1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, strlen, etc. 25 // 26 // This could recognize common matrix multiplies and dot product idioms and 27 // replace them with calls to BLAS (if linked in??). 28 // 29 //===----------------------------------------------------------------------===// 30 31 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 32 #include "llvm/ADT/APInt.h" 33 #include "llvm/ADT/ArrayRef.h" 34 #include "llvm/ADT/DenseMap.h" 35 #include "llvm/ADT/MapVector.h" 36 #include "llvm/ADT/SetVector.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallVector.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/ADT/StringRef.h" 41 #include "llvm/Analysis/AliasAnalysis.h" 42 #include "llvm/Analysis/CmpInstAnalysis.h" 43 #include "llvm/Analysis/LoopAccessAnalysis.h" 44 #include "llvm/Analysis/LoopInfo.h" 45 #include "llvm/Analysis/LoopPass.h" 46 #include "llvm/Analysis/MemoryLocation.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/MustExecute.h" 50 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 51 #include "llvm/Analysis/ScalarEvolution.h" 52 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/Analysis/TargetTransformInfo.h" 55 #include "llvm/Analysis/ValueTracking.h" 56 #include "llvm/IR/BasicBlock.h" 57 #include "llvm/IR/Constant.h" 58 #include "llvm/IR/Constants.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/DebugLoc.h" 61 #include "llvm/IR/DerivedTypes.h" 62 #include "llvm/IR/Dominators.h" 63 #include "llvm/IR/GlobalValue.h" 64 #include "llvm/IR/GlobalVariable.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/InstrTypes.h" 67 #include "llvm/IR/Instruction.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/IntrinsicInst.h" 70 #include "llvm/IR/Intrinsics.h" 71 #include "llvm/IR/LLVMContext.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/PassManager.h" 74 #include "llvm/IR/PatternMatch.h" 75 #include "llvm/IR/Type.h" 76 #include "llvm/IR/User.h" 77 #include "llvm/IR/Value.h" 78 #include "llvm/IR/ValueHandle.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Debug.h" 82 #include "llvm/Support/InstructionCost.h" 83 #include "llvm/Support/raw_ostream.h" 84 #include "llvm/Transforms/Utils/BuildLibCalls.h" 85 #include "llvm/Transforms/Utils/Local.h" 86 #include "llvm/Transforms/Utils/LoopUtils.h" 87 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstdint> 91 #include <utility> 92 #include <vector> 93 94 using namespace llvm; 95 96 #define DEBUG_TYPE "loop-idiom" 97 98 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 99 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 100 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores"); 101 STATISTIC( 102 NumShiftUntilBitTest, 103 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 104 STATISTIC(NumShiftUntilZero, 105 "Number of uncountable loops recognized as 'shift until zero' idiom"); 106 107 bool DisableLIRP::All; 108 static cl::opt<bool, true> 109 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 110 cl::desc("Options to disable Loop Idiom Recognize Pass."), 111 cl::location(DisableLIRP::All), cl::init(false), 112 cl::ReallyHidden); 113 114 bool DisableLIRP::Memset; 115 static cl::opt<bool, true> 116 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 117 cl::desc("Proceed with loop idiom recognize pass, but do " 118 "not convert loop(s) to memset."), 119 cl::location(DisableLIRP::Memset), cl::init(false), 120 cl::ReallyHidden); 121 122 bool DisableLIRP::Memcpy; 123 static cl::opt<bool, true> 124 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 125 cl::desc("Proceed with loop idiom recognize pass, but do " 126 "not convert loop(s) to memcpy."), 127 cl::location(DisableLIRP::Memcpy), cl::init(false), 128 cl::ReallyHidden); 129 130 static cl::opt<bool> UseLIRCodeSizeHeurs( 131 "use-lir-code-size-heurs", 132 cl::desc("Use loop idiom recognition code size heuristics when compiling" 133 "with -Os/-Oz"), 134 cl::init(true), cl::Hidden); 135 136 namespace { 137 138 class LoopIdiomRecognize { 139 Loop *CurLoop = nullptr; 140 AliasAnalysis *AA; 141 DominatorTree *DT; 142 LoopInfo *LI; 143 ScalarEvolution *SE; 144 TargetLibraryInfo *TLI; 145 const TargetTransformInfo *TTI; 146 const DataLayout *DL; 147 OptimizationRemarkEmitter &ORE; 148 bool ApplyCodeSizeHeuristics; 149 std::unique_ptr<MemorySSAUpdater> MSSAU; 150 151 public: 152 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 153 LoopInfo *LI, ScalarEvolution *SE, 154 TargetLibraryInfo *TLI, 155 const TargetTransformInfo *TTI, MemorySSA *MSSA, 156 const DataLayout *DL, 157 OptimizationRemarkEmitter &ORE) 158 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 159 if (MSSA) 160 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 161 } 162 163 bool runOnLoop(Loop *L); 164 165 private: 166 using StoreList = SmallVector<StoreInst *, 8>; 167 using StoreListMap = MapVector<Value *, StoreList>; 168 169 StoreListMap StoreRefsForMemset; 170 StoreListMap StoreRefsForMemsetPattern; 171 StoreList StoreRefsForMemcpy; 172 bool HasMemset; 173 bool HasMemsetPattern; 174 bool HasMemcpy; 175 176 /// Return code for isLegalStore() 177 enum LegalStoreKind { 178 None = 0, 179 Memset, 180 MemsetPattern, 181 Memcpy, 182 UnorderedAtomicMemcpy, 183 DontUse // Dummy retval never to be used. Allows catching errors in retval 184 // handling. 185 }; 186 187 /// \name Countable Loop Idiom Handling 188 /// @{ 189 190 bool runOnCountableLoop(); 191 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 192 SmallVectorImpl<BasicBlock *> &ExitBlocks); 193 194 void collectStores(BasicBlock *BB); 195 LegalStoreKind isLegalStore(StoreInst *SI); 196 enum class ForMemset { No, Yes }; 197 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 198 ForMemset For); 199 200 template <typename MemInst> 201 bool processLoopMemIntrinsic( 202 BasicBlock *BB, 203 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 204 const SCEV *BECount); 205 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); 206 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 207 208 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, 209 MaybeAlign StoreAlignment, Value *StoredVal, 210 Instruction *TheStore, 211 SmallPtrSetImpl<Instruction *> &Stores, 212 const SCEVAddRecExpr *Ev, const SCEV *BECount, 213 bool IsNegStride, bool IsLoopMemset = false); 214 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 215 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, 216 const SCEV *StoreSize, MaybeAlign StoreAlign, 217 MaybeAlign LoadAlign, Instruction *TheStore, 218 Instruction *TheLoad, 219 const SCEVAddRecExpr *StoreEv, 220 const SCEVAddRecExpr *LoadEv, 221 const SCEV *BECount); 222 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 223 bool IsLoopMemset = false); 224 225 /// @} 226 /// \name Noncountable Loop Idiom Handling 227 /// @{ 228 229 bool runOnNoncountableLoop(); 230 231 bool recognizePopcount(); 232 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 233 PHINode *CntPhi, Value *Var); 234 bool isProfitableToInsertFFS(Intrinsic::ID IntrinID, Value *InitX, 235 bool ZeroCheck, size_t CanonicalSize); 236 bool insertFFSIfProfitable(Intrinsic::ID IntrinID, Value *InitX, 237 Instruction *DefX, PHINode *CntPhi, 238 Instruction *CntInst); 239 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 240 bool recognizeShiftUntilLessThan(); 241 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 242 Instruction *CntInst, PHINode *CntPhi, 243 Value *Var, Instruction *DefX, 244 const DebugLoc &DL, bool ZeroCheck, 245 bool IsCntPhiUsedOutsideLoop, 246 bool InsertSub = false); 247 248 bool recognizeShiftUntilBitTest(); 249 bool recognizeShiftUntilZero(); 250 251 /// @} 252 }; 253 } // end anonymous namespace 254 255 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 256 LoopStandardAnalysisResults &AR, 257 LPMUpdater &) { 258 if (DisableLIRP::All) 259 return PreservedAnalyses::all(); 260 261 const auto *DL = &L.getHeader()->getDataLayout(); 262 263 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 264 // pass. Function analyses need to be preserved across loop transformations 265 // but ORE cannot be preserved (see comment before the pass definition). 266 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 267 268 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 269 AR.MSSA, DL, ORE); 270 if (!LIR.runOnLoop(&L)) 271 return PreservedAnalyses::all(); 272 273 auto PA = getLoopPassPreservedAnalyses(); 274 if (AR.MSSA) 275 PA.preserve<MemorySSAAnalysis>(); 276 return PA; 277 } 278 279 static void deleteDeadInstruction(Instruction *I) { 280 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 281 I->eraseFromParent(); 282 } 283 284 //===----------------------------------------------------------------------===// 285 // 286 // Implementation of LoopIdiomRecognize 287 // 288 //===----------------------------------------------------------------------===// 289 290 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 291 CurLoop = L; 292 // If the loop could not be converted to canonical form, it must have an 293 // indirectbr in it, just give up. 294 if (!L->getLoopPreheader()) 295 return false; 296 297 // Disable loop idiom recognition if the function's name is a common idiom. 298 StringRef Name = L->getHeader()->getParent()->getName(); 299 if (Name == "memset" || Name == "memcpy") 300 return false; 301 302 // Determine if code size heuristics need to be applied. 303 ApplyCodeSizeHeuristics = 304 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 305 306 HasMemset = TLI->has(LibFunc_memset); 307 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 308 HasMemcpy = TLI->has(LibFunc_memcpy); 309 310 if (HasMemset || HasMemsetPattern || HasMemcpy) 311 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 312 return runOnCountableLoop(); 313 314 return runOnNoncountableLoop(); 315 } 316 317 bool LoopIdiomRecognize::runOnCountableLoop() { 318 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 319 assert(!isa<SCEVCouldNotCompute>(BECount) && 320 "runOnCountableLoop() called on a loop without a predictable" 321 "backedge-taken count"); 322 323 // If this loop executes exactly one time, then it should be peeled, not 324 // optimized by this pass. 325 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 326 if (BECst->getAPInt() == 0) 327 return false; 328 329 SmallVector<BasicBlock *, 8> ExitBlocks; 330 CurLoop->getUniqueExitBlocks(ExitBlocks); 331 332 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 333 << CurLoop->getHeader()->getParent()->getName() 334 << "] Countable Loop %" << CurLoop->getHeader()->getName() 335 << "\n"); 336 337 // The following transforms hoist stores/memsets into the loop pre-header. 338 // Give up if the loop has instructions that may throw. 339 SimpleLoopSafetyInfo SafetyInfo; 340 SafetyInfo.computeLoopSafetyInfo(CurLoop); 341 if (SafetyInfo.anyBlockMayThrow()) 342 return false; 343 344 bool MadeChange = false; 345 346 // Scan all the blocks in the loop that are not in subloops. 347 for (auto *BB : CurLoop->getBlocks()) { 348 // Ignore blocks in subloops. 349 if (LI->getLoopFor(BB) != CurLoop) 350 continue; 351 352 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 353 } 354 return MadeChange; 355 } 356 357 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 358 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 359 return ConstStride->getAPInt(); 360 } 361 362 /// getMemSetPatternValue - If a strided store of the specified value is safe to 363 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 364 /// be passed in. Otherwise, return null. 365 /// 366 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 367 /// just replicate their input array and then pass on to memset_pattern16. 368 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 369 // FIXME: This could check for UndefValue because it can be merged into any 370 // other valid pattern. 371 372 // If the value isn't a constant, we can't promote it to being in a constant 373 // array. We could theoretically do a store to an alloca or something, but 374 // that doesn't seem worthwhile. 375 Constant *C = dyn_cast<Constant>(V); 376 if (!C || isa<ConstantExpr>(C)) 377 return nullptr; 378 379 // Only handle simple values that are a power of two bytes in size. 380 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 381 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 382 return nullptr; 383 384 // Don't care enough about darwin/ppc to implement this. 385 if (DL->isBigEndian()) 386 return nullptr; 387 388 // Convert to size in bytes. 389 Size /= 8; 390 391 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 392 // if the top and bottom are the same (e.g. for vectors and large integers). 393 if (Size > 16) 394 return nullptr; 395 396 // If the constant is exactly 16 bytes, just use it. 397 if (Size == 16) 398 return C; 399 400 // Otherwise, we'll use an array of the constants. 401 unsigned ArraySize = 16 / Size; 402 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 403 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 404 } 405 406 LoopIdiomRecognize::LegalStoreKind 407 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 408 // Don't touch volatile stores. 409 if (SI->isVolatile()) 410 return LegalStoreKind::None; 411 // We only want simple or unordered-atomic stores. 412 if (!SI->isUnordered()) 413 return LegalStoreKind::None; 414 415 // Avoid merging nontemporal stores. 416 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 417 return LegalStoreKind::None; 418 419 Value *StoredVal = SI->getValueOperand(); 420 Value *StorePtr = SI->getPointerOperand(); 421 422 // Don't convert stores of non-integral pointer types to memsets (which stores 423 // integers). 424 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 425 return LegalStoreKind::None; 426 427 // Reject stores that are so large that they overflow an unsigned. 428 // When storing out scalable vectors we bail out for now, since the code 429 // below currently only works for constant strides. 