1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements an idiom recognizer that transforms simple loops into a 10 // non-loop form. In cases that this kicks in, it can be a significant 11 // performance win. 12 // 13 // If compiling for code size we avoid idiom recognition if the resulting 14 // code could be larger than the code for the original loop. One way this could 15 // happen is if the loop is not removable after idiom recognition due to the 16 // presence of non-idiom instructions. The initial implementation of the 17 // heuristics applies to idioms in multi-block loops. 18 // 19 //===----------------------------------------------------------------------===// 20 // 21 // TODO List: 22 // 23 // Future loop memory idioms to recognize: 24 // memcmp, strlen, etc. 25 // Future floating point idioms to recognize in -ffast-math mode: 26 // fpowi 27 // 28 // This could recognize common matrix multiplies and dot product idioms and 29 // replace them with calls to BLAS (if linked in??). 30 // 31 //===----------------------------------------------------------------------===// 32 33 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" 34 #include "llvm/ADT/APInt.h" 35 #include "llvm/ADT/ArrayRef.h" 36 #include "llvm/ADT/DenseMap.h" 37 #include "llvm/ADT/MapVector.h" 38 #include "llvm/ADT/SetVector.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/ADT/StringRef.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/CmpInstAnalysis.h" 45 #include "llvm/Analysis/LoopAccessAnalysis.h" 46 #include "llvm/Analysis/LoopInfo.h" 47 #include "llvm/Analysis/LoopPass.h" 48 #include "llvm/Analysis/MemoryLocation.h" 49 #include "llvm/Analysis/MemorySSA.h" 50 #include "llvm/Analysis/MemorySSAUpdater.h" 51 #include "llvm/Analysis/MustExecute.h" 52 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 53 #include "llvm/Analysis/ScalarEvolution.h" 54 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/Analysis/TargetTransformInfo.h" 57 #include "llvm/Analysis/ValueTracking.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Constant.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugLoc.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Dominators.h" 65 #include "llvm/IR/GlobalValue.h" 66 #include "llvm/IR/GlobalVariable.h" 67 #include "llvm/IR/IRBuilder.h" 68 #include "llvm/IR/InstrTypes.h" 69 #include "llvm/IR/Instruction.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/IR/Intrinsics.h" 73 #include "llvm/IR/LLVMContext.h" 74 #include "llvm/IR/Module.h" 75 #include "llvm/IR/PassManager.h" 76 #include "llvm/IR/PatternMatch.h" 77 #include "llvm/IR/Type.h" 78 #include "llvm/IR/User.h" 79 #include "llvm/IR/Value.h" 80 #include "llvm/IR/ValueHandle.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/InstructionCost.h" 85 #include "llvm/Support/raw_ostream.h" 86 #include "llvm/Transforms/Utils/BuildLibCalls.h" 87 #include "llvm/Transforms/Utils/Local.h" 88 #include "llvm/Transforms/Utils/LoopUtils.h" 89 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 90 #include <algorithm> 91 #include <cassert> 92 #include <cstdint> 93 #include <utility> 94 #include <vector> 95 96 using namespace llvm; 97 98 #define DEBUG_TYPE "loop-idiom" 99 100 STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); 101 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); 102 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores"); 103 STATISTIC( 104 NumShiftUntilBitTest, 105 "Number of uncountable loops recognized as 'shift until bitttest' idiom"); 106 STATISTIC(NumShiftUntilZero, 107 "Number of uncountable loops recognized as 'shift until zero' idiom"); 108 109 bool DisableLIRP::All; 110 static cl::opt<bool, true> 111 DisableLIRPAll("disable-" DEBUG_TYPE "-all", 112 cl::desc("Options to disable Loop Idiom Recognize Pass."), 113 cl::location(DisableLIRP::All), cl::init(false), 114 cl::ReallyHidden); 115 116 bool DisableLIRP::Memset; 117 static cl::opt<bool, true> 118 DisableLIRPMemset("disable-" DEBUG_TYPE "-memset", 119 cl::desc("Proceed with loop idiom recognize pass, but do " 120 "not convert loop(s) to memset."), 121 cl::location(DisableLIRP::Memset), cl::init(false), 122 cl::ReallyHidden); 123 124 bool DisableLIRP::Memcpy; 125 static cl::opt<bool, true> 126 DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy", 127 cl::desc("Proceed with loop idiom recognize pass, but do " 128 "not convert loop(s) to memcpy."), 129 cl::location(DisableLIRP::Memcpy), cl::init(false), 130 cl::ReallyHidden); 131 132 static cl::opt<bool> UseLIRCodeSizeHeurs( 133 "use-lir-code-size-heurs", 134 cl::desc("Use loop idiom recognition code size heuristics when compiling" 135 "with -Os/-Oz"), 136 cl::init(true), cl::Hidden); 137 138 namespace { 139 140 class LoopIdiomRecognize { 141 Loop *CurLoop = nullptr; 142 AliasAnalysis *AA; 143 DominatorTree *DT; 144 LoopInfo *LI; 145 ScalarEvolution *SE; 146 TargetLibraryInfo *TLI; 147 const TargetTransformInfo *TTI; 148 const DataLayout *DL; 149 OptimizationRemarkEmitter &ORE; 150 bool ApplyCodeSizeHeuristics; 151 std::unique_ptr<MemorySSAUpdater> MSSAU; 152 153 public: 154 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, 155 LoopInfo *LI, ScalarEvolution *SE, 156 TargetLibraryInfo *TLI, 157 const TargetTransformInfo *TTI, MemorySSA *MSSA, 158 const DataLayout *DL, 159 OptimizationRemarkEmitter &ORE) 160 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { 161 if (MSSA) 162 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 163 } 164 165 bool runOnLoop(Loop *L); 166 167 private: 168 using StoreList = SmallVector<StoreInst *, 8>; 169 using StoreListMap = MapVector<Value *, StoreList>; 170 171 StoreListMap StoreRefsForMemset; 172 StoreListMap StoreRefsForMemsetPattern; 173 StoreList StoreRefsForMemcpy; 174 bool HasMemset; 175 bool HasMemsetPattern; 176 bool HasMemcpy; 177 178 /// Return code for isLegalStore() 179 enum LegalStoreKind { 180 None = 0, 181 Memset, 182 MemsetPattern, 183 Memcpy, 184 UnorderedAtomicMemcpy, 185 DontUse // Dummy retval never to be used. Allows catching errors in retval 186 // handling. 187 }; 188 189 /// \name Countable Loop Idiom Handling 190 /// @{ 191 192 bool runOnCountableLoop(); 193 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, 194 SmallVectorImpl<BasicBlock *> &ExitBlocks); 195 196 void collectStores(BasicBlock *BB); 197 LegalStoreKind isLegalStore(StoreInst *SI); 198 enum class ForMemset { No, Yes }; 199 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, 200 ForMemset For); 201 202 template <typename MemInst> 203 bool processLoopMemIntrinsic( 204 BasicBlock *BB, 205 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 206 const SCEV *BECount); 207 bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); 208 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); 209 210 bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, 211 MaybeAlign StoreAlignment, Value *StoredVal, 212 Instruction *TheStore, 213 SmallPtrSetImpl<Instruction *> &Stores, 214 const SCEVAddRecExpr *Ev, const SCEV *BECount, 215 bool IsNegStride, bool IsLoopMemset = false); 216 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); 217 bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, 218 const SCEV *StoreSize, MaybeAlign StoreAlign, 219 MaybeAlign LoadAlign, Instruction *TheStore, 220 Instruction *TheLoad, 221 const SCEVAddRecExpr *StoreEv, 222 const SCEVAddRecExpr *LoadEv, 223 const SCEV *BECount); 224 bool avoidLIRForMultiBlockLoop(bool IsMemset = false, 225 bool IsLoopMemset = false); 226 227 /// @} 228 /// \name Noncountable Loop Idiom Handling 229 /// @{ 230 231 bool runOnNoncountableLoop(); 232 233 bool recognizePopcount(); 234 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, 235 PHINode *CntPhi, Value *Var); 236 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz 237 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, 238 Instruction *CntInst, PHINode *CntPhi, 239 Value *Var, Instruction *DefX, 240 const DebugLoc &DL, bool ZeroCheck, 241 bool IsCntPhiUsedOutsideLoop); 242 243 bool recognizeShiftUntilBitTest(); 244 bool recognizeShiftUntilZero(); 245 246 /// @} 247 }; 248 } // end anonymous namespace 249 250 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, 251 LoopStandardAnalysisResults &AR, 252 LPMUpdater &) { 253 if (DisableLIRP::All) 254 return PreservedAnalyses::all(); 255 256 const auto *DL = &L.getHeader()->getModule()->getDataLayout(); 257 258 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 259 // pass. Function analyses need to be preserved across loop transformations 260 // but ORE cannot be preserved (see comment before the pass definition). 261 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 262 263 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, 264 AR.MSSA, DL, ORE); 265 if (!LIR.runOnLoop(&L)) 266 return PreservedAnalyses::all(); 267 268 auto PA = getLoopPassPreservedAnalyses(); 269 if (AR.MSSA) 270 PA.preserve<MemorySSAAnalysis>(); 271 return PA; 272 } 273 274 static void deleteDeadInstruction(Instruction *I) { 275 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 276 I->eraseFromParent(); 277 } 278 279 //===----------------------------------------------------------------------===// 280 // 281 // Implementation of LoopIdiomRecognize 282 // 283 //===----------------------------------------------------------------------===// 284 285 bool LoopIdiomRecognize::runOnLoop(Loop *L) { 286 CurLoop = L; 287 // If the loop could not be converted to canonical form, it must have an 288 // indirectbr in it, just give up. 289 if (!L->getLoopPreheader()) 290 return false; 291 292 // Disable loop idiom recognition if the function's name is a common idiom. 293 StringRef Name = L->getHeader()->getParent()->getName(); 294 if (Name == "memset" || Name == "memcpy") 295 return false; 296 297 // Determine if code size heuristics need to be applied. 298 ApplyCodeSizeHeuristics = 299 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; 300 301 HasMemset = TLI->has(LibFunc_memset); 302 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); 303 HasMemcpy = TLI->has(LibFunc_memcpy); 304 305 if (HasMemset || HasMemsetPattern || HasMemcpy) 306 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 307 return runOnCountableLoop(); 308 309 return runOnNoncountableLoop(); 310 } 311 312 bool LoopIdiomRecognize::runOnCountableLoop() { 313 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); 314 assert(!isa<SCEVCouldNotCompute>(BECount) && 315 "runOnCountableLoop() called on a loop without a predictable" 316 "backedge-taken count"); 317 318 // If this loop executes exactly one time, then it should be peeled, not 319 // optimized by this pass. 320 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) 321 if (BECst->getAPInt() == 0) 322 return false; 323 324 SmallVector<BasicBlock *, 8> ExitBlocks; 325 CurLoop->getUniqueExitBlocks(ExitBlocks); 326 327 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 328 << CurLoop->getHeader()->getParent()->getName() 329 << "] Countable Loop %" << CurLoop->getHeader()->getName() 330 << "\n"); 331 332 // The following transforms hoist stores/memsets into the loop pre-header. 