1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, memmove, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // Future integer operation idioms to recognize: 28 // ctpop 29 // 30 // Beware that isel's default lowering for ctpop is highly inefficient for 31 // i64 and larger types when i64 is legal and the value has few bits set. It 32 // would be good to enhance isel to emit a loop for ctpop in this case. 33 // 34 // This could recognize common matrix multiplies and dot product idioms and 35 // replace them with calls to BLAS (if linked in??). 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 40 #include "llvm/ADT/APInt.h" 41 #include "llvm/ADT/ArrayRef.h" 42 #include "llvm/ADT/DenseMap.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/SetVector.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringRef.h" 49 #include "llvm/Analysis/AliasAnalysis.h" 50 #include "llvm/Analysis/CmpInstAnalysis.h" 51 #include "llvm/Analysis/LoopAccessAnalysis.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemoryLocation.h" 55 #include "llvm/Analysis/MemorySSA.h" 56 #include "llvm/Analysis/MemorySSAUpdater.h" 57 #include "llvm/Analysis/MustExecute.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/TargetTransformInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/Attributes.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DebugLoc.h" 70 #include "llvm/IR/DerivedTypes.h" 71 #include "llvm/IR/Dominators.h" 72 #include "llvm/IR/GlobalValue.h" 73 #include "llvm/IR/GlobalVariable.h" 74 #include "llvm/IR/IRBuilder.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/Casting.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Transforms/Scalar.h" 95 #include "llvm/Transforms/Utils/BuildLibCalls.h" 96 #include "llvm/Transforms/Utils/Local.h" 97 #include "llvm/Transforms/Utils/LoopUtils.h" 98 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 99 #include <algorithm> 100 #include <cassert> 101 #include <cstdint> 102 #include <utility> 103 #include <vector> 104 105 using namespace llvm; 106 107 #define DEBUG_TYPE "loop-idiom" 108 109 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 110 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 111 STATISTIC( 112 NumShiftUntilBitTest, 113 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 114 115 bool DisableLIRP::All; 116 static cl::opt<bool, true> 117 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 118 cl::desc("Options to disable Loop Idiom Recognize Pass."), 119 cl::location(DisableLIRP::All), cl::init(false), 120 cl::ReallyHidden); 121 122 bool DisableLIRP::Memset; 123 static cl::opt<bool, true> 124 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 125 cl::desc("Proceed with loop idiom recognize pass, but do " 126 "not convert loop(s) to memset."), 127 cl::location(DisableLIRP::Memset), cl::init(false), 128 cl::ReallyHidden); 129 130 bool DisableLIRP::Memcpy; 131 static cl::opt<bool, true> 132 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 133 cl::desc("Proceed with loop idiom recognize pass, but do " 134 "not convert loop(s) to memcpy."), 135 cl::location(DisableLIRP::Memcpy), cl::init(false), 136 cl::ReallyHidden); 137 138 static cl::opt<bool> UseLIRCodeSizeHeurs( 139 "use-lir-code-size-heurs", 140 cl::desc("Use loop idiom recognition code size heuristics when compiling" 141 "with -Os/-Oz"), 142 cl::init(true), cl::Hidden); 143 144 namespace { 145 146 class LoopIdiomRecognize { 147 Loop *CurLoop = nullptr; 148 AliasAnalysis *AA; 149 DominatorTree *DT; 150 LoopInfo *LI; 151 ScalarEvolution *SE; 152 TargetLibraryInfo *TLI; 153 const TargetTransformInfo *TTI; 154 const DataLayout *DL; 155 OptimizationRemarkEmitter &ORE; 156 bool ApplyCodeSizeHeuristics; 157 std::unique_ptr<MemorySSAUpdater> MSSAU; 158 159 public: 160 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 161 LoopInfo *LI, ScalarEvolution *SE, 162 TargetLibraryInfo *TLI, 163 const TargetTransformInfo *TTI, MemorySSA *MSSA, 164 const DataLayout *DL, 165 OptimizationRemarkEmitter &ORE) 166 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 167 if (MSSA) 168 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 169 } 170 171 bool runOnLoop(Loop *L); 172 173 private: 174 using StoreList = SmallVector<StoreInst *, 8>; 175 using StoreListMap = MapVector<Value *, StoreList>; 176 177 StoreListMap StoreRefsForMemset; 178 StoreListMap StoreRefsForMemsetPattern; 179 StoreList StoreRefsForMemcpy; 180 bool HasMemset; 181 bool HasMemsetPattern; 182 bool HasMemcpy; 183 184 /// Return code for isLegalStore() 185 enum LegalStoreKind { 186 None = 0, 187 Memset, 188 MemsetPattern, 189 Memcpy, 190 UnorderedAtomicMemcpy, 191 DontUse // Dummy retval never to be used. Allows catching errors in retval 192 // handling. 193 }; 194 195 /// \name Countable Loop Idiom Handling 196 /// @{ 197 198 bool runOnCountableLoop(); 199 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 200 SmallVectorImpl<BasicBlock *> &ExitBlocks); 201 202 void collectStores(BasicBlock *BB); 203 LegalStoreKind isLegalStore(StoreInst *SI); 204 enum class ForMemset { No, Yes }; 205 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 206 ForMemset For); 207 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 208 209 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, 210 MaybeAlign StoreAlignment, Value *StoredVal, 211 Instruction *TheStore, 212 SmallPtrSetImpl<Instruction *> &Stores, 213 const SCEVAddRecExpr *Ev, const SCEV *BECount, 214 bool NegStride, bool IsLoopMemset = false); 215 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 216 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 217 bool IsLoopMemset = false); 218 219 /// @} 220 /// \name Noncountable Loop Idiom Handling 221 /// @{ 222 223 bool runOnNoncountableLoop(); 224 225 bool recognizePopcount(); 226 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 227 PHINode *CntPhi, Value *Var); 228 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 229 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 230 Instruction *CntInst, PHINode *CntPhi, 231 Value *Var, Instruction *DefX, 232 const DebugLoc &DL, bool ZeroCheck, 233 bool IsCntPhiUsedOutsideLoop); 234 235 bool recognizeShiftUntilBitTest(); 236 237 /// @} 238 }; 239 240 class LoopIdiomRecognizeLegacyPass : public LoopPass { 241 public: 242 static char ID; 243 244 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) { 245 initializeLoopIdiomRecognizeLegacyPassPass( 246 *PassRegistry::getPassRegistry()); 247 } 248 249 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 250 if (DisableLIRP::All) 251 return false; 252 253 if (skipLoop(L)) 254 return false; 255 256 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 257 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 258 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 259 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 260 TargetLibraryInfo *TLI = 261 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 262 *L->getHeader()->getParent()); 263 const TargetTransformInfo *TTI = 264 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 265 *L->getHeader()->getParent()); 266 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout(); 267 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 268 MemorySSA *MSSA = nullptr; 269 if (MSSAAnalysis) 270 MSSA = &MSSAAnalysis->getMSSA(); 271 272 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 273 // pass. Function analyses need to be preserved across loop transformations 274 // but ORE cannot be preserved (see comment before the pass definition). 275 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 276 277 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE); 278 return LIR.runOnLoop(L); 279 } 280 281 /// This transformation requires natural loop information & requires that 282 /// loop preheaders be inserted into the CFG. 283 void getAnalysisUsage(AnalysisUsage &AU) const override { 284 AU.addRequired<TargetLibraryInfoWrapperPass>(); 285 AU.addRequired<TargetTransformInfoWrapperPass>(); 286 AU.addPreserved<MemorySSAWrapperPass>(); 287 getLoopAnalysisUsage(AU); 288 } 289 }; 290 291 } // end anonymous namespace 292 293 char LoopIdiomRecognizeLegacyPass::ID = 0; 294 295 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 296 LoopStandardAnalysisResults &AR, 297 LPMUpdater &) { 298 if (DisableLIRP::All) 299 return PreservedAnalyses::all(); 300 301 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 302 303 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 304 // pass. Function analyses need to be preserved across loop transformations 305 // but ORE cannot be preserved (see comment before the pass definition). 306 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 307 308 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 309 AR.MSSA, DL, ORE); 310 if (!LIR.runOnLoop(&L)) 311 return PreservedAnalyses::all(); 312 313 auto PA = getLoopPassPreservedAnalyses(); 314 if (AR.MSSA) 315 PA.preserve<MemorySSAAnalysis>(); 316 return PA; 317 } 318 319 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom", 320 "Recognize loop idioms", false, false) 321 INITIALIZE_PASS_DEPENDENCY(LoopPass) 322 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 323 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 324 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom", 325 "Recognize loop idioms", false, false) 326 327 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); } 328 329 static void deleteDeadInstruction(Instruction *I) { 330 I->replaceAllUsesWith(UndefValue::get(I->getType())); 331 I->eraseFromParent(); 332 } 333 334 //===----------------------------------------------------------------------===// 335 // 336 // Implementation of LoopIdiomRecognize 337 // 338 //===----------------------------------------------------------------------===// 339 340 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 341 CurLoop = L; 342 // If the loop could not be converted to canonical form, it must have an 343 // indirectbr in it, just give up. 344 if (!L->getLoopPreheader()) 345 return false; 346 347 // Disable loop idiom recognition if the function's name is a common idiom. 