input array and then pass on to memset_pattern16.
418 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
419   // FIXME: This could check for UndefValue because it can be merged into any
420   // other valid pattern.
421 
422   // If the value isn't a constant, we can't promote it to being in a constant
423   // array.  We could theoretically do a store to an alloca or something, but
424   // that doesn't seem worthwhile.
425   Constant *C = dyn_cast<Constant>(V);
426   if (!C)
427     return nullptr;
428 
429   // Only handle simple values that are a power of two bytes in size.
430   uint64_t Size = DL->getTypeSizeInBits(V->getType());
431   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
432     return nullptr;
433 
434   // Don't care enough about darwin/ppc to implement this.
435   if (DL->isBigEndian())
436     return nullptr;
437 
438   // Convert to size in bytes.
439   Size /= 8;
440 
441   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
442   // if the top and bottom are the same (e.g. for vectors and large integers).
443   if (Size > 16)
444     return nullptr;
445 
446   // If the constant is exactly 16 bytes, just use it.
447   if (Size == 16)
448     return C;
449 
450   // Otherwise, we'll use an array of the constants.
451   unsigned ArraySize = 16 / Size;
452   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
453   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
454 }
455 
456 LoopIdiomRecognize::LegalStoreKind
457 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
458   // Don't touch volatile stores.
459   if (SI->isVolatile())
460     return LegalStoreKind::None;
461   // We only want simple or unordered-atomic stores.
462   if (!SI->isUnordered())
463     return LegalStoreKind::None;
464 
465   // Avoid merging nontemporal stores.
466   if (SI->getMetadata(LLVMContext::MD_nontemporal))
467     return LegalStoreKind::None;
468 
469   Value *StoredVal = SI->getValueOperand();
470   Value *StorePtr = SI->getPointerOperand();
471 
472   // Don't convert stores of non-integral pointer types to memsets (which stores
473   // integers).
474   if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
475     return LegalStoreKind::None;
476 
477   // Reject stores that are so large that they overflow an unsigned.
478   // When storing out scalable vectors we bail out for now, since the code
479   // below currently only works for constant strides.
480   TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
481   if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) ||
482       (SizeInBits.getFixedSize() >> 32) != 0)
483     return LegalStoreKind::None;
484 
485   // See if the pointer expression is an AddRec like {base,+,1} on the current
486   // loop, which indicates a strided store.  If we have something else, it's a
487   // random store we can't handle.
488   const SCEVAddRecExpr *StoreEv =
489       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
490   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
491     return LegalStoreKind::None;
492 
493   // Check to see if we have a constant stride.
494   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
495     return LegalStoreKind::None;
496 
497   // See if the store can be turned into a memset.
498 
499   // If the stored value is a byte-wise value (like i32 -1), then it may be
500   // turned into a memset of i8 -1, assuming that all the consecutive bytes
501   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
502   // but it can be turned into memset_pattern if the target supports it.
503   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
504   Constant *PatternValue = nullptr;
505 
506   // Note: memset and memset_pattern on unordered-atomic is yet not supported
507   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
508 
509   // If we're allowed to form a memset, and the stored value would be
510   // acceptable for memset, use it.
511   if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
512       // Verify that the stored value is loop invariant.  If not, we can't
513       // promote the memset.
514       CurLoop->isLoopInvariant(SplatValue)) {
515     // It looks like we can use SplatValue.
516     return LegalStoreKind::Memset;
517   } else if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
518              // Don't create memset_pattern16s with address spaces.
519              StorePtr->getType()->getPointerAddressSpace() == 0 &&
520              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
521     // It looks like we can use PatternValue!
522     return LegalStoreKind::MemsetPattern;
523   }
524 
525   // Otherwise, see if the store can be turned into a memcpy.
526   if (HasMemcpy && !DisableLIRP::Memcpy) {
527     // Check to see if the stride matches the size of the store.  If so, then we
528     // know that every byte is touched in the loop.
529     APInt Stride = getStoreStride(StoreEv);
530     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
531     if (StoreSize != Stride && StoreSize != -Stride)
532       return LegalStoreKind::None;
533 
534     // The store must be feeding a non-volatile load.
535     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
536 
537     // Only allow non-volatile loads
538     if (!LI || LI->isVolatile())
539       return LegalStoreKind::None;
540     // Only allow simple or unordered-atomic loads
541     if (!LI->isUnordered())
542       return LegalStoreKind::None;
543 
544     // See if the pointer expression is an AddRec like {base,+,1} on the current
545     // loop, which indicates a strided load.  If we have something else, it's a
546     // random load we can't handle.
547     const SCEVAddRecExpr *LoadEv =
548         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
549     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
550       return LegalStoreKind::None;
551 
552     // The store and load must share the same stride.
553     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
554       return LegalStoreKind::None;
555 
556     // Success.  This store can be converted into a memcpy.
557     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
558     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
559                            : LegalStoreKind::Memcpy;
560   }
561   // This store can't be transformed into a memset/memcpy.
562   return LegalStoreKind::None;
563 }
564 
565 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
566   StoreRefsForMemset.clear();
567   StoreRefsForMemsetPattern.clear();
568   StoreRefsForMemcpy.clear();
569   for (Instruction &I : *BB) {
570     StoreInst *SI = dyn_cast<StoreInst>(&I);
571     if (!SI)
572       continue;
573 
574     // Make sure this is a strided store with a constant stride.
575     switch (isLegalStore(SI)) {
576     case LegalStoreKind::None:
577       // Nothing to do
578       break;
579     case LegalStoreKind::Memset: {
580       // Find the base pointer.
581       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
582       StoreRefsForMemset[Ptr].push_back(SI);
583     } break;
584     case LegalStoreKind::MemsetPattern: {
585       // Find the base pointer.
586       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
587       StoreRefsForMemsetPattern[Ptr].push_back(SI);
588     } break;
589     case LegalStoreKind::Memcpy:
590     case LegalStoreKind::UnorderedAtomicMemcpy:
591       StoreRefsForMemcpy.push_back(SI);
592       break;
593     default:
594       assert(false && "unhandled return value");
595       break;
596     }
597   }
598 }
599 
600 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
601 /// with the specified backedge count.  This block is known to be in the current
602 /// loop and not in any subloops.
603 bool LoopIdiomRecognize::runOnLoopBlock(
604     BasicBlock *BB, const SCEV *BECount,
605     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
606   // We can only promote stores in this block if they are unconditionally
607   // executed in the loop.  For a block to be unconditionally executed, it has
608   // to dominate all the exit blocks of the loop.  Verify this now.
609   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
610     if (!DT->dominates(BB, ExitBlocks[i]))
611       return false;
612 
613   bool MadeChange = false;
614   // Look for store instructions, which may be optimized to memset/memcpy.
615   collectStores(BB);
616 
617   // Look for a single store or sets of stores with a common base, which can be
618   // optimized into a memset (memset_pattern).  The latter most commonly happens
619   // with structs and handunrolled loops.
620   for (auto &SL : StoreRefsForMemset)
621     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
622 
623   for (auto &SL : StoreRefsForMemsetPattern)
624     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
625 
626   // Optimize the store into a memcpy, if it feeds an similarly strided load.
627   for (auto &SI : StoreRefsForMemcpy)
628     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
629 
630   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
631     Instruction *Inst = &*I++;
632     // Look for memset instructions, which may be optimized to a larger memset.