333 // Give up if the loop has instructions that may throw. 334 SimpleLoopSafetyInfo SafetyInfo; 335 SafetyInfo.computeLoopSafetyInfo(CurLoop); 336 if (SafetyInfo.anyBlockMayThrow()) 337 return false; 338 339 bool MadeChange = false; 340 341 // Scan all the blocks in the loop that are not in subloops. 342 for (auto *BB : CurLoop->getBlocks()) { 343 // Ignore blocks in subloops. 344 if (LI->getLoopFor(BB) != CurLoop) 345 continue; 346 347 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); 348 } 349 return MadeChange; 350 } 351 352 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { 353 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); 354 return ConstStride->getAPInt(); 355 } 356 357 /// getMemSetPatternValue - If a strided store of the specified value is safe to 358 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should 359 /// be passed in. Otherwise, return null. 360 /// 361 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these 362 /// just replicate their input array and then pass on to memset_pattern16. 363 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { 364 // FIXME: This could check for UndefValue because it can be merged into any 365 // other valid pattern. 366 367 // If the value isn't a constant, we can't promote it to being in a constant 368 // array. We could theoretically do a store to an alloca or something, but 369 // that doesn't seem worthwhile. 370 Constant *C = dyn_cast<Constant>(V); 371 if (!C || isa<ConstantExpr>(C)) 372 return nullptr; 373 374 // Only handle simple values that are a power of two bytes in size. 375 uint64_t Size = DL->getTypeSizeInBits(V->getType()); 376 if (Size == 0 || (Size & 7) || (Size & (Size - 1))) 377 return nullptr; 378 379 // Don't care enough about darwin/ppc to implement this. 380 if (DL->isBigEndian()) 381 return nullptr; 382 383 // Convert to size in bytes. 384 Size /= 8; 385 386 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see 387 // if the top and bottom are the same (e.g. for vectors and large integers). 388 if (Size > 16) 389 return nullptr; 390 391 // If the constant is exactly 16 bytes, just use it. 392 if (Size == 16) 393 return C; 394 395 // Otherwise, we'll use an array of the constants. 396 unsigned ArraySize = 16 / Size; 397 ArrayType *AT = ArrayType::get(V->getType(), ArraySize); 398 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); 399 } 400 401 LoopIdiomRecognize::LegalStoreKind 402 LoopIdiomRecognize::isLegalStore(StoreInst *SI) { 403 // Don't touch volatile stores. 404 if (SI->isVolatile()) 405 return LegalStoreKind::None; 406 // We only want simple or unordered-atomic stores. 407 if (!SI->isUnordered()) 408 return LegalStoreKind::None; 409 410 // Avoid merging nontemporal stores. 411 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 412 return LegalStoreKind::None; 413 414 Value *StoredVal = SI->getValueOperand(); 415 Value *StorePtr = SI->getPointerOperand(); 416 417 // Don't convert stores of non-integral pointer types to memsets (which stores 418 // integers). 419 if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 420 return LegalStoreKind::None; 421 422 // Reject stores that are so large that they overflow an unsigned. 423 // When storing out scalable vectors we bail out for now, since the code 424 // below currently only works for constant strides. 425 TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); 426 if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) || 427 (SizeInBits.getFixedValue() >> 32) != 0) 428 return LegalStoreKind::None; 429 430 // See if the pointer expression is an AddRec like {base,+,1} on the current 431 // loop, which indicates a strided store. If we have something else, it's a 432 // random store we can't handle. 433 const SCEVAddRecExpr *StoreEv = 434 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 435 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 436 return LegalStoreKind::None; 437 438 // Check to see if we have a constant stride. 439 if (!isa<SCEVConstant>(StoreEv->getOperand(1))) 440 return LegalStoreKind::None; 441 442 // See if the store can be turned into a memset. 443 444 // If the stored value is a byte-wise value (like i32 -1), then it may be 445 // turned into a memset of i8 -1, assuming that all the consecutive bytes 446 // are stored. A store of i32 0x01020304 can never be turned into a memset, 447 // but it can be turned into memset_pattern if the target supports it. 448 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 449 450 // Note: memset and memset_pattern on unordered-atomic is yet not supported 451 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); 452 453 // If we're allowed to form a memset, and the stored value would be 454 // acceptable for memset, use it. 455 if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && 456 // Verify that the stored value is loop invariant. If not, we can't 457 // promote the memset. 