348 StringRef Name = L->getHeader()->getParent()->getName(); 349 if (Name == "memset" || Name == "memcpy") 350 return false; 351 352 // Determine if code size heuristics need to be applied. 353 ApplyCodeSizeHeuristics = 354 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 355 356 HasMemset = TLI->has(LibFunc_memset); 357 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 358 HasMemcpy = TLI->has(LibFunc_memcpy); 359 360 if (HasMemset || HasMemsetPattern || HasMemcpy) 361 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 362 return runOnCountableLoop(); 363 364 return runOnNoncountableLoop(); 365 } 366 367 bool LoopIdiomRecognize::runOnCountableLoop() { 368 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 369 assert(!isa<SCEVCouldNotCompute>(BECount) && 370 "runOnCountableLoop() called on a loop without a predictable" 371 "backedge-taken count"); 372 373 // If this loop executes exactly one time, then it should be peeled, not 374 // optimized by this pass. 375 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 376 if (BECst->getAPInt() == 0) 377 return false; 378 379 SmallVector<BasicBlock *, 8> ExitBlocks; 380 CurLoop->getUniqueExitBlocks(ExitBlocks); 381 382 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 383 << CurLoop->getHeader()->getParent()->getName() 384 << "] Countable Loop %" << CurLoop->getHeader()->getName() 385 << "\n"); 386 387 // The following transforms hoist stores/memsets into the loop pre-header. 388 // Give up if the loop has instructions that may throw. 389 SimpleLoopSafetyInfo SafetyInfo; 390 SafetyInfo.computeLoopSafetyInfo(CurLoop); 391 if (SafetyInfo.anyBlockMayThrow()) 392 return false; 393 394 bool MadeChange = false; 395 396 // Scan all the blocks in the loop that are not in subloops. 397 for (auto *BB : CurLoop->getBlocks()) { 398 // Ignore blocks in subloops. 399 if (LI->getLoopFor(BB) != CurLoop) 400 continue; 401 402 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 403 } 404 return MadeChange; 405 } 406 407 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 408 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 409 return ConstStride->getAPInt(); 410 } 411 412 /// getMemSetPatternValue - If a strided store of the specified value is safe to 413 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 414 /// be passed in. Otherwise, return null. 415 /// 416 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 417 /// just replicate their input array and then pass on to memset_pattern16. 418 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 419 // FIXME: This could check for UndefValue because it can be merged into any 420 // other valid pattern. 421 422 // If the value isn't a constant, we can't promote it to being in a constant 423 // array. We could theoretically do a store to an alloca or something, but 424 // that doesn't seem worthwhile. 425 Constant *C = dyn_cast<Constant>(V); 426 if (!C) 427 return nullptr; 428 429 // Only handle simple values that are a power of two bytes in size. 430 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 431 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 432 return nullptr; 433 434 // Don't care enough about darwin/ppc to implement this. 435 if (DL->isBigEndian()) 436 return nullptr; 437 438 // Convert to size in bytes. 439 Size /= 8; 440 441 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 442 // if the top and bottom are the same (e.g. for vectors and large integers). 443 if (Size > 16) 444 return nullptr; 445 446 // If the constant is exactly 16 bytes, just use it. 447 if (Size == 16) 448 return C; 449 450 // Otherwise, we'll use an array of the constants. 451 unsigned ArraySize = 16 / Size; 452 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 453 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 454 } 455 456 LoopIdiomRecognize::LegalStoreKind 457 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 458 // Don't touch volatile stores. 459 if (SI->isVolatile()) 460 return LegalStoreKind::None; 461 // We only want simple or unordered-atomic stores. 462 if (!SI->isUnordered()) 463 return LegalStoreKind::None; 464 465 // Avoid merging nontemporal stores. 466 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 467 return LegalStoreKind::None; 468 469 Value *StoredVal = SI->getValueOperand(); 470 Value *StorePtr = SI->getPointerOperand(); 471 472 // Don't convert stores of non-integral pointer types to memsets (which stores 473 // integers). 474 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 475 return LegalStoreKind::None; 476 477 // Reject stores that are so large that they overflow an unsigned. 478 // When storing out scalable vectors we bail out for now, since the code 479 // below currently only works for constant strides. 480 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 481 if (SizeInBits.isScalable() || (SizeInBits.getFixedSize() & 7) || 482 (SizeInBits.getFixedSize() >> 32) != 0) 483 return LegalStoreKind::None; 484 485 // See if the pointer expression is an AddRec like {base,+,1} on the current 486 // loop, which indicates a strided store. If we have something else, it's a 487 // random store we can't handle. 488 const SCEVAddRecExpr *StoreEv = 489 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 490 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 491 return LegalStoreKind::None; 492 493 // Check to see if we have a constant stride. 494 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 495 return LegalStoreKind::None; 496 497 // See if the store can be turned into a memset. 498 499 // If the stored value is a byte-wise value (like i32 -1), then it may be 500 // turned into a memset of i8 -1, assuming that all the consecutive bytes 501 // are stored. A store of i32 0x01020304 can never be turned into a memset, 502 // but it can be turned into memset_pattern if the target supports it. 503 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 504 Constant *PatternValue = nullptr; 505 506 // Note: memset and memset_pattern on unordered-atomic is yet not supported 507 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 508 509 // If we're allowed to form a memset, and the stored value would be 510 // acceptable for memset, use it. 511 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 512 // Verify that the stored value is loop invariant. If not, we can't 513 // promote the memset. 514 CurLoop->isLoopInvariant(SplatValue)) { 515 // It looks like we can use SplatValue. 516 return LegalStoreKind::Memset; 517 } else if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 518 // Don't create memset_pattern16s with address spaces. 519 StorePtr->getType()->getPointerAddressSpace() == 0 && 520 (PatternValue = getMemSetPatternValue(StoredVal, DL))) { 521 // It looks like we can use PatternValue! 522 return LegalStoreKind::MemsetPattern; 523 } 524 525 // Otherwise, see if the store can be turned into a memcpy. 526 if (HasMemcpy && !DisableLIRP::Memcpy) { 527 // Check to see if the stride matches the size of the store. If so, then we 528 // know that every byte is touched in the loop. 529 APInt Stride = getStoreStride(StoreEv); 530 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 531 if (StoreSize != Stride && StoreSize != -Stride) 532 return LegalStoreKind::None; 533 534 // The store must be feeding a non-volatile load. 535 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 536 537 // Only allow non-volatile loads 538 if (!LI || LI->isVolatile()) 539 return LegalStoreKind::None; 540 // Only allow simple or unordered-atomic loads 541 if (!LI->isUnordered()) 542 return LegalStoreKind::None; 543 544 // See if the pointer expression is an AddRec like {base,+,1} on the current 545 // loop, which indicates a strided load. If we have something else, it's a 546 // random load we can't handle. 547 const SCEVAddRecExpr *LoadEv = 548 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 549 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 550 return LegalStoreKind::None; 551 552 // The store and load must share the same stride. 553 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 554 return LegalStoreKind::None; 555 556 // Success. This store can be converted into a memcpy. 557 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 558 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 559 : LegalStoreKind::Memcpy; 560 } 561 // This store can't be transformed into a memset/memcpy. 562 return LegalStoreKind::None; 563 } 564 565 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 566 StoreRefsForMemset.clear(); 567 StoreRefsForMemsetPattern.clear(); 568 StoreRefsForMemcpy.clear(); 569 for (Instruction &I : *BB) { 570 StoreInst *SI = dyn_cast<StoreInst>(&I); 571 if (!SI) 572 continue; 573 574 // Make sure this is a strided store with a constant stride. 575 switch (isLegalStore(SI)) { 576 case LegalStoreKind::None: 577 // Nothing to do 578 break; 579 case LegalStoreKind::Memset: { 580 // Find the base pointer. 581 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 582 StoreRefsForMemset[Ptr].push_back(SI); 583 } break; 584 case LegalStoreKind::MemsetPattern: { 585 // Find the base pointer. 586 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 587 StoreRefsForMemsetPattern[Ptr].push_back(SI); 588 } break; 589 case LegalStoreKind::Memcpy: 590 case LegalStoreKind::UnorderedAtomicMemcpy: 591 StoreRefsForMemcpy.push_back(SI); 592 break; 593 default: 594 assert(false && "unhandled return value"); 595 break; 596 } 597 } 598 } 599 600 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 601 /// with the specified backedge count. This block is known to be in the current 602 /// loop and not in any subloops. 603 bool LoopIdiomRecognize::runOnLoopBlock( 604 BasicBlock *BB, const SCEV *BECount, 605 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 606 // We can only promote stores in this block if they are unconditionally 607 // executed in the loop. For a block to be unconditionally executed, it has 608 // to dominate all the exit blocks of the loop. Verify this now. 609 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) 610 if (!DT->dominates(BB, ExitBlocks[i])) 611 return false; 612 613 bool MadeChange = false; 614 // Look for store instructions, which may be optimized to memset/memcpy. 