xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp (revision 7029da5c36f2d3cf6bb6c81bf551229f416399e8)
1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, memmove, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/LoopAccessAnalysis.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/LoopPass.h"
53 #include "llvm/Analysis/MemoryLocation.h"
54 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/ScalarEvolutionExpander.h"
57 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
58 #include "llvm/Analysis/TargetLibraryInfo.h"
59 #include "llvm/Analysis/TargetTransformInfo.h"
60 #include "llvm/Analysis/ValueTracking.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugLoc.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/GlobalValue.h"
70 #include "llvm/IR/GlobalVariable.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instruction.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/LLVMContext.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/PassManager.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/User.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/IR/ValueHandle.h"
84 #include "llvm/Pass.h"
85 #include "llvm/Support/Casting.h"
86 #include "llvm/Support/CommandLine.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Transforms/Scalar.h"
90 #include "llvm/Transforms/Utils/BuildLibCalls.h"
91 #include "llvm/Transforms/Utils/Local.h"
92 #include "llvm/Transforms/Utils/LoopUtils.h"
93 #include <algorithm>
94 #include <cassert>
95 #include <cstdint>
96 #include <utility>
97 #include <vector>
98 
99 using namespace llvm;
100 
101 #define DEBUG_TYPE "loop-idiom"
102 
103 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
104 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
105 
106 static cl::opt<bool> UseLIRCodeSizeHeurs(
107     "use-lir-code-size-heurs",
108     cl::desc("Use loop idiom recognition code size heuristics when compiling"
109              "with -Os/-Oz"),
110     cl::init(true), cl::Hidden);
111 
112 namespace {
113 
114 class LoopIdiomRecognize {
115   Loop *CurLoop = nullptr;
116   AliasAnalysis *AA;
117   DominatorTree *DT;
118   LoopInfo *LI;
119   ScalarEvolution *SE;
120   TargetLibraryInfo *TLI;
121   const TargetTransformInfo *TTI;
122   const DataLayout *DL;
123   OptimizationRemarkEmitter &ORE;
124   bool ApplyCodeSizeHeuristics;
125 
126 public:
127   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
128                               LoopInfo *LI, ScalarEvolution *SE,
129                               TargetLibraryInfo *TLI,
130                               const TargetTransformInfo *TTI,
131                               const DataLayout *DL,
132                               OptimizationRemarkEmitter &ORE)
133       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {}
134 
135   bool runOnLoop(Loop *L);
136 
137 private:
138   using StoreList = SmallVector<StoreInst *, 8>;
139   using StoreListMap = MapVector<Value *, StoreList>;
140 
141   StoreListMap StoreRefsForMemset;
142   StoreListMap StoreRefsForMemsetPattern;
143   StoreList StoreRefsForMemcpy;
144   bool HasMemset;
145   bool HasMemsetPattern;
146   bool HasMemcpy;
147 
148   /// Return code for isLegalStore()
149   enum LegalStoreKind {
150     None = 0,
151     Memset,
152     MemsetPattern,
153     Memcpy,
154     UnorderedAtomicMemcpy,
155     DontUse // Dummy retval never to be used. Allows catching errors in retval
156             // handling.
157   };
158 
159   /// \name Countable Loop Idiom Handling
160   /// @{
161 
162   bool runOnCountableLoop();
163   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
164                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
165 
166   void collectStores(BasicBlock *BB);
167   LegalStoreKind isLegalStore(StoreInst *SI);
168   enum class ForMemset { No, Yes };
169   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
170                          ForMemset For);
171   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
172 
173   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
174                                unsigned StoreAlignment, Value *StoredVal,
175                                Instruction *TheStore,
176                                SmallPtrSetImpl<Instruction *> &Stores,
177                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
178                                bool NegStride, bool IsLoopMemset = false);
179   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
180   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
181                                  bool IsLoopMemset = false);
182 
183   /// @}
184   /// \name Noncountable Loop Idiom Handling
185   /// @{
186 
187   bool runOnNoncountableLoop();
188 
189   bool recognizePopcount();
190   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
191                                PHINode *CntPhi, Value *Var);
192   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
193   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
194                                 Instruction *CntInst, PHINode *CntPhi,
195                                 Value *Var, Instruction *DefX,
196                                 const DebugLoc &DL, bool ZeroCheck,
197                                 bool IsCntPhiUsedOutsideLoop);
198 
199   /// @}
200 };
201 
202 class LoopIdiomRecognizeLegacyPass : public LoopPass {
203 public:
204   static char ID;
205 
206   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
207     initializeLoopIdiomRecognizeLegacyPassPass(
208         *PassRegistry::getPassRegistry());
209   }
210 
211   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
212     if (skipLoop(L))
213       return false;
214 
215     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
216     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
217     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
218     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
219     TargetLibraryInfo *TLI =
220         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
221     const TargetTransformInfo *TTI =
222         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
223             *L->getHeader()->getParent());
224     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
225 
226     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
227     // pass.  Function analyses need to be preserved across loop transformations
228     // but ORE cannot be preserved (see comment before the pass definition).
229     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
230 
231     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, ORE);
232     return LIR.runOnLoop(L);
233   }
234 
235   /// This transformation requires natural loop information & requires that
236   /// loop preheaders be inserted into the CFG.
237   void getAnalysisUsage(AnalysisUsage &AU) const override {
238     AU.addRequired<TargetLibraryInfoWrapperPass>();
239     AU.addRequired<TargetTransformInfoWrapperPass>();
240     getLoopAnalysisUsage(AU);
241   }
242 };
243 
244 } // end anonymous namespace
245 
246 char LoopIdiomRecognizeLegacyPass::ID = 0;
247 
248 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
249                                               LoopStandardAnalysisResults &AR,
250                                               LPMUpdater &) {
251   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
252 
253   const auto &FAM =
254       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
255   Function *F = L.getHeader()->getParent();
256 
257   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
258   // FIXME: This should probably be optional rather than required.
259   if (!ORE)
260     report_fatal_error(
261         "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached "
262         "at a higher level");
263 
264   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL,
265                          *ORE);
266   if (!LIR.runOnLoop(&L))
267     return PreservedAnalyses::all();
268 
269   return getLoopPassPreservedAnalyses();
270 }
271 
272 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
273                       "Recognize loop idioms", false, false)
274 INITIALIZE_PASS_DEPENDENCY(LoopPass)
275 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
276 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
277 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
278                     "Recognize loop idioms", false, false)
279 
280 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
281 
282 static void deleteDeadInstruction(Instruction *I) {
283   I->replaceAllUsesWith(UndefValue::get(I->getType()));
284   I->eraseFromParent();
285 }
286 
287 //===----------------------------------------------------------------------===//
288 //
289 //          Implementation of LoopIdiomRecognize
290 //
291 //===----------------------------------------------------------------------===//
292 
293 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
294   CurLoop = L;
295   // If the loop could not be converted to canonical form, it must have an
296   // indirectbr in it, just give up.
297   if (!L->getLoopPreheader())
298     return false;
299 
300   // Disable loop idiom recognition if the function's name is a common idiom.