430 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 431 if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) || 432 (SizeInBits.getFixedValue() >> 32) != 0) 433 return LegalStoreKind::None; 434 435 // See if the pointer expression is an AddRec like {base,+,1} on the current 436 // loop, which indicates a strided store. If we have something else, it's a 437 // random store we can't handle. 438 const SCEVAddRecExpr *StoreEv = 439 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 440 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 441 return LegalStoreKind::None; 442 443 // Check to see if we have a constant stride. 444 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 445 return LegalStoreKind::None; 446 447 // See if the store can be turned into a memset. 448 449 // If the stored value is a byte-wise value (like i32 -1), then it may be 450 // turned into a memset of i8 -1, assuming that all the consecutive bytes 451 // are stored. A store of i32 0x01020304 can never be turned into a memset, 452 // but it can be turned into memset_pattern if the target supports it. 453 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 454 455 // Note: memset and memset_pattern on unordered-atomic is yet not supported 456 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 457 458 // If we're allowed to form a memset, and the stored value would be 459 // acceptable for memset, use it. 460 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 461 // Verify that the stored value is loop invariant. If not, we can't 462 // promote the memset. 463 CurLoop->isLoopInvariant(SplatValue)) { 464 // It looks like we can use SplatValue. 465 return LegalStoreKind::Memset; 466 } 467 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 468 // Don't create memset_pattern16s with address spaces. 469 StorePtr->getType()->getPointerAddressSpace() == 0 && 470 getMemSetPatternValue(StoredVal, DL)) { 471 // It looks like we can use PatternValue! 472 return LegalStoreKind::MemsetPattern; 473 } 474 475 // Otherwise, see if the store can be turned into a memcpy. 476 if (HasMemcpy && !DisableLIRP::Memcpy) { 477 // Check to see if the stride matches the size of the store. If so, then we 478 // know that every byte is touched in the loop. 479 APInt Stride = getStoreStride(StoreEv); 480 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 481 if (StoreSize != Stride && StoreSize != -Stride) 482 return LegalStoreKind::None; 483 484 // The store must be feeding a non-volatile load. 485 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 486 487 // Only allow non-volatile loads 488 if (!LI || LI->isVolatile()) 489 return LegalStoreKind::None; 490 // Only allow simple or unordered-atomic loads 491 if (!LI->isUnordered()) 492 return LegalStoreKind::None; 493 494 // See if the pointer expression is an AddRec like {base,+,1} on the current 495 // loop, which indicates a strided load. If we have something else, it's a 496 // random load we can't handle. 497 const SCEVAddRecExpr *LoadEv = 498 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 499 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 500 return LegalStoreKind::None; 501 502 // The store and load must share the same stride. 503 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 504 return LegalStoreKind::None; 505 506 // Success. This store can be converted into a memcpy. 507 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 508 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 509 : LegalStoreKind::Memcpy; 510 } 511 // This store can't be transformed into a memset/memcpy. 512 return LegalStoreKind::None; 513 } 514 515 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 516 StoreRefsForMemset.clear(); 517 StoreRefsForMemsetPattern.clear(); 518 StoreRefsForMemcpy.clear(); 519 for (Instruction &I : *BB) { 520 StoreInst *SI = dyn_cast<StoreInst>(&I); 521 if (!SI) 522 continue; 523 524 // Make sure this is a strided store with a constant stride. 525 switch (isLegalStore(SI)) { 526 case LegalStoreKind::None: 527 // Nothing to do 528 break; 529 case LegalStoreKind::Memset: { 530 // Find the base pointer. 531 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 532 StoreRefsForMemset[Ptr].push_back(SI); 533 } break; 534 case LegalStoreKind::MemsetPattern: { 535 // Find the base pointer. 536 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 537 StoreRefsForMemsetPattern[Ptr].push_back(SI); 538 } break; 539 case LegalStoreKind::Memcpy: 540 case LegalStoreKind::UnorderedAtomicMemcpy: 541 StoreRefsForMemcpy.push_back(SI); 542 break; 543 default: 544 assert(false && "unhandled return value"); 545 break; 546 } 547 } 548 } 549 550 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 551 /// with the specified backedge count. This block is known to be in the current 552 /// loop and not in any subloops. 553 bool LoopIdiomRecognize::runOnLoopBlock( 554 BasicBlock *BB, const SCEV *BECount, 555 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 556 // We can only promote stores in this block if they are unconditionally 557 // executed in the loop. For a block to be unconditionally executed, it has 558 // to dominate all the exit blocks of the loop. Verify this now. 559 for (BasicBlock *ExitBlock : ExitBlocks) 560 if (!DT->dominates(BB, ExitBlock)) 561 return false; 562 563 bool MadeChange = false; 564 // Look for store instructions, which may be optimized to memset/memcpy. 565 collectStores(BB); 566 567 // Look for a single store or sets of stores with a common base, which can be 568 // optimized into a memset (memset_pattern). The latter most commonly happens 569 // with structs and handunrolled loops. 570 for (auto &SL : StoreRefsForMemset) 571 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 572 573 for (auto &SL : StoreRefsForMemsetPattern) 574 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 575 576 // Optimize the store into a memcpy, if it feeds an similarly strided load. 577 for (auto &SI : StoreRefsForMemcpy) 578 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 579 580 MadeChange |= processLoopMemIntrinsic<MemCpyInst>( 581 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); 582 MadeChange |= processLoopMemIntrinsic<MemSetInst>( 583 BB, &LoopIdiomRecognize::processLoopMemSet, BECount); 584 585 return MadeChange; 586 } 587 588 /// See if this store(s) can be promoted to a memset. 589 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 590 const SCEV *BECount, ForMemset For) { 591 // Try to find consecutive stores that can be transformed into memsets. 592 SetVector<StoreInst *> Heads, Tails; 593 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 594 595 // Do a quadratic search on all of the given stores and find 596 // all of the pairs of stores that follow each other. 597 SmallVector<unsigned, 16> IndexQueue; 598 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 599 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 600 601 Value *FirstStoredVal = SL[i]->getValueOperand(); 602 Value *FirstStorePtr = SL[i]->getPointerOperand(); 603 const SCEVAddRecExpr *FirstStoreEv = 604 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 605 APInt FirstStride = getStoreStride(FirstStoreEv); 606 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 607 608 // See if we can optimize just this store in isolation. 609 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 610 Heads.insert(SL[i]); 611 continue; 612 } 613 614 Value *FirstSplatValue = nullptr; 615 Constant *FirstPatternValue = nullptr; 616 617 if (For == ForMemset::Yes) 618 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 619 else 620 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 621 622 assert((FirstSplatValue || FirstPatternValue) && 623 "Expected either splat value or pattern value."); 624 625 IndexQueue.clear(); 626 // If a store has multiple consecutive store candidates, search Stores 627 // array according to the sequence: from i+1 to e, then from i-1 to 0. 628 // This is because usually pairing with immediate succeeding or preceding 629 // candidate create the best chance to find memset opportunity. 630 unsigned j = 0; 631 for (j = i + 1; j < e; ++j) 632 IndexQueue.push_back(j); 633 for (j = i; j > 0; --j) 634 IndexQueue.push_back(j - 1); 635 636 for (auto &k : IndexQueue) { 637 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 638 Value *SecondStorePtr = SL[k]->getPointerOperand(); 639 const SCEVAddRecExpr *SecondStoreEv = 640 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 641 APInt SecondStride = getStoreStride(SecondStoreEv); 642 643 if (FirstStride != SecondStride) 644 continue; 645 646 Value *SecondStoredVal = SL[k]->getValueOperand(); 647 Value *SecondSplatValue = nullptr; 648 Constant *SecondPatternValue = nullptr; 649 650 if (For == ForMemset::Yes) 651 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 652 else 653 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 654 655 assert((SecondSplatValue || SecondPatternValue) && 656 "Expected either splat value or pattern value."); 657 658 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 659 if (For == ForMemset::Yes) { 660 if (isa<UndefValue>(FirstSplatValue)) 661 FirstSplatValue = SecondSplatValue; 662 if (FirstSplatValue != SecondSplatValue) 663 continue; 664 } else { 665 if (isa<UndefValue>(FirstPatternValue)) 666 FirstPatternValue = SecondPatternValue; 667 if (FirstPatternValue != SecondPatternValue) 668 continue; 669 } 670 Tails.insert(SL[k]); 671 Heads.insert(SL[i]); 672 ConsecutiveChain[SL[i]] = SL[k]; 673 break; 674 } 675 } 676 } 677 678 // We may run into multiple chains that merge into a single chain. We mark the 679 // stores that we transformed so that we don't visit the same store twice. 680 SmallPtrSet<Value *, 16> TransformedStores; 681 bool Changed = false; 682 683 // For stores that start but don't end a link in the chain: 684 for (StoreInst *I : Heads) { 685 if (Tails.count(I)) 686 continue; 687 688 // We found a store instr that starts a chain. Now follow the chain and try 689 // to transform it. 690 SmallPtrSet<Instruction *, 8> AdjacentStores; 691 StoreInst *HeadStore = I; 692 unsigned StoreSize = 0; 693 694 // Collect the chain into a list. 695 while (Tails.count(I) || Heads.count(I)) { 696 if (TransformedStores.count(I)) 697 break; 698 AdjacentStores.insert(I); 699 700 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 701 // Move to the next value in the chain. 702 I = ConsecutiveChain[I]; 703 } 704 705 Value *StoredVal = HeadStore->getValueOperand(); 706 Value *StorePtr = HeadStore->getPointerOperand(); 707 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 708 APInt Stride = getStoreStride(StoreEv); 709 710 // Check to see if the stride matches the size of the stores. If so, then 711 // we know that every byte is touched in the loop. 712 if (StoreSize != Stride && StoreSize != -Stride) 713 continue; 714 715 bool IsNegStride = StoreSize == -Stride; 716 717 Type *IntIdxTy = DL->getIndexType(StorePtr->getType()); 718 const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize); 719 if (processLoopStridedStore(StorePtr, StoreSizeSCEV, 720 MaybeAlign(HeadStore->getAlign()), StoredVal, 721 HeadStore, AdjacentStores, StoreEv, BECount, 722 IsNegStride)) { 723 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 724 Changed = true; 725 } 726 } 727 728 return Changed; 729 } 730 731 /// processLoopMemIntrinsic - Template function for calling different processor 732 /// functions based on mem intrinsic type. 733 template <typename MemInst> 734 bool LoopIdiomRecognize::processLoopMemIntrinsic( 735 BasicBlock *BB, 736 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 737 const SCEV *BECount) { 738 bool MadeChange = false; 739 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 740 Instruction *Inst = &*I++; 741 // Look for memory instructions, which may be optimized to a larger one. 742 if (MemInst *MI = dyn_cast<MemInst>(Inst)) { 743 WeakTrackingVH InstPtr(&*I); 744 if (!(this->*Processor)(MI, BECount)) 745 continue; 746 MadeChange = true; 747 748 // If processing the instruction invalidated our iterator, start over from 749 // the top of the block. 750 if (!InstPtr) 751 I = BB->begin(); 752 } 753 } 754 return MadeChange; 755 } 756 757 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy 758 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, 759 const SCEV *BECount) { 760 // We can only handle non-volatile memcpys with a constant size. 761 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) 762 return false; 763 764 // If we're not allowed to hack on memcpy, we fail. 765 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) 766 return false; 767 768 Value *Dest = MCI->getDest(); 769 Value *Source = MCI->getSource(); 770 if (!Dest || !Source) 771 return false; 772 773 // See if the load and store pointer expressions are AddRec like {base,+,1} on 774 // the current loop, which indicates a strided load and store. If we have 775 // something else, it's a random load or store we can't handle. 776 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); 777 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 778 return false; 779 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); 780 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 781 return false; 782 783 // Reject memcpys that are so large that they overflow an unsigned. 784 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 785 if ((SizeInBytes >> 32) != 0) 786 return false; 787 788 // Check if the stride matches the size of the memcpy. If so, then we know 789 // that every byte is touched in the loop. 790 const SCEVConstant *ConstStoreStride = 791 dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 792 const SCEVConstant *ConstLoadStride = 793 dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); 794 if (!ConstStoreStride || !ConstLoadStride) 795 return false; 796 797 APInt StoreStrideValue = ConstStoreStride->getAPInt(); 798 APInt LoadStrideValue = ConstLoadStride->getAPInt(); 799 // Huge stride value - give up 800 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) 801 return false; 802 803 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { 804 ORE.emit([&]() { 805 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) 806 << ore::NV("Inst", "memcpy") << " in " 807 << ore::NV("Function", MCI->getFunction()) 808 << " function will not be hoisted: " 809 << ore::NV("Reason", "memcpy size is not equal to stride"); 810 }); 811 return false; 812 } 813 814 int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); 815 int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); 816 // Check if the load stride matches the store stride. 