615 collectStores(BB); 616 617 // Look for a single store or sets of stores with a common base, which can be 618 // optimized into a memset (memset_pattern). The latter most commonly happens 619 // with structs and handunrolled loops. 620 for (auto &SL : StoreRefsForMemset) 621 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 622 623 for (auto &SL : StoreRefsForMemsetPattern) 624 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 625 626 // Optimize the store into a memcpy, if it feeds an similarly strided load. 627 for (auto &SI : StoreRefsForMemcpy) 628 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 629 630 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 631 Instruction *Inst = &*I++; 632 // Look for memset instructions, which may be optimized to a larger memset. 633 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { 634 WeakTrackingVH InstPtr(&*I); 635 if (!processLoopMemSet(MSI, BECount)) 636 continue; 637 MadeChange = true; 638 639 // If processing the memset invalidated our iterator, start over from the 640 // top of the block. 641 if (!InstPtr) 642 I = BB->begin(); 643 continue; 644 } 645 } 646 647 return MadeChange; 648 } 649 650 /// See if this store(s) can be promoted to a memset. 651 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 652 const SCEV *BECount, ForMemset For) { 653 // Try to find consecutive stores that can be transformed into memsets. 654 SetVector<StoreInst *> Heads, Tails; 655 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 656 657 // Do a quadratic search on all of the given stores and find 658 // all of the pairs of stores that follow each other. 659 SmallVector<unsigned, 16> IndexQueue; 660 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 661 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 662 663 Value *FirstStoredVal = SL[i]->getValueOperand(); 664 Value *FirstStorePtr = SL[i]->getPointerOperand(); 665 const SCEVAddRecExpr *FirstStoreEv = 666 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 667 APInt FirstStride = getStoreStride(FirstStoreEv); 668 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 669 670 // See if we can optimize just this store in isolation. 671 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 672 Heads.insert(SL[i]); 673 continue; 674 } 675 676 Value *FirstSplatValue = nullptr; 677 Constant *FirstPatternValue = nullptr; 678 679 if (For == ForMemset::Yes) 680 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 681 else 682 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 683 684 assert((FirstSplatValue || FirstPatternValue) && 685 "Expected either splat value or pattern value."); 686 687 IndexQueue.clear(); 688 // If a store has multiple consecutive store candidates, search Stores 689 // array according to the sequence: from i+1 to e, then from i-1 to 0. 690 // This is because usually pairing with immediate succeeding or preceding 691 // candidate create the best chance to find memset opportunity. 692 unsigned j = 0; 693 for (j = i + 1; j < e; ++j) 694 IndexQueue.push_back(j); 695 for (j = i; j > 0; --j) 696 IndexQueue.push_back(j - 1); 697 698 for (auto &k : IndexQueue) { 699 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 700 Value *SecondStorePtr = SL[k]->getPointerOperand(); 701 const SCEVAddRecExpr *SecondStoreEv = 702 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 703 APInt SecondStride = getStoreStride(SecondStoreEv); 704 705 if (FirstStride != SecondStride) 706 continue; 707 708 Value *SecondStoredVal = SL[k]->getValueOperand(); 709 Value *SecondSplatValue = nullptr; 710 Constant *SecondPatternValue = nullptr; 711 712 if (For == ForMemset::Yes) 713 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 714 else 715 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 716 717 assert((SecondSplatValue || SecondPatternValue) && 718 "Expected either splat value or pattern value."); 719 720 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 721 if (For == ForMemset::Yes) { 722 if (isa<UndefValue>(FirstSplatValue)) 723 FirstSplatValue = SecondSplatValue; 724 if (FirstSplatValue != SecondSplatValue) 725 continue; 726 } else { 727 if (isa<UndefValue>(FirstPatternValue)) 728 FirstPatternValue = SecondPatternValue; 729 if (FirstPatternValue != SecondPatternValue) 730 continue; 731 } 732 Tails.insert(SL[k]); 733 Heads.insert(SL[i]); 734 ConsecutiveChain[SL[i]] = SL[k]; 735 break; 736 } 737 } 738 } 739 740 // We may run into multiple chains that merge into a single chain. We mark the 741 // stores that we transformed so that we don't visit the same store twice. 742 SmallPtrSet<Value *, 16> TransformedStores; 743 bool Changed = false; 744 745 // For stores that start but don't end a link in the chain: 746 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); 747 it != e; ++it) { 748 if (Tails.count(*it)) 749 continue; 750 751 // We found a store instr that starts a chain. Now follow the chain and try 752 // to transform it. 753 SmallPtrSet<Instruction *, 8> AdjacentStores; 754 StoreInst *I = *it; 755 756 StoreInst *HeadStore = I; 757 unsigned StoreSize = 0; 758 759 // Collect the chain into a list. 760 while (Tails.count(I) || Heads.count(I)) { 761 if (TransformedStores.count(I)) 762 break; 763 AdjacentStores.insert(I); 764 765 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 766 // Move to the next value in the chain. 767 I = ConsecutiveChain[I]; 768 } 769 770 Value *StoredVal = HeadStore->getValueOperand(); 771 Value *StorePtr = HeadStore->getPointerOperand(); 772 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 773 APInt Stride = getStoreStride(StoreEv); 774 775 // Check to see if the stride matches the size of the stores. If so, then 776 // we know that every byte is touched in the loop. 777 if (StoreSize != Stride && StoreSize != -Stride) 778 continue; 779 780 bool NegStride = StoreSize == -Stride; 781 782 if (processLoopStridedStore(StorePtr, StoreSize, 783 MaybeAlign(HeadStore->getAlignment()), 784 StoredVal, HeadStore, AdjacentStores, StoreEv, 785 BECount, NegStride)) { 786 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 787 Changed = true; 788 } 789 } 790 791 return Changed; 792 } 793 794 /// processLoopMemSet - See if this memset can be promoted to a large memset. 795 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 796 const SCEV *BECount) { 797 // We can only handle non-volatile memsets with a constant size. 798 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) 799 return false; 800 801 // If we're not allowed to hack on memset, we fail. 802 if (!HasMemset) 803 return false; 804 805 Value *Pointer = MSI->getDest(); 806 807 // See if the pointer expression is an AddRec like {base,+,1} on the current 808 // loop, which indicates a strided store. If we have something else, it's a 809 // random store we can't handle. 810 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 811 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine()) 812 return false; 813 814 // Reject memsets that are so large that they overflow an unsigned. 815 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 816 if ((SizeInBytes >> 32) != 0) 817 return false; 818 819 // Check to see if the stride matches the size of the memset. If so, then we 820 // know that every byte is touched in the loop. 821 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 822 if (!ConstStride) 823 return false; 824 825 APInt Stride = ConstStride->getAPInt(); 826 if (SizeInBytes != Stride && SizeInBytes != -Stride) 827 return false; 828 829 // Verify that the memset value is loop invariant. If not, we can't promote 830 // the memset. 831 Value *SplatValue = MSI->getValue(); 832 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 833 return false; 834 835 SmallPtrSet<Instruction *, 1> MSIs; 836 MSIs.insert(MSI); 837 bool NegStride = SizeInBytes == -Stride; 838 return processLoopStridedStore( 839 Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()), 840 SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true); 841 } 842 843 /// mayLoopAccessLocation - Return true if the specified loop might access the 844 /// specified pointer location, which is a loop-strided access. The 'Access' 845 /// argument specifies what the verboten forms of access are (read or write). 846 static bool 847 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 848 const SCEV *BECount, unsigned StoreSize, 849 AliasAnalysis &AA, 850 SmallPtrSetImpl<Instruction *> &IgnoredStores) { 851 // Get the location that may be stored across the loop. Since the access is 852 // strided positively through memory, we say that the modified location starts 853 // at the pointer and has infinite size. 854 LocationSize AccessSize = LocationSize::afterPointer(); 855 856 // If the loop iterates a fixed number of times, we can refine the access size 857 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 858 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 859 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * 860 StoreSize); 861 862 // TODO: For this to be really effective, we have to dive into the pointer 863 // operand in the store. Store to &A[i] of 100 will always return may alias 864 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 865 // which will then no-alias a store to &A[100]. 866 MemoryLocation StoreLoc(Ptr, AccessSize); 867 868 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; 869 ++BI) 870 for (Instruction &I : **BI) 871 if (IgnoredStores.count(&I) == 0 && 872 isModOrRefSet( 873 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access))) 874 return true; 875 876 return false; 877 } 878 879 // If we have a negative stride, Start refers to the end of the memory location 880 // we're trying to memset. Therefore, we need to recompute the base pointer, 881 // which is just Start - BECount*Size. 882 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 883 Type *IntPtr, unsigned StoreSize, 884 ScalarEvolution *SE) { 885 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 886 if (StoreSize != 1) 887 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize), 888 SCEV::FlagNUW); 889 return SE->getMinusSCEV(Start, Index); 890 } 891 892 /// Compute the number of bytes as a SCEV from the backedge taken count. 