301   StringRef Name = L->getHeader()->getParent()->getName();
302   if (Name == "memset" || Name == "memcpy")
303     return false;
304 
305   // Determine if code size heuristics need to be applied.
306   ApplyCodeSizeHeuristics =
307       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
308 
309   HasMemset = TLI->has(LibFunc_memset);
310   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
311   HasMemcpy = TLI->has(LibFunc_memcpy);
312 
313   if (HasMemset || HasMemsetPattern || HasMemcpy)
314     if (SE->hasLoopInvariantBackedgeTakenCount(L))
315       return runOnCountableLoop();
316 
317   return runOnNoncountableLoop();
318 }
319 
320 bool LoopIdiomRecognize::runOnCountableLoop() {
321   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
322   assert(!isa<SCEVCouldNotCompute>(BECount) &&
323          "runOnCountableLoop() called on a loop without a predictable"
324          "backedge-taken count");
325 
326   // If this loop executes exactly one time, then it should be peeled, not
327   // optimized by this pass.
328   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
329     if (BECst->getAPInt() == 0)
330       return false;
331 
332   SmallVector<BasicBlock *, 8> ExitBlocks;
333   CurLoop->getUniqueExitBlocks(ExitBlocks);
334 
335   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
336                     << CurLoop->getHeader()->getParent()->getName()
337                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
338                     << "\n");
339 
340   bool MadeChange = false;
341 
342   // The following transforms hoist stores/memsets into the loop pre-header.
343   // Give up if the loop has instructions may throw.
344   SimpleLoopSafetyInfo SafetyInfo;
345   SafetyInfo.computeLoopSafetyInfo(CurLoop);
346   if (SafetyInfo.anyBlockMayThrow())
347     return MadeChange;
348 
349   // Scan all the blocks in the loop that are not in subloops.
350   for (auto *BB : CurLoop->getBlocks()) {
351     // Ignore blocks in subloops.
352     if (LI->getLoopFor(BB) != CurLoop)
353       continue;
354 
355     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
356   }
357   return MadeChange;
358 }
359 
360 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
361   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
362   return ConstStride->getAPInt();
363 }
364 
365 /// getMemSetPatternValue - If a strided store of the specified value is safe to
366 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
367 /// be passed in.  Otherwise, return null.
368 ///
369 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
370 /// just replicate their input array and then pass on to memset_pattern16.
371 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
372   // FIXME: This could check for UndefValue because it can be merged into any
373   // other valid pattern.
374 
375   // If the value isn't a constant, we can't promote it to being in a constant
376   // array.  We could theoretically do a store to an alloca or something, but
377   // that doesn't seem worthwhile.
378   Constant *C = dyn_cast<Constant>(V);
379   if (!C)
380     return nullptr;
381 
382   // Only handle simple values that are a power of two bytes in size.
383   uint64_t Size = DL->getTypeSizeInBits(V->getType());
384   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
385     return nullptr;
386 
387   // Don't care enough about darwin/ppc to implement this.
388   if (DL->isBigEndian())
389     return nullptr;
390 
391   // Convert to size in bytes.
392   Size /= 8;
393 
394   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
395   // if the top and bottom are the same (e.g. for vectors and large integers).
396   if (Size > 16)
397     return nullptr;
398 
399   // If the constant is exactly 16 bytes, just use it.
400   if (Size == 16)
401     return C;
402 
403   // Otherwise, we'll use an array of the constants.
404   unsigned ArraySize = 16 / Size;
405   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
406   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
407 }
408 
409 LoopIdiomRecognize::LegalStoreKind
410 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
411   // Don't touch volatile stores.
412   if (SI->isVolatile())
413     return LegalStoreKind::None;
414   // We only want simple or unordered-atomic stores.
415   if (!SI->isUnordered())
416     return LegalStoreKind::None;
417 
418   // Don't convert stores of non-integral pointer types to memsets (which stores
419   // integers).
420   if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
421     return LegalStoreKind::None;
422 
423   // Avoid merging nontemporal stores.
424   if (SI->getMetadata(LLVMContext::MD_nontemporal))
425     return LegalStoreKind::None;
426 
427   Value *StoredVal = SI->getValueOperand();
428   Value *StorePtr = SI->getPointerOperand();
429 
430   // Reject stores that are so large that they overflow an unsigned.
431   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
432   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
433     return LegalStoreKind::None;
434 
435   // See if the pointer expression is an AddRec like {base,+,1} on the current
436   // loop, which indicates a strided store.  If we have something else, it's a
437   // random store we can't handle.
438   const SCEVAddRecExpr *StoreEv =
439       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
440   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
441     return LegalStoreKind::None;
442 
443   // Check to see if we have a constant stride.
444   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
445     return LegalStoreKind::None;
446 
447   // See if the store can be turned into a memset.
448 
449   // If the stored value is a byte-wise value (like i32 -1), then it may be
450   // turned into a memset of i8 -1, assuming that all the consecutive bytes
451   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
452   // but it can be turned into memset_pattern if the target supports it.
453   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
454   Constant *PatternValue = nullptr;
455 
456   // Note: memset and memset_pattern on unordered-atomic is yet not supported
457   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
458 
459   // If we're allowed to form a memset, and the stored value would be
460   // acceptable for memset, use it.
461   if (!UnorderedAtomic && HasMemset && SplatValue &&
462       // Verify that the stored value is loop invariant.  If not, we can't
463       // promote the memset.
464       CurLoop->isLoopInvariant(SplatValue)) {
465     // It looks like we can use SplatValue.
466     return LegalStoreKind::Memset;
467   } else if (!UnorderedAtomic && HasMemsetPattern &&
468              // Don't create memset_pattern16s with address spaces.
469              StorePtr->getType()->getPointerAddressSpace() == 0 &&
470              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
471     // It looks like we can use PatternValue!
472     return LegalStoreKind::MemsetPattern;
473   }
474 
475   // Otherwise, see if the store can be turned into a memcpy.
476   if (HasMemcpy) {
477     // Check to see if the stride matches the size of the store.  If so, then we
478     // know that every byte is touched in the loop.
479     APInt Stride = getStoreStride(StoreEv);
480     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
481     if (StoreSize != Stride && StoreSize != -Stride)
482       return LegalStoreKind::None;
483 
484     // The store must be feeding a non-volatile load.
485     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
486 
487     // Only allow non-volatile loads
488     if (!LI || LI->isVolatile())
489       return LegalStoreKind::None;
490     // Only allow simple or unordered-atomic loads
491     if (!LI->isUnordered())
492       return LegalStoreKind::None;
493 
494     // See if the pointer expression is an AddRec like {base,+,1} on the current
495     // loop, which indicates a strided load.  If we have something else, it's a
496     // random load we can't handle.
497     const SCEVAddRecExpr *LoadEv =
498         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
499     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
500       return LegalStoreKind::None;
501 
502     // The store and load must share the same stride.
503     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
504       return LegalStoreKind::None;
505 
506     // Success.  This store can be converted into a memcpy.
507     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
508     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
509                            : LegalStoreKind::Memcpy;
510   }
511   // This store can't be transformed into a memset/memcpy.