817 if (StoreStrideInt != LoadStrideInt) 818 return false; 819 820 return processLoopStoreOfLoopLoad( 821 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), 822 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, 823 BECount); 824 } 825 826 /// processLoopMemSet - See if this memset can be promoted to a large memset. 827 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 828 const SCEV *BECount) { 829 // We can only handle non-volatile memsets. 830 if (MSI->isVolatile()) 831 return false; 832 833 // If we're not allowed to hack on memset, we fail. 834 if (!HasMemset || DisableLIRP::Memset) 835 return false; 836 837 Value *Pointer = MSI->getDest(); 838 839 // See if the pointer expression is an AddRec like {base,+,1} on the current 840 // loop, which indicates a strided store. If we have something else, it's a 841 // random store we can't handle. 842 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 843 if (!Ev || Ev->getLoop() != CurLoop) 844 return false; 845 if (!Ev->isAffine()) { 846 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n"); 847 return false; 848 } 849 850 const SCEV *PointerStrideSCEV = Ev->getOperand(1); 851 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); 852 if (!PointerStrideSCEV || !MemsetSizeSCEV) 853 return false; 854 855 bool IsNegStride = false; 856 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); 857 858 if (IsConstantSize) { 859 // Memset size is constant. 860 // Check if the pointer stride matches the memset size. If so, then 861 // we know that every byte is touched in the loop. 862 LLVM_DEBUG(dbgs() << " memset size is constant\n"); 863 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 864 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 865 if (!ConstStride) 866 return false; 867 868 APInt Stride = ConstStride->getAPInt(); 869 if (SizeInBytes != Stride && SizeInBytes != -Stride) 870 return false; 871 872 IsNegStride = SizeInBytes == -Stride; 873 } else { 874 // Memset size is non-constant. 875 // Check if the pointer stride matches the memset size. 876 // To be conservative, the pass would not promote pointers that aren't in 877 // address space zero. Also, the pass only handles memset length and stride 878 // that are invariant for the top level loop. 879 LLVM_DEBUG(dbgs() << " memset size is non-constant\n"); 880 if (Pointer->getType()->getPointerAddressSpace() != 0) { 881 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " 882 << "abort\n"); 883 return false; 884 } 885 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { 886 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " 887 << "abort\n"); 888 return false; 889 } 890 891 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV 892 IsNegStride = PointerStrideSCEV->isNonConstantNegative(); 893 const SCEV *PositiveStrideSCEV = 894 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) 895 : PointerStrideSCEV; 896 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" 897 << " PositiveStrideSCEV: " << *PositiveStrideSCEV 898 << "\n"); 899 900 if (PositiveStrideSCEV != MemsetSizeSCEV) { 901 // If an expression is covered by the loop guard, compare again and 902 // proceed with optimization if equal. 903 const SCEV *FoldedPositiveStride = 904 SE->applyLoopGuards(PositiveStrideSCEV, CurLoop); 905 const SCEV *FoldedMemsetSize = 906 SE->applyLoopGuards(MemsetSizeSCEV, CurLoop); 907 908 LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n" 909 << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" 910 << " FoldedPositiveStride: " << *FoldedPositiveStride 911 << "\n"); 912 913 if (FoldedPositiveStride != FoldedMemsetSize) { 914 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n"); 915 return false; 916 } 917 } 918 } 919 920 // Verify that the memset value is loop invariant. If not, we can't promote 921 // the memset. 922 Value *SplatValue = MSI->getValue(); 923 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 924 return false; 925 926 SmallPtrSet<Instruction *, 1> MSIs; 927 MSIs.insert(MSI); 928 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), 929 MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev, 930 BECount, IsNegStride, /*IsLoopMemset=*/true); 931 } 932 933 /// mayLoopAccessLocation - Return true if the specified loop might access the 934 /// specified pointer location, which is a loop-strided access. The 'Access' 935 /// argument specifies what the verboten forms of access are (read or write). 936 static bool 937 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 938 const SCEV *BECount, const SCEV *StoreSizeSCEV, 939 AliasAnalysis &AA, 940 SmallPtrSetImpl<Instruction *> &IgnoredInsts) { 941 // Get the location that may be stored across the loop. Since the access is 942 // strided positively through memory, we say that the modified location starts 943 // at the pointer and has infinite size. 944 LocationSize AccessSize = LocationSize::afterPointer(); 945 946 // If the loop iterates a fixed number of times, we can refine the access size 947 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 948 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); 949 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 950 if (BECst && ConstSize) { 951 std::optional<uint64_t> BEInt = BECst->getAPInt().tryZExtValue(); 952 std::optional<uint64_t> SizeInt = ConstSize->getAPInt().tryZExtValue(); 953 // FIXME: Should this check for overflow? 954 if (BEInt && SizeInt) 955 AccessSize = LocationSize::precise((*BEInt + 1) * *SizeInt); 956 } 957 958 // TODO: For this to be really effective, we have to dive into the pointer 959 // operand in the store. Store to &A[i] of 100 will always return may alias 960 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 961 // which will then no-alias a store to &A[100]. 962 MemoryLocation StoreLoc(Ptr, AccessSize); 963 964 for (BasicBlock *B : L->blocks()) 965 for (Instruction &I : *B) 966 if (!IgnoredInsts.contains(&I) && 967 isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access)) 968 return true; 969 return false; 970 } 971 972 // If we have a negative stride, Start refers to the end of the memory location 973 // we're trying to memset. Therefore, we need to recompute the base pointer, 974 // which is just Start - BECount*Size. 975 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 976 Type *IntPtr, const SCEV *StoreSizeSCEV, 977 ScalarEvolution *SE) { 978 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 979 if (!StoreSizeSCEV->isOne()) { 980 // index = back edge count * store size 981 Index = SE->getMulExpr(Index, 982 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 983 SCEV::FlagNUW); 984 } 985 // base pointer = start - index * store size 986 return SE->getMinusSCEV(Start, Index); 987 } 988 989 /// Compute the number of bytes as a SCEV from the backedge taken count. 990 /// 991 /// This also maps the SCEV into the provided type and tries to handle the 992 /// computation in a way that will fold cleanly. 993 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 994 const SCEV *StoreSizeSCEV, Loop *CurLoop, 995 const DataLayout *DL, ScalarEvolution *SE) { 996 const SCEV *TripCountSCEV = 997 SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop); 998 return SE->getMulExpr(TripCountSCEV, 999 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 1000 SCEV::FlagNUW); 1001 } 1002 1003 /// processLoopStridedStore - We see a strided store of some value. If we can 1004 /// transform this into a memset or memset_pattern in the loop preheader, do so. 1005 bool LoopIdiomRecognize::processLoopStridedStore( 1006 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, 1007 Value *StoredVal, Instruction *TheStore, 1008 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 1009 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { 1010 Module *M = TheStore->getModule(); 1011 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 1012 Constant *PatternValue = nullptr; 1013 1014 if (!SplatValue) 1015 PatternValue = getMemSetPatternValue(StoredVal, DL); 1016 1017 assert((SplatValue || PatternValue) && 1018 "Expected either splat value or pattern value."); 1019 1020 // The trip count of the loop and the base pointer of the addrec SCEV is 1021 // guaranteed to be loop invariant, which means that it should dominate the 1022 // header. This allows us to insert code for it in the preheader. 1023 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 1024 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1025 IRBuilder<> Builder(Preheader->getTerminator()); 1026 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1027 SCEVExpanderCleaner ExpCleaner(Expander); 1028 1029 Type *DestInt8PtrTy = Builder.getPtrTy(DestAS); 1030 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 1031 1032 bool Changed = false; 1033 const SCEV *Start = Ev->getStart(); 1034 // Handle negative strided loops. 1035 if (IsNegStride) 1036 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); 1037 1038 // TODO: ideally we should still be able to generate memset if SCEV expander 1039 // is taught to generate the dependencies at the latest point. 1040 if (!Expander.isSafeToExpand(Start)) 1041 return Changed; 1042 1043 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 1044 // this into a memset in the loop preheader now if we want. However, this 1045 // would be unsafe to do if there is anything else in the loop that may read 1046 // or write to the aliased location. Check for any overlap by generating the 1047 // base pointer and checking the region. 1048 Value *BasePtr = 1049 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 1050 1051 // From here on out, conservatively report to the pass manager that we've 1052 // changed the IR, even if we later clean up these added instructions. There 1053 // may be structural differences e.g. in the order of use lists not accounted 1054 // for in just a textual dump of the IR. This is written as a variable, even 1055 // though statically all the places this dominates could be replaced with 1056 // 'true', with the hope that anyone trying to be clever / "more precise" with 1057 // the return value will read this comment, and leave them alone. 1058 Changed = true; 1059 1060 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1061 StoreSizeSCEV, *AA, Stores)) 1062 return Changed; 1063 1064 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 1065 return Changed; 1066 1067 // Okay, everything looks good, insert the memset. 1068 1069 const SCEV *NumBytesS = 1070 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1071 1072 // TODO: ideally we should still be able to generate memset if SCEV expander 1073 // is taught to generate the dependencies at the latest point. 1074 if (!Expander.isSafeToExpand(NumBytesS)) 1075 return Changed; 1076 1077 Value *NumBytes = 1078 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1079 1080 if (!SplatValue && !isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)) 1081 return Changed; 1082 1083 AAMDNodes AATags = TheStore->getAAMetadata(); 1084 for (Instruction *Store : Stores) 1085 AATags = AATags.merge(Store->getAAMetadata()); 1086 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1087 AATags = AATags.extendTo(CI->getZExtValue()); 1088 else 1089 AATags = AATags.extendTo(-1); 1090 1091 CallInst *NewCall; 1092 if (SplatValue) { 1093 NewCall = Builder.CreateMemSet( 1094 BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment), 1095 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1096 } else { 1097 assert (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)); 1098 // Everything is emitted in default address space 1099 Type *Int8PtrTy = DestInt8PtrTy; 1100 1101 StringRef FuncName = "memset_pattern16"; 1102 FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16, 1103 Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy); 1104 inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI); 1105 1106 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1107 // an constant array of 16-bytes. Plop the value into a mergable global. 1108 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1109 GlobalValue::PrivateLinkage, 1110 PatternValue, ".memset_pattern"); 1111 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1112 GV->setAlignment(Align(16)); 1113 Value *PatternPtr = GV; 1114 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1115 1116 // Set the TBAA info if present. 1117 if (AATags.TBAA) 1118 NewCall->setMetadata(LLVMContext::MD_tbaa, AATags.TBAA); 1119 1120 if (AATags.Scope) 1121 NewCall->setMetadata(LLVMContext::MD_alias_scope, AATags.Scope); 1122 1123 if (AATags.NoAlias) 1124 NewCall->setMetadata(LLVMContext::MD_noalias, AATags.NoAlias); 1125 } 1126 1127 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1128 1129 if (MSSAU) { 1130 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1131 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1132 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1133 } 1134 1135 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1136 << " from store to: " << *Ev << " at: " << *TheStore 1137 << "\n"); 1138 1139 ORE.emit([&]() { 1140 OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore", 1141 NewCall->getDebugLoc(), Preheader); 1142 R << "Transformed loop-strided store in " 1143 << ore::NV("Function", TheStore->getFunction()) 1144 << " function into a call to " 1145 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1146 << "() intrinsic"; 1147 if (!Stores.empty()) 1148 R << ore::setExtraArgs(); 1149 for (auto *I : Stores) { 1150 R << ore::NV("FromBlock", I->getParent()->getName()) 1151 << ore::NV("ToBlock", Preheader->getName()); 1152 } 1153 return R; 1154 }); 1155 1156 // Okay, the memset has been formed. Zap the original store and anything that 1157 // feeds into it. 1158 for (auto *I : Stores) { 1159 if (MSSAU) 1160 MSSAU->removeMemoryAccess(I, true); 1161 deleteDeadInstruction(I); 1162 } 1163 if (MSSAU && VerifyMemorySSA) 1164 MSSAU->getMemorySSA()->verifyMemorySSA(); 1165 ++NumMemSet; 1166 ExpCleaner.markResultUsed(); 1167 return true; 1168 } 1169 1170 /// If the stored value is a strided load in the same loop with the same stride 1171 /// this may be transformable into a memcpy. This kicks in for stuff like 1172 /// for (i) A[i] = B[i]; 1173 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1174 const SCEV *BECount) { 1175 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1176 1177 Value *StorePtr = SI->getPointerOperand(); 1178 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1179 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1180 1181 // The store must be feeding a non-volatile load. 1182 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1183 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1184 1185 // See if the pointer expression is an AddRec like {base,+,1} on the current 1186 // loop, which indicates a strided load. If we have something else, it's a 1187 // random load we can't handle. 