893 /// 894 /// This also maps the SCEV into the provided type and tries to handle the 895 /// computation in a way that will fold cleanly. 896 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 897 unsigned StoreSize, Loop *CurLoop, 898 const DataLayout *DL, ScalarEvolution *SE) { 899 const SCEV *NumBytesS; 900 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to 901 // pointer size if it isn't already. 902 // 903 // If we're going to need to zero extend the BE count, check if we can add 904 // one to it prior to zero extending without overflow. Provided this is safe, 905 // it allows better simplification of the +1. 906 if (DL->getTypeSizeInBits(BECount->getType()).getFixedSize() < 907 DL->getTypeSizeInBits(IntPtr).getFixedSize() && 908 SE->isLoopEntryGuardedByCond( 909 CurLoop, ICmpInst::ICMP_NE, BECount, 910 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) { 911 NumBytesS = SE->getZeroExtendExpr( 912 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW), 913 IntPtr); 914 } else { 915 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr), 916 SE->getOne(IntPtr), SCEV::FlagNUW); 917 } 918 919 // And scale it based on the store size. 920 if (StoreSize != 1) { 921 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), 922 SCEV::FlagNUW); 923 } 924 return NumBytesS; 925 } 926 927 /// processLoopStridedStore - We see a strided store of some value. If we can 928 /// transform this into a memset or memset_pattern in the loop preheader, do so. 929 bool LoopIdiomRecognize::processLoopStridedStore( 930 Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment, 931 Value *StoredVal, Instruction *TheStore, 932 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 933 const SCEV *BECount, bool NegStride, bool IsLoopMemset) { 934 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 935 Constant *PatternValue = nullptr; 936 937 if (!SplatValue) 938 PatternValue = getMemSetPatternValue(StoredVal, DL); 939 940 assert((SplatValue || PatternValue) && 941 "Expected either splat value or pattern value."); 942 943 // The trip count of the loop and the base pointer of the addrec SCEV is 944 // guaranteed to be loop invariant, which means that it should dominate the 945 // header. This allows us to insert code for it in the preheader. 946 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 947 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 948 IRBuilder<> Builder(Preheader->getTerminator()); 949 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 950 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 951 952 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); 953 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 954 955 bool Changed = false; 956 const SCEV *Start = Ev->getStart(); 957 // Handle negative strided loops. 958 if (NegStride) 959 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE); 960 961 // TODO: ideally we should still be able to generate memset if SCEV expander 962 // is taught to generate the dependencies at the latest point. 963 if (!isSafeToExpand(Start, *SE)) 964 return Changed; 965 966 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 967 // this into a memset in the loop preheader now if we want. However, this 968 // would be unsafe to do if there is anything else in the loop that may read 969 // or write to the aliased location. Check for any overlap by generating the 970 // base pointer and checking the region. 971 Value *BasePtr = 972 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 973 974 // From here on out, conservatively report to the pass manager that we've 975 // changed the IR, even if we later clean up these added instructions. There 976 // may be structural differences e.g. in the order of use lists not accounted 977 // for in just a textual dump of the IR. This is written as a variable, even 978 // though statically all the places this dominates could be replaced with 979 // 'true', with the hope that anyone trying to be clever / "more precise" with 980 // the return value will read this comment, and leave them alone. 981 Changed = true; 982 983 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 984 StoreSize, *AA, Stores)) 985 return Changed; 986 987 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 988 return Changed; 989 990 // Okay, everything looks good, insert the memset. 991 992 const SCEV *NumBytesS = 993 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); 994 995 // TODO: ideally we should still be able to generate memset if SCEV expander 996 // is taught to generate the dependencies at the latest point. 997 if (!isSafeToExpand(NumBytesS, *SE)) 998 return Changed; 999 1000 Value *NumBytes = 1001 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1002 1003 CallInst *NewCall; 1004 if (SplatValue) { 1005 NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, 1006 MaybeAlign(StoreAlignment)); 1007 } else { 1008 // Everything is emitted in default address space 1009 Type *Int8PtrTy = DestInt8PtrTy; 1010 1011 Module *M = TheStore->getModule(); 1012 StringRef FuncName = "memset_pattern16"; 1013 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(), 1014 Int8PtrTy, Int8PtrTy, IntIdxTy); 1015 inferLibFuncAttributes(M, FuncName, *TLI); 1016 1017 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1018 // an constant array of 16-bytes. Plop the value into a mergable global. 1019 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1020 GlobalValue::PrivateLinkage, 1021 PatternValue, ".memset_pattern"); 1022 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1023 GV->setAlignment(Align(16)); 1024 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); 1025 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1026 } 1027 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1028 1029 if (MSSAU) { 1030 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1031 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1032 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1033 } 1034 1035 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1036 << " from store to: " << *Ev << " at: " << *TheStore 1037 << "\n"); 1038 1039 ORE.emit([&]() { 1040 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore", 1041 NewCall->getDebugLoc(), Preheader) 1042 << "Transformed loop-strided store into a call to " 1043 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1044 << "() function"; 1045 }); 1046 1047 // Okay, the memset has been formed. Zap the original store and anything that 1048 // feeds into it. 1049 for (auto *I : Stores) { 1050 if (MSSAU) 1051 MSSAU->removeMemoryAccess(I, true); 1052 deleteDeadInstruction(I); 1053 } 1054 if (MSSAU && VerifyMemorySSA) 1055 MSSAU->getMemorySSA()->verifyMemorySSA(); 1056 ++NumMemSet; 1057 ExpCleaner.markResultUsed(); 1058 return true; 1059 } 1060 1061 /// If the stored value is a strided load in the same loop with the same stride 1062 /// this may be transformable into a memcpy. This kicks in for stuff like 1063 /// for (i) A[i] = B[i]; 1064 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1065 const SCEV *BECount) { 1066 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1067 1068 Value *StorePtr = SI->getPointerOperand(); 1069 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1070 APInt Stride = getStoreStride(StoreEv); 1071 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1072 bool NegStride = StoreSize == -Stride; 1073 1074 // The store must be feeding a non-volatile load. 1075 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1076 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1077 1078 // See if the pointer expression is an AddRec like {base,+,1} on the current 1079 // loop, which indicates a strided load. If we have something else, it's a 1080 // random load we can't handle. 1081 const SCEVAddRecExpr *LoadEv = 1082 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 1083 1084 // The trip count of the loop and the base pointer of the addrec SCEV is 1085 // guaranteed to be loop invariant, which means that it should dominate the 1086 // header. This allows us to insert code for it in the preheader. 1087 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1088 IRBuilder<> Builder(Preheader->getTerminator()); 1089 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1090 1091 SCEVExpanderCleaner ExpCleaner(Expander, *DT); 1092 1093 bool Changed = false; 1094 const SCEV *StrStart = StoreEv->getStart(); 1095 unsigned StrAS = SI->getPointerAddressSpace(); 1096 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1097 1098 // Handle negative strided loops. 1099 if (NegStride) 1100 StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE); 1101 1102 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1103 // this into a memcpy in the loop preheader now if we want. However, this 1104 // would be unsafe to do if there is anything else in the loop that may read 1105 // or write the memory region we're storing to. This includes the load that 1106 // feeds the stores. Check for an alias by generating the base address and 1107 // checking everything. 1108 Value *StoreBasePtr = Expander.expandCodeFor( 1109 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); 1110 1111 // From here on out, conservatively report to the pass manager that we've 1112 // changed the IR, even if we later clean up these added instructions. There 1113 // may be structural differences e.g. in the order of use lists not accounted 1114 // for in just a textual dump of the IR. This is written as a variable, even 1115 // though statically all the places this dominates could be replaced with 1116 // 'true', with the hope that anyone trying to be clever / "more precise" with 1117 // the return value will read this comment, and leave them alone. 1118 Changed = true; 1119 1120 SmallPtrSet<Instruction *, 1> Stores; 1121 Stores.insert(SI); 1122 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1123 StoreSize, *AA, Stores)) 1124 return Changed; 1125 1126 const SCEV *LdStart = LoadEv->getStart(); 1127 unsigned LdAS = LI->getPointerAddressSpace(); 1128 1129 // Handle negative strided loops. 