633     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
634       WeakTrackingVH InstPtr(&*I);
635       if (!processLoopMemSet(MSI, BECount))
636         continue;
637       MadeChange = true;
638 
639       // If processing the memset invalidated our iterator, start over from the
640       // top of the block.
641       if (!InstPtr)
642         I = BB->begin();
643       continue;
644     }
645   }
646 
647   return MadeChange;
648 }
649 
650 /// See if this store(s) can be promoted to a memset.
651 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
652                                            const SCEV *BECount, ForMemset For) {
653   // Try to find consecutive stores that can be transformed into memsets.
654   SetVector<StoreInst *> Heads, Tails;
655   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
656 
657   // Do a quadratic search on all of the given stores and find
658   // all of the pairs of stores that follow each other.
659   SmallVector<unsigned, 16> IndexQueue;
660   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
661     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
662 
663     Value *FirstStoredVal = SL[i]->getValueOperand();
664     Value *FirstStorePtr = SL[i]->getPointerOperand();
665     const SCEVAddRecExpr *FirstStoreEv =
666         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
667     APInt FirstStride = getStoreStride(FirstStoreEv);
668     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
669 
670     // See if we can optimize just this store in isolation.
671     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
672       Heads.insert(SL[i]);
673       continue;
674     }
675 
676     Value *FirstSplatValue = nullptr;
677     Constant *FirstPatternValue = nullptr;
678 
679     if (For == ForMemset::Yes)
680       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
681     else
682       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
683 
684     assert((FirstSplatValue || FirstPatternValue) &&
685            "Expected either splat value or pattern value.");
686 
687     IndexQueue.clear();
688     // If a store has multiple consecutive store candidates, search Stores
689     // array according to the sequence: from i+1 to e, then from i-1 to 0.
690     // This is because usually pairing with immediate succeeding or preceding
691     // candidate create the best chance to find memset opportunity.
692     unsigned j = 0;
693     for (j = i + 1; j < e; ++j)
694       IndexQueue.push_back(j);
695     for (j = i; j > 0; --j)
696       IndexQueue.push_back(j - 1);
697 
698     for (auto &k : IndexQueue) {
699       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
700       Value *SecondStorePtr = SL[k]->getPointerOperand();
701       const SCEVAddRecExpr *SecondStoreEv =
702           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
703       APInt SecondStride = getStoreStride(SecondStoreEv);
704 
705       if (FirstStride != SecondStride)
706         continue;
707 
708       Value *SecondStoredVal = SL[k]->getValueOperand();
709       Value *SecondSplatValue = nullptr;
710       Constant *SecondPatternValue = nullptr;
711 
712       if (For == ForMemset::Yes)
713         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
714       else
715         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
716 
717       assert((SecondSplatValue || SecondPatternValue) &&
718              "Expected either splat value or pattern value.");
719 
720       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
721         if (For == ForMemset::Yes) {
722           if (isa<UndefValue>(FirstSplatValue))
723             FirstSplatValue = SecondSplatValue;
724           if (FirstSplatValue != SecondSplatValue)
725             continue;
726         } else {
727           if (isa<UndefValue>(FirstPatternValue))
728             FirstPatternValue = SecondPatternValue;
729           if (FirstPatternValue != SecondPatternValue)
730             continue;
731         }
732         Tails.insert(SL[k]);
733         Heads.insert(SL[i]);
734         ConsecutiveChain[SL[i]] = SL[k];
735         break;
736       }
737     }
738   }
739 
740   // We may run into multiple chains that merge into a single chain. We mark the
741   // stores that we transformed so that we don't visit the same store twice.
742   SmallPtrSet<Value *, 16> TransformedStores;
743   bool Changed = false;
744 
745   // For stores that start but don't end a link in the chain:
746   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
747        it != e; ++it) {
748     if (Tails.count(*it))
749       continue;
750 
751     // We found a store instr that starts a chain. Now follow the chain and try
752     // to transform it.
753     SmallPtrSet<Instruction *, 8> AdjacentStores;
754     StoreInst *I = *it;
755 
756     StoreInst *HeadStore = I;
757     unsigned StoreSize = 0;
758 
759     // Collect the chain into a list.
760     while (Tails.count(I) || Heads.count(I)) {
761       if (TransformedStores.count(I))
762         break;
763       AdjacentStores.insert(I);
764 
765       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
766       // Move to the next value in the chain.
767       I = ConsecutiveChain[I];
768     }
769 
770     Value *StoredVal = HeadStore->getValueOperand();
771     Value *StorePtr = HeadStore->getPointerOperand();
772     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
773     APInt Stride = getStoreStride(StoreEv);
774 
775     // Check to see if the stride matches the size of the stores.  If so, then
776     // we know that every byte is touched in the loop.
777     if (StoreSize != Stride && StoreSize != -Stride)
778       continue;
779 
780     bool NegStride = StoreSize == -Stride;
781 
782     if (processLoopStridedStore(StorePtr, StoreSize,
783                                 MaybeAlign(HeadStore->getAlignment()),
784                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
785                                 BECount, NegStride)) {
786       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
787       Changed = true;
788     }
789   }
790 
791   return Changed;
792 }
793 
794 /// processLoopMemSet - See if this memset can be promoted to a large memset.
795 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
796                                            const SCEV *BECount) {
797   // We can only handle non-volatile memsets with a constant size.
798   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
799     return false;
800 
801   // If we're not allowed to hack on memset, we fail.
802   if (!HasMemset)
803     return false;
804 
805   Value *Pointer = MSI->getDest();
806 
807   // See if the pointer expression is an AddRec like {base,+,1} on the current
808   // loop, which indicates a strided store.  If we have something else, it's a
809   // random store we can't handle.
810   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
811   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
812     return false;
813 
814   // Reject memsets that are so large that they overflow an unsigned.
815   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
816   if ((SizeInBytes >> 32) != 0)
817     return false;
818 
819   // Check to see if the stride matches the size of the memset.  If so, then we
820   // know that every byte is touched in the loop.
821   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
822   if (!ConstStride)
823     return false;
824 
825   APInt Stride = ConstStride->getAPInt();
826   if (SizeInBytes != Stride && SizeInBytes != -Stride)
827     return false;
828 
829   // Verify that the memset value is loop invariant.  If not, we can't promote
830   // the memset.
831   Value *SplatValue = MSI->getValue();
832   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
833     return false;
834 
835   SmallPtrSet<Instruction *, 1> MSIs;
836   MSIs.insert(MSI);
837   bool NegStride = SizeInBytes == -Stride;
838   return processLoopStridedStore(
839       Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()),
840       SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true);
841 }
842 
843 /// mayLoopAccessLocation - Return true if the specified loop might access the
844 /// specified pointer location, which is a loop-strided access.  The 'Access'
845 /// argument specifies what the verboten forms of access are (read or write).
846 static bool
847 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
848                       const SCEV *BECount, unsigned StoreSize,
849                       AliasAnalysis &AA,
850                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
851   // Get the location that may be stored across the loop.  Since the access is
852   // strided positively through memory, we say that the modified location starts
853   // at the pointer and has infinite size.
854   LocationSize AccessSize = LocationSize::afterPointer();
855 
856   // If the loop iterates a fixed number of times, we can refine the access size
857   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
858   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
859     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
860                                        StoreSize);
861 
862   // TODO: For this to be really effective, we have to dive into the pointer
863   // operand in the store.  Store to &A[i] of 100 will always return may alias
864   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
865   // which will then no-alias a store to &A[100].
866   MemoryLocation StoreLoc(Ptr, AccessSize);
867 
868   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
869        ++BI)
870     for (Instruction &I : **BI)
871       if (IgnoredStores.count(&I) == 0 &&
872           isModOrRefSet(
873               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
874         return true;
875 
876   return false;
877 }
878 
879 // If we have a negative stride, Start refers to the end of the memory location
880 // we're trying to memset.  Therefore, we need to recompute the base pointer,
881 // which is just Start - BECount*Size.
882 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
883                                         Type *IntPtr, unsigned StoreSize,
884                                         ScalarEvolution *SE) {
885   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
886   if (StoreSize != 1)
887     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
888                            SCEV::FlagNUW);
889   return SE->getMinusSCEV(Start, Index);
890 }
891 
892 /// Compute the number of bytes as a SCEV from the backedge taken count.
893 ///
894 /// This also maps the SCEV into the provided type and tries to handle the
895 /// computation in a way that will fold cleanly.
896 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
897                                unsigned StoreSize, Loop *CurLoop,
898                                const DataLayout *DL, ScalarEvolution *SE) {
899   const SCEV *NumBytesS;
900   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
901   // pointer size if it isn't already.
902   //
903   // If we're going to need to zero extend the BE count, check if we can add
904   // one to it prior to zero extending without overflow. Provided this is safe,
905   // it allows better simplification of the +1.
906   if (DL->getTypeSizeInBits(BECount->getType()).getFixedSize() <
907           DL->getTypeSizeInBits(IntPtr).getFixedSize() &&
908       SE->isLoopEntryGuardedByCond(
909           CurLoop, ICmpInst::ICMP_NE, BECount,
910           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
911     NumBytesS = SE->getZeroExtendExpr(
912         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
913         IntPtr);
914   } else {
915     NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
916                                SE->getOne(IntPtr), SCEV::FlagNUW);
917   }
918 
919   // And scale it based on the store size.
920   if (StoreSize != 1) {
921     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
922                                SCEV::FlagNUW);
923   }
924   return NumBytesS;
925 }
926 
927 /// processLoopStridedStore - We see a strided store of some value.  If we can
928 /// transform this into a memset or memset_pattern in the loop preheader, do so.
929 bool LoopIdiomRecognize::processLoopStridedStore(
930     Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment,
931     Value *StoredVal, Instruction *TheStore,
932     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
933     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
934   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
935   Constant *PatternValue = nullptr;
936 
937   if (!SplatValue)
938     PatternValue = getMemSetPatternValue(StoredVal, DL);
939 
940   assert((SplatValue || PatternValue) &&
941          "Expected either splat value or pattern value.");
942 
943   // The trip count of the loop and the base pointer of the addrec SCEV is
944   // guaranteed to be loop invariant, which means that it should dominate the
945   // header.  This allows us to insert code for it in the preheader.
946   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
947   BasicBlock *Preheader = CurLoop->getLoopPreheader();
948   IRBuilder<> Builder(Preheader->getTerminator());
949   SCEVExpander Expander(*SE, *DL, "loop-idiom");
950   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
951 
952   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
953   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
954 
955   bool Changed = false;
956   const SCEV *Start = Ev->getStart();
957   // Handle negative strided loops.
958   if (NegStride)
959     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);
960 
961   // TODO: ideally we should still be able to generate memset if SCEV expander
962   // is taught to generate the dependencies at the latest point.
963   if (!isSafeToExpand(Start, *SE))
964     return Changed;
965 
966   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
967   // this into a memset in the loop preheader now if we want.  However, this
968   // would be unsafe to do if there is anything else in the loop that may read
969   // or write to the aliased location.  Check for any overlap by generating the
970   // base pointer and checking the region.
971   Value *BasePtr =
972       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
973 
974   // From here on out, conservatively report to the pass manager that we've
975   // changed the IR, even if we later clean up these added instructions. There
976   // may be structural differences e.g. in the order of use lists not accounted
977   // for in just a textual dump of the IR. This is written as a variable, even
978   // though statically all the places this dominates could be replaced with
979   // 'true', with the hope that anyone trying to be clever / "more precise" with
980   // the return value will read this comment, and leave them alone.
981   Changed = true;
982 
983   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
984                             StoreSize, *AA, Stores))
985     return Changed;
986 
987   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
988     return Changed;
989 
990   // Okay, everything looks good, insert the memset.
991 
992   const SCEV *NumBytesS =
993       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
994 
995   // TODO: ideally we should still be able to generate memset if SCEV expander
996   // is taught to generate the dependencies at the latest point.
997   if (!isSafeToExpand(NumBytesS, *SE))
998     return Changed;
999 
1000   Value *NumBytes =
1001       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1002 
1003   CallInst *NewCall;
1004   if (SplatValue) {
1005     NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
1006                                    MaybeAlign(StoreAlignment));
1007   } else {
1008     // Everything is emitted in default address space
1009     Type *Int8PtrTy = DestInt8PtrTy;
1010 
1011     Module *M = TheStore->getModule();
1012     StringRef FuncName = "memset_pattern16";
1013     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
1014                                                 Int8PtrTy, Int8PtrTy, IntIdxTy);
1015     inferLibFuncAttributes(M, FuncName, *TLI);
1016 
1017     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1018     // an constant array of 16-bytes.  Plop the value into a mergable global.
1019     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1020                                             GlobalValue::PrivateLinkage,
1021                                             PatternValue, ".memset_pattern");
1022     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1023     GV->setAlignment(Align(16));
1024     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
1025     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1026   }
1027   NewCall->setDebugLoc(TheStore->getDebugLoc());
1028 
1029   if (MSSAU) {
1030     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1031         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1032     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1033   }
1034 
1035   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1036                     << "    from store to: " << *Ev << " at: " << *TheStore
1037                     << "\n");
1038 
1039   ORE.emit([&]() {
1040     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
1041                               NewCall->getDebugLoc(), Preheader)
1042            << "Transformed loop-strided store into a call to "
1043            << ore::NV("NewFunction", NewCall->getCalledFunction())
1044            << "() function";
1045   });
1046 
1047   // Okay, the memset has been formed.  Zap the original store and anything that
1048   // feeds into it.
1049   for (auto *I : Stores) {
1050     if (MSSAU)
1051       MSSAU->removeMemoryAccess(I, true);
1052     deleteDeadInstruction(I);
1053   }
1054   if (MSSAU && VerifyMemorySSA)
1055     MSSAU->getMemorySSA()->verifyMemorySSA();
1056   ++NumMemSet;
1057   ExpCleaner.markResultUsed();
1058   return true;
1059 }
1060 
1061 /// If the stored value is a strided load in the same loop with the same stride
1062 /// this may be transformable into a memcpy.  This kicks in for stuff like
1063 /// for (i) A[i] = B[i];
1064 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1065                                                     const SCEV *BECount) {
1066   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1067 
1068   Value *StorePtr = SI->getPointerOperand();
1069   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1070   APInt Stride = getStoreStride(StoreEv);
1071   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1072   bool NegStride = StoreSize == -Stride;
1073 
1074   // The store must be feeding a non-volatile load.
1075   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1076   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1077 
1078   // See if the pointer expression is an AddRec like {base,+,1} on the current
1079   // loop, which indicates a strided load.  If we have something else, it's a
1080   // random load we can't handle.