1188 Value *LoadPtr = LI->getPointerOperand(); 1189 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); 1190 1191 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); 1192 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, 1193 SI->getAlign(), LI->getAlign(), SI, LI, 1194 StoreEv, LoadEv, BECount); 1195 } 1196 1197 namespace { 1198 class MemmoveVerifier { 1199 public: 1200 explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, 1201 const DataLayout &DL) 1202 : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset( 1203 LoadBasePtr.stripPointerCasts(), LoadOff, DL)), 1204 BP2(llvm::GetPointerBaseWithConstantOffset( 1205 StoreBasePtr.stripPointerCasts(), StoreOff, DL)), 1206 IsSameObject(BP1 == BP2) {} 1207 1208 bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, 1209 const Instruction &TheLoad, 1210 bool IsMemCpy) const { 1211 if (IsMemCpy) { 1212 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1213 // for negative stride. 1214 if ((!IsNegStride && LoadOff <= StoreOff) || 1215 (IsNegStride && LoadOff >= StoreOff)) 1216 return false; 1217 } else { 1218 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1219 // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. 1220 int64_t LoadSize = 1221 DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8; 1222 if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) 1223 return false; 1224 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || 1225 (IsNegStride && LoadOff + LoadSize > StoreOff)) 1226 return false; 1227 } 1228 return true; 1229 } 1230 1231 private: 1232 const DataLayout &DL; 1233 int64_t LoadOff = 0; 1234 int64_t StoreOff = 0; 1235 const Value *BP1; 1236 const Value *BP2; 1237 1238 public: 1239 const bool IsSameObject; 1240 }; 1241 } // namespace 1242 1243 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( 1244 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, 1245 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, 1246 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, 1247 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { 1248 1249 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to 1250 // conservatively bail here, since otherwise we may have to transform 1251 // llvm.memcpy.inline into llvm.memcpy which is illegal. 1252 if (isa<MemCpyInlineInst>(TheStore)) 1253 return false; 1254 1255 // The trip count of the loop and the base pointer of the addrec SCEV is 1256 // guaranteed to be loop invariant, which means that it should dominate the 1257 // header. This allows us to insert code for it in the preheader. 1258 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1259 IRBuilder<> Builder(Preheader->getTerminator()); 1260 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1261 1262 SCEVExpanderCleaner ExpCleaner(Expander); 1263 1264 bool Changed = false; 1265 const SCEV *StrStart = StoreEv->getStart(); 1266 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); 1267 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1268 1269 APInt Stride = getStoreStride(StoreEv); 1270 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1271 1272 // TODO: Deal with non-constant size; Currently expect constant store size 1273 assert(ConstStoreSize && "store size is expected to be a constant"); 1274 1275 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); 1276 bool IsNegStride = StoreSize == -Stride; 1277 1278 // Handle negative strided loops. 1279 if (IsNegStride) 1280 StrStart = 1281 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1282 1283 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1284 // this into a memcpy in the loop preheader now if we want. However, this 1285 // would be unsafe to do if there is anything else in the loop that may read 1286 // or write the memory region we're storing to. This includes the load that 1287 // feeds the stores. Check for an alias by generating the base address and 1288 // checking everything. 1289 Value *StoreBasePtr = Expander.expandCodeFor( 1290 StrStart, Builder.getPtrTy(StrAS), Preheader->getTerminator()); 1291 1292 // From here on out, conservatively report to the pass manager that we've 1293 // changed the IR, even if we later clean up these added instructions. There 1294 // may be structural differences e.g. in the order of use lists not accounted 1295 // for in just a textual dump of the IR. This is written as a variable, even 1296 // though statically all the places this dominates could be replaced with 1297 // 'true', with the hope that anyone trying to be clever / "more precise" with 1298 // the return value will read this comment, and leave them alone. 1299 Changed = true; 1300 1301 SmallPtrSet<Instruction *, 2> IgnoredInsts; 1302 IgnoredInsts.insert(TheStore); 1303 1304 bool IsMemCpy = isa<MemCpyInst>(TheStore); 1305 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; 1306 1307 bool LoopAccessStore = 1308 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1309 StoreSizeSCEV, *AA, IgnoredInsts); 1310 if (LoopAccessStore) { 1311 // For memmove case it's not enough to guarantee that loop doesn't access 1312 // TheStore and TheLoad. Additionally we need to make sure that TheStore is 1313 // the only user of TheLoad. 1314 if (!TheLoad->hasOneUse()) 1315 return Changed; 1316 IgnoredInsts.insert(TheLoad); 1317 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, 1318 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { 1319 ORE.emit([&]() { 1320 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", 1321 TheStore) 1322 << ore::NV("Inst", InstRemark) << " in " 1323 << ore::NV("Function", TheStore->getFunction()) 1324 << " function will not be hoisted: " 1325 << ore::NV("Reason", "The loop may access store location"); 1326 }); 1327 return Changed; 1328 } 1329 IgnoredInsts.erase(TheLoad); 1330 } 1331 1332 const SCEV *LdStart = LoadEv->getStart(); 1333 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); 1334 1335 // Handle negative strided loops. 1336 if (IsNegStride) 1337 LdStart = 1338 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1339 1340 // For a memcpy, we have to make sure that the input array is not being 1341 // mutated by the loop. 1342 Value *LoadBasePtr = Expander.expandCodeFor(LdStart, Builder.getPtrTy(LdAS), 1343 Preheader->getTerminator()); 1344 1345 // If the store is a memcpy instruction, we must check if it will write to 1346 // the load memory locations. So remove it from the ignored stores. 1347 MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); 1348 if (IsMemCpy && !Verifier.IsSameObject) 1349 IgnoredInsts.erase(TheStore); 1350 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1351 StoreSizeSCEV, *AA, IgnoredInsts)) { 1352 ORE.emit([&]() { 1353 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad) 1354 << ore::NV("Inst", InstRemark) << " in " 1355 << ore::NV("Function", TheStore->getFunction()) 1356 << " function will not be hoisted: " 1357 << ore::NV("Reason", "The loop may access load location"); 1358 }); 1359 return Changed; 1360 } 1361 1362 bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; 1363 if (UseMemMove) 1364 if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad, 1365 IsMemCpy)) 1366 return Changed; 1367 1368 if (avoidLIRForMultiBlockLoop()) 1369 return Changed; 1370 1371 // Okay, everything is safe, we can transform this! 1372 1373 const SCEV *NumBytesS = 1374 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1375 1376 Value *NumBytes = 1377 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1378 1379 AAMDNodes AATags = TheLoad->getAAMetadata(); 1380 AAMDNodes StoreAATags = TheStore->getAAMetadata(); 1381 AATags = AATags.merge(StoreAATags); 1382 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1383 AATags = AATags.extendTo(CI->getZExtValue()); 1384 else 1385 AATags = AATags.extendTo(-1); 1386 1387 CallInst *NewCall = nullptr; 1388 // Check whether to generate an unordered atomic memcpy: 1389 // If the load or store are atomic, then they must necessarily be unordered 1390 // by previous checks. 1391 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { 1392 if (UseMemMove) 1393 NewCall = Builder.CreateMemMove( 1394 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, 1395 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1396 else 1397 NewCall = 1398 Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, 1399 NumBytes, /*isVolatile=*/false, AATags.TBAA, 1400 AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); 1401 } else { 1402 // For now don't support unordered atomic memmove. 1403 if (UseMemMove) 1404 return Changed; 1405 // We cannot allow unaligned ops for unordered load/store, so reject 1406 // anything where the alignment isn't at least the element size. 1407 assert((StoreAlign && LoadAlign) && 1408 "Expect unordered load/store to have align."); 1409 if (*StoreAlign < StoreSize || *LoadAlign < StoreSize) 1410 return Changed; 1411 1412 // If the element.atomic memcpy is not lowered into explicit 1413 // loads/stores later, then it will be lowered into an element-size 1414 // specific lib call. If the lib call doesn't exist for our store size, then 1415 // we shouldn't generate the memcpy. 1416 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1417 return Changed; 1418 1419 // Create the call. 1420 // Note that unordered atomic loads/stores are *required* by the spec to 1421 // have an alignment but non-atomic loads/stores may not. 1422 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1423 StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize, 1424 AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); 1425 } 1426 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1427 1428 if (MSSAU) { 1429 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1430 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1431 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1432 } 1433 1434 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" 1435 << " from load ptr=" << *LoadEv << " at: " << *TheLoad 1436 << "\n" 1437 << " from store ptr=" << *StoreEv << " at: " << *TheStore 1438 << "\n"); 1439 1440 ORE.emit([&]() { 1441 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1442 NewCall->getDebugLoc(), Preheader) 1443 << "Formed a call to " 1444 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1445 << "() intrinsic from " << ore::NV("Inst", InstRemark) 1446 << " instruction in " << ore::NV("Function", TheStore->getFunction()) 1447 << " function" 1448 << ore::setExtraArgs() 1449 << ore::NV("FromBlock", TheStore->getParent()->getName()) 1450 << ore::NV("ToBlock", Preheader->getName()); 1451 }); 1452 1453 // Okay, a new call to memcpy/memmove has been formed. Zap the original store 1454 // and anything that feeds into it. 1455 if (MSSAU) 1456 MSSAU->removeMemoryAccess(TheStore, true); 1457 deleteDeadInstruction(TheStore); 1458 if (MSSAU && VerifyMemorySSA) 1459 MSSAU->getMemorySSA()->verifyMemorySSA(); 1460 if (UseMemMove) 1461 ++NumMemMove; 1462 else 1463 ++NumMemCpy; 1464 ExpCleaner.markResultUsed(); 1465 return true; 1466 } 1467 1468 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1469 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1470 // 1471 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1472 bool IsLoopMemset) { 1473 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1474 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1475 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1476 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1477 << " avoided: multi-block top-level loop\n"); 1478 return true; 1479 } 1480 } 1481 1482 return false; 1483 } 1484 1485 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1486 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1487 << CurLoop->getHeader()->getParent()->getName() 1488 << "] Noncountable Loop %" 1489 << CurLoop->getHeader()->getName() << "\n"); 1490 1491 return recognizePopcount() || recognizeAndInsertFFS() || 1492 recognizeShiftUntilBitTest() || recognizeShiftUntilZero() || 1493 recognizeShiftUntilLessThan(); 1494 } 1495 1496 /// Check if the given conditional branch is based on the comparison between 1497 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1498 /// true), the control yields to the loop entry. If the branch matches the 1499 /// behavior, the variable involved in the comparison is returned. This function 1500 /// will be called to see if the precondition and postcondition of the loop are 1501 /// in desirable form. 1502 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1503 bool JmpOnZero = false) { 1504 if (!BI || !BI->isConditional()) 1505 return nullptr; 1506 1507 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1508 if (!Cond) 1509 return nullptr; 1510 1511 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1512 if (!CmpZero || !CmpZero->isZero()) 1513 return nullptr; 1514 1515 BasicBlock *TrueSucc = BI->getSuccessor(0); 1516 BasicBlock *FalseSucc = BI->getSuccessor(1); 1517 if (JmpOnZero) 1518 std::swap(TrueSucc, FalseSucc); 1519 1520 ICmpInst::Predicate Pred = Cond->getPredicate(); 1521 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1522 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1523 return Cond->getOperand(0); 1524 1525 return nullptr; 1526 } 1527 1528 /// Check if the given conditional branch is based on an unsigned less-than 1529 /// comparison between a variable and a constant, and if the comparison is false 1530 /// the control yields to the loop entry. If the branch matches the behaviour, 1531 /// the variable involved in the comparison is returned. 