1130 if (NegStride) 1131 LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE); 1132 1133 // For a memcpy, we have to make sure that the input array is not being 1134 // mutated by the loop. 1135 Value *LoadBasePtr = Expander.expandCodeFor( 1136 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); 1137 1138 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1139 StoreSize, *AA, Stores)) 1140 return Changed; 1141 1142 if (avoidLIRForMultiBlockLoop()) 1143 return Changed; 1144 1145 // Okay, everything is safe, we can transform this! 1146 1147 const SCEV *NumBytesS = 1148 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE); 1149 1150 Value *NumBytes = 1151 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1152 1153 CallInst *NewCall = nullptr; 1154 // Check whether to generate an unordered atomic memcpy: 1155 // If the load or store are atomic, then they must necessarily be unordered 1156 // by previous checks. 1157 if (!SI->isAtomic() && !LI->isAtomic()) 1158 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr, 1159 LI->getAlign(), NumBytes); 1160 else { 1161 // We cannot allow unaligned ops for unordered load/store, so reject 1162 // anything where the alignment isn't at least the element size. 1163 const Align StoreAlign = SI->getAlign(); 1164 const Align LoadAlign = LI->getAlign(); 1165 if (StoreAlign < StoreSize || LoadAlign < StoreSize) 1166 return Changed; 1167 1168 // If the element.atomic memcpy is not lowered into explicit 1169 // loads/stores later, then it will be lowered into an element-size 1170 // specific lib call. If the lib call doesn't exist for our store size, then 1171 // we shouldn't generate the memcpy. 1172 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1173 return Changed; 1174 1175 // Create the call. 1176 // Note that unordered atomic loads/stores are *required* by the spec to 1177 // have an alignment but non-atomic loads/stores may not. 1178 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1179 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, 1180 StoreSize); 1181 } 1182 NewCall->setDebugLoc(SI->getDebugLoc()); 1183 1184 if (MSSAU) { 1185 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1186 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1187 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1188 } 1189 1190 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" 1191 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" 1192 << " from store ptr=" << *StoreEv << " at: " << *SI 1193 << "\n"); 1194 1195 ORE.emit([&]() { 1196 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1197 NewCall->getDebugLoc(), Preheader) 1198 << "Formed a call to " 1199 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1200 << "() function"; 1201 }); 1202 1203 // Okay, the memcpy has been formed. Zap the original store and anything that 1204 // feeds into it. 1205 if (MSSAU) 1206 MSSAU->removeMemoryAccess(SI, true); 1207 deleteDeadInstruction(SI); 1208 if (MSSAU && VerifyMemorySSA) 1209 MSSAU->getMemorySSA()->verifyMemorySSA(); 1210 ++NumMemCpy; 1211 ExpCleaner.markResultUsed(); 1212 return true; 1213 } 1214 1215 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1216 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1217 // 1218 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1219 bool IsLoopMemset) { 1220 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1221 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1222 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1223 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1224 << " avoided: multi-block top-level loop\n"); 1225 return true; 1226 } 1227 } 1228 1229 return false; 1230 } 1231 1232 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1233 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1234 << CurLoop->getHeader()->getParent()->getName() 1235 << "] Noncountable Loop %" 1236 << CurLoop->getHeader()->getName() << "\n"); 1237 1238 return recognizePopcount() || recognizeAndInsertFFS() || 1239 recognizeShiftUntilBitTest(); 1240 } 1241 1242 /// Check if the given conditional branch is based on the comparison between 1243 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1244 /// true), the control yields to the loop entry. If the branch matches the 1245 /// behavior, the variable involved in the comparison is returned. This function 1246 /// will be called to see if the precondition and postcondition of the loop are 1247 /// in desirable form. 1248 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1249 bool JmpOnZero = false) { 1250 if (!BI || !BI->isConditional()) 1251 return nullptr; 1252 1253 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1254 if (!Cond) 1255 return nullptr; 1256 1257 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1258 if (!CmpZero || !CmpZero->isZero()) 1259 return nullptr; 1260 1261 BasicBlock *TrueSucc = BI->getSuccessor(0); 1262 BasicBlock *FalseSucc = BI->getSuccessor(1); 1263 if (JmpOnZero) 1264 std::swap(TrueSucc, FalseSucc); 1265 1266 ICmpInst::Predicate Pred = Cond->getPredicate(); 1267 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1268 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1269 return Cond->getOperand(0); 1270 1271 return nullptr; 1272 } 1273 1274 // Check if the recurrence variable `VarX` is in the right form to create 1275 // the idiom. Returns the value coerced to a PHINode if so. 1276 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1277 BasicBlock *LoopEntry) { 1278 auto *PhiX = dyn_cast<PHINode>(VarX); 1279 if (PhiX && PhiX->getParent() == LoopEntry && 1280 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1281 return PhiX; 1282 return nullptr; 1283 } 1284 1285 /// Return true iff the idiom is detected in the loop. 1286 /// 1287 /// Additionally: 1288 /// 1) \p CntInst is set to the instruction counting the population bit. 1289 /// 2) \p CntPhi is set to the corresponding phi node. 1290 /// 3) \p Var is set to the value whose population bits are being counted. 1291 /// 1292 /// The core idiom we are trying to detect is: 1293 /// \code 1294 /// if (x0 != 0) 1295 /// goto loop-exit // the precondition of the loop 1296 /// cnt0 = init-val; 1297 /// do { 1298 /// x1 = phi (x0, x2); 1299 /// cnt1 = phi(cnt0, cnt2); 1300 /// 1301 /// cnt2 = cnt1 + 1; 1302 /// ... 1303 /// x2 = x1 & (x1 - 1); 1304 /// ... 1305 /// } while(x != 0); 1306 /// 1307 /// loop-exit: 1308 /// \endcode 1309 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1310 Instruction *&CntInst, PHINode *&CntPhi, 1311 Value *&Var) { 1312 // step 1: Check to see if the look-back branch match this pattern: 1313 // "if (a!=0) goto loop-entry". 1314 BasicBlock *LoopEntry; 1315 Instruction *DefX2, *CountInst; 1316 Value *VarX1, *VarX0; 1317 PHINode *PhiX, *CountPhi; 1318 1319 DefX2 = CountInst = nullptr; 1320 VarX1 = VarX0 = nullptr; 1321 PhiX = CountPhi = nullptr; 1322 LoopEntry = *(CurLoop->block_begin()); 1323 1324 // step 1: Check if the loop-back branch is in desirable form. 1325 { 1326 if (Value *T = matchCondition( 1327 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1328 DefX2 = dyn_cast<Instruction>(T); 1329 else 1330 return false; 1331 } 1332 1333 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1334 { 1335 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1336 return false; 1337 1338 BinaryOperator *SubOneOp; 1339 1340 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1341 VarX1 = DefX2->getOperand(1); 1342 else { 1343 VarX1 = DefX2->getOperand(0); 1344 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1345 } 1346 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1347 return false; 1348 1349 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1350 if (!Dec || 1351 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1352 (SubOneOp->getOpcode() == Instruction::Add && 1353 Dec->isMinusOne()))) { 1354 return false; 1355 } 1356 } 1357 1358 // step 3: Check the recurrence of variable X 1359 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1360 if (!PhiX) 1361 return false; 1362 1363 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1364 { 1365 CountInst = nullptr; 1366 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1367 IterE = LoopEntry->end(); 1368 Iter != IterE; Iter++) { 1369 Instruction *Inst = &*Iter; 1370 if (Inst->getOpcode() != Instruction::Add) 1371 continue; 1372 1373 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1374 if (!Inc || !Inc->isOne()) 1375 continue; 1376 1377 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1378 if (!Phi) 1379 continue; 1380 1381 // Check if the result of the instruction is live of the loop. 1382 bool LiveOutLoop = false; 1383 for (User *U : Inst->users()) { 1384 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1385 LiveOutLoop = true; 1386 break; 1387 } 1388 } 1389 1390 if (LiveOutLoop) { 1391 CountInst = Inst; 1392 CountPhi = Phi; 1393 break; 1394 } 1395 } 1396 1397 if (!CountInst) 1398 return false; 1399 } 1400 1401 // step 5: check if the precondition is in this form: 1402 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1403 { 1404 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1405 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1406 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1407 return false; 1408 1409 CntInst = CountInst; 1410 CntPhi = CountPhi; 1411 Var = T; 1412 } 1413 1414 return true; 1415 } 1416 1417 /// Return true if the idiom is detected in the loop. 1418 /// 1419 /// Additionally: 1420 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1421 /// or nullptr if there is no such. 1422 /// 2) \p CntPhi is set to the corresponding phi node 1423 /// or nullptr if there is no such. 1424 /// 3) \p Var is set to the value whose CTLZ could be used. 1425 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1426 /// 1427 /// The core idiom we are trying to detect is: 1428 /// \code 1429 /// if (x0 == 0) 1430 /// goto loop-exit // the precondition of the loop 1431 /// cnt0 = init-val; 1432 /// do { 1433 /// x = phi (x0, x.next); //PhiX 1434 /// cnt = phi(cnt0, cnt.next); 1435 /// 1436 /// cnt.next = cnt + 1; 1437 /// ... 