1081   const SCEVAddRecExpr *LoadEv =
1082       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1083 
1084   // The trip count of the loop and the base pointer of the addrec SCEV is
1085   // guaranteed to be loop invariant, which means that it should dominate the
1086   // header.  This allows us to insert code for it in the preheader.
1087   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1088   IRBuilder<> Builder(Preheader->getTerminator());
1089   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1090 
1091   SCEVExpanderCleaner ExpCleaner(Expander, *DT);
1092 
1093   bool Changed = false;
1094   const SCEV *StrStart = StoreEv->getStart();
1095   unsigned StrAS = SI->getPointerAddressSpace();
1096   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1097 
1098   // Handle negative strided loops.
1099   if (NegStride)
1100     StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);
1101 
1102   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1103   // this into a memcpy in the loop preheader now if we want.  However, this
1104   // would be unsafe to do if there is anything else in the loop that may read
1105   // or write the memory region we're storing to.  This includes the load that
1106   // feeds the stores.  Check for an alias by generating the base address and
1107   // checking everything.
1108   Value *StoreBasePtr = Expander.expandCodeFor(
1109       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1110 
1111   // From here on out, conservatively report to the pass manager that we've
1112   // changed the IR, even if we later clean up these added instructions. There
1113   // may be structural differences e.g. in the order of use lists not accounted
1114   // for in just a textual dump of the IR. This is written as a variable, even
1115   // though statically all the places this dominates could be replaced with
1116   // 'true', with the hope that anyone trying to be clever / "more precise" with
1117   // the return value will read this comment, and leave them alone.
1118   Changed = true;
1119 
1120   SmallPtrSet<Instruction *, 1> Stores;
1121   Stores.insert(SI);
1122   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1123                             StoreSize, *AA, Stores))
1124     return Changed;
1125 
1126   const SCEV *LdStart = LoadEv->getStart();
1127   unsigned LdAS = LI->getPointerAddressSpace();
1128 
1129   // Handle negative strided loops.
1130   if (NegStride)
1131     LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);
1132 
1133   // For a memcpy, we have to make sure that the input array is not being
1134   // mutated by the loop.
1135   Value *LoadBasePtr = Expander.expandCodeFor(
1136       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1137 
1138   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1139                             StoreSize, *AA, Stores))
1140     return Changed;
1141 
1142   if (avoidLIRForMultiBlockLoop())
1143     return Changed;
1144 
1145   // Okay, everything is safe, we can transform this!
1146 
1147   const SCEV *NumBytesS =
1148       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
1149 
1150   Value *NumBytes =
1151       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1152 
1153   CallInst *NewCall = nullptr;
1154   // Check whether to generate an unordered atomic memcpy:
1155   //  If the load or store are atomic, then they must necessarily be unordered
1156   //  by previous checks.
1157   if (!SI->isAtomic() && !LI->isAtomic())
1158     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
1159                                    LI->getAlign(), NumBytes);
1160   else {
1161     // We cannot allow unaligned ops for unordered load/store, so reject
1162     // anything where the alignment isn't at least the element size.
1163     const Align StoreAlign = SI->getAlign();
1164     const Align LoadAlign = LI->getAlign();
1165     if (StoreAlign < StoreSize || LoadAlign < StoreSize)
1166       return Changed;
1167 
1168     // If the element.atomic memcpy is not lowered into explicit
1169     // loads/stores later, then it will be lowered into an element-size
1170     // specific lib call. If the lib call doesn't exist for our store size, then
1171     // we shouldn't generate the memcpy.
1172     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1173       return Changed;
1174 
1175     // Create the call.
1176     // Note that unordered atomic loads/stores are *required* by the spec to
1177     // have an alignment but non-atomic loads/stores may not.
1178     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1179         StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
1180         StoreSize);
1181   }
1182   NewCall->setDebugLoc(SI->getDebugLoc());
1183 
1184   if (MSSAU) {
1185     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1186         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1187     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1188   }
1189 
1190   LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1191                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1192                     << "    from store ptr=" << *StoreEv << " at: " << *SI
1193                     << "\n");
1194 
1195   ORE.emit([&]() {
1196     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1197                               NewCall->getDebugLoc(), Preheader)
1198            << "Formed a call to "
1199            << ore::NV("NewFunction", NewCall->getCalledFunction())
1200            << "() function";
1201   });
1202 
1203   // Okay, the memcpy has been formed.  Zap the original store and anything that
1204   // feeds into it.
1205   if (MSSAU)
1206     MSSAU->removeMemoryAccess(SI, true);
1207   deleteDeadInstruction(SI);
1208   if (MSSAU && VerifyMemorySSA)
1209     MSSAU->getMemorySSA()->verifyMemorySSA();
1210   ++NumMemCpy;
1211   ExpCleaner.markResultUsed();
1212   return true;
1213 }
1214 
1215 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1216 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1217 //
1218 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1219                                                    bool IsLoopMemset) {
1220   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1221     if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1222       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1223                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1224                         << " avoided: multi-block top-level loop\n");
1225       return true;
1226     }
1227   }
1228 
1229   return false;
1230 }
1231 
1232 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1233   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1234                     << CurLoop->getHeader()->getParent()->getName()
1235                     << "] Noncountable Loop %"
1236                     << CurLoop->getHeader()->getName() << "\n");
1237 
1238   return recognizePopcount() || recognizeAndInsertFFS() ||
1239          recognizeShiftUntilBitTest();
1240 }
1241 
1242 /// Check if the given conditional branch is based on the comparison between
1243 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1244 /// true), the control yields to the loop entry. If the branch matches the
1245 /// behavior, the variable involved in the comparison is returned. This function
1246 /// will be called to see if the precondition and postcondition of the loop are
1247 /// in desirable form.
1248 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1249                              bool JmpOnZero = false) {
1250   if (!BI || !BI->isConditional())
1251     return nullptr;
1252 
1253   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1254   if (!Cond)
1255     return nullptr;
1256 
1257   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1258   if (!CmpZero || !CmpZero->isZero())
1259     return nullptr;
1260 
1261   BasicBlock *TrueSucc = BI->getSuccessor(0);
1262   BasicBlock *FalseSucc = BI->getSuccessor(1);
1263   if (JmpOnZero)
1264     std::swap(TrueSucc, FalseSucc);
1265 
1266   ICmpInst::Predicate Pred = Cond->getPredicate();
1267   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1268       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1269     return Cond->getOperand(0);
1270 
1271   return nullptr;
1272 }
1273 
1274 // Check if the recurrence variable `VarX` is in the right form to create
1275 // the idiom. Returns the value coerced to a PHINode if so.
1276 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1277                                  BasicBlock *LoopEntry) {
1278   auto *PhiX = dyn_cast<PHINode>(VarX);
1279   if (PhiX && PhiX->getParent() == LoopEntry &&
1280       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1281     return PhiX;
1282   return nullptr;
1283 }
1284 
1285 /// Return true iff the idiom is detected in the loop.
1286 ///
1287 /// Additionally:
1288 /// 1) \p CntInst is set to the instruction counting the population bit.
1289 /// 2) \p CntPhi is set to the corresponding phi node.
1290 /// 3) \p Var is set to the value whose population bits are being counted.
1291 ///
1292 /// The core idiom we are trying to detect is:
1293 /// \code
1294 ///    if (x0 != 0)
1295 ///      goto loop-exit // the precondition of the loop
1296 ///    cnt0 = init-val;
1297 ///    do {
1298 ///       x1 = phi (x0, x2);
1299 ///       cnt1 = phi(cnt0, cnt2);
1300 ///
1301 ///       cnt2 = cnt1 + 1;
1302 ///        ...
1303 ///       x2 = x1 & (x1 - 1);
1304 ///        ...
1305 ///    } while(x != 0);
1306 ///
1307 /// loop-exit:
1308 /// \endcode
1309 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1310                                 Instruction *&CntInst, PHINode *&CntPhi,
1311                                 Value *&Var) {
1312   // step 1: Check to see if the look-back branch match this pattern:
1313   //    "if (a!=0) goto loop-entry".
1314   BasicBlock *LoopEntry;
1315   Instruction *DefX2, *CountInst;
1316   Value *VarX1, *VarX0;
1317   PHINode *PhiX, *CountPhi;
1318 
1319   DefX2 = CountInst = nullptr;
1320   VarX1 = VarX0 = nullptr;
1321   PhiX = CountPhi = nullptr;
1322   LoopEntry = *(CurLoop->block_begin());
1323 
1324   // step 1: Check if the loop-back branch is in desirable form.
1325   {
1326     if (Value *T = matchCondition(
1327             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1328       DefX2 = dyn_cast<Instruction>(T);
1329     else
1330       return false;
1331   }
1332 
1333   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1334   {
1335     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1336       return false;
1337 
1338     BinaryOperator *SubOneOp;
1339 
1340     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1341       VarX1 = DefX2->getOperand(1);
1342     else {
1343       VarX1 = DefX2->getOperand(0);
1344       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1345     }
1346     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1347       return false;
1348 
1349     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1350     if (!Dec ||
1351         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1352           (SubOneOp->getOpcode() == Instruction::Add &&
1353            Dec->isMinusOne()))) {
1354       return false;
1355     }
1356   }
1357 
1358   // step 3: Check the recurrence of variable X
1359   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1360   if (!PhiX)
1361     return false;
1362 
1363   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1364   {
1365     CountInst = nullptr;
1366     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1367                               IterE = LoopEntry->end();
1368          Iter != IterE; Iter++) {
1369       Instruction *Inst = &*Iter;
1370       if (Inst->getOpcode() != Instruction::Add)
1371         continue;
1372 
1373       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1374       if (!Inc || !Inc->isOne())
1375         continue;
1376 
1377       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1378       if (!Phi)
1379         continue;
1380 
1381       // Check if the result of the instruction is live of the loop.
1382       bool LiveOutLoop = false;
1383       for (User *U : Inst->users()) {
1384         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1385           LiveOutLoop = true;
1386           break;
1387         }
1388       }
1389 
1390       if (LiveOutLoop) {
1391         CountInst = Inst;
1392         CountPhi = Phi;
1393         break;
1394       }
1395     }
1396 
1397     if (!CountInst)
1398       return false;
1399   }
1400 
1401   // step 5: check if the precondition is in this form:
1402   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1403   {
1404     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1405     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1406     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1407       return false;
1408 
1409     CntInst = CountInst;
1410     CntPhi = CountPhi;
1411     Var = T;
1412   }
1413 
1414   return true;
1415 }
1416 
1417 /// Return true if the idiom is detected in the loop.
1418 ///
1419 /// Additionally:
1420 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1421 ///       or nullptr if there is no such.
1422 /// 2) \p CntPhi is set to the corresponding phi node
1423 ///       or nullptr if there is no such.
1424 /// 3) \p Var is set to the value whose CTLZ could be used.
1425 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1426 ///
1427 /// The core idiom we are trying to detect is:
1428 /// \code
1429 ///    if (x0 == 0)
1430 ///      goto loop-exit // the precondition of the loop
1431 ///    cnt0 = init-val;
1432 ///    do {
1433 ///       x = phi (x0, x.next);   //PhiX
1434 ///       cnt = phi(cnt0, cnt.next);
1435 ///
1436 ///       cnt.next = cnt + 1;
1437 ///        ...
1438 ///       x.next = x >> 1;   // DefX
1439 ///        ...
1440 ///    } while(x.next != 0);
1441 ///
1442 /// loop-exit:
1443 /// \endcode
1444 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1445                                       Intrinsic::ID &IntrinID, Value *&InitX,
1446                                       Instruction *&CntInst, PHINode *&CntPhi,
1447                                       Instruction *&DefX) {
1448   BasicBlock *LoopEntry;
1449   Value *VarX = nullptr;
1450 
1451   DefX = nullptr;
1452   CntInst = nullptr;
1453   CntPhi = nullptr;
1454   LoopEntry = *(CurLoop->block_begin());
1455 
1456   // step 1: Check if the loop-back branch is in desirable form.
1457   if (Value *T = matchCondition(
1458           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1459     DefX = dyn_cast<Instruction>(T);
1460   else
1461     return false;
1462 
1463   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1464   if (!DefX || !DefX->isShift())
1465     return false;
1466   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1467                                                      Intrinsic::ctlz;
1468   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1469   if (!Shft || !Shft->isOne())
1470     return false;
1471   VarX = DefX->getOperand(0);
1472 
1473   // step 3: Check the recurrence of variable X
1474   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1475   if (!PhiX)
1476     return false;
1477 
1478   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1479 
1480   // Make sure the initial value can't be negative otherwise the ashr in the
1481   // loop might never reach zero which would make the loop infinite.
1482   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1483     return false;
1484 
1485   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1486   //         or cnt.next = cnt + -1.
1487   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1488   //       then all uses of "cnt.next" could be optimized to the trip count
1489   //       plus "cnt0". Currently it is not optimized.
1490   //       This step could be used to detect POPCNT instruction:
1491   //       cnt.next = cnt + (x.next & 1)
1492   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1493                             IterE = LoopEntry->end();
1494        Iter != IterE; Iter++) {
1495     Instruction *Inst = &*Iter;
1496     if (Inst->getOpcode() != Instruction::Add)
1497       continue;
1498 
1499     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1500     if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1501       continue;
1502 
1503     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1504     if (!Phi)
1505       continue;
1506 
1507     CntInst = Inst;
1508     CntPhi = Phi;
1509     break;
1510   }
1511   if (!CntInst)
1512     return false;
1513 
1514   return true;
1515 }
1516 
1517 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1518 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1519 /// trip count returns true; otherwise, returns false.
1520 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1521   // Give up if the loop has multiple blocks or multiple backedges.
1522   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1523     return false;
1524 
1525   Intrinsic::ID IntrinID;
1526   Value *InitX;
1527   Instruction *DefX = nullptr;
1528   PHINode *CntPhi = nullptr;
1529   Instruction *CntInst = nullptr;
1530   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1531   // this is always 6.
1532   size_t IdiomCanonicalSize = 6;
1533 
1534   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1535                                  CntInst, CntPhi, DefX))
1536     return false;
1537 
1538   bool IsCntPhiUsedOutsideLoop = false;
1539   for (User *U : CntPhi->users())
1540     if (!CurLoop->contains(cast<Instruction>(U))) {
1541       IsCntPhiUsedOutsideLoop = true;
1542       break;
1543     }
1544   bool IsCntInstUsedOutsideLoop = false;
1545   for (User *U : CntInst->users())
1546     if (!CurLoop->contains(cast<Instruction>(U))) {
1547       IsCntInstUsedOutsideLoop = true;
1548       break;
1549     }
1550   // If both CntInst and CntPhi are used outside the loop the profitability
1551   // is questionable.
1552   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1553     return false;
1554 
1555   // For some CPUs result of CTLZ(X) intrinsic is undefined
1556   // when X is 0. If we can not guarantee X != 0, we need to check this
1557   // when expand.
1558   bool ZeroCheck = false;
1559   // It is safe to assume Preheader exist as it was checked in
1560   // parent function RunOnLoop.
1561   BasicBlock *PH = CurLoop->getLoopPreheader();
1562 
1563   // If we are using the count instruction outside the loop, make sure we
1564   // have a zero check as a precondition. Without the check the loop would run
1565   // one iteration for before any check of the input value. This means 0 and 1
1566   // would have identical behavior in the original loop and thus
1567   if (!IsCntPhiUsedOutsideLoop) {
1568     auto *PreCondBB = PH->getSinglePredecessor();
1569     if (!PreCondBB)
1570       return false;
1571     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1572     if (!PreCondBI)
1573       return false;
1574     if (matchCondition(PreCondBI, PH) != InitX)
1575       return false;
1576     ZeroCheck = true;
1577   }
1578 
1579   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1580   // profitable if we delete the loop.
1581 
1582   // the loop has only 6 instructions:
1583   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1584   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1585   //  %shr = ashr %n.addr.0, 1
1586   //  %tobool = icmp eq %shr, 0
1587   //  %inc = add nsw %i.0, 1
1588   //  br i1 %tobool
1589 
1590   const Value *Args[] = {
1591       InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
1592                        : ConstantInt::getFalse(InitX->getContext())};
1593 
1594   // @llvm.dbg doesn't count as they have no semantic effect.
1595   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1596   uint32_t HeaderSize =
1597       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1598 
1599   IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1600   int Cost =
1601     TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1602   if (HeaderSize != IdiomCanonicalSize &&
1603       Cost > TargetTransformInfo::TCC_Basic)
1604     return false;
1605 
1606   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1607                            DefX->getDebugLoc(), ZeroCheck,
1608                            IsCntPhiUsedOutsideLoop);
1609   return true;
1610 }
1611 
1612 /// Recognizes a population count idiom in a non-countable loop.
1613 ///
1614 /// If detected, transforms the relevant code to issue the popcount intrinsic
1615 /// function call, and returns true; otherwise, returns false.
1616 bool LoopIdiomRecognize::recognizePopcount() {
1617   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1618     return false;
1619 
1620   // Counting population are usually conducted by few arithmetic instructions.
1621   // Such instructions can be easily "absorbed" by vacant slots in a
1622   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1623   // in a compact loop.
1624 
1625   // Give up if the loop has multiple blocks or multiple backedges.
1626   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1627     return false;
1628 
1629   BasicBlock *LoopBody = *(CurLoop->block_begin());
1630   if (LoopBody->size() >= 20) {
1631     // The loop is too big, bail out.
1632     return false;
1633   }
1634 
1635   // It should have a preheader containing nothing but an unconditional branch.
1636   BasicBlock *PH = CurLoop->getLoopPreheader();
1637   if (!PH || &PH->front() != PH->getTerminator())
1638     return false;
1639   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1640   if (!EntryBI || EntryBI->isConditional())
1641     return false;
1642 
1643   // It should have a precondition block where the generated popcount intrinsic
1644   // function can be inserted.
1645   auto *PreCondBB = PH->getSinglePredecessor();
1646   if (!PreCondBB)
1647     return false;
1648   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1649   if (!PreCondBI || PreCondBI->isUnconditional())
1650     return false;
1651 
1652   Instruction *CntInst;
1653   PHINode *CntPhi;
1654   Value *Val;
1655   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1656     return false;
1657 
1658   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1659   return true;
1660 }
1661 
1662 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1663                                        const DebugLoc &DL) {
1664   Value *Ops[] = {Val};
1665   Type *Tys[] = {Val->getType()};
1666 
1667   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1668   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1669   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1670   CI->setDebugLoc(DL);
1671 
1672   return CI;
1673 }
1674 
1675 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1676                                     const DebugLoc &DL, bool ZeroCheck,
1677                                     Intrinsic::ID IID) {
1678   Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1679   Type *Tys[] = {Val->getType()};
1680 
1681   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1682   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1683   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1684   CI->setDebugLoc(DL);
1685 
1686   return CI;
1687 }
1688 
1689 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1690 /// loop:
1691 ///   CntPhi = PHI [Cnt0, CntInst]
1692 ///   PhiX = PHI [InitX, DefX]
1693 ///   CntInst = CntPhi + 1
1694 ///   DefX = PhiX >> 1
1695 ///   LOOP_BODY
1696 ///   Br: loop if (DefX != 0)
1697 /// Use(CntPhi) or Use(CntInst)
1698 ///
1699 /// Into:
1700 /// If CntPhi used outside the loop:
1701 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1702 ///   Count = CountPrev + 1
1703 /// else
1704 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1705 /// loop:
1706 ///   CntPhi = PHI [Cnt0, CntInst]
1707 ///   PhiX = PHI [InitX, DefX]
1708 ///   PhiCount = PHI [Count, Dec]
1709 ///   CntInst = CntPhi + 1
1710 ///   DefX = PhiX >> 1
1711 ///   Dec = PhiCount - 1
1712 ///   LOOP_BODY
1713 ///   Br: loop if (Dec != 0)
1714 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1715 /// or
1716 /// Use(Count + Cnt0) // Use(CntInst)
1717 ///
1718 /// If LOOP_BODY is empty the loop will be deleted.
1719 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1720 void LoopIdiomRecognize::transformLoopToCountable(
1721     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1722     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1723     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1724   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1725 
1726   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1727   IRBuilder<> Builder(PreheaderBr);
1728   Builder.SetCurrentDebugLocation(DL);
1729 
1730   //   Count = BitWidth - CTLZ(InitX);
1731   //   NewCount = Count;
1732   // If there are uses of CntPhi create:
1733   //   NewCount = BitWidth - CTLZ(InitX >> 1);
1734   //   Count = NewCount + 1;
1735   Value *InitXNext;
1736   if (IsCntPhiUsedOutsideLoop) {
1737     if (DefX->getOpcode() == Instruction::AShr)
1738       InitXNext =
1739           Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1740     else if (DefX->getOpcode() == Instruction::LShr)
1741       InitXNext =
1742           Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1743     else if (DefX->getOpcode() == Instruction::Shl) // cttz
1744       InitXNext =
1745           Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
1746     else
1747       llvm_unreachable("Unexpected opcode!");
1748   } else
1749     InitXNext = InitX;
1750   Value *FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1751   Value *Count = Builder.CreateSub(
1752       ConstantInt::get(FFS->getType(), FFS->getType()->getIntegerBitWidth()),
1753       FFS);
1754   Value *NewCount = Count;
1755   if (IsCntPhiUsedOutsideLoop) {
1756     NewCount = Count;
1757     Count = Builder.CreateAdd(Count, ConstantInt::get(Count->getType(), 1));
1758   }
1759 
1760   NewCount = Builder.CreateZExtOrTrunc(NewCount,
1761                                        cast<IntegerType>(CntInst->getType()));
1762 
1763   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1764   if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
1765     // If the counter was being incremented in the loop, add NewCount to the
1766     // counter's initial value, but only if the initial value is not zero.
1767     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1768     if (!InitConst || !InitConst->isZero())
1769       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1770   } else {
1771     // If the count was being decremented in the loop, subtract NewCount from
1772     // the counter's initial value.
1773     NewCount = Builder.CreateSub(CntInitVal, NewCount);
1774   }
1775 
1776   // Step 2: Insert new IV and loop condition:
1777   // loop:
1778   //   ...
1779   //   PhiCount = PHI [Count, Dec]
1780   //   ...
1781   //   Dec = PhiCount - 1
1782   //   ...
1783   //   Br: loop if (Dec != 0)
1784   BasicBlock *Body = *(CurLoop->block_begin());
1785   auto *LbBr = cast<BranchInst>(Body->getTerminator());
1786   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1787   Type *Ty = Count->getType();
1788 
1789   PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1790 
1791   Builder.SetInsertPoint(LbCond);
1792   Instruction *TcDec = cast<Instruction>(
1793       Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1794                         "tcdec", false, true));
1795 
1796   TcPhi->addIncoming(Count, Preheader);
1797   TcPhi->addIncoming(TcDec, Body);
1798 
1799   CmpInst::Predicate Pred =
1800       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1801   LbCond->setPredicate(Pred);
1802   LbCond->setOperand(0, TcDec);
1803   LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1804 
1805   // Step 3: All the references to the original counter outside
1806   //  the loop are replaced with the NewCount
1807   if (IsCntPhiUsedOutsideLoop)
1808     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1809   else
1810     CntInst->replaceUsesOutsideBlock(NewCount, Body);
1811 
1812   // step 4: Forget the "non-computable" trip-count SCEV associated with the
1813   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1814   SE->forgetLoop(CurLoop);
1815 }
1816 
1817 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1818                                                  Instruction *CntInst,
1819                                                  PHINode *CntPhi, Value *Var) {
1820   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1821   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1822   const DebugLoc &DL = CntInst->getDebugLoc();
1823 
1824   // Assuming before transformation, the loop is following:
1825   //  if (x) // the precondition
1826   //     do { cnt++; x &= x - 1; } while(x);
1827 
1828   // Step 1: Insert the ctpop instruction at the end of the precondition block
1829   IRBuilder<> Builder(PreCondBr);
1830   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1831   {
1832     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1833     NewCount = PopCntZext =
1834         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1835 
1836     if (NewCount != PopCnt)
1837       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1838 
1839     // TripCnt is exactly the number of iterations the loop has
1840     TripCnt = NewCount;
1841 
1842     // If the population counter's initial value is not zero, insert Add Inst.
1843     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1844     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1845     if (!InitConst || !InitConst->isZero()) {
1846       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1847       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1848     }
1849   }
1850 
1851   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1852   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1853   //   function would be partial dead code, and downstream passes will drag
1854   //   it back from the precondition block to the preheader.
1855   {
1856     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1857 
1858     Value *Opnd0 = PopCntZext;
1859     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1860     if (PreCond->getOperand(0) != Var)
1861       std::swap(Opnd0, Opnd1);
1862 
1863     ICmpInst *NewPreCond = cast<ICmpInst>(
1864         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1865     PreCondBr->setCondition(NewPreCond);
1866 
1867     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1868   }
1869 
1870   // Step 3: Note that the population count is exactly the trip count of the
1871   // loop in question, which enable us to convert the loop from noncountable
1872   // loop into a countable one. The benefit is twofold:
1873   //
1874   //  - If the loop only counts population, the entire loop becomes dead after
1875   //    the transformation. It is a lot easier to prove a countable loop dead
1876   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1877   //    isn't dead even if it computes nothing useful. In general, DCE needs
1878   //    to prove a noncountable loop finite before safely delete it.)
1879   //
1880   //  - If the loop also performs something else, it remains alive.
1881   //    Since it is transformed to countable form, it can be aggressively
1882   //    optimized by some optimizations which are in general not applicable
1883   //    to a noncountable loop.
1884   //
1885   // After this step, this loop (conceptually) would look like following:
1886   //   newcnt = __builtin_ctpop(x);
1887   //   t = newcnt;
1888   //   if (x)
1889   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1890   BasicBlock *Body = *(CurLoop->block_begin());
1891   {
1892     auto *LbBr = cast<BranchInst>(Body->getTerminator());
1893     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1894     Type *Ty = TripCnt->getType();
1895 
1896     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1897 
1898     Builder.SetInsertPoint(LbCond);
1899     Instruction *TcDec = cast<Instruction>(
1900         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1901                           "tcdec", false, true));
1902 
1903     TcPhi->addIncoming(TripCnt, PreHead);
1904     TcPhi->addIncoming(TcDec, Body);
1905 
1906     CmpInst::Predicate Pred =
1907         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1908     LbCond->setPredicate(Pred);
1909     LbCond->setOperand(0, TcDec);
1910     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1911   }
1912 
1913   // Step 4: All the references to the original population counter outside
1914   //  the loop are replaced with the NewCount -- the value returned from
1915   //  __builtin_ctpop().
1916   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1917 
1918   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1919   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1920   SE->forgetLoop(CurLoop);
1921 }
1922 
1923 /// Match loop-invariant value.
1924 template <typename SubPattern_t> struct match_LoopInvariant {
1925   SubPattern_t SubPattern;
1926   const Loop *L;
1927 
1928   match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
1929       : SubPattern(SP), L(L) {}
1930 
1931   template <typename ITy> bool match(ITy *V) {
1932     return L->isLoopInvariant(V) && SubPattern.match(V);
1933   }
1934 };
1935 
1936 /// Matches if the value is loop-invariant.
1937 template <typename Ty>
1938 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
1939   return match_LoopInvariant<Ty>(M, L);
1940 }
1941 
1942 /// Return true if the idiom is detected in the loop.
1943 ///
1944 /// The core idiom we are trying to detect is:
1945 /// \code
1946 ///   entry:
1947 ///     <...>
1948 ///     %bitmask = shl i32 1, %bitpos
1949 ///     br label %loop
1950 ///
1951 ///   loop:
1952 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
1953 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
1954 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
1955 ///     %x.next = shl i32 %x.curr, 1
1956 ///     <...>
1957 ///     br i1 %x.curr.isbitunset, label %loop, label %end
1958 ///
1959 ///   end:
1960 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
1961 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
1962 ///     <...>
1963 /// \endcode
1964 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
1965                                          Value *&BitMask, Value *&BitPos,
1966                                          Value *&CurrX, Instruction *&NextX) {
1967   LLVM_DEBUG(dbgs() << DEBUG_TYPE
1968              " Performing shift-until-bittest idiom detection.\n");
1969 
1970   // Give up if the loop has multiple blocks or multiple backedges.
1971   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
1972     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
1973     return false;
1974   }
1975 
1976   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
1977   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
1978   assert(LoopPreheaderBB && "There is always a loop preheader.");
1979 
1980   using namespace PatternMatch;
1981 
1982   // Step 1: Check if the loop backedge is in desirable form.
1983 
1984   ICmpInst::Predicate Pred;
1985   Value *CmpLHS, *CmpRHS;
1986   BasicBlock *TrueBB, *FalseBB;
1987   if (!match(LoopHeaderBB->getTerminator(),
1988              m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
1989                   m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
1990     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
1991     return false;
1992   }
1993 
1994   // Step 2: Check if the backedge's condition is in desirable form.
1995 
1996   auto MatchVariableBitMask = [&]() {
1997     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
1998            match(CmpLHS,
1999                  m_c_And(m_Value(CurrX),
2000                          m_CombineAnd(
2001                              m_Value(BitMask),
2002                              m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2003                                              CurLoop))));
2004   };
2005   auto MatchConstantBitMask = [&]() {
2006     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2007            match(CmpLHS, m_And(m_Value(CurrX),
2008                                m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2009            (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2010   };
2011   auto MatchDecomposableConstantBitMask = [&]() {
2012     APInt Mask;
2013     return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2014            ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2015            (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2016            (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2017   };
2018 
2019   if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2020       !MatchDecomposableConstantBitMask()) {
2021     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2022     return false;
2023   }
2024 
2025   // Step 3: Check if the recurrence is in desirable form.
2026   auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2027   if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2028     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2029     return false;
2030   }
2031 
2032   BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2033   NextX =
2034       dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2035 
2036   if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2037     // FIXME: support right-shift?
2038     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2039     return false;
2040   }
2041 
2042   // Step 4: Check if the backedge's destinations are in desirable form.
2043 
2044   assert(ICmpInst::isEquality(Pred) &&
2045          "Should only get equality predicates here.");
2046 
2047   // cmp-br is commutative, so canonicalize to a single variant.
2048   if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2049     Pred = ICmpInst::getInversePredicate(Pred);
2050     std::swap(TrueBB, FalseBB);
2051   }
2052 
2053   // We expect to exit loop when comparison yields false,
2054   // so when it yields true we should branch back to loop header.
2055   if (TrueBB != LoopHeaderBB) {
2056     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2057     return false;
2058   }
2059 
2060   // Okay, idiom checks out.
2061   return true;
2062 }
2063 
2064 /// Look for the following loop:
2065 /// \code
2066 ///   entry:
2067 ///     <...>
2068 ///     %bitmask = shl i32 1, %bitpos
2069 ///     br label %loop
2070 ///
2071 ///   loop:
2072 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2073 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2074 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2075 ///     %x.next = shl i32 %x.curr, 1
2076 ///     <...>
2077 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2078 ///
2079 ///   end:
2080 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2081 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2082 ///     <...>
2083 /// \endcode
2084 ///
2085 /// And transform it into:
2086 /// \code
2087 ///   entry:
2088 ///     %bitmask = shl i32 1, %bitpos
2089 ///     %lowbitmask = add i32 %bitmask, -1
2090 ///     %mask = or i32 %lowbitmask, %bitmask
2091 ///     %x.masked = and i32 %x, %mask
2092 ///     %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2093 ///                                                         i1 true)
2094 ///     %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2095 ///     %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2096 ///     %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2097 ///     %tripcount = add i32 %backedgetakencount, 1
2098 ///     %x.curr = shl i32 %x, %backedgetakencount
2099 ///     %x.next = shl i32 %x, %tripcount
2100 ///     br label %loop
2101 ///
2102 ///   loop:
2103 ///     %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2104 ///     %loop.iv.next = add nuw i32 %loop.iv, 1
2105 ///     %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2106 ///     <...>
2107 ///     br i1 %loop.ivcheck, label %end, label %loop
2108 ///
2109 ///   end:
2110 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2111 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2112 ///     <...>
2113 /// \endcode
2114 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2115   bool MadeChange = false;
2116 
2117   Value *X, *BitMask, *BitPos, *XCurr;
2118   Instruction *XNext;
2119   if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2120                                     XNext)) {
2121     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2122                " shift-until-bittest idiom detection failed.\n");
2123     return MadeChange;
2124   }
2125   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2126 
2127   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2128   // but is it profitable to transform?
2129 
2130   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2131   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2132   assert(LoopPreheaderBB && "There is always a loop preheader.");
2133 
2134   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2135   assert(LoopPreheaderBB && "There is only a single successor.");
2136 
2137   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2138   Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2139 
2140   Intrinsic::ID IntrID = Intrinsic::ctlz;
2141   Type *Ty = X->getType();
2142 
2143   TargetTransformInfo::TargetCostKind CostKind =
2144       TargetTransformInfo::TCK_SizeAndLatency;
2145 
2146   // The rewrite is considered to be unprofitable iff and only iff the
2147   // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2148   // making the loop countable, even if nothing else changes.
2149   IntrinsicCostAttributes Attrs(
2150       IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()});
2151   int Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2152   if (Cost > TargetTransformInfo::TCC_Basic) {
2153     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2154                " Intrinsic is too costly, not beneficial\n");
2155     return MadeChange;
2156   }
2157   if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2158       TargetTransformInfo::TCC_Basic) {
2159     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2160     return MadeChange;
2161   }
2162 
2163   // Ok, transform appears worthwhile.
2164   MadeChange = true;
2165 
2166   // Step 1: Compute the loop trip count.
2167 
2168   Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2169                                         BitPos->getName() + ".lowbitmask");
2170   Value *Mask =
2171       Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2172   Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2173   CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2174       IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()},
2175       /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2176   Value *XMaskedNumActiveBits = Builder.CreateSub(
2177       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2178       XMasked->getName() + ".numactivebits");
2179   Value *XMaskedLeadingOnePos =
2180       Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2181                         XMasked->getName() + ".leadingonepos");
2182 
2183   Value *LoopBackedgeTakenCount = Builder.CreateSub(
2184       BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount");
2185   // We know loop's backedge-taken count, but what's loop's trip count?
2186   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2187   Value *LoopTripCount =
2188       Builder.CreateNUWAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2189                            CurLoop->getName() + ".tripcount");
2190 
2191   // Step 2: Compute the recurrence's final value without a loop.
2192 
2193   // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2194   // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2195   Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2196   NewX->takeName(XCurr);
2197   if (auto *I = dyn_cast<Instruction>(NewX))
2198     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2199 
2200   Value *NewXNext;
2201   // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2202   // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2203   // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2204   // that isn't the case, we'll need to emit an alternative, safe IR.
2205   if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2206       PatternMatch::match(
2207           BitPos, PatternMatch::m_SpecificInt_ICMP(
2208                       ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2209                                                Ty->getScalarSizeInBits() - 1))))
2210     NewXNext = Builder.CreateShl(X, LoopTripCount);
2211   else {
2212     // Otherwise, just additionally shift by one. It's the smallest solution,
2213     // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2214     // and select 0 instead.
2215     NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2216   }
2217 
2218   NewXNext->takeName(XNext);
2219   if (auto *I = dyn_cast<Instruction>(NewXNext))
2220     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2221 
2222   // Step 3: Adjust the successor basic block to recieve the computed
2223   //         recurrence's final value instead of the recurrence itself.
2224 
2225   XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2226   XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2227 
2228   // Step 4: Rewrite the loop into a countable form, with canonical IV.
2229 
2230   // The new canonical induction variable.
2231   Builder.SetInsertPoint(&LoopHeaderBB->front());
2232   auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2233 
2234   // The induction itself.
2235   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2236   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2237   auto *IVNext = Builder.CreateNUWAdd(IV, ConstantInt::get(Ty, 1),
2238                                       IV->getName() + ".next");
2239 
2240   // The loop trip count check.
2241   auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2242                                        CurLoop->getName() + ".ivcheck");
2243   Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2244   LoopHeaderBB->getTerminator()->eraseFromParent();
2245 
2246   // Populate the IV PHI.
2247   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2248   IV->addIncoming(IVNext, LoopHeaderBB);
2249 
2250   // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2251   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2252 
2253   SE->forgetLoop(CurLoop);
2254 
2255   // Other passes will take care of actually deleting the loop if possible.
2256 
2257   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2258 
2259   ++NumShiftUntilBitTest;
2260   return MadeChange;
2261 }
2262