1532 static Value *matchShiftULTCondition(BranchInst *BI, BasicBlock *LoopEntry, 1533 APInt &Threshold) { 1534 if (!BI || !BI->isConditional()) 1535 return nullptr; 1536 1537 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1538 if (!Cond) 1539 return nullptr; 1540 1541 ConstantInt *CmpConst = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1542 if (!CmpConst) 1543 return nullptr; 1544 1545 BasicBlock *FalseSucc = BI->getSuccessor(1); 1546 ICmpInst::Predicate Pred = Cond->getPredicate(); 1547 1548 if (Pred == ICmpInst::ICMP_ULT && FalseSucc == LoopEntry) { 1549 Threshold = CmpConst->getValue(); 1550 return Cond->getOperand(0); 1551 } 1552 1553 return nullptr; 1554 } 1555 1556 // Check if the recurrence variable `VarX` is in the right form to create 1557 // the idiom. Returns the value coerced to a PHINode if so. 1558 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1559 BasicBlock *LoopEntry) { 1560 auto *PhiX = dyn_cast<PHINode>(VarX); 1561 if (PhiX && PhiX->getParent() == LoopEntry && 1562 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1563 return PhiX; 1564 return nullptr; 1565 } 1566 1567 /// Return true if the idiom is detected in the loop. 1568 /// 1569 /// Additionally: 1570 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1571 /// or nullptr if there is no such. 1572 /// 2) \p CntPhi is set to the corresponding phi node 1573 /// or nullptr if there is no such. 1574 /// 3) \p InitX is set to the value whose CTLZ could be used. 1575 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1576 /// 5) \p Threshold is set to the constant involved in the unsigned less-than 1577 /// comparison. 1578 /// 1579 /// The core idiom we are trying to detect is: 1580 /// \code 1581 /// if (x0 < 2) 1582 /// goto loop-exit // the precondition of the loop 1583 /// cnt0 = init-val 1584 /// do { 1585 /// x = phi (x0, x.next); //PhiX 1586 /// cnt = phi (cnt0, cnt.next) 1587 /// 1588 /// cnt.next = cnt + 1; 1589 /// ... 1590 /// x.next = x >> 1; // DefX 1591 /// } while (x >= 4) 1592 /// loop-exit: 1593 /// \endcode 1594 static bool detectShiftUntilLessThanIdiom(Loop *CurLoop, const DataLayout &DL, 1595 Intrinsic::ID &IntrinID, 1596 Value *&InitX, Instruction *&CntInst, 1597 PHINode *&CntPhi, Instruction *&DefX, 1598 APInt &Threshold) { 1599 BasicBlock *LoopEntry; 1600 1601 DefX = nullptr; 1602 CntInst = nullptr; 1603 CntPhi = nullptr; 1604 LoopEntry = *(CurLoop->block_begin()); 1605 1606 // step 1: Check if the loop-back branch is in desirable form. 1607 if (Value *T = matchShiftULTCondition( 1608 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry, 1609 Threshold)) 1610 DefX = dyn_cast<Instruction>(T); 1611 else 1612 return false; 1613 1614 // step 2: Check the recurrence of variable X 1615 if (!DefX || !isa<PHINode>(DefX)) 1616 return false; 1617 1618 PHINode *VarPhi = cast<PHINode>(DefX); 1619 int Idx = VarPhi->getBasicBlockIndex(LoopEntry); 1620 if (Idx == -1) 1621 return false; 1622 1623 DefX = dyn_cast<Instruction>(VarPhi->getIncomingValue(Idx)); 1624 if (!DefX || DefX->getNumOperands() == 0 || DefX->getOperand(0) != VarPhi) 1625 return false; 1626 1627 // step 3: detect instructions corresponding to "x.next = x >> 1" 1628 if (DefX->getOpcode() != Instruction::LShr) 1629 return false; 1630 1631 IntrinID = Intrinsic::ctlz; 1632 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1633 if (!Shft || !Shft->isOne()) 1634 return false; 1635 1636 InitX = VarPhi->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1637 1638 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1639 // or cnt.next = cnt + -1. 1640 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1641 // then all uses of "cnt.next" could be optimized to the trip count 1642 // plus "cnt0". Currently it is not optimized. 1643 // This step could be used to detect POPCNT instruction: 1644 // cnt.next = cnt + (x.next & 1) 1645 for (Instruction &Inst : llvm::make_range( 1646 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1647 if (Inst.getOpcode() != Instruction::Add) 1648 continue; 1649 1650 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1651 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1652 continue; 1653 1654 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1655 if (!Phi) 1656 continue; 1657 1658 CntInst = &Inst; 1659 CntPhi = Phi; 1660 break; 1661 } 1662 if (!CntInst) 1663 return false; 1664 1665 return true; 1666 } 1667 1668 /// Return true iff the idiom is detected in the loop. 1669 /// 1670 /// Additionally: 1671 /// 1) \p CntInst is set to the instruction counting the population bit. 1672 /// 2) \p CntPhi is set to the corresponding phi node. 1673 /// 3) \p Var is set to the value whose population bits are being counted. 1674 /// 1675 /// The core idiom we are trying to detect is: 1676 /// \code 1677 /// if (x0 != 0) 1678 /// goto loop-exit // the precondition of the loop 1679 /// cnt0 = init-val; 1680 /// do { 1681 /// x1 = phi (x0, x2); 1682 /// cnt1 = phi(cnt0, cnt2); 1683 /// 1684 /// cnt2 = cnt1 + 1; 1685 /// ... 1686 /// x2 = x1 & (x1 - 1); 1687 /// ... 1688 /// } while(x != 0); 1689 /// 1690 /// loop-exit: 1691 /// \endcode 1692 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1693 Instruction *&CntInst, PHINode *&CntPhi, 1694 Value *&Var) { 1695 // step 1: Check to see if the look-back branch match this pattern: 1696 // "if (a!=0) goto loop-entry". 1697 BasicBlock *LoopEntry; 1698 Instruction *DefX2, *CountInst; 1699 Value *VarX1, *VarX0; 1700 PHINode *PhiX, *CountPhi; 1701 1702 DefX2 = CountInst = nullptr; 1703 VarX1 = VarX0 = nullptr; 1704 PhiX = CountPhi = nullptr; 1705 LoopEntry = *(CurLoop->block_begin()); 1706 1707 // step 1: Check if the loop-back branch is in desirable form. 1708 { 1709 if (Value *T = matchCondition( 1710 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1711 DefX2 = dyn_cast<Instruction>(T); 1712 else 1713 return false; 1714 } 1715 1716 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1717 { 1718 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1719 return false; 1720 1721 BinaryOperator *SubOneOp; 1722 1723 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1724 VarX1 = DefX2->getOperand(1); 1725 else { 1726 VarX1 = DefX2->getOperand(0); 1727 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1728 } 1729 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1730 return false; 1731 1732 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1733 if (!Dec || 1734 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1735 (SubOneOp->getOpcode() == Instruction::Add && 1736 Dec->isMinusOne()))) { 1737 return false; 1738 } 1739 } 1740 1741 // step 3: Check the recurrence of variable X 1742 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1743 if (!PhiX) 1744 return false; 1745 1746 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1747 { 1748 CountInst = nullptr; 1749 for (Instruction &Inst : llvm::make_range( 1750 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1751 if (Inst.getOpcode() != Instruction::Add) 1752 continue; 1753 1754 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1755 if (!Inc || !Inc->isOne()) 1756 continue; 1757 1758 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1759 if (!Phi) 1760 continue; 1761 1762 // Check if the result of the instruction is live of the loop. 1763 bool LiveOutLoop = false; 1764 for (User *U : Inst.users()) { 1765 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1766 LiveOutLoop = true; 1767 break; 1768 } 1769 } 1770 1771 if (LiveOutLoop) { 1772 CountInst = &Inst; 1773 CountPhi = Phi; 1774 break; 1775 } 1776 } 1777 1778 if (!CountInst) 1779 return false; 1780 } 1781 1782 // step 5: check if the precondition is in this form: 1783 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1784 { 1785 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1786 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1787 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1788 return false; 1789 1790 CntInst = CountInst; 1791 CntPhi = CountPhi; 1792 Var = T; 1793 } 1794 1795 return true; 1796 } 1797 1798 /// Return true if the idiom is detected in the loop. 1799 /// 1800 /// Additionally: 1801 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1802 /// or nullptr if there is no such. 1803 /// 2) \p CntPhi is set to the corresponding phi node 1804 /// or nullptr if there is no such. 1805 /// 3) \p Var is set to the value whose CTLZ could be used. 1806 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1807 /// 1808 /// The core idiom we are trying to detect is: 1809 /// \code 1810 /// if (x0 == 0) 1811 /// goto loop-exit // the precondition of the loop 1812 /// cnt0 = init-val; 1813 /// do { 1814 /// x = phi (x0, x.next); //PhiX 1815 /// cnt = phi(cnt0, cnt.next); 1816 /// 1817 /// cnt.next = cnt + 1; 1818 /// ... 1819 /// x.next = x >> 1; // DefX 1820 /// ... 1821 /// } while(x.next != 0); 1822 /// 1823 /// loop-exit: 1824 /// \endcode 1825 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1826 Intrinsic::ID &IntrinID, Value *&InitX, 1827 Instruction *&CntInst, PHINode *&CntPhi, 1828 Instruction *&DefX) { 1829 BasicBlock *LoopEntry; 1830 Value *VarX = nullptr; 1831 1832 DefX = nullptr; 1833 CntInst = nullptr; 1834 CntPhi = nullptr; 1835 LoopEntry = *(CurLoop->block_begin()); 1836 1837 // step 1: Check if the loop-back branch is in desirable form. 1838 if (Value *T = matchCondition( 1839 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1840 DefX = dyn_cast<Instruction>(T); 1841 else 1842 return false; 1843 1844 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1845 if (!DefX || !DefX->isShift()) 1846 return false; 1847 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1848 Intrinsic::ctlz; 1849 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1850 if (!Shft || !Shft->isOne()) 1851 return false; 1852 VarX = DefX->getOperand(0); 1853 1854 // step 3: Check the recurrence of variable X 1855 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1856 if (!PhiX) 1857 return false; 1858 1859 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1860 1861 // Make sure the initial value can't be negative otherwise the ashr in the 1862 // loop might never reach zero which would make the loop infinite. 1863 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1864 return false; 1865 1866 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1867 // or cnt.next = cnt + -1. 1868 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1869 // then all uses of "cnt.next" could be optimized to the trip count 1870 // plus "cnt0". Currently it is not optimized. 1871 // This step could be used to detect POPCNT instruction: 1872 // cnt.next = cnt + (x.next & 1) 1873 for (Instruction &Inst : llvm::make_range( 1874 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1875 if (Inst.getOpcode() != Instruction::Add) 1876 continue; 1877 1878 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1879 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1880 continue; 1881 1882 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1883 if (!Phi) 1884 continue; 1885 1886 CntInst = &Inst; 1887 CntPhi = Phi; 1888 break; 1889 } 1890 if (!CntInst) 1891 return false; 1892 1893 return true; 1894 } 1895 1896 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1897 // profitable if we delete the loop. 1898 bool LoopIdiomRecognize::isProfitableToInsertFFS(Intrinsic::ID IntrinID, 1899 Value *InitX, bool ZeroCheck, 1900 size_t CanonicalSize) { 1901 const Value *Args[] = {InitX, 1902 ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; 1903 1904 // @llvm.dbg doesn't count as they have no semantic effect. 1905 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1906 uint32_t HeaderSize = 1907 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1908 1909 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1910 InstructionCost Cost = TTI->getIntrinsicInstrCost( 1911 Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1912 if (HeaderSize != CanonicalSize && Cost > TargetTransformInfo::TCC_Basic) 1913 return false; 1914 1915 return true; 1916 } 1917 1918 /// Convert CTLZ / CTTZ idiom loop into countable loop. 1919 /// If CTLZ / CTTZ inserted as a new trip count returns true; otherwise, 1920 /// returns false. 1921 bool LoopIdiomRecognize::insertFFSIfProfitable(Intrinsic::ID IntrinID, 1922 Value *InitX, Instruction *DefX, 1923 PHINode *CntPhi, 1924 Instruction *CntInst) { 1925 bool IsCntPhiUsedOutsideLoop = false; 1926 for (User *U : CntPhi->users()) 1927 if (!CurLoop->contains(cast<Instruction>(U))) { 1928 IsCntPhiUsedOutsideLoop = true; 1929 break; 1930 } 1931 bool IsCntInstUsedOutsideLoop = false; 1932 for (User *U : CntInst->users()) 1933 if (!CurLoop->contains(cast<Instruction>(U))) { 1934 IsCntInstUsedOutsideLoop = true; 1935 break; 1936 } 1937 // If both CntInst and CntPhi are used outside the loop the profitability 1938 // is questionable. 1939 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1940 return false; 1941 1942 // For some CPUs result of CTLZ(X) intrinsic is undefined 1943 // when X is 0. If we can not guarantee X != 0, we need to check this 1944 // when expand. 1945 bool ZeroCheck = false; 1946 // It is safe to assume Preheader exist as it was checked in 1947 // parent function RunOnLoop. 1948 BasicBlock *PH = CurLoop->getLoopPreheader(); 1949 1950 // If we are using the count instruction outside the loop, make sure we 1951 // have a zero check as a precondition. Without the check the loop would run 1952 // one iteration for before any check of the input value. This means 0 and 1 1953 // would have identical behavior in the original loop and thus 1954 if (!IsCntPhiUsedOutsideLoop) { 1955 auto *PreCondBB = PH->getSinglePredecessor(); 1956 if (!PreCondBB) 1957 return false; 1958 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1959 if (!PreCondBI) 1960 return false; 1961 if (matchCondition(PreCondBI, PH) != InitX) 1962 return false; 1963 ZeroCheck = true; 1964 } 1965 1966 // FFS idiom loop has only 6 instructions: 1967 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1968 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1969 // %shr = ashr %n.addr.0, 1 1970 // %tobool = icmp eq %shr, 0 1971 // %inc = add nsw %i.0, 1 1972 // br i1 %tobool 1973 size_t IdiomCanonicalSize = 6; 1974 if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize)) 1975 return false; 1976 1977 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1978 DefX->getDebugLoc(), ZeroCheck, 1979 IsCntPhiUsedOutsideLoop); 1980 return true; 1981 } 1982 1983 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1984 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1985 /// trip count returns true; otherwise, returns false. 1986 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1987 // Give up if the loop has multiple blocks or multiple backedges. 1988 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1989 return false; 1990 1991 Intrinsic::ID IntrinID; 1992 Value *InitX; 1993 Instruction *DefX = nullptr; 1994 PHINode *CntPhi = nullptr; 1995 Instruction *CntInst = nullptr; 1996 1997 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, CntInst, CntPhi, 1998 DefX)) 1999 return false; 2000 2001 return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst); 2002 } 2003 2004 bool LoopIdiomRecognize::recognizeShiftUntilLessThan() { 2005 // Give up if the loop has multiple blocks or multiple backedges. 2006 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 2007 return false; 2008 2009 Intrinsic::ID IntrinID; 2010 Value *InitX; 2011 Instruction *DefX = nullptr; 2012 PHINode *CntPhi = nullptr; 2013 Instruction *CntInst = nullptr; 2014 2015 APInt LoopThreshold; 2016 if (!detectShiftUntilLessThanIdiom(CurLoop, *DL, IntrinID, InitX, CntInst, 2017 CntPhi, DefX, LoopThreshold)) 2018 return false; 2019 2020 if (LoopThreshold == 2) { 2021 // Treat as regular FFS. 2022 return insertFFSIfProfitable(IntrinID, InitX, DefX, CntPhi, CntInst); 2023 } 2024 2025 // Look for Floor Log2 Idiom. 2026 if (LoopThreshold != 4) 2027 return false; 2028 2029 // Abort if CntPhi is used outside of the loop. 2030 for (User *U : CntPhi->users()) 2031 if (!CurLoop->contains(cast<Instruction>(U))) 2032 return false; 2033 2034 // It is safe to assume Preheader exist as it was checked in 2035 // parent function RunOnLoop. 2036 BasicBlock *PH = CurLoop->getLoopPreheader(); 2037 auto *PreCondBB = PH->getSinglePredecessor(); 2038 if (!PreCondBB) 2039 return false; 2040 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 2041 if (!PreCondBI) 2042 return false; 2043 2044 APInt PreLoopThreshold; 2045 if (matchShiftULTCondition(PreCondBI, PH, PreLoopThreshold) != InitX || 2046 PreLoopThreshold != 2) 2047 return false; 2048 2049 bool ZeroCheck = true; 2050 2051 // the loop has only 6 instructions: 2052 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 2053 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 2054 // %shr = ashr %n.addr.0, 1 2055 // %tobool = icmp ult %n.addr.0, C 2056 // %inc = add nsw %i.0, 1 2057 // br i1 %tobool 2058 size_t IdiomCanonicalSize = 6; 2059 if (!isProfitableToInsertFFS(IntrinID, InitX, ZeroCheck, IdiomCanonicalSize)) 2060 return false; 2061 2062 // log2(x) = w − 1 − clz(x) 2063 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 2064 DefX->getDebugLoc(), ZeroCheck, 2065 /*IsCntPhiUsedOutsideLoop=*/false, 2066 /*InsertSub=*/true); 2067 return true; 2068 } 2069 2070 /// Recognizes a population count idiom in a non-countable loop. 2071 /// 2072 /// If detected, transforms the relevant code to issue the popcount intrinsic 2073 /// function call, and returns true; otherwise, returns false. 2074 bool LoopIdiomRecognize::recognizePopcount() { 2075 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 2076 return false; 2077 2078 // Counting population are usually conducted by few arithmetic instructions. 2079 // Such instructions can be easily "absorbed" by vacant slots in a 2080 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 2081 // in a compact loop. 2082 2083 // Give up if the loop has multiple blocks or multiple backedges. 2084 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 2085 return false; 2086 2087 BasicBlock *LoopBody = *(CurLoop->block_begin()); 2088 if (LoopBody->size() >= 20) { 2089 // The loop is too big, bail out. 2090 return false; 2091 } 2092 2093 // It should have a preheader containing nothing but an unconditional branch. 2094 BasicBlock *PH = CurLoop->getLoopPreheader(); 2095 if (!PH || &PH->front() != PH->getTerminator()) 2096 return false; 2097 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 2098 if (!EntryBI || EntryBI->isConditional()) 2099 return false; 2100 2101 // It should have a precondition block where the generated popcount intrinsic 2102 // function can be inserted. 2103 auto *PreCondBB = PH->getSinglePredecessor(); 2104 if (!PreCondBB) 2105 return false; 2106 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 2107 if (!PreCondBI || PreCondBI->isUnconditional()) 2108 return false; 2109 2110 Instruction *CntInst; 2111 PHINode *CntPhi; 2112 Value *Val; 2113 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 2114 return false; 2115 2116 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 2117 return true; 2118 } 2119 2120 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 2121 const DebugLoc &DL) { 2122 Value *Ops[] = {Val}; 2123 Type *Tys[] = {Val->getType()}; 2124 2125 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 2126 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 2127 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 2128 CI->setDebugLoc(DL); 2129 2130 return CI; 2131 } 2132 2133 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 2134 const DebugLoc &DL, bool ZeroCheck, 2135 Intrinsic::ID IID) { 2136 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; 2137 Type *Tys[] = {Val->getType()}; 2138 2139 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 2140 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 2141 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 2142 CI->setDebugLoc(DL); 2143 2144 return CI; 2145 } 2146 2147 /// Transform the following loop (Using CTLZ, CTTZ is similar): 2148 /// loop: 2149 /// CntPhi = PHI [Cnt0, CntInst] 2150 /// PhiX = PHI [InitX, DefX] 2151 /// CntInst = CntPhi + 1 2152 /// DefX = PhiX >> 1 2153 /// LOOP_BODY 2154 /// Br: loop if (DefX != 0) 2155 /// Use(CntPhi) or Use(CntInst) 2156 /// 2157 /// Into: 2158 /// If CntPhi used outside the loop: 2159 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 2160 /// Count = CountPrev + 1 2161 /// else 2162 /// Count = BitWidth(InitX) - CTLZ(InitX) 2163 /// loop: 2164 /// CntPhi = PHI [Cnt0, CntInst] 2165 /// PhiX = PHI [InitX, DefX] 2166 /// PhiCount = PHI [Count, Dec] 2167 /// CntInst = CntPhi + 1 2168 /// DefX = PhiX >> 1 2169 /// Dec = PhiCount - 1 2170 /// LOOP_BODY 2171 /// Br: loop if (Dec != 0) 2172 /// Use(CountPrev + Cnt0) // Use(CntPhi) 2173 /// or 2174 /// Use(Count + Cnt0) // Use(CntInst) 2175 /// 2176 /// If LOOP_BODY is empty the loop will be deleted. 2177 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 2178 void LoopIdiomRecognize::transformLoopToCountable( 2179 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 2180 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 2181 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop, bool InsertSub) { 2182 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 2183 2184 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 2185 IRBuilder<> Builder(PreheaderBr); 2186 Builder.SetCurrentDebugLocation(DL); 2187 2188 // If there are no uses of CntPhi crate: 2189 // Count = BitWidth - CTLZ(InitX); 2190 // NewCount = Count; 2191 // If there are uses of CntPhi create: 2192 // NewCount = BitWidth - CTLZ(InitX >> 1); 2193 // Count = NewCount + 1; 2194 Value *InitXNext; 2195 if (IsCntPhiUsedOutsideLoop) { 2196 if (DefX->getOpcode() == Instruction::AShr) 2197 InitXNext = Builder.CreateAShr(InitX, 1); 2198 else if (DefX->getOpcode() == Instruction::LShr) 2199 InitXNext = Builder.CreateLShr(InitX, 1); 2200 else if (DefX->getOpcode() == Instruction::Shl) // cttz 2201 InitXNext = Builder.CreateShl(InitX, 1); 2202 else 2203 llvm_unreachable("Unexpected opcode!"); 2204 } else 2205 InitXNext = InitX; 2206 Value *Count = 2207 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 2208 Type *CountTy = Count->getType(); 2209 Count = Builder.CreateSub( 2210 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); 2211 if (InsertSub) 2212 Count = Builder.CreateSub(Count, ConstantInt::get(CountTy, 1)); 2213 Value *NewCount = Count; 2214 if (IsCntPhiUsedOutsideLoop) 2215 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); 2216 2217 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); 2218 2219 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 2220 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 2221 // If the counter was being incremented in the loop, add NewCount to the 2222 // counter's initial value, but only if the initial value is not zero. 2223 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2224 if (!InitConst || !InitConst->isZero()) 2225 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2226 } else { 2227 // If the count was being decremented in the loop, subtract NewCount from 2228 // the counter's initial value. 2229 NewCount = Builder.CreateSub(CntInitVal, NewCount); 2230 } 2231 2232 // Step 2: Insert new IV and loop condition: 2233 // loop: 2234 // ... 2235 // PhiCount = PHI [Count, Dec] 2236 // ... 2237 // Dec = PhiCount - 1 2238 // ... 2239 // Br: loop if (Dec != 0) 2240 BasicBlock *Body = *(CurLoop->block_begin()); 2241 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2242 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2243 2244 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi"); 2245 TcPhi->insertBefore(Body->begin()); 2246 2247 Builder.SetInsertPoint(LbCond); 2248 Instruction *TcDec = cast<Instruction>(Builder.CreateSub( 2249 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); 2250 2251 TcPhi->addIncoming(Count, Preheader); 2252 TcPhi->addIncoming(TcDec, Body); 2253 2254 CmpInst::Predicate Pred = 2255 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 2256 LbCond->setPredicate(Pred); 2257 LbCond->setOperand(0, TcDec); 2258 LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); 2259 2260 // Step 3: All the references to the original counter outside 2261 // the loop are replaced with the NewCount 2262 if (IsCntPhiUsedOutsideLoop) 2263 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 2264 else 2265 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2266 2267 // step 4: Forget the "non-computable" trip-count SCEV associated with the 2268 // loop. The loop would otherwise not be deleted even if it becomes empty. 2269 SE->forgetLoop(CurLoop); 2270 } 2271 2272 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 2273 Instruction *CntInst, 2274 PHINode *CntPhi, Value *Var) { 2275 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 2276 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 2277 const DebugLoc &DL = CntInst->getDebugLoc(); 2278 2279 // Assuming before transformation, the loop is following: 2280 // if (x) // the precondition 2281 // do { cnt++; x &= x - 1; } while(x); 2282 2283 // Step 1: Insert the ctpop instruction at the end of the precondition block 2284 IRBuilder<> Builder(PreCondBr); 2285 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 2286 { 2287 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 2288 NewCount = PopCntZext = 2289 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 2290 2291 if (NewCount != PopCnt) 2292 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2293 2294 // TripCnt is exactly the number of iterations the loop has 2295 TripCnt = NewCount; 2296 2297 // If the population counter's initial value is not zero, insert Add Inst. 2298 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 2299 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2300 if (!InitConst || !InitConst->isZero()) { 2301 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2302 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2303 } 2304 } 2305 2306 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 2307 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 2308 // function would be partial dead code, and downstream passes will drag 2309 // it back from the precondition block to the preheader. 2310 { 2311 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 2312 2313 Value *Opnd0 = PopCntZext; 2314 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 2315 if (PreCond->getOperand(0) != Var) 2316 std::swap(Opnd0, Opnd1); 2317 2318 ICmpInst *NewPreCond = cast<ICmpInst>( 2319 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 2320 PreCondBr->setCondition(NewPreCond); 2321 2322 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 2323 } 2324 2325 // Step 3: Note that the population count is exactly the trip count of the 2326 // loop in question, which enable us to convert the loop from noncountable 2327 // loop into a countable one. The benefit is twofold: 2328 // 2329 // - If the loop only counts population, the entire loop becomes dead after 2330 // the transformation. It is a lot easier to prove a countable loop dead 2331 // than to prove a noncountable one. (In some C dialects, an infinite loop 2332 // isn't dead even if it computes nothing useful. In general, DCE needs 2333 // to prove a noncountable loop finite before safely delete it.) 2334 // 2335 // - If the loop also performs something else, it remains alive. 2336 // Since it is transformed to countable form, it can be aggressively 2337 // optimized by some optimizations which are in general not applicable 2338 // to a noncountable loop. 2339 // 2340 // After this step, this loop (conceptually) would look like following: 2341 // newcnt = __builtin_ctpop(x); 2342 // t = newcnt; 2343 // if (x) 2344 // do { cnt++; x &= x-1; t--) } while (t > 0); 2345 BasicBlock *Body = *(CurLoop->block_begin()); 2346 { 2347 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2348 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2349 Type *Ty = TripCnt->getType(); 2350 2351 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi"); 2352 TcPhi->insertBefore(Body->begin()); 2353 2354 Builder.SetInsertPoint(LbCond); 2355 Instruction *TcDec = cast<Instruction>( 2356 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 2357 "tcdec", false, true)); 2358 2359 TcPhi->addIncoming(TripCnt, PreHead); 2360 TcPhi->addIncoming(TcDec, Body); 2361 2362 CmpInst::Predicate Pred = 2363 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 2364 LbCond->setPredicate(Pred); 2365 LbCond->setOperand(0, TcDec); 2366 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 2367 } 2368 2369 // Step 4: All the references to the original population counter outside 2370 // the loop are replaced with the NewCount -- the value returned from 2371 // __builtin_ctpop(). 2372 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2373 2374 // step 5: Forget the "non-computable" trip-count SCEV associated with the 2375 // loop. The loop would otherwise not be deleted even if it becomes empty. 2376 SE->forgetLoop(CurLoop); 2377 } 2378 2379 /// Match loop-invariant value. 2380 template <typename SubPattern_t> struct match_LoopInvariant { 2381 SubPattern_t SubPattern; 2382 const Loop *L; 2383 2384 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 2385 : SubPattern(SP), L(L) {} 2386 2387 template <typename ITy> bool match(ITy *V) { 2388 return L->isLoopInvariant(V) && SubPattern.match(V); 2389 } 2390 }; 2391 2392 /// Matches if the value is loop-invariant. 2393 template <typename Ty> 2394 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 2395 return match_LoopInvariant<Ty>(M, L); 2396 } 2397 2398 /// Return true if the idiom is detected in the loop. 2399 /// 2400 /// The core idiom we are trying to detect is: 2401 /// \code 2402 /// entry: 2403 /// <...> 2404 /// %bitmask = shl i32 1, %bitpos 2405 /// br label %loop 2406 /// 2407 /// loop: 2408 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2409 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2410 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2411 /// %x.next = shl i32 %x.curr, 1 2412 /// <...> 2413 /// br i1 %x.curr.isbitunset, label %loop, label %end 2414 /// 2415 /// end: 2416 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2417 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2418 /// <...> 2419 /// \endcode 2420 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 2421 Value *&BitMask, Value *&BitPos, 2422 Value *&CurrX, Instruction *&NextX) { 2423 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2424 " Performing shift-until-bittest idiom detection.\n"); 2425 2426 // Give up if the loop has multiple blocks or multiple backedges. 2427 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2428 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2429 return false; 2430 } 2431 2432 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2433 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2434 assert(LoopPreheaderBB && "There is always a loop preheader."); 2435 2436 using namespace PatternMatch; 2437 2438 // Step 1: Check if the loop backedge is in desirable form. 2439 2440 ICmpInst::Predicate Pred; 2441 Value *CmpLHS, *CmpRHS; 2442 BasicBlock *TrueBB, *FalseBB; 2443 if (!match(LoopHeaderBB->getTerminator(), 2444 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 2445 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 2446 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2447 return false; 2448 } 2449 2450 // Step 2: Check if the backedge's condition is in desirable form. 2451 2452 auto MatchVariableBitMask = [&]() { 2453 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2454 match(CmpLHS, 2455 m_c_And(m_Value(CurrX), 2456 m_CombineAnd( 2457 m_Value(BitMask), 2458 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 2459 CurLoop)))); 2460 }; 2461 auto MatchConstantBitMask = [&]() { 2462 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2463 match(CmpLHS, m_And(m_Value(CurrX), 2464 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2465 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2466 }; 2467 auto MatchDecomposableConstantBitMask = [&]() { 2468 APInt Mask; 2469 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && 2470 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && 2471 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && 2472 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); 2473 }; 2474 2475 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2476 !MatchDecomposableConstantBitMask()) { 2477 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2478 return false; 2479 } 2480 2481 // Step 3: Check if the recurrence is in desirable form. 2482 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2483 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2484 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2485 return false; 2486 } 2487 2488 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2489 NextX = 2490 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2491 2492 assert(CurLoop->isLoopInvariant(BaseX) && 2493 "Expected BaseX to be avaliable in the preheader!"); 2494 2495 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2496 // FIXME: support right-shift? 2497 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2498 return false; 2499 } 2500 2501 // Step 4: Check if the backedge's destinations are in desirable form. 2502 2503 assert(ICmpInst::isEquality(Pred) && 2504 "Should only get equality predicates here."); 2505 2506 // cmp-br is commutative, so canonicalize to a single variant. 2507 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2508 Pred = ICmpInst::getInversePredicate(Pred); 2509 std::swap(TrueBB, FalseBB); 2510 } 2511 2512 // We expect to exit loop when comparison yields false, 2513 // so when it yields true we should branch back to loop header. 2514 if (TrueBB != LoopHeaderBB) { 2515 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2516 return false; 2517 } 2518 2519 // Okay, idiom checks out. 2520 return true; 2521 } 2522 2523 /// Look for the following loop: 2524 /// \code 2525 /// entry: 2526 /// <...> 2527 /// %bitmask = shl i32 1, %bitpos 2528 /// br label %loop 2529 /// 2530 /// loop: 2531 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2532 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2533 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2534 /// %x.next = shl i32 %x.curr, 1 2535 /// <...> 2536 /// br i1 %x.curr.isbitunset, label %loop, label %end 2537 /// 2538 /// end: 2539 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2540 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2541 /// <...> 2542 /// \endcode 2543 /// 2544 /// And transform it into: 2545 /// \code 2546 /// entry: 2547 /// %bitmask = shl i32 1, %bitpos 2548 /// %lowbitmask = add i32 %bitmask, -1 2549 /// %mask = or i32 %lowbitmask, %bitmask 2550 /// %x.masked = and i32 %x, %mask 2551 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2552 /// i1 true) 2553 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2554 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2555 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2556 /// %tripcount = add i32 %backedgetakencount, 1 2557 /// %x.curr = shl i32 %x, %backedgetakencount 2558 /// %x.next = shl i32 %x, %tripcount 2559 /// br label %loop 2560 /// 2561 /// loop: 2562 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2563 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2564 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2565 /// <...> 2566 /// br i1 %loop.ivcheck, label %end, label %loop 2567 /// 2568 /// end: 2569 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2570 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2571 /// <...> 2572 /// \endcode 2573 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2574 bool MadeChange = false; 2575 2576 Value *X, *BitMask, *BitPos, *XCurr; 2577 Instruction *XNext; 2578 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2579 XNext)) { 2580 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2581 " shift-until-bittest idiom detection failed.\n"); 2582 return MadeChange; 2583 } 2584 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2585 2586 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2587 // but is it profitable to transform? 2588 2589 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2590 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2591 assert(LoopPreheaderBB && "There is always a loop preheader."); 2592 2593 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2594 assert(SuccessorBB && "There is only a single successor."); 2595 2596 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2597 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2598 2599 Intrinsic::ID IntrID = Intrinsic::ctlz; 2600 Type *Ty = X->getType(); 2601 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2602 2603 TargetTransformInfo::TargetCostKind CostKind = 2604 TargetTransformInfo::TCK_SizeAndLatency; 2605 2606 // The rewrite is considered to be unprofitable iff and only iff the 2607 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2608 // making the loop countable, even if nothing else changes. 2609 IntrinsicCostAttributes Attrs( 2610 IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getTrue()}); 2611 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2612 if (Cost > TargetTransformInfo::TCC_Basic) { 2613 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2614 " Intrinsic is too costly, not beneficial\n"); 2615 return MadeChange; 2616 } 2617 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2618 TargetTransformInfo::TCC_Basic) { 2619 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2620 return MadeChange; 2621 } 2622 2623 // Ok, transform appears worthwhile. 2624 MadeChange = true; 2625 2626 if (!isGuaranteedNotToBeUndefOrPoison(BitPos)) { 2627 // BitMask may be computed from BitPos, Freeze BitPos so we can increase 2628 // it's use count. 2629 std::optional<BasicBlock::iterator> InsertPt = std::nullopt; 2630 if (auto *BitPosI = dyn_cast<Instruction>(BitPos)) 2631 InsertPt = BitPosI->getInsertionPointAfterDef(); 2632 else 2633 InsertPt = DT->getRoot()->getFirstNonPHIOrDbgOrAlloca(); 2634 if (!InsertPt) 2635 return false; 2636 FreezeInst *BitPosFrozen = 2637 new FreezeInst(BitPos, BitPos->getName() + ".fr", *InsertPt); 2638 BitPos->replaceUsesWithIf(BitPosFrozen, [BitPosFrozen](Use &U) { 2639 return U.getUser() != BitPosFrozen; 2640 }); 2641 BitPos = BitPosFrozen; 2642 } 2643 2644 // Step 1: Compute the loop trip count. 2645 2646 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2647 BitPos->getName() + ".lowbitmask"); 2648 Value *Mask = 2649 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2650 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2651 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2652 IntrID, Ty, {XMasked, /*is_zero_poison=*/Builder.getTrue()}, 2653 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2654 Value *XMaskedNumActiveBits = Builder.CreateSub( 2655 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2656 XMasked->getName() + ".numactivebits", /*HasNUW=*/true, 2657 /*HasNSW=*/Bitwidth != 2); 2658 Value *XMaskedLeadingOnePos = 2659 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2660 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, 2661 /*HasNSW=*/Bitwidth > 2); 2662 2663 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2664 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", 2665 /*HasNUW=*/true, /*HasNSW=*/true); 2666 // We know loop's backedge-taken count, but what's loop's trip count? 2667 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2668 Value *LoopTripCount = 2669 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2670 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2671 /*HasNSW=*/Bitwidth != 2); 2672 2673 // Step 2: Compute the recurrence's final value without a loop. 2674 2675 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2676 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2677 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2678 NewX->takeName(XCurr); 2679 if (auto *I = dyn_cast<Instruction>(NewX)) 2680 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2681 2682 Value *NewXNext; 2683 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2684 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2685 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2686 // that isn't the case, we'll need to emit an alternative, safe IR. 2687 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2688 PatternMatch::match( 2689 BitPos, PatternMatch::m_SpecificInt_ICMP( 2690 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2691 Ty->getScalarSizeInBits() - 1)))) 2692 NewXNext = Builder.CreateShl(X, LoopTripCount); 2693 else { 2694 // Otherwise, just additionally shift by one. It's the smallest solution, 2695 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2696 // and select 0 instead. 2697 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2698 } 2699 2700 NewXNext->takeName(XNext); 2701 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2702 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2703 2704 // Step 3: Adjust the successor basic block to recieve the computed 2705 // recurrence's final value instead of the recurrence itself. 2706 2707 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2708 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2709 2710 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2711 2712 // The new canonical induction variable. 