512   return LegalStoreKind::None;
513 }
514 
515 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
516   StoreRefsForMemset.clear();
517   StoreRefsForMemsetPattern.clear();
518   StoreRefsForMemcpy.clear();
519   for (Instruction &I : *BB) {
520     StoreInst *SI = dyn_cast<StoreInst>(&I);
521     if (!SI)
522       continue;
523 
524     // Make sure this is a strided store with a constant stride.
525     switch (isLegalStore(SI)) {
526     case LegalStoreKind::None:
527       // Nothing to do
528       break;
529     case LegalStoreKind::Memset: {
530       // Find the base pointer.
531       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
532       StoreRefsForMemset[Ptr].push_back(SI);
533     } break;
534     case LegalStoreKind::MemsetPattern: {
535       // Find the base pointer.
536       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
537       StoreRefsForMemsetPattern[Ptr].push_back(SI);
538     } break;
539     case LegalStoreKind::Memcpy:
540     case LegalStoreKind::UnorderedAtomicMemcpy:
541       StoreRefsForMemcpy.push_back(SI);
542       break;
543     default:
544       assert(false && "unhandled return value");
545       break;
546     }
547   }
548 }
549 
550 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
551 /// with the specified backedge count.  This block is known to be in the current
552 /// loop and not in any subloops.
553 bool LoopIdiomRecognize::runOnLoopBlock(
554     BasicBlock *BB, const SCEV *BECount,
555     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
556   // We can only promote stores in this block if they are unconditionally
557   // executed in the loop.  For a block to be unconditionally executed, it has
558   // to dominate all the exit blocks of the loop.  Verify this now.
559   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
560     if (!DT->dominates(BB, ExitBlocks[i]))
561       return false;
562 
563   bool MadeChange = false;
564   // Look for store instructions, which may be optimized to memset/memcpy.
565   collectStores(BB);
566 
567   // Look for a single store or sets of stores with a common base, which can be
568   // optimized into a memset (memset_pattern).  The latter most commonly happens
569   // with structs and handunrolled loops.
570   for (auto &SL : StoreRefsForMemset)
571     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
572 
573   for (auto &SL : StoreRefsForMemsetPattern)
574     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
575 
576   // Optimize the store into a memcpy, if it feeds an similarly strided load.
577   for (auto &SI : StoreRefsForMemcpy)
578     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
579 
580   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
581     Instruction *Inst = &*I++;
582     // Look for memset instructions, which may be optimized to a larger memset.
583     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
584       WeakTrackingVH InstPtr(&*I);
585       if (!processLoopMemSet(MSI, BECount))
586         continue;
587       MadeChange = true;
588 
589       // If processing the memset invalidated our iterator, start over from the
590       // top of the block.
591       if (!InstPtr)
592         I = BB->begin();
593       continue;
594     }
595   }
596 
597   return MadeChange;
598 }
599 
600 /// See if this store(s) can be promoted to a memset.
601 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
602                                            const SCEV *BECount, ForMemset For) {
603   // Try to find consecutive stores that can be transformed into memsets.
604   SetVector<StoreInst *> Heads, Tails;
605   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
606 
607   // Do a quadratic search on all of the given stores and find
608   // all of the pairs of stores that follow each other.
609   SmallVector<unsigned, 16> IndexQueue;
610   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
611     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
612 
613     Value *FirstStoredVal = SL[i]->getValueOperand();
614     Value *FirstStorePtr = SL[i]->getPointerOperand();
615     const SCEVAddRecExpr *FirstStoreEv =
616         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
617     APInt FirstStride = getStoreStride(FirstStoreEv);
618     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
619 
620     // See if we can optimize just this store in isolation.
621     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
622       Heads.insert(SL[i]);
623       continue;
624     }
625 
626     Value *FirstSplatValue = nullptr;
627     Constant *FirstPatternValue = nullptr;
628 
629     if (For == ForMemset::Yes)
630       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
631     else
632       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
633 
634     assert((FirstSplatValue || FirstPatternValue) &&
635            "Expected either splat value or pattern value.");
636 
637     IndexQueue.clear();
638     // If a store has multiple consecutive store candidates, search Stores
639     // array according to the sequence: from i+1 to e, then from i-1 to 0.
640     // This is because usually pairing with immediate succeeding or preceding
641     // candidate create the best chance to find memset opportunity.
642     unsigned j = 0;
643     for (j = i + 1; j < e; ++j)
644       IndexQueue.push_back(j);
645     for (j = i; j > 0; --j)
646       IndexQueue.push_back(j - 1);
647 
648     for (auto &k : IndexQueue) {
649       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
650       Value *SecondStorePtr = SL[k]->getPointerOperand();
651       const SCEVAddRecExpr *SecondStoreEv =
652           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
653       APInt SecondStride = getStoreStride(SecondStoreEv);
654 
655       if (FirstStride != SecondStride)
656         continue;
657 
658       Value *SecondStoredVal = SL[k]->getValueOperand();
659       Value *SecondSplatValue = nullptr;
660       Constant *SecondPatternValue = nullptr;
661 
662       if (For == ForMemset::Yes)
663         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
664       else
665         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
666 
667       assert((SecondSplatValue || SecondPatternValue) &&
668              "Expected either splat value or pattern value.");
669 
670       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
671         if (For == ForMemset::Yes) {
672           if (isa<UndefValue>(FirstSplatValue))
673             FirstSplatValue = SecondSplatValue;
674           if (FirstSplatValue != SecondSplatValue)
675             continue;
676         } else {
677           if (isa<UndefValue>(FirstPatternValue))
678             FirstPatternValue = SecondPatternValue;
679           if (FirstPatternValue != SecondPatternValue)
680             continue;
681         }
682         Tails.insert(SL[k]);
683         Heads.insert(SL[i]);
684         ConsecutiveChain[SL[i]] = SL[k];
685         break;
686       }
687     }
688   }
689 
690   // We may run into multiple chains that merge into a single chain. We mark the
691   // stores that we transformed so that we don't visit the same store twice.
692   SmallPtrSet<Value *, 16> TransformedStores;
693   bool Changed = false;
694 
695   // For stores that start but don't end a link in the chain:
696   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
697        it != e; ++it) {
698     if (Tails.count(*it))
699       continue;
700 
701     // We found a store instr that starts a chain. Now follow the chain and try
702     // to transform it.
703     SmallPtrSet<Instruction *, 8> AdjacentStores;
704     StoreInst *I = *it;
705 
706     StoreInst *HeadStore = I;
707     unsigned StoreSize = 0;
708 
709     // Collect the chain into a list.
710     while (Tails.count(I) || Heads.count(I)) {
711       if (TransformedStores.count(I))
712         break;
713       AdjacentStores.insert(I);
714 
715       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
716       // Move to the next value in the chain.
717       I = ConsecutiveChain[I];
718     }
719 
720     Value *StoredVal = HeadStore->getValueOperand();
721     Value *StorePtr = HeadStore->getPointerOperand();
722     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
723     APInt Stride = getStoreStride(StoreEv);
724 
725     // Check to see if the stride matches the size of the stores.  If so, then
726     // we know that every byte is touched in the loop.
727     if (StoreSize != Stride && StoreSize != -Stride)
728       continue;
729 
730     bool NegStride = StoreSize == -Stride;
731 
732     if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
733                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
734                                 BECount, NegStride)) {
735       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
736       Changed = true;
737     }
738   }
739 
740   return Changed;
741 }
742 
743 /// processLoopMemSet - See if this memset can be promoted to a large memset.
744 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
745                                            const SCEV *BECount) {
746   // We can only handle non-volatile memsets with a constant size.
747   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
748     return false;
749 
750   // If we're not allowed to hack on memset, we fail.
751   if (!HasMemset)
752     return false;
753 
754   Value *Pointer = MSI->getDest();
755 
756   // See if the pointer expression is an AddRec like {base,+,1} on the current
757   // loop, which indicates a strided store.  If we have something else, it's a
758   // random store we can't handle.
759   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
760   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
761     return false;
762 
763   // Reject memsets that are so large that they overflow an unsigned.
764   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
765   if ((SizeInBytes >> 32) != 0)
766     return false;
767 
768   // Check to see if the stride matches the size of the memset.  If so, then we
769   // know that every byte is touched in the loop.
770   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
771   if (!ConstStride)
772     return false;
773 
774   APInt Stride = ConstStride->getAPInt();
775   if (SizeInBytes != Stride && SizeInBytes != -Stride)
776     return false;
777 
778   // Verify that the memset value is loop invariant.  If not, we can't promote
779   // the memset.
780   Value *SplatValue = MSI->getValue();
781   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
782     return false;
783 
784   SmallPtrSet<Instruction *, 1> MSIs;
785   MSIs.insert(MSI);
786   bool NegStride = SizeInBytes == -Stride;
787   return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
788                                  MSI->getDestAlignment(), SplatValue, MSI, MSIs,
789                                  Ev, BECount, NegStride, /*IsLoopMemset=*/true);
790 }
791 
792 /// mayLoopAccessLocation - Return true if the specified loop might access the
793 /// specified pointer location, which is a loop-strided access.  The 'Access'
794 /// argument specifies what the verboten forms of access are (read or write).
795 static bool
796 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
797                       const SCEV *BECount, unsigned StoreSize,
798                       AliasAnalysis &AA,
799                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
800   // Get the location that may be stored across the loop.  Since the access is
801   // strided positively through memory, we say that the modified location starts
802   // at the pointer and has infinite size.
803   LocationSize AccessSize = LocationSize::unknown();
804 
805   // If the loop iterates a fixed number of times, we can refine the access size
806   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
807   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
808     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
809                                        StoreSize);
810 
811   // TODO: For this to be really effective, we have to dive into the pointer
812   // operand in the store.  Store to &A[i] of 100 will always return may alias
813   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
814   // which will then no-alias a store to &A[100].
815   MemoryLocation StoreLoc(Ptr, AccessSize);
816 
817   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
818        ++BI)
819     for (Instruction &I : **BI)
820       if (IgnoredStores.count(&I) == 0 &&
821           isModOrRefSet(
822               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
823         return true;
824 
825   return false;
826 }
827 
828 // If we have a negative stride, Start refers to the end of the memory location
829 // we're trying to memset.  Therefore, we need to recompute the base pointer,
830 // which is just Start - BECount*Size.
831 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
832                                         Type *IntPtr, unsigned StoreSize,
833                                         ScalarEvolution *SE) {
834   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
835   if (StoreSize != 1)
836     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
837                            SCEV::FlagNUW);
838   return SE->getMinusSCEV(Start, Index);
839 }
840 
841 /// Compute the number of bytes as a SCEV from the backedge taken count.
842 ///
843 /// This also maps the SCEV into the provided type and tries to handle the
844 /// computation in a way that will fold cleanly.
845 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
846                                unsigned StoreSize, Loop *CurLoop,
847                                const DataLayout *DL, ScalarEvolution *SE) {
848   const SCEV *NumBytesS;
849   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
850   // pointer size if it isn't already.
851   //
852   // If we're going to need to zero extend the BE count, check if we can add
853   // one to it prior to zero extending without overflow. Provided this is safe,
854   // it allows better simplification of the +1.
855   if (DL->getTypeSizeInBits(BECount->getType()) <
856           DL->getTypeSizeInBits(IntPtr) &&
857       SE->isLoopEntryGuardedByCond(
858           CurLoop, ICmpInst::ICMP_NE, BECount,
859           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
860     NumBytesS = SE->getZeroExtendExpr(
861         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
862         IntPtr);
863   } else {
864     NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
865                                SE->getOne(IntPtr), SCEV::FlagNUW);
866   }
867 
868   // And scale it based on the store size.
869   if (StoreSize != 1) {
870     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
871                                SCEV::FlagNUW);
872   }
873   return NumBytesS;
874 }
875 
876 /// processLoopStridedStore - We see a strided store of some value.  If we can
877 /// transform this into a memset or memset_pattern in the loop preheader, do so.
878 bool LoopIdiomRecognize::processLoopStridedStore(
879     Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
880     Value *StoredVal, Instruction *TheStore,
881     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
882     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
883   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
884   Constant *PatternValue = nullptr;
885 
886   if (!SplatValue)
887     PatternValue = getMemSetPatternValue(StoredVal, DL);
888 
889   assert((SplatValue || PatternValue) &&
890          "Expected either splat value or pattern value.");
891 
892   // The trip count of the loop and the base pointer of the addrec SCEV is
893   // guaranteed to be loop invariant, which means that it should dominate the
894   // header.  This allows us to insert code for it in the preheader.
895   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
896   BasicBlock *Preheader = CurLoop->getLoopPreheader();
897   IRBuilder<> Builder(Preheader->getTerminator());
898   SCEVExpander Expander(*SE, *DL, "loop-idiom");
899 
900   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
901   Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);
902 
903   const SCEV *Start = Ev->getStart();
904   // Handle negative strided loops.
905   if (NegStride)
906     Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);
907 
908   // TODO: ideally we should still be able to generate memset if SCEV expander
909   // is taught to generate the dependencies at the latest point.
910   if (!isSafeToExpand(Start, *SE))
911     return false;
912 
913   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
914   // this into a memset in the loop preheader now if we want.  However, this
915   // would be unsafe to do if there is anything else in the loop that may read
916   // or write to the aliased location.  Check for any overlap by generating the
917   // base pointer and checking the region.
918   Value *BasePtr =
919       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
920   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
921                             StoreSize, *AA, Stores)) {
922     Expander.clear();
923     // If we generated new code for the base pointer, clean up.
924     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
925     return false;
926   }
927 
928   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
929     return false;
930 
931   // Okay, everything looks good, insert the memset.
932 
933   const SCEV *NumBytesS =
934       getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE);
935 
936   // TODO: ideally we should still be able to generate memset if SCEV expander
937   // is taught to generate the dependencies at the latest point.
938   if (!isSafeToExpand(NumBytesS, *SE))
939     return false;
940 
941   Value *NumBytes =
942       Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
943 
944   CallInst *NewCall;
945   if (SplatValue) {
946     NewCall =
947         Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
948   } else {
949     // Everything is emitted in default address space
950     Type *Int8PtrTy = DestInt8PtrTy;
951 
952     Module *M = TheStore->getModule();
953     StringRef FuncName = "memset_pattern16";
954     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
955                                                 Int8PtrTy, Int8PtrTy, IntPtr);
956     inferLibFuncAttributes(M, FuncName, *TLI);
957 
958     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
959     // an constant array of 16-bytes.  Plop the value into a mergable global.
960     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
961                                             GlobalValue::PrivateLinkage,
962                                             PatternValue, ".memset_pattern");
963     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
964     GV->setAlignment(16);
965     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
966     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
967   }
968 
969   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
970                     << "    from store to: " << *Ev << " at: " << *TheStore
971                     << "\n");
972   NewCall->setDebugLoc(TheStore->getDebugLoc());
973 
974   ORE.emit([&]() {
975     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
976                               NewCall->getDebugLoc(), Preheader)
977            << "Transformed loop-strided store into a call to "
978            << ore::NV("NewFunction", NewCall->getCalledFunction())
979            << "() function";
980   });
981 
982   // Okay, the memset has been formed.  Zap the original store and anything that
983   // feeds into it.
984   for (auto *I : Stores)
985     deleteDeadInstruction(I);
986   ++NumMemSet;
987   return true;
988 }
989 
990 /// If the stored value is a strided load in the same loop with the same stride
991 /// this may be transformable into a memcpy.  This kicks in for stuff like
992 /// for (i) A[i] = B[i];
993 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
994                                                     const SCEV *BECount) {
995   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
996 
997   Value *StorePtr = SI->getPointerOperand();
998   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
999   APInt Stride = getStoreStride(StoreEv);
1000   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1001   bool NegStride = StoreSize == -Stride;
1002 
1003   // The store must be feeding a non-volatile load.
1004   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1005   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1006 
1007   // See if the pointer expression is an AddRec like {base,+,1} on the current
1008   // loop, which indicates a strided load.  If we have something else, it's a
1009   // random load we can't handle.
1010   const SCEVAddRecExpr *LoadEv =
1011       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1012 
1013   // The trip count of the loop and the base pointer of the addrec SCEV is
1014   // guaranteed to be loop invariant, which means that it should dominate the
1015   // header.  This allows us to insert code for it in the preheader.
1016   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1017   IRBuilder<> Builder(Preheader->getTerminator());
1018   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1019 
1020   const SCEV *StrStart = StoreEv->getStart();
1021   unsigned StrAS = SI->getPointerAddressSpace();
1022   Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);
1023 
1024   // Handle negative strided loops.
1025   if (NegStride)
1026     StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);
1027 
1028   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1029   // this into a memcpy in the loop preheader now if we want.  However, this
1030   // would be unsafe to do if there is anything else in the loop that may read
1031   // or write the memory region we're storing to.  This includes the load that
1032   // feeds the stores.  Check for an alias by generating the base address and
1033   // checking everything.
1034   Value *StoreBasePtr = Expander.expandCodeFor(
1035       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1036 
1037   SmallPtrSet<Instruction *, 1> Stores;
1038   Stores.insert(SI);
1039   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1040                             StoreSize, *AA, Stores)) {
1041     Expander.clear();
1042     // If we generated new code for the base pointer, clean up.
1043     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1044     return false;
1045   }
1046 
1047   const SCEV *LdStart = LoadEv->getStart();
1048   unsigned LdAS = LI->getPointerAddressSpace();
1049 
1050   // Handle negative strided loops.
1051   if (NegStride)
1052     LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);
1053 
1054   // For a memcpy, we have to make sure that the input array is not being
1055   // mutated by the loop.
1056   Value *LoadBasePtr = Expander.expandCodeFor(
1057       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1058 
1059   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1060                             StoreSize, *AA, Stores)) {
1061     Expander.clear();
1062     // If we generated new code for the base pointer, clean up.
1063     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
1064     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1065     return false;
1066   }
1067 
1068   if (avoidLIRForMultiBlockLoop())
1069     return false;
1070 
1071   // Okay, everything is safe, we can transform this!
1072 
1073   const SCEV *NumBytesS =
1074       getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE);
1075 
1076   Value *NumBytes =
1077       Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());
1078 
1079   CallInst *NewCall = nullptr;
1080   // Check whether to generate an unordered atomic memcpy:
1081   //  If the load or store are atomic, then they must necessarily be unordered
1082   //  by previous checks.
1083   if (!SI->isAtomic() && !LI->isAtomic())
1084     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
1085                                    LoadBasePtr, LI->getAlignment(), NumBytes);
1086   else {
1087     // We cannot allow unaligned ops for unordered load/store, so reject
1088     // anything where the alignment isn't at least the element size.
1089     unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
1090     if (Align < StoreSize)
1091       return false;
1092 
1093     // If the element.atomic memcpy is not lowered into explicit
1094     // loads/stores later, then it will be lowered into an element-size
1095     // specific lib call. If the lib call doesn't exist for our store size, then
1096     // we shouldn't generate the memcpy.
1097     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1098       return false;
1099 
1100     // Create the call.
1101     // Note that unordered atomic loads/stores are *required* by the spec to
1102     // have an alignment but non-atomic loads/stores may not.
1103     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1104         StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
1105         NumBytes, StoreSize);
1106   }
1107   NewCall->setDebugLoc(SI->getDebugLoc());
1108 
1109   LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1110                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1111                     << "    from store ptr=" << *StoreEv << " at: " << *SI
1112                     << "\n");
1113 
1114   ORE.emit([&]() {
1115     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1116                               NewCall->getDebugLoc(), Preheader)
1117            << "Formed a call to "
1118            << ore::NV("NewFunction", NewCall->getCalledFunction())
1119            << "() function";
1120   });
1121 
1122   // Okay, the memcpy has been formed.  Zap the original store and anything that
1123   // feeds into it.
1124   deleteDeadInstruction(SI);
1125   ++NumMemCpy;
1126   return true;
1127 }
1128 
1129 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1130 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1131 //
1132 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1133                                                    bool IsLoopMemset) {
1134   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1135     if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1136       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1137                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1138                         << " avoided: multi-block top-level loop\n");
1139       return true;
1140     }
1141   }
1142 
1143   return false;
1144 }
1145 
1146 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1147   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1148                     << CurLoop->getHeader()->getParent()->getName()
1149                     << "] Noncountable Loop %"
1150                     << CurLoop->getHeader()->getName() << "\n");
1151 
1152   return recognizePopcount() || recognizeAndInsertFFS();
1153 }
1154 
1155 /// Check if the given conditional branch is based on the comparison between
1156 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1157 /// true), the control yields to the loop entry. If the branch matches the
1158 /// behavior, the variable involved in the comparison is returned. This function
1159 /// will be called to see if the precondition and postcondition of the loop are
1160 /// in desirable form.
1161 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1162                              bool JmpOnZero = false) {
1163   if (!BI || !BI->isConditional())
1164     return nullptr;
1165 
1166   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1167   if (!Cond)
1168     return nullptr;
1169 
1170   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1171   if (!CmpZero || !CmpZero->isZero())
1172     return nullptr;
1173 
1174   BasicBlock *TrueSucc = BI->getSuccessor(0);
1175   BasicBlock *FalseSucc = BI->getSuccessor(1);
1176   if (JmpOnZero)
1177     std::swap(TrueSucc, FalseSucc);
1178 
1179   ICmpInst::Predicate Pred = Cond->getPredicate();
1180   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1181       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1182     return Cond->getOperand(0);
1183 
1184   return nullptr;
1185 }
1186 
1187 // Check if the recurrence variable `VarX` is in the right form to create
1188 // the idiom. Returns the value coerced to a PHINode if so.
1189 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1190                                  BasicBlock *LoopEntry) {
1191   auto *PhiX = dyn_cast<PHINode>(VarX);
1192   if (PhiX && PhiX->getParent() == LoopEntry &&
1193       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1194     return PhiX;
1195   return nullptr;
1196 }
1197 
1198 /// Return true iff the idiom is detected in the loop.
1199 ///
1200 /// Additionally:
1201 /// 1) \p CntInst is set to the instruction counting the population bit.
1202 /// 2) \p CntPhi is set to the corresponding phi node.
1203 /// 3) \p Var is set to the value whose population bits are being counted.
1204 ///
1205 /// The core idiom we are trying to detect is:
1206 /// \code
1207 ///    if (x0 != 0)
1208 ///      goto loop-exit // the precondition of the loop
1209 ///    cnt0 = init-val;
1210 ///    do {
1211 ///       x1 = phi (x0, x2);
1212 ///       cnt1 = phi(cnt0, cnt2);
1213 ///
1214 ///       cnt2 = cnt1 + 1;
1215 ///        ...
1216 ///       x2 = x1 & (x1 - 1);
1217 ///        ...
1218 ///    } while(x != 0);
1219 ///
1220 /// loop-exit:
1221 /// \endcode
1222 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1223                                 Instruction *&CntInst, PHINode *&CntPhi,
1224                                 Value *&Var) {
1225   // step 1: Check to see if the look-back branch match this pattern:
1226   //    "if (a!=0) goto loop-entry".
1227   BasicBlock *LoopEntry;
1228   Instruction *DefX2, *CountInst;
1229   Value *VarX1, *VarX0;
1230   PHINode *PhiX, *CountPhi;
1231 
1232   DefX2 = CountInst = nullptr;
1233   VarX1 = VarX0 = nullptr;
1234   PhiX = CountPhi = nullptr;
1235   LoopEntry = *(CurLoop->block_begin());
1236 
1237   // step 1: Check if the loop-back branch is in desirable form.
1238   {
1239     if (Value *T = matchCondition(
1240             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1241       DefX2 = dyn_cast<Instruction>(T);
1242     else
1243       return false;
1244   }
1245 
1246   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1247   {
1248     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1249       return false;
1250 
1251     BinaryOperator *SubOneOp;
1252 
1253     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1254       VarX1 = DefX2->getOperand(1);
1255     else {
1256       VarX1 = DefX2->getOperand(0);
1257       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1258     }
1259     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1260       return false;
1261 
1262     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1263     if (!Dec ||
1264         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1265           (SubOneOp->getOpcode() == Instruction::Add &&
1266            Dec->isMinusOne()))) {
1267       return false;
1268     }
1269   }
1270 
1271   // step 3: Check the recurrence of variable X
1272   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1273   if (!PhiX)
1274     return false;
1275 
1276   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1277   {
1278     CountInst = nullptr;
1279     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1280                               IterE = LoopEntry->end();
1281          Iter != IterE; Iter++) {
1282       Instruction *Inst = &*Iter;
1283       if (Inst->getOpcode() != Instruction::Add)
1284         continue;
1285 
1286       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1287       if (!Inc || !Inc->isOne())
1288         continue;
1289 
1290       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1291       if (!Phi)
1292         continue;
1293 
1294       // Check if the result of the instruction is live of the loop.
1295       bool LiveOutLoop = false;
1296       for (User *U : Inst->users()) {
1297         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1298           LiveOutLoop = true;
1299           break;
1300         }
1301       }
1302 
1303       if (LiveOutLoop) {
1304         CountInst = Inst;
1305         CountPhi = Phi;
1306         break;
1307       }
1308     }
1309 
1310     if (!CountInst)
1311       return false;
1312   }
1313 
1314   // step 5: check if the precondition is in this form:
1315   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1316   {
1317     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1318     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1319     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1320       return false;
1321 
1322     CntInst = CountInst;
1323     CntPhi = CountPhi;
1324     Var = T;
1325   }
1326 
1327   return true;
1328 }
1329 
1330 /// Return true if the idiom is detected in the loop.
1331 ///
1332 /// Additionally:
1333 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1334 ///       or nullptr if there is no such.
1335 /// 2) \p CntPhi is set to the corresponding phi node
1336 ///       or nullptr if there is no such.
1337 /// 3) \p Var is set to the value whose CTLZ could be used.
1338 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1339 ///
1340 /// The core idiom we are trying to detect is:
1341 /// \code
1342 ///    if (x0 == 0)
1343 ///      goto loop-exit // the precondition of the loop
1344 ///    cnt0 = init-val;
1345 ///    do {
1346 ///       x = phi (x0, x.next);   //PhiX
1347 ///       cnt = phi(cnt0, cnt.next);
1348 ///
1349 ///       cnt.next = cnt + 1;
1350 ///        ...
1351 ///       x.next = x >> 1;   // DefX
1352 ///        ...
1353 ///    } while(x.next != 0);
1354 ///
1355 /// loop-exit:
1356 /// \endcode
1357 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1358                                       Intrinsic::ID &IntrinID, Value *&InitX,
1359                                       Instruction *&CntInst, PHINode *&CntPhi,
1360                                       Instruction *&DefX) {
1361   BasicBlock *LoopEntry;
1362   Value *VarX = nullptr;
1363 
1364   DefX = nullptr;
1365   CntInst = nullptr;
1366   CntPhi = nullptr;
1367   LoopEntry = *(CurLoop->block_begin());
1368 
1369   // step 1: Check if the loop-back branch is in desirable form.
1370   if (Value *T = matchCondition(
1371           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1372     DefX = dyn_cast<Instruction>(T);
1373   else
1374     return false;
1375 
1376   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1377   if (!DefX || !DefX->isShift())
1378     return false;
1379   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1380                                                      Intrinsic::ctlz;
1381   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1382   if (!Shft || !Shft->isOne())
1383     return false;
1384   VarX = DefX->getOperand(0);
1385 
1386   // step 3: Check the recurrence of variable X
1387   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1388   if (!PhiX)
1389     return false;
1390 
1391   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1392 
1393   // Make sure the initial value can't be negative otherwise the ashr in the
1394   // loop might never reach zero which would make the loop infinite.
1395   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1396     return false;
1397 
1398   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1399   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1400   //       then all uses of "cnt.next" could be optimized to the trip count
1401   //       plus "cnt0". Currently it is not optimized.
1402   //       This step could be used to detect POPCNT instruction:
1403   //       cnt.next = cnt + (x.next & 1)
1404   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1405                             IterE = LoopEntry->end();
1406        Iter != IterE; Iter++) {
1407     Instruction *Inst = &*Iter;
1408     if (Inst->getOpcode() != Instruction::Add)
1409       continue;
1410 
1411     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1412     if (!Inc || !Inc->isOne())
1413       continue;
1414 
1415     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1416     if (!Phi)
1417       continue;
1418 
1419     CntInst = Inst;
1420     CntPhi = Phi;
1421     break;
1422   }
1423   if (!CntInst)
1424     return false;
1425 
1426   return true;
1427 }
1428 
1429 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1430 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1431 /// trip count returns true; otherwise, returns false.
1432 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1433   // Give up if the loop has multiple blocks or multiple backedges.
1434   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1435     return false;
1436 
1437   Intrinsic::ID IntrinID;
1438   Value *InitX;
1439   Instruction *DefX = nullptr;
1440   PHINode *CntPhi = nullptr;
1441   Instruction *CntInst = nullptr;
1442   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1443   // this is always 6.
1444   size_t IdiomCanonicalSize = 6;
1445 
1446   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1447                                  CntInst, CntPhi, DefX))
1448     return false;
1449 
1450   bool IsCntPhiUsedOutsideLoop = false;
1451   for (User *U : CntPhi->users())
1452     if (!CurLoop->contains(cast<Instruction>(U))) {
1453       IsCntPhiUsedOutsideLoop = true;
1454       break;
1455     }
1456   bool IsCntInstUsedOutsideLoop = false;
1457   for (User *U : CntInst->users())
1458     if (!CurLoop->contains(cast<Instruction>(U))) {
1459       IsCntInstUsedOutsideLoop = true;
1460       break;
1461     }
1462   // If both CntInst and CntPhi are used outside the loop the profitability
1463   // is questionable.
1464   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1465     return false;
1466 
1467   // For some CPUs result of CTLZ(X) intrinsic is undefined
1468   // when X is 0. If we can not guarantee X != 0, we need to check this
1469   // when expand.
1470   bool ZeroCheck = false;
1471   // It is safe to assume Preheader exist as it was checked in
1472   // parent function RunOnLoop.
1473   BasicBlock *PH = CurLoop->getLoopPreheader();
1474 
1475   // If we are using the count instruction outside the loop, make sure we
1476   // have a zero check as a precondition. Without the check the loop would run
1477   // one iteration for before any check of the input value. This means 0 and 1
1478   // would have identical behavior in the original loop and thus
1479   if (!IsCntPhiUsedOutsideLoop) {
1480     auto *PreCondBB = PH->getSinglePredecessor();
1481     if (!PreCondBB)
1482       return false;
1483     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1484     if (!PreCondBI)
1485       return false;
1486     if (matchCondition(PreCondBI, PH) != InitX)
1487       return false;
1488     ZeroCheck = true;
1489   }
1490 
1491   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1492   // profitable if we delete the loop.
1493 
1494   // the loop has only 6 instructions:
1495   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1496   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1497   //  %shr = ashr %n.addr.0, 1
1498   //  %tobool = icmp eq %shr, 0
1499   //  %inc = add nsw %i.0, 1
1500   //  br i1 %tobool
1501 
1502   const Value *Args[] =
1503       {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
1504                         : ConstantInt::getFalse(InitX->getContext())};
1505 
1506   // @llvm.dbg doesn't count as they have no semantic effect.
1507   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1508   uint32_t HeaderSize =
1509       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1510 
1511   if (HeaderSize != IdiomCanonicalSize &&
1512       TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) >
1513           TargetTransformInfo::TCC_Basic)
1514     return false;
1515 
1516   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1517                            DefX->getDebugLoc(), ZeroCheck,
1518                            IsCntPhiUsedOutsideLoop);
1519   return true;
1520 }
1521 
1522 /// Recognizes a population count idiom in a non-countable loop.
1523 ///
1524 /// If detected, transforms the relevant code to issue the popcount intrinsic
1525 /// function call, and returns true; otherwise, returns false.
1526 bool LoopIdiomRecognize::recognizePopcount() {
1527   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1528     return false;
1529 
1530   // Counting population are usually conducted by few arithmetic instructions.
1531   // Such instructions can be easily "absorbed" by vacant slots in a
1532   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1533   // in a compact loop.
1534 
1535   // Give up if the loop has multiple blocks or multiple backedges.
1536   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1537     return false;
1538 
1539   BasicBlock *LoopBody = *(CurLoop->block_begin());
1540   if (LoopBody->size() >= 20) {
1541     // The loop is too big, bail out.
1542     return false;
1543   }
1544 
1545   // It should have a preheader containing nothing but an unconditional branch.
1546   BasicBlock *PH = CurLoop->getLoopPreheader();
1547   if (!PH || &PH->front() != PH->getTerminator())
1548     return false;
1549   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1550   if (!EntryBI || EntryBI->isConditional())
1551     return false;
1552 
1553   // It should have a precondition block where the generated popcount intrinsic
1554   // function can be inserted.
1555   auto *PreCondBB = PH->getSinglePredecessor();
1556   if (!PreCondBB)
1557     return false;
1558   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1559   if (!PreCondBI || PreCondBI->isUnconditional())
1560     return false;
1561 
1562   Instruction *CntInst;
1563   PHINode *CntPhi;
1564   Value *Val;
1565   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1566     return false;
1567 
1568   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1569   return true;
1570 }
1571 
1572 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1573                                        const DebugLoc &DL) {
1574   Value *Ops[] = {Val};
1575   Type *Tys[] = {Val->getType()};
1576 
1577   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1578   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1579   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1580   CI->setDebugLoc(DL);
1581 
1582   return CI;
1583 }
1584 
1585 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1586                                     const DebugLoc &DL, bool ZeroCheck,
1587                                     Intrinsic::ID IID) {
1588   Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1589   Type *Tys[] = {Val->getType()};
1590 
1591   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1592   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1593   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1594   CI->setDebugLoc(DL);
1595 
1596   return CI;
1597 }
1598 
1599 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1600 /// loop:
1601 ///   CntPhi = PHI [Cnt0, CntInst]
1602 ///   PhiX = PHI [InitX, DefX]
1603 ///   CntInst = CntPhi + 1
1604 ///   DefX = PhiX >> 1
1605 ///   LOOP_BODY
1606 ///   Br: loop if (DefX != 0)
1607 /// Use(CntPhi) or Use(CntInst)
1608 ///
1609 /// Into:
1610 /// If CntPhi used outside the loop:
1611 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1612 ///   Count = CountPrev + 1
1613 /// else
1614 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1615 /// loop:
1616 ///   CntPhi = PHI [Cnt0, CntInst]
1617 ///   PhiX = PHI [InitX, DefX]
1618 ///   PhiCount = PHI [Count, Dec]
1619 ///   CntInst = CntPhi + 1
1620 ///   DefX = PhiX >> 1
1621 ///   Dec = PhiCount - 1
1622 ///   LOOP_BODY
1623 ///   Br: loop if (Dec != 0)
1624 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1625 /// or
1626 /// Use(Count + Cnt0) // Use(CntInst)
1627 ///
1628 /// If LOOP_BODY is empty the loop will be deleted.
1629 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1630 void LoopIdiomRecognize::transformLoopToCountable(
1631     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1632     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1633     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1634   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1635 
1636   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1637   IRBuilder<> Builder(PreheaderBr);
1638   Builder.SetCurrentDebugLocation(DL);
1639   Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
1640 
1641   //   Count = BitWidth - CTLZ(InitX);
1642   // If there are uses of CntPhi create:
1643   //   CountPrev = BitWidth - CTLZ(InitX >> 1);
1644   if (IsCntPhiUsedOutsideLoop) {
1645     if (DefX->getOpcode() == Instruction::AShr)
1646       InitXNext =
1647           Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1648     else if (DefX->getOpcode() == Instruction::LShr)
1649       InitXNext =
1650           Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1651     else if (DefX->getOpcode() == Instruction::Shl) // cttz
1652       InitXNext =
1653           Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
1654     else
1655       llvm_unreachable("Unexpected opcode!");
1656   } else
1657     InitXNext = InitX;
1658   FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1659   Count = Builder.CreateSub(
1660       ConstantInt::get(FFS->getType(),
1661                        FFS->getType()->getIntegerBitWidth()),
1662       FFS);
1663   if (IsCntPhiUsedOutsideLoop) {
1664     CountPrev = Count;
1665     Count = Builder.CreateAdd(
1666         CountPrev,
1667         ConstantInt::get(CountPrev->getType(), 1));
1668   }
1669 
1670   NewCount = Builder.CreateZExtOrTrunc(
1671                       IsCntPhiUsedOutsideLoop ? CountPrev : Count,
1672                       cast<IntegerType>(CntInst->getType()));
1673 
1674   // If the counter's initial value is not zero, insert Add Inst.
1675   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1676   ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1677   if (!InitConst || !InitConst->isZero())
1678     NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1679 
1680   // Step 2: Insert new IV and loop condition:
1681   // loop:
1682   //   ...
1683   //   PhiCount = PHI [Count, Dec]
1684   //   ...
1685   //   Dec = PhiCount - 1
1686   //   ...
1687   //   Br: loop if (Dec != 0)
1688   BasicBlock *Body = *(CurLoop->block_begin());
1689   auto *LbBr = cast<BranchInst>(Body->getTerminator());
1690   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1691   Type *Ty = Count->getType();
1692 
1693   PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1694 
1695   Builder.SetInsertPoint(LbCond);
1696   Instruction *TcDec = cast<Instruction>(
1697       Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1698                         "tcdec", false, true));
1699 
1700   TcPhi->addIncoming(Count, Preheader);
1701   TcPhi->addIncoming(TcDec, Body);
1702 
1703   CmpInst::Predicate Pred =
1704       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1705   LbCond->setPredicate(Pred);
1706   LbCond->setOperand(0, TcDec);
1707   LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1708 
1709   // Step 3: All the references to the original counter outside
1710   //  the loop are replaced with the NewCount
1711   if (IsCntPhiUsedOutsideLoop)
1712     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1713   else
1714     CntInst->replaceUsesOutsideBlock(NewCount, Body);
1715 
1716   // step 4: Forget the "non-computable" trip-count SCEV associated with the
1717   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1718   SE->forgetLoop(CurLoop);
1719 }
1720 
1721 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1722                                                  Instruction *CntInst,
1723                                                  PHINode *CntPhi, Value *Var) {
1724   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1725   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1726   const DebugLoc &DL = CntInst->getDebugLoc();
1727 
1728   // Assuming before transformation, the loop is following:
1729   //  if (x) // the precondition
1730   //     do { cnt++; x &= x - 1; } while(x);
1731 
1732   // Step 1: Insert the ctpop instruction at the end of the precondition block
1733   IRBuilder<> Builder(PreCondBr);
1734   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1735   {
1736     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1737     NewCount = PopCntZext =
1738         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1739 
1740     if (NewCount != PopCnt)
1741       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1742 
1743     // TripCnt is exactly the number of iterations the loop has
1744     TripCnt = NewCount;
1745 
1746     // If the population counter's initial value is not zero, insert Add Inst.
1747     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1748     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1749     if (!InitConst || !InitConst->isZero()) {
1750       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1751       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1752     }
1753   }
1754 
1755   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1756   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1757   //   function would be partial dead code, and downstream passes will drag
1758   //   it back from the precondition block to the preheader.
1759   {
1760     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1761 
1762     Value *Opnd0 = PopCntZext;
1763     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1764     if (PreCond->getOperand(0) != Var)
1765       std::swap(Opnd0, Opnd1);
1766 
1767     ICmpInst *NewPreCond = cast<ICmpInst>(
1768         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1769     PreCondBr->setCondition(NewPreCond);
1770 
1771     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1772   }
1773 
1774   // Step 3: Note that the population count is exactly the trip count of the
1775   // loop in question, which enable us to convert the loop from noncountable
1776   // loop into a countable one. The benefit is twofold:
1777   //
1778   //  - If the loop only counts population, the entire loop becomes dead after
1779   //    the transformation. It is a lot easier to prove a countable loop dead
1780   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1781   //    isn't dead even if it computes nothing useful. In general, DCE needs
1782   //    to prove a noncountable loop finite before safely delete it.)
1783   //
1784   //  - If the loop also performs something else, it remains alive.
1785   //    Since it is transformed to countable form, it can be aggressively
1786   //    optimized by some optimizations which are in general not applicable
1787   //    to a noncountable loop.
1788   //
1789   // After this step, this loop (conceptually) would look like following:
1790   //   newcnt = __builtin_ctpop(x);
1791   //   t = newcnt;
1792   //   if (x)
1793   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1794   BasicBlock *Body = *(CurLoop->block_begin());
1795   {
1796     auto *LbBr = cast<BranchInst>(Body->getTerminator());
1797     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1798     Type *Ty = TripCnt->getType();
1799 
1800     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1801 
1802     Builder.SetInsertPoint(LbCond);
1803     Instruction *TcDec = cast<Instruction>(
1804         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1805                           "tcdec", false, true));
1806 
1807     TcPhi->addIncoming(TripCnt, PreHead);
1808     TcPhi->addIncoming(TcDec, Body);
1809 
1810     CmpInst::Predicate Pred =
1811         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1812     LbCond->setPredicate(Pred);
1813     LbCond->setOperand(0, TcDec);
1814     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1815   }
1816 
1817   // Step 4: All the references to the original population counter outside
1818   //  the loop are replaced with the NewCount -- the value returned from
1819   //  __builtin_ctpop().
1820   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1821 
1822   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1823   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1824   SE->forgetLoop(CurLoop);
1825 }
1826