1438 /// x.next = x >> 1; // DefX 1439 /// ... 1440 /// } while(x.next != 0); 1441 /// 1442 /// loop-exit: 1443 /// \endcode 1444 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1445 Intrinsic::ID &IntrinID, Value *&InitX, 1446 Instruction *&CntInst, PHINode *&CntPhi, 1447 Instruction *&DefX) { 1448 BasicBlock *LoopEntry; 1449 Value *VarX = nullptr; 1450 1451 DefX = nullptr; 1452 CntInst = nullptr; 1453 CntPhi = nullptr; 1454 LoopEntry = *(CurLoop->block_begin()); 1455 1456 // step 1: Check if the loop-back branch is in desirable form. 1457 if (Value *T = matchCondition( 1458 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1459 DefX = dyn_cast<Instruction>(T); 1460 else 1461 return false; 1462 1463 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1464 if (!DefX || !DefX->isShift()) 1465 return false; 1466 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1467 Intrinsic::ctlz; 1468 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1469 if (!Shft || !Shft->isOne()) 1470 return false; 1471 VarX = DefX->getOperand(0); 1472 1473 // step 3: Check the recurrence of variable X 1474 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1475 if (!PhiX) 1476 return false; 1477 1478 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1479 1480 // Make sure the initial value can't be negative otherwise the ashr in the 1481 // loop might never reach zero which would make the loop infinite. 1482 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1483 return false; 1484 1485 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1486 // or cnt.next = cnt + -1. 1487 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1488 // then all uses of "cnt.next" could be optimized to the trip count 1489 // plus "cnt0". Currently it is not optimized. 1490 // This step could be used to detect POPCNT instruction: 1491 // cnt.next = cnt + (x.next & 1) 1492 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(), 1493 IterE = LoopEntry->end(); 1494 Iter != IterE; Iter++) { 1495 Instruction *Inst = &*Iter; 1496 if (Inst->getOpcode() != Instruction::Add) 1497 continue; 1498 1499 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1)); 1500 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1501 continue; 1502 1503 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry); 1504 if (!Phi) 1505 continue; 1506 1507 CntInst = Inst; 1508 CntPhi = Phi; 1509 break; 1510 } 1511 if (!CntInst) 1512 return false; 1513 1514 return true; 1515 } 1516 1517 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1518 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1519 /// trip count returns true; otherwise, returns false. 1520 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1521 // Give up if the loop has multiple blocks or multiple backedges. 1522 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1523 return false; 1524 1525 Intrinsic::ID IntrinID; 1526 Value *InitX; 1527 Instruction *DefX = nullptr; 1528 PHINode *CntPhi = nullptr; 1529 Instruction *CntInst = nullptr; 1530 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1531 // this is always 6. 1532 size_t IdiomCanonicalSize = 6; 1533 1534 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1535 CntInst, CntPhi, DefX)) 1536 return false; 1537 1538 bool IsCntPhiUsedOutsideLoop = false; 1539 for (User *U : CntPhi->users()) 1540 if (!CurLoop->contains(cast<Instruction>(U))) { 1541 IsCntPhiUsedOutsideLoop = true; 1542 break; 1543 } 1544 bool IsCntInstUsedOutsideLoop = false; 1545 for (User *U : CntInst->users()) 1546 if (!CurLoop->contains(cast<Instruction>(U))) { 1547 IsCntInstUsedOutsideLoop = true; 1548 break; 1549 } 1550 // If both CntInst and CntPhi are used outside the loop the profitability 1551 // is questionable. 1552 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1553 return false; 1554 1555 // For some CPUs result of CTLZ(X) intrinsic is undefined 1556 // when X is 0. If we can not guarantee X != 0, we need to check this 1557 // when expand. 1558 bool ZeroCheck = false; 1559 // It is safe to assume Preheader exist as it was checked in 1560 // parent function RunOnLoop. 1561 BasicBlock *PH = CurLoop->getLoopPreheader(); 1562 1563 // If we are using the count instruction outside the loop, make sure we 1564 // have a zero check as a precondition. Without the check the loop would run 1565 // one iteration for before any check of the input value. This means 0 and 1 1566 // would have identical behavior in the original loop and thus 1567 if (!IsCntPhiUsedOutsideLoop) { 1568 auto *PreCondBB = PH->getSinglePredecessor(); 1569 if (!PreCondBB) 1570 return false; 1571 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1572 if (!PreCondBI) 1573 return false; 1574 if (matchCondition(PreCondBI, PH) != InitX) 1575 return false; 1576 ZeroCheck = true; 1577 } 1578 1579 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1580 // profitable if we delete the loop. 1581 1582 // the loop has only 6 instructions: 1583 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1584 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1585 // %shr = ashr %n.addr.0, 1 1586 // %tobool = icmp eq %shr, 0 1587 // %inc = add nsw %i.0, 1 1588 // br i1 %tobool 1589 1590 const Value *Args[] = { 1591 InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext()) 1592 : ConstantInt::getFalse(InitX->getContext())}; 1593 1594 // @llvm.dbg doesn't count as they have no semantic effect. 1595 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1596 uint32_t HeaderSize = 1597 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1598 1599 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1600 int Cost = 1601 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1602 if (HeaderSize != IdiomCanonicalSize && 1603 Cost > TargetTransformInfo::TCC_Basic) 1604 return false; 1605 1606 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1607 DefX->getDebugLoc(), ZeroCheck, 1608 IsCntPhiUsedOutsideLoop); 1609 return true; 1610 } 1611 1612 /// Recognizes a population count idiom in a non-countable loop. 1613 /// 1614 /// If detected, transforms the relevant code to issue the popcount intrinsic 1615 /// function call, and returns true; otherwise, returns false. 1616 bool LoopIdiomRecognize::recognizePopcount() { 1617 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1618 return false; 1619 1620 // Counting population are usually conducted by few arithmetic instructions. 1621 // Such instructions can be easily "absorbed" by vacant slots in a 1622 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1623 // in a compact loop. 1624 1625 // Give up if the loop has multiple blocks or multiple backedges. 1626 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1627 return false; 1628 1629 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1630 if (LoopBody->size() >= 20) { 1631 // The loop is too big, bail out. 1632 return false; 1633 } 1634 1635 // It should have a preheader containing nothing but an unconditional branch. 1636 BasicBlock *PH = CurLoop->getLoopPreheader(); 1637 if (!PH || &PH->front() != PH->getTerminator()) 1638 return false; 1639 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1640 if (!EntryBI || EntryBI->isConditional()) 1641 return false; 1642 1643 // It should have a precondition block where the generated popcount intrinsic 1644 // function can be inserted. 1645 auto *PreCondBB = PH->getSinglePredecessor(); 1646 if (!PreCondBB) 1647 return false; 1648 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1649 if (!PreCondBI || PreCondBI->isUnconditional()) 1650 return false; 1651 1652 Instruction *CntInst; 1653 PHINode *CntPhi; 1654 Value *Val; 1655 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1656 return false; 1657 1658 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1659 return true; 1660 } 1661 1662 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1663 const DebugLoc &DL) { 1664 Value *Ops[] = {Val}; 1665 Type *Tys[] = {Val->getType()}; 1666 1667 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1668 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1669 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1670 CI->setDebugLoc(DL); 1671 1672 return CI; 1673 } 1674 1675 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1676 const DebugLoc &DL, bool ZeroCheck, 1677 Intrinsic::ID IID) { 1678 Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()}; 1679 Type *Tys[] = {Val->getType()}; 1680 1681 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1682 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 1683 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1684 CI->setDebugLoc(DL); 1685 1686 return CI; 1687 } 1688 1689 /// Transform the following loop (Using CTLZ, CTTZ is similar): 1690 /// loop: 1691 /// CntPhi = PHI [Cnt0, CntInst] 1692 /// PhiX = PHI [InitX, DefX] 1693 /// CntInst = CntPhi + 1 1694 /// DefX = PhiX >> 1 1695 /// LOOP_BODY 1696 /// Br: loop if (DefX != 0) 1697 /// Use(CntPhi) or Use(CntInst) 1698 /// 1699 /// Into: 1700 /// If CntPhi used outside the loop: 1701 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1702 /// Count = CountPrev + 1 1703 /// else 1704 /// Count = BitWidth(InitX) - CTLZ(InitX) 1705 /// loop: 1706 /// CntPhi = PHI [Cnt0, CntInst] 1707 /// PhiX = PHI [InitX, DefX] 1708 /// PhiCount = PHI [Count, Dec] 1709 /// CntInst = CntPhi + 1 1710 /// DefX = PhiX >> 1 1711 /// Dec = PhiCount - 1 1712 /// LOOP_BODY 1713 /// Br: loop if (Dec != 0) 1714 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1715 /// or 1716 /// Use(Count + Cnt0) // Use(CntInst) 1717 /// 1718 /// If LOOP_BODY is empty the loop will be deleted. 1719 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1720 void LoopIdiomRecognize::transformLoopToCountable( 1721 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 1722 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 1723 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1724 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1725 1726 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 1727 IRBuilder<> Builder(PreheaderBr); 1728 Builder.SetCurrentDebugLocation(DL); 1729 1730 // Count = BitWidth - CTLZ(InitX); 1731 // NewCount = Count; 1732 // If there are uses of CntPhi create: 1733 // NewCount = BitWidth - CTLZ(InitX >> 1); 1734 // Count = NewCount + 1; 1735 Value *InitXNext; 1736 if (IsCntPhiUsedOutsideLoop) { 1737 if (DefX->getOpcode() == Instruction::AShr) 1738 InitXNext = 1739 Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1740 else if (DefX->getOpcode() == Instruction::LShr) 1741 InitXNext = 1742 Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1)); 1743 else if (DefX->getOpcode() == Instruction::Shl) // cttz 1744 InitXNext = 1745 Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1)); 1746 else 1747 llvm_unreachable("Unexpected opcode!"); 1748 } else 1749 InitXNext = InitX; 1750 Value *FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 1751 Value *Count = Builder.CreateSub( 1752 ConstantInt::get(FFS->getType(), FFS->getType()->getIntegerBitWidth()), 1753 FFS); 1754 Value *NewCount = Count; 1755 if (IsCntPhiUsedOutsideLoop) { 1756 NewCount = Count; 1757 Count = Builder.CreateAdd(Count, ConstantInt::get(Count->getType(), 1)); 1758 } 1759 1760 NewCount = Builder.CreateZExtOrTrunc(NewCount, 1761 cast<IntegerType>(CntInst->getType())); 1762 1763 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 1764 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 1765 // If the counter was being incremented in the loop, add NewCount to the 1766 // counter's initial value, but only if the initial value is not zero. 1767 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1768 if (!InitConst || !InitConst->isZero()) 1769 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1770 } else { 1771 // If the count was being decremented in the loop, subtract NewCount from 1772 // the counter's initial value. 1773 NewCount = Builder.CreateSub(CntInitVal, NewCount); 1774 } 1775 1776 // Step 2: Insert new IV and loop condition: 1777 // loop: 1778 // ... 1779 // PhiCount = PHI [Count, Dec] 1780 // ... 1781 // Dec = PhiCount - 1 1782 // ... 1783 // Br: loop if (Dec != 0) 1784 BasicBlock *Body = *(CurLoop->block_begin()); 1785 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1786 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1787 Type *Ty = Count->getType(); 1788 1789 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1790 1791 Builder.SetInsertPoint(LbCond); 1792 Instruction *TcDec = cast<Instruction>( 1793 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1794 "tcdec", false, true)); 1795 1796 TcPhi->addIncoming(Count, Preheader); 1797 TcPhi->addIncoming(TcDec, Body); 1798 1799 CmpInst::Predicate Pred = 1800 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 1801 LbCond->setPredicate(Pred); 1802 LbCond->setOperand(0, TcDec); 1803 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1804 1805 // Step 3: All the references to the original counter outside 1806 // the loop are replaced with the NewCount 1807 if (IsCntPhiUsedOutsideLoop) 1808 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 1809 else 1810 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1811 1812 // step 4: Forget the "non-computable" trip-count SCEV associated with the 1813 // loop. The loop would otherwise not be deleted even if it becomes empty. 1814 SE->forgetLoop(CurLoop); 1815 } 1816 1817 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 1818 Instruction *CntInst, 1819 PHINode *CntPhi, Value *Var) { 1820 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 1821 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 1822 const DebugLoc &DL = CntInst->getDebugLoc(); 1823 1824 // Assuming before transformation, the loop is following: 1825 // if (x) // the precondition 1826 // do { cnt++; x &= x - 1; } while(x); 1827 1828 // Step 1: Insert the ctpop instruction at the end of the precondition block 1829 IRBuilder<> Builder(PreCondBr); 1830 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 1831 { 1832 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 1833 NewCount = PopCntZext = 1834 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 1835 1836 if (NewCount != PopCnt) 1837 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1838 1839 // TripCnt is exactly the number of iterations the loop has 1840 TripCnt = NewCount; 1841 1842 // If the population counter's initial value is not zero, insert Add Inst. 1843 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 1844 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 1845 if (!InitConst || !InitConst->isZero()) { 1846 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 1847 (cast<Instruction>(NewCount))->setDebugLoc(DL); 1848 } 1849 } 1850 1851 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 1852 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 1853 // function would be partial dead code, and downstream passes will drag 1854 // it back from the precondition block to the preheader. 1855 { 1856 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 1857 1858 Value *Opnd0 = PopCntZext; 1859 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 1860 if (PreCond->getOperand(0) != Var) 1861 std::swap(Opnd0, Opnd1); 1862 1863 ICmpInst *NewPreCond = cast<ICmpInst>( 1864 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 1865 PreCondBr->setCondition(NewPreCond); 1866 1867 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 1868 } 1869 1870 // Step 3: Note that the population count is exactly the trip count of the 1871 // loop in question, which enable us to convert the loop from noncountable 1872 // loop into a countable one. The benefit is twofold: 1873 // 1874 // - If the loop only counts population, the entire loop becomes dead after 1875 // the transformation. It is a lot easier to prove a countable loop dead 1876 // than to prove a noncountable one. (In some C dialects, an infinite loop 1877 // isn't dead even if it computes nothing useful. In general, DCE needs 1878 // to prove a noncountable loop finite before safely delete it.) 1879 // 1880 // - If the loop also performs something else, it remains alive. 1881 // Since it is transformed to countable form, it can be aggressively 1882 // optimized by some optimizations which are in general not applicable 1883 // to a noncountable loop. 1884 // 1885 // After this step, this loop (conceptually) would look like following: 1886 // newcnt = __builtin_ctpop(x); 1887 // t = newcnt; 1888 // if (x) 1889 // do { cnt++; x &= x-1; t--) } while (t > 0); 1890 BasicBlock *Body = *(CurLoop->block_begin()); 1891 { 1892 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 1893 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 1894 Type *Ty = TripCnt->getType(); 1895 1896 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); 1897 1898 Builder.SetInsertPoint(LbCond); 1899 Instruction *TcDec = cast<Instruction>( 1900 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 1901 "tcdec", false, true)); 1902 1903 TcPhi->addIncoming(TripCnt, PreHead); 1904 TcPhi->addIncoming(TcDec, Body); 1905 1906 CmpInst::Predicate Pred = 1907 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 1908 LbCond->setPredicate(Pred); 1909 LbCond->setOperand(0, TcDec); 1910 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 1911 } 1912 1913 // Step 4: All the references to the original population counter outside 1914 // the loop are replaced with the NewCount -- the value returned from 1915 // __builtin_ctpop(). 1916 CntInst->replaceUsesOutsideBlock(NewCount, Body); 1917 1918 // step 5: Forget the "non-computable" trip-count SCEV associated with the 1919 // loop. The loop would otherwise not be deleted even if it becomes empty. 1920 SE->forgetLoop(CurLoop); 1921 } 1922 1923 /// Match loop-invariant value. 1924 template <typename SubPattern_t> struct match_LoopInvariant { 1925 SubPattern_t SubPattern; 1926 const Loop *L; 1927 1928 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 1929 : SubPattern(SP), L(L) {} 1930 1931 template <typename ITy> bool match(ITy *V) { 1932 return L->isLoopInvariant(V) && SubPattern.match(V); 1933 } 1934 }; 1935 1936 /// Matches if the value is loop-invariant. 1937 template <typename Ty> 1938 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 1939 return match_LoopInvariant<Ty>(M, L); 1940 } 1941 1942 /// Return true if the idiom is detected in the loop. 1943 /// 1944 /// The core idiom we are trying to detect is: 1945 /// \code 1946 /// entry: 1947 /// <...> 1948 /// %bitmask = shl i32 1, %bitpos 1949 /// br label %loop 1950 /// 1951 /// loop: 1952 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 1953 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 1954 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 1955 /// %x.next = shl i32 %x.curr, 1 1956 /// <...> 1957 /// br i1 %x.curr.isbitunset, label %loop, label %end 1958 /// 1959 /// end: 1960 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 1961 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 1962 /// <...> 1963 /// \endcode 1964 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 1965 Value *&BitMask, Value *&BitPos, 1966 Value *&CurrX, Instruction *&NextX) { 1967 LLVM_DEBUG(dbgs() << DEBUG_TYPE 1968 " Performing shift-until-bittest idiom detection.\n"); 1969 1970 // Give up if the loop has multiple blocks or multiple backedges. 1971 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 1972 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 1973 return false; 1974 } 1975 1976 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 1977 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 1978 assert(LoopPreheaderBB && "There is always a loop preheader."); 1979 1980 using namespace PatternMatch; 1981 1982 // Step 1: Check if the loop backedge is in desirable form. 1983 1984 ICmpInst::Predicate Pred; 1985 Value *CmpLHS, *CmpRHS; 1986 BasicBlock *TrueBB, *FalseBB; 1987 if (!match(LoopHeaderBB->getTerminator(), 1988 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 1989 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 1990 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 1991 return false; 1992 } 1993 1994 // Step 2: Check if the backedge's condition is in desirable form. 1995 1996 auto MatchVariableBitMask = [&]() { 1997 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 1998 match(CmpLHS, 1999 m_c_And(m_Value(CurrX), 2000 m_CombineAnd( 2001 m_Value(BitMask), 2002 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 2003 CurLoop)))); 2004 }; 2005 auto MatchConstantBitMask = [&]() { 2006 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2007 match(CmpLHS, m_And(m_Value(CurrX), 2008 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2009 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2010 }; 2011 auto MatchDecomposableConstantBitMask = [&]() { 2012 APInt Mask; 2013 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && 2014 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && 2015 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && 2016 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); 2017 }; 2018 2019 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2020 !MatchDecomposableConstantBitMask()) { 2021 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2022 return false; 2023 } 2024 2025 // Step 3: Check if the recurrence is in desirable form. 2026 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2027 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2028 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2029 return false; 2030 } 2031 2032 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2033 NextX = 2034 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2035 2036 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2037 // FIXME: support right-shift? 2038 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2039 return false; 2040 } 2041 2042 // Step 4: Check if the backedge's destinations are in desirable form. 2043 2044 assert(ICmpInst::isEquality(Pred) && 2045 "Should only get equality predicates here."); 2046 2047 // cmp-br is commutative, so canonicalize to a single variant. 2048 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2049 Pred = ICmpInst::getInversePredicate(Pred); 2050 std::swap(TrueBB, FalseBB); 2051 } 2052 2053 // We expect to exit loop when comparison yields false, 2054 // so when it yields true we should branch back to loop header. 2055 if (TrueBB != LoopHeaderBB) { 2056 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2057 return false; 2058 } 2059 2060 // Okay, idiom checks out. 2061 return true; 2062 } 2063 2064 /// Look for the following loop: 2065 /// \code 2066 /// entry: 2067 /// <...> 2068 /// %bitmask = shl i32 1, %bitpos 2069 /// br label %loop 2070 /// 2071 /// loop: 2072 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2073 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2074 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2075 /// %x.next = shl i32 %x.curr, 1 2076 /// <...> 2077 /// br i1 %x.curr.isbitunset, label %loop, label %end 2078 /// 2079 /// end: 2080 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2081 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2082 /// <...> 2083 /// \endcode 2084 /// 2085 /// And transform it into: 2086 /// \code 2087 /// entry: 2088 /// %bitmask = shl i32 1, %bitpos 2089 /// %lowbitmask = add i32 %bitmask, -1 2090 /// %mask = or i32 %lowbitmask, %bitmask 2091 /// %x.masked = and i32 %x, %mask 2092 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2093 /// i1 true) 2094 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2095 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2096 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2097 /// %tripcount = add i32 %backedgetakencount, 1 2098 /// %x.curr = shl i32 %x, %backedgetakencount 2099 /// %x.next = shl i32 %x, %tripcount 2100 /// br label %loop 2101 /// 2102 /// loop: 2103 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2104 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2105 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2106 /// <...> 2107 /// br i1 %loop.ivcheck, label %end, label %loop 2108 /// 2109 /// end: 2110 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2111 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2112 /// <...> 2113 /// \endcode 2114 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2115 bool MadeChange = false; 2116 2117 Value *X, *BitMask, *BitPos, *XCurr; 2118 Instruction *XNext; 2119 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2120 XNext)) { 2121 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2122 " shift-until-bittest idiom detection failed.\n"); 2123 return MadeChange; 2124 } 2125 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2126 2127 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2128 // but is it profitable to transform? 2129 2130 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2131 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2132 assert(LoopPreheaderBB && "There is always a loop preheader."); 2133 2134 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2135 assert(LoopPreheaderBB && "There is only a single successor."); 2136 2137 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2138 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2139 2140 Intrinsic::ID IntrID = Intrinsic::ctlz; 2141 Type *Ty = X->getType(); 2142 2143 TargetTransformInfo::TargetCostKind CostKind = 2144 TargetTransformInfo::TCK_SizeAndLatency; 2145 2146 // The rewrite is considered to be unprofitable iff and only iff the 2147 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2148 // making the loop countable, even if nothing else changes. 2149 IntrinsicCostAttributes Attrs( 2150 IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()}); 2151 int Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2152 if (Cost > TargetTransformInfo::TCC_Basic) { 2153 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2154 " Intrinsic is too costly, not beneficial\n"); 2155 return MadeChange; 2156 } 2157 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2158 TargetTransformInfo::TCC_Basic) { 2159 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2160 return MadeChange; 2161 } 2162 2163 // Ok, transform appears worthwhile. 2164 MadeChange = true; 2165 2166 // Step 1: Compute the loop trip count. 2167 2168 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2169 BitPos->getName() + ".lowbitmask"); 2170 Value *Mask = 2171 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2172 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2173 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2174 IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()}, 2175 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2176 Value *XMaskedNumActiveBits = Builder.CreateSub( 2177 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2178 XMasked->getName() + ".numactivebits"); 2179 Value *XMaskedLeadingOnePos = 2180 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2181 XMasked->getName() + ".leadingonepos"); 2182 2183 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2184 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount"); 2185 // We know loop's backedge-taken count, but what's loop's trip count? 2186 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2187 Value *LoopTripCount = 2188 Builder.CreateNUWAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2189 CurLoop->getName() + ".tripcount"); 2190 2191 // Step 2: Compute the recurrence's final value without a loop. 2192 2193 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2194 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2195 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2196 NewX->takeName(XCurr); 2197 if (auto *I = dyn_cast<Instruction>(NewX)) 2198 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2199 2200 Value *NewXNext; 2201 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2202 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2203 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2204 // that isn't the case, we'll need to emit an alternative, safe IR. 2205 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2206 PatternMatch::match( 2207 BitPos, PatternMatch::m_SpecificInt_ICMP( 2208 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2209 Ty->getScalarSizeInBits() - 1)))) 2210 NewXNext = Builder.CreateShl(X, LoopTripCount); 2211 else { 2212 // Otherwise, just additionally shift by one. It's the smallest solution, 2213 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2214 // and select 0 instead. 2215 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2216 } 2217 2218 NewXNext->takeName(XNext); 2219 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2220 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2221 2222 // Step 3: Adjust the successor basic block to recieve the computed 2223 // recurrence's final value instead of the recurrence itself. 2224 2225 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2226 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2227 2228 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2229 2230 // The new canonical induction variable. 2231 Builder.SetInsertPoint(&LoopHeaderBB->front()); 2232 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2233 2234 // The induction itself. 2235 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2236 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2237 auto *IVNext = Builder.CreateNUWAdd(IV, ConstantInt::get(Ty, 1), 2238 IV->getName() + ".next"); 2239 2240 // The loop trip count check. 2241 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2242 CurLoop->getName() + ".ivcheck"); 2243 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2244 LoopHeaderBB->getTerminator()->eraseFromParent(); 2245 2246 // Populate the IV PHI. 2247 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2248 IV->addIncoming(IVNext, LoopHeaderBB); 2249 2250 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2251 // loop. The loop would otherwise not be deleted even if it becomes empty. 2252 2253 SE->forgetLoop(CurLoop); 2254 2255 // Other passes will take care of actually deleting the loop if possible. 2256 2257 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2258 2259 ++NumShiftUntilBitTest; 2260 return MadeChange; 2261 } 2262