2713 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin()); 2714 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2715 2716 // The induction itself. 2717 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2718 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2719 auto *IVNext = 2720 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 2721 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2722 2723 // The loop trip count check. 2724 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2725 CurLoop->getName() + ".ivcheck"); 2726 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2727 LoopHeaderBB->getTerminator()->eraseFromParent(); 2728 2729 // Populate the IV PHI. 2730 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2731 IV->addIncoming(IVNext, LoopHeaderBB); 2732 2733 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2734 // loop. The loop would otherwise not be deleted even if it becomes empty. 2735 2736 SE->forgetLoop(CurLoop); 2737 2738 // Other passes will take care of actually deleting the loop if possible. 2739 2740 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2741 2742 ++NumShiftUntilBitTest; 2743 return MadeChange; 2744 } 2745 2746 /// Return true if the idiom is detected in the loop. 2747 /// 2748 /// The core idiom we are trying to detect is: 2749 /// \code 2750 /// entry: 2751 /// <...> 2752 /// %start = <...> 2753 /// %extraoffset = <...> 2754 /// <...> 2755 /// br label %for.cond 2756 /// 2757 /// loop: 2758 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2759 /// %nbits = add nsw i8 %iv, %extraoffset 2760 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2761 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2762 /// %iv.next = add i8 %iv, 1 2763 /// <...> 2764 /// br i1 %val.shifted.iszero, label %end, label %loop 2765 /// 2766 /// end: 2767 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2768 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2769 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2770 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2771 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2772 /// <...> 2773 /// \endcode 2774 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, 2775 Instruction *&ValShiftedIsZero, 2776 Intrinsic::ID &IntrinID, Instruction *&IV, 2777 Value *&Start, Value *&Val, 2778 const SCEV *&ExtraOffsetExpr, 2779 bool &InvertedCond) { 2780 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2781 " Performing shift-until-zero idiom detection.\n"); 2782 2783 // Give up if the loop has multiple blocks or multiple backedges. 2784 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2785 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2786 return false; 2787 } 2788 2789 Instruction *ValShifted, *NBits, *IVNext; 2790 Value *ExtraOffset; 2791 2792 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2793 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2794 assert(LoopPreheaderBB && "There is always a loop preheader."); 2795 2796 using namespace PatternMatch; 2797 2798 // Step 1: Check if the loop backedge, condition is in desirable form. 2799 2800 ICmpInst::Predicate Pred; 2801 BasicBlock *TrueBB, *FalseBB; 2802 if (!match(LoopHeaderBB->getTerminator(), 2803 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), 2804 m_BasicBlock(FalseBB))) || 2805 !match(ValShiftedIsZero, 2806 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || 2807 !ICmpInst::isEquality(Pred)) { 2808 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2809 return false; 2810 } 2811 2812 // Step 2: Check if the comparison's operand is in desirable form. 2813 // FIXME: Val could be a one-input PHI node, which we should look past. 2814 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), 2815 m_Instruction(NBits)))) { 2816 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); 2817 return false; 2818 } 2819 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz 2820 : Intrinsic::ctlz; 2821 2822 // Step 3: Check if the shift amount is in desirable form. 2823 2824 if (match(NBits, m_c_Add(m_Instruction(IV), 2825 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2826 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) 2827 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); 2828 else if (match(NBits, 2829 m_Sub(m_Instruction(IV), 2830 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2831 NBits->hasNoSignedWrap()) 2832 ExtraOffsetExpr = SE->getSCEV(ExtraOffset); 2833 else { 2834 IV = NBits; 2835 ExtraOffsetExpr = SE->getZero(NBits->getType()); 2836 } 2837 2838 // Step 4: Check if the recurrence is in desirable form. 2839 auto *IVPN = dyn_cast<PHINode>(IV); 2840 if (!IVPN || IVPN->getParent() != LoopHeaderBB) { 2841 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2842 return false; 2843 } 2844 2845 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); 2846 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); 2847 2848 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { 2849 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2850 return false; 2851 } 2852 2853 // Step 4: Check if the backedge's destinations are in desirable form. 2854 2855 assert(ICmpInst::isEquality(Pred) && 2856 "Should only get equality predicates here."); 2857 2858 // cmp-br is commutative, so canonicalize to a single variant. 2859 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; 2860 if (InvertedCond) { 2861 Pred = ICmpInst::getInversePredicate(Pred); 2862 std::swap(TrueBB, FalseBB); 2863 } 2864 2865 // We expect to exit loop when comparison yields true, 2866 // so when it yields false we should branch back to loop header. 2867 if (FalseBB != LoopHeaderBB) { 2868 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2869 return false; 2870 } 2871 2872 // The new, countable, loop will certainly only run a known number of 2873 // iterations, It won't be infinite. But the old loop might be infinite 2874 // under certain conditions. For logical shifts, the value will become zero 2875 // after at most bitwidth(%Val) loop iterations. However, for arithmetic 2876 // right-shift, iff the sign bit was set, the value will never become zero, 2877 // and the loop may never finish. 2878 if (ValShifted->getOpcode() == Instruction::AShr && 2879 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { 2880 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); 2881 return false; 2882 } 2883 2884 // Okay, idiom checks out. 2885 return true; 2886 } 2887 2888 /// Look for the following loop: 2889 /// \code 2890 /// entry: 2891 /// <...> 2892 /// %start = <...> 2893 /// %extraoffset = <...> 2894 /// <...> 2895 /// br label %for.cond 2896 /// 2897 /// loop: 2898 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2899 /// %nbits = add nsw i8 %iv, %extraoffset 2900 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2901 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2902 /// %iv.next = add i8 %iv, 1 2903 /// <...> 2904 /// br i1 %val.shifted.iszero, label %end, label %loop 2905 /// 2906 /// end: 2907 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2908 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2909 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2910 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2911 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2912 /// <...> 2913 /// \endcode 2914 /// 2915 /// And transform it into: 2916 /// \code 2917 /// entry: 2918 /// <...> 2919 /// %start = <...> 2920 /// %extraoffset = <...> 2921 /// <...> 2922 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) 2923 /// %val.numactivebits = sub i8 8, %val.numleadingzeros 2924 /// %extraoffset.neg = sub i8 0, %extraoffset 2925 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg 2926 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) 2927 /// %loop.tripcount = sub i8 %iv.final, %start 2928 /// br label %loop 2929 /// 2930 /// loop: 2931 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] 2932 /// %loop.iv.next = add i8 %loop.iv, 1 2933 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount 2934 /// %iv = add i8 %loop.iv, %start 2935 /// <...> 2936 /// br i1 %loop.ivcheck, label %end, label %loop 2937 /// 2938 /// end: 2939 /// %iv.res = phi i8 [ %iv.final, %loop ] <...> 2940 /// <...> 2941 /// \endcode 2942 bool LoopIdiomRecognize::recognizeShiftUntilZero() { 2943 bool MadeChange = false; 2944 2945 Instruction *ValShiftedIsZero; 2946 Intrinsic::ID IntrID; 2947 Instruction *IV; 2948 Value *Start, *Val; 2949 const SCEV *ExtraOffsetExpr; 2950 bool InvertedCond; 2951 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, 2952 Start, Val, ExtraOffsetExpr, InvertedCond)) { 2953 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2954 " shift-until-zero idiom detection failed.\n"); 2955 return MadeChange; 2956 } 2957 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); 2958 2959 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2960 // but is it profitable to transform? 2961 2962 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2963 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2964 assert(LoopPreheaderBB && "There is always a loop preheader."); 2965 2966 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2967 assert(SuccessorBB && "There is only a single successor."); 2968 2969 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2970 Builder.SetCurrentDebugLocation(IV->getDebugLoc()); 2971 2972 Type *Ty = Val->getType(); 2973 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2974 2975 TargetTransformInfo::TargetCostKind CostKind = 2976 TargetTransformInfo::TCK_SizeAndLatency; 2977 2978 // The rewrite is considered to be unprofitable iff and only iff the 2979 // intrinsic we'll use are not cheap. Note that we are okay with *just* 2980 // making the loop countable, even if nothing else changes. 2981 IntrinsicCostAttributes Attrs( 2982 IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getFalse()}); 2983 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2984 if (Cost > TargetTransformInfo::TCC_Basic) { 2985 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2986 " Intrinsic is too costly, not beneficial\n"); 2987 return MadeChange; 2988 } 2989 2990 // Ok, transform appears worthwhile. 2991 MadeChange = true; 2992 2993 bool OffsetIsZero = false; 2994 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) 2995 OffsetIsZero = ExtraOffsetExprC->isZero(); 2996 2997 // Step 1: Compute the loop's final IV value / trip count. 2998 2999 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( 3000 IntrID, Ty, {Val, /*is_zero_poison=*/Builder.getFalse()}, 3001 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); 3002 Value *ValNumActiveBits = Builder.CreateSub( 3003 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, 3004 Val->getName() + ".numactivebits", /*HasNUW=*/true, 3005 /*HasNSW=*/Bitwidth != 2); 3006 3007 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 3008 Expander.setInsertPoint(&*Builder.GetInsertPoint()); 3009 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); 3010 3011 Value *ValNumActiveBitsOffset = Builder.CreateAdd( 3012 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", 3013 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); 3014 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, 3015 {ValNumActiveBitsOffset, Start}, 3016 /*FMFSource=*/nullptr, "iv.final"); 3017 3018 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( 3019 IVFinal, Start, CurLoop->getName() + ".backedgetakencount", 3020 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); 3021 // FIXME: or when the offset was `add nuw` 3022 3023 // We know loop's backedge-taken count, but what's loop's trip count? 3024 Value *LoopTripCount = 3025 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 3026 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 3027 /*HasNSW=*/Bitwidth != 2); 3028 3029 // Step 2: Adjust the successor basic block to recieve the original 3030 // induction variable's final value instead of the orig. IV itself. 3031 3032 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); 3033 3034 // Step 3: Rewrite the loop into a countable form, with canonical IV. 3035 3036 // The new canonical induction variable. 3037 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin()); 3038 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 3039 3040 // The induction itself. 3041 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->getFirstNonPHIIt()); 3042 auto *CIVNext = 3043 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", 3044 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 3045 3046 // The loop trip count check. 3047 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, 3048 CurLoop->getName() + ".ivcheck"); 3049 auto *NewIVCheck = CIVCheck; 3050 if (InvertedCond) { 3051 NewIVCheck = Builder.CreateNot(CIVCheck); 3052 NewIVCheck->takeName(ValShiftedIsZero); 3053 } 3054 3055 // The original IV, but rebased to be an offset to the CIV. 3056 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, 3057 /*HasNSW=*/true); // FIXME: what about NUW? 3058 IVDePHId->takeName(IV); 3059 3060 // The loop terminator. 3061 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 3062 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); 3063 LoopHeaderBB->getTerminator()->eraseFromParent(); 3064 3065 // Populate the IV PHI. 3066 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 3067 CIV->addIncoming(CIVNext, LoopHeaderBB); 3068 3069 // Step 4: Forget the "non-computable" trip-count SCEV associated with the 3070 // loop. The loop would otherwise not be deleted even if it becomes empty. 3071 3072 SE->forgetLoop(CurLoop); 3073 3074 // Step 5: Try to cleanup the loop's body somewhat. 3075 IV->replaceAllUsesWith(IVDePHId); 3076 IV->eraseFromParent(); 3077 3078 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); 3079 ValShiftedIsZero->eraseFromParent(); 3080 3081 // Other passes will take care of actually deleting the loop if possible. 3082 3083 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); 3084 3085 ++NumShiftUntilZero; 3086 return MadeChange; 3087 } 3088