458 CurLoop->isLoopInvariant(SplatValue)) { 459 // It looks like we can use SplatValue. 460 return LegalStoreKind::Memset; 461 } 462 if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && 463 // Don't create memset_pattern16s with address spaces. 464 StorePtr->getType()->getPointerAddressSpace() == 0 && 465 getMemSetPatternValue(StoredVal, DL)) { 466 // It looks like we can use PatternValue! 467 return LegalStoreKind::MemsetPattern; 468 } 469 470 // Otherwise, see if the store can be turned into a memcpy. 471 if (HasMemcpy && !DisableLIRP::Memcpy) { 472 // Check to see if the stride matches the size of the store. If so, then we 473 // know that every byte is touched in the loop. 474 APInt Stride = getStoreStride(StoreEv); 475 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 476 if (StoreSize != Stride && StoreSize != -Stride) 477 return LegalStoreKind::None; 478 479 // The store must be feeding a non-volatile load. 480 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); 481 482 // Only allow non-volatile loads 483 if (!LI || LI->isVolatile()) 484 return LegalStoreKind::None; 485 // Only allow simple or unordered-atomic loads 486 if (!LI->isUnordered()) 487 return LegalStoreKind::None; 488 489 // See if the pointer expression is an AddRec like {base,+,1} on the current 490 // loop, which indicates a strided load. If we have something else, it's a 491 // random load we can't handle. 492 const SCEVAddRecExpr *LoadEv = 493 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); 494 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 495 return LegalStoreKind::None; 496 497 // The store and load must share the same stride. 498 if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) 499 return LegalStoreKind::None; 500 501 // Success. This store can be converted into a memcpy. 502 UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); 503 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy 504 : LegalStoreKind::Memcpy; 505 } 506 // This store can't be transformed into a memset/memcpy. 507 return LegalStoreKind::None; 508 } 509 510 void LoopIdiomRecognize::collectStores(BasicBlock *BB) { 511 StoreRefsForMemset.clear(); 512 StoreRefsForMemsetPattern.clear(); 513 StoreRefsForMemcpy.clear(); 514 for (Instruction &I : *BB) { 515 StoreInst *SI = dyn_cast<StoreInst>(&I); 516 if (!SI) 517 continue; 518 519 // Make sure this is a strided store with a constant stride. 520 switch (isLegalStore(SI)) { 521 case LegalStoreKind::None: 522 // Nothing to do 523 break; 524 case LegalStoreKind::Memset: { 525 // Find the base pointer. 526 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 527 StoreRefsForMemset[Ptr].push_back(SI); 528 } break; 529 case LegalStoreKind::MemsetPattern: { 530 // Find the base pointer. 531 Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); 532 StoreRefsForMemsetPattern[Ptr].push_back(SI); 533 } break; 534 case LegalStoreKind::Memcpy: 535 case LegalStoreKind::UnorderedAtomicMemcpy: 536 StoreRefsForMemcpy.push_back(SI); 537 break; 538 default: 539 assert(false && "unhandled return value"); 540 break; 541 } 542 } 543 } 544 545 /// runOnLoopBlock - Process the specified block, which lives in a counted loop 546 /// with the specified backedge count. This block is known to be in the current 547 /// loop and not in any subloops. 548 bool LoopIdiomRecognize::runOnLoopBlock( 549 BasicBlock *BB, const SCEV *BECount, 550 SmallVectorImpl<BasicBlock *> &ExitBlocks) { 551 // We can only promote stores in this block if they are unconditionally 552 // executed in the loop. For a block to be unconditionally executed, it has 553 // to dominate all the exit blocks of the loop. Verify this now. 554 for (BasicBlock *ExitBlock : ExitBlocks) 555 if (!DT->dominates(BB, ExitBlock)) 556 return false; 557 558 bool MadeChange = false; 559 // Look for store instructions, which may be optimized to memset/memcpy. 560 collectStores(BB); 561 562 // Look for a single store or sets of stores with a common base, which can be 563 // optimized into a memset (memset_pattern). The latter most commonly happens 564 // with structs and handunrolled loops. 565 for (auto &SL : StoreRefsForMemset) 566 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); 567 568 for (auto &SL : StoreRefsForMemsetPattern) 569 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); 570 571 // Optimize the store into a memcpy, if it feeds an similarly strided load. 572 for (auto &SI : StoreRefsForMemcpy) 573 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); 574 575 MadeChange |= processLoopMemIntrinsic<MemCpyInst>( 576 BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); 577 MadeChange |= processLoopMemIntrinsic<MemSetInst>( 578 BB, &LoopIdiomRecognize::processLoopMemSet, BECount); 579 580 return MadeChange; 581 } 582 583 /// See if this store(s) can be promoted to a memset. 584 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, 585 const SCEV *BECount, ForMemset For) { 586 // Try to find consecutive stores that can be transformed into memsets. 587 SetVector<StoreInst *> Heads, Tails; 588 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; 589 590 // Do a quadratic search on all of the given stores and find 591 // all of the pairs of stores that follow each other. 592 SmallVector<unsigned, 16> IndexQueue; 593 for (unsigned i = 0, e = SL.size(); i < e; ++i) { 594 assert(SL[i]->isSimple() && "Expected only non-volatile stores."); 595 596 Value *FirstStoredVal = SL[i]->getValueOperand(); 597 Value *FirstStorePtr = SL[i]->getPointerOperand(); 598 const SCEVAddRecExpr *FirstStoreEv = 599 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); 600 APInt FirstStride = getStoreStride(FirstStoreEv); 601 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); 602 603 // See if we can optimize just this store in isolation. 604 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { 605 Heads.insert(SL[i]); 606 continue; 607 } 608 609 Value *FirstSplatValue = nullptr; 610 Constant *FirstPatternValue = nullptr; 611 612 if (For == ForMemset::Yes) 613 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); 614 else 615 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); 616 617 assert((FirstSplatValue || FirstPatternValue) && 618 "Expected either splat value or pattern value."); 619 620 IndexQueue.clear(); 621 // If a store has multiple consecutive store candidates, search Stores 622 // array according to the sequence: from i+1 to e, then from i-1 to 0. 623 // This is because usually pairing with immediate succeeding or preceding 624 // candidate create the best chance to find memset opportunity. 625 unsigned j = 0; 626 for (j = i + 1; j < e; ++j) 627 IndexQueue.push_back(j); 628 for (j = i; j > 0; --j) 629 IndexQueue.push_back(j - 1); 630 631 for (auto &k : IndexQueue) { 632 assert(SL[k]->isSimple() && "Expected only non-volatile stores."); 633 Value *SecondStorePtr = SL[k]->getPointerOperand(); 634 const SCEVAddRecExpr *SecondStoreEv = 635 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); 636 APInt SecondStride = getStoreStride(SecondStoreEv); 637 638 if (FirstStride != SecondStride) 639 continue; 640 641 Value *SecondStoredVal = SL[k]->getValueOperand(); 642 Value *SecondSplatValue = nullptr; 643 Constant *SecondPatternValue = nullptr; 644 645 if (For == ForMemset::Yes) 646 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); 647 else 648 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); 649 650 assert((SecondSplatValue || SecondPatternValue) && 651 "Expected either splat value or pattern value."); 652 653 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { 654 if (For == ForMemset::Yes) { 655 if (isa<UndefValue>(FirstSplatValue)) 656 FirstSplatValue = SecondSplatValue; 657 if (FirstSplatValue != SecondSplatValue) 658 continue; 659 } else { 660 if (isa<UndefValue>(FirstPatternValue)) 661 FirstPatternValue = SecondPatternValue; 662 if (FirstPatternValue != SecondPatternValue) 663 continue; 664 } 665 Tails.insert(SL[k]); 666 Heads.insert(SL[i]); 667 ConsecutiveChain[SL[i]] = SL[k]; 668 break; 669 } 670 } 671 } 672 673 // We may run into multiple chains that merge into a single chain. We mark the 674 // stores that we transformed so that we don't visit the same store twice. 675 SmallPtrSet<Value *, 16> TransformedStores; 676 bool Changed = false; 677 678 // For stores that start but don't end a link in the chain: 679 for (StoreInst *I : Heads) { 680 if (Tails.count(I)) 681 continue; 682 683 // We found a store instr that starts a chain. Now follow the chain and try 684 // to transform it. 685 SmallPtrSet<Instruction *, 8> AdjacentStores; 686 StoreInst *HeadStore = I; 687 unsigned StoreSize = 0; 688 689 // Collect the chain into a list. 690 while (Tails.count(I) || Heads.count(I)) { 691 if (TransformedStores.count(I)) 692 break; 693 AdjacentStores.insert(I); 694 695 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); 696 // Move to the next value in the chain. 697 I = ConsecutiveChain[I]; 698 } 699 700 Value *StoredVal = HeadStore->getValueOperand(); 701 Value *StorePtr = HeadStore->getPointerOperand(); 702 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 703 APInt Stride = getStoreStride(StoreEv); 704 705 // Check to see if the stride matches the size of the stores. If so, then 706 // we know that every byte is touched in the loop. 707 if (StoreSize != Stride && StoreSize != -Stride) 708 continue; 709 710 bool IsNegStride = StoreSize == -Stride; 711 712 Type *IntIdxTy = DL->getIndexType(StorePtr->getType()); 713 const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize); 714 if (processLoopStridedStore(StorePtr, StoreSizeSCEV, 715 MaybeAlign(HeadStore->getAlign()), StoredVal, 716 HeadStore, AdjacentStores, StoreEv, BECount, 717 IsNegStride)) { 718 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); 719 Changed = true; 720 } 721 } 722 723 return Changed; 724 } 725 726 /// processLoopMemIntrinsic - Template function for calling different processor 727 /// functions based on mem intrinsic type. 728 template <typename MemInst> 729 bool LoopIdiomRecognize::processLoopMemIntrinsic( 730 BasicBlock *BB, 731 bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), 732 const SCEV *BECount) { 733 bool MadeChange = false; 734 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 735 Instruction *Inst = &*I++; 736 // Look for memory instructions, which may be optimized to a larger one. 737 if (MemInst *MI = dyn_cast<MemInst>(Inst)) { 738 WeakTrackingVH InstPtr(&*I); 739 if (!(this->*Processor)(MI, BECount)) 740 continue; 741 MadeChange = true; 742 743 // If processing the instruction invalidated our iterator, start over from 744 // the top of the block. 745 if (!InstPtr) 746 I = BB->begin(); 747 } 748 } 749 return MadeChange; 750 } 751 752 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy 753 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, 754 const SCEV *BECount) { 755 // We can only handle non-volatile memcpys with a constant size. 756 if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) 757 return false; 758 759 // If we're not allowed to hack on memcpy, we fail. 760 if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) 761 return false; 762 763 Value *Dest = MCI->getDest(); 764 Value *Source = MCI->getSource(); 765 if (!Dest || !Source) 766 return false; 767 768 // See if the load and store pointer expressions are AddRec like {base,+,1} on 769 // the current loop, which indicates a strided load and store. If we have 770 // something else, it's a random load or store we can't handle. 771 const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); 772 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) 773 return false; 774 const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); 775 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) 776 return false; 777 778 // Reject memcpys that are so large that they overflow an unsigned. 779 uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); 780 if ((SizeInBytes >> 32) != 0) 781 return false; 782 783 // Check if the stride matches the size of the memcpy. If so, then we know 784 // that every byte is touched in the loop. 785 const SCEVConstant *ConstStoreStride = 786 dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); 787 const SCEVConstant *ConstLoadStride = 788 dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); 789 if (!ConstStoreStride || !ConstLoadStride) 790 return false; 791 792 APInt StoreStrideValue = ConstStoreStride->getAPInt(); 793 APInt LoadStrideValue = ConstLoadStride->getAPInt(); 794 // Huge stride value - give up 795 if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) 796 return false; 797 798 if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { 799 ORE.emit([&]() { 800 return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI) 801 << ore::NV("Inst", "memcpy") << " in " 802 << ore::NV("Function", MCI->getFunction()) 803 << " function will not be hoisted: " 804 << ore::NV("Reason", "memcpy size is not equal to stride"); 805 }); 806 return false; 807 } 808 809 int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); 810 int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); 811 // Check if the load stride matches the store stride. 812 if (StoreStrideInt != LoadStrideInt) 813 return false; 814 815 return processLoopStoreOfLoopLoad( 816 Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), 817 MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, 818 BECount); 819 } 820 821 /// processLoopMemSet - See if this memset can be promoted to a large memset. 822 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, 823 const SCEV *BECount) { 824 // We can only handle non-volatile memsets. 825 if (MSI->isVolatile()) 826 return false; 827 828 // If we're not allowed to hack on memset, we fail. 829 if (!HasMemset || DisableLIRP::Memset) 830 return false; 831 832 Value *Pointer = MSI->getDest(); 833 834 // See if the pointer expression is an AddRec like {base,+,1} on the current 835 // loop, which indicates a strided store. If we have something else, it's a 836 // random store we can't handle. 837 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); 838 if (!Ev || Ev->getLoop() != CurLoop) 839 return false; 840 if (!Ev->isAffine()) { 841 LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n"); 842 return false; 843 } 844 845 const SCEV *PointerStrideSCEV = Ev->getOperand(1); 846 const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); 847 if (!PointerStrideSCEV || !MemsetSizeSCEV) 848 return false; 849 850 bool IsNegStride = false; 851 const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); 852 853 if (IsConstantSize) { 854 // Memset size is constant. 855 // Check if the pointer stride matches the memset size. If so, then 856 // we know that every byte is touched in the loop. 857 LLVM_DEBUG(dbgs() << " memset size is constant\n"); 858 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 859 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); 860 if (!ConstStride) 861 return false; 862 863 APInt Stride = ConstStride->getAPInt(); 864 if (SizeInBytes != Stride && SizeInBytes != -Stride) 865 return false; 866 867 IsNegStride = SizeInBytes == -Stride; 868 } else { 869 // Memset size is non-constant. 870 // Check if the pointer stride matches the memset size. 871 // To be conservative, the pass would not promote pointers that aren't in 872 // address space zero. Also, the pass only handles memset length and stride 873 // that are invariant for the top level loop. 874 LLVM_DEBUG(dbgs() << " memset size is non-constant\n"); 875 if (Pointer->getType()->getPointerAddressSpace() != 0) { 876 LLVM_DEBUG(dbgs() << " pointer is not in address space zero, " 877 << "abort\n"); 878 return false; 879 } 880 if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { 881 LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, " 882 << "abort\n"); 883 return false; 884 } 885 886 // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV 887 IsNegStride = PointerStrideSCEV->isNonConstantNegative(); 888 const SCEV *PositiveStrideSCEV = 889 IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) 890 : PointerStrideSCEV; 891 LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" 892 << " PositiveStrideSCEV: " << *PositiveStrideSCEV 893 << "\n"); 894 895 if (PositiveStrideSCEV != MemsetSizeSCEV) { 896 // If an expression is covered by the loop guard, compare again and 897 // proceed with optimization if equal. 898 const SCEV *FoldedPositiveStride = 899 SE->applyLoopGuards(PositiveStrideSCEV, CurLoop); 900 const SCEV *FoldedMemsetSize = 901 SE->applyLoopGuards(MemsetSizeSCEV, CurLoop); 902 903 LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n" 904 << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" 905 << " FoldedPositiveStride: " << *FoldedPositiveStride 906 << "\n"); 907 908 if (FoldedPositiveStride != FoldedMemsetSize) { 909 LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n"); 910 return false; 911 } 912 } 913 } 914 915 // Verify that the memset value is loop invariant. If not, we can't promote 916 // the memset. 917 Value *SplatValue = MSI->getValue(); 918 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) 919 return false; 920 921 SmallPtrSet<Instruction *, 1> MSIs; 922 MSIs.insert(MSI); 923 return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), 924 MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev, 925 BECount, IsNegStride, /*IsLoopMemset=*/true); 926 } 927 928 /// mayLoopAccessLocation - Return true if the specified loop might access the 929 /// specified pointer location, which is a loop-strided access. The 'Access' 930 /// argument specifies what the verboten forms of access are (read or write). 931 static bool 932 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, 933 const SCEV *BECount, const SCEV *StoreSizeSCEV, 934 AliasAnalysis &AA, 935 SmallPtrSetImpl<Instruction *> &IgnoredInsts) { 936 // Get the location that may be stored across the loop. Since the access is 937 // strided positively through memory, we say that the modified location starts 938 // at the pointer and has infinite size. 939 LocationSize AccessSize = LocationSize::afterPointer(); 940 941 // If the loop iterates a fixed number of times, we can refine the access size 942 // to be exactly the size of the memset, which is (BECount+1)*StoreSize 943 const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); 944 const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 945 if (BECst && ConstSize) { 946 std::optional<uint64_t> BEInt = BECst->getAPInt().tryZExtValue(); 947 std::optional<uint64_t> SizeInt = ConstSize->getAPInt().tryZExtValue(); 948 // FIXME: Should this check for overflow? 949 if (BEInt && SizeInt) 950 AccessSize = LocationSize::precise((*BEInt + 1) * *SizeInt); 951 } 952 953 // TODO: For this to be really effective, we have to dive into the pointer 954 // operand in the store. Store to &A[i] of 100 will always return may alias 955 // with store of &A[100], we need to StoreLoc to be "A" with size of 100, 956 // which will then no-alias a store to &A[100]. 957 MemoryLocation StoreLoc(Ptr, AccessSize); 958 959 for (BasicBlock *B : L->blocks()) 960 for (Instruction &I : *B) 961 if (!IgnoredInsts.contains(&I) && 962 isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access)) 963 return true; 964 return false; 965 } 966 967 // If we have a negative stride, Start refers to the end of the memory location 968 // we're trying to memset. Therefore, we need to recompute the base pointer, 969 // which is just Start - BECount*Size. 970 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, 971 Type *IntPtr, const SCEV *StoreSizeSCEV, 972 ScalarEvolution *SE) { 973 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); 974 if (!StoreSizeSCEV->isOne()) { 975 // index = back edge count * store size 976 Index = SE->getMulExpr(Index, 977 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 978 SCEV::FlagNUW); 979 } 980 // base pointer = start - index * store size 981 return SE->getMinusSCEV(Start, Index); 982 } 983 984 /// Compute the number of bytes as a SCEV from the backedge taken count. 985 /// 986 /// This also maps the SCEV into the provided type and tries to handle the 987 /// computation in a way that will fold cleanly. 988 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, 989 const SCEV *StoreSizeSCEV, Loop *CurLoop, 990 const DataLayout *DL, ScalarEvolution *SE) { 991 const SCEV *TripCountSCEV = 992 SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop); 993 return SE->getMulExpr(TripCountSCEV, 994 SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), 995 SCEV::FlagNUW); 996 } 997 998 /// processLoopStridedStore - We see a strided store of some value. If we can 999 /// transform this into a memset or memset_pattern in the loop preheader, do so. 1000 bool LoopIdiomRecognize::processLoopStridedStore( 1001 Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, 1002 Value *StoredVal, Instruction *TheStore, 1003 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, 1004 const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { 1005 Module *M = TheStore->getModule(); 1006 Value *SplatValue = isBytewiseValue(StoredVal, *DL); 1007 Constant *PatternValue = nullptr; 1008 1009 if (!SplatValue) 1010 PatternValue = getMemSetPatternValue(StoredVal, DL); 1011 1012 assert((SplatValue || PatternValue) && 1013 "Expected either splat value or pattern value."); 1014 1015 // The trip count of the loop and the base pointer of the addrec SCEV is 1016 // guaranteed to be loop invariant, which means that it should dominate the 1017 // header. This allows us to insert code for it in the preheader. 1018 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); 1019 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1020 IRBuilder<> Builder(Preheader->getTerminator()); 1021 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1022 SCEVExpanderCleaner ExpCleaner(Expander); 1023 1024 Type *DestInt8PtrTy = Builder.getPtrTy(DestAS); 1025 Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); 1026 1027 bool Changed = false; 1028 const SCEV *Start = Ev->getStart(); 1029 // Handle negative strided loops. 1030 if (IsNegStride) 1031 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); 1032 1033 // TODO: ideally we should still be able to generate memset if SCEV expander 1034 // is taught to generate the dependencies at the latest point. 1035 if (!Expander.isSafeToExpand(Start)) 1036 return Changed; 1037 1038 // Okay, we have a strided store "p[i]" of a splattable value. We can turn 1039 // this into a memset in the loop preheader now if we want. However, this 1040 // would be unsafe to do if there is anything else in the loop that may read 1041 // or write to the aliased location. Check for any overlap by generating the 1042 // base pointer and checking the region. 1043 Value *BasePtr = 1044 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); 1045 1046 // From here on out, conservatively report to the pass manager that we've 1047 // changed the IR, even if we later clean up these added instructions. There 1048 // may be structural differences e.g. in the order of use lists not accounted 1049 // for in just a textual dump of the IR. This is written as a variable, even 1050 // though statically all the places this dominates could be replaced with 1051 // 'true', with the hope that anyone trying to be clever / "more precise" with 1052 // the return value will read this comment, and leave them alone. 1053 Changed = true; 1054 1055 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1056 StoreSizeSCEV, *AA, Stores)) 1057 return Changed; 1058 1059 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) 1060 return Changed; 1061 1062 // Okay, everything looks good, insert the memset. 1063 1064 const SCEV *NumBytesS = 1065 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1066 1067 // TODO: ideally we should still be able to generate memset if SCEV expander 1068 // is taught to generate the dependencies at the latest point. 1069 if (!Expander.isSafeToExpand(NumBytesS)) 1070 return Changed; 1071 1072 Value *NumBytes = 1073 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1074 1075 if (!SplatValue && !isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)) 1076 return Changed; 1077 1078 AAMDNodes AATags = TheStore->getAAMetadata(); 1079 for (Instruction *Store : Stores) 1080 AATags = AATags.merge(Store->getAAMetadata()); 1081 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1082 AATags = AATags.extendTo(CI->getZExtValue()); 1083 else 1084 AATags = AATags.extendTo(-1); 1085 1086 CallInst *NewCall; 1087 if (SplatValue) { 1088 NewCall = Builder.CreateMemSet( 1089 BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment), 1090 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1091 } else { 1092 assert (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)); 1093 // Everything is emitted in default address space 1094 Type *Int8PtrTy = DestInt8PtrTy; 1095 1096 StringRef FuncName = "memset_pattern16"; 1097 FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16, 1098 Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy); 1099 inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI); 1100 1101 // Otherwise we should form a memset_pattern16. PatternValue is known to be 1102 // an constant array of 16-bytes. Plop the value into a mergable global. 1103 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, 1104 GlobalValue::PrivateLinkage, 1105 PatternValue, ".memset_pattern"); 1106 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. 1107 GV->setAlignment(Align(16)); 1108 Value *PatternPtr = GV; 1109 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); 1110 1111 // Set the TBAA info if present. 1112 if (AATags.TBAA) 1113 NewCall->setMetadata(LLVMContext::MD_tbaa, AATags.TBAA); 1114 1115 if (AATags.Scope) 1116 NewCall->setMetadata(LLVMContext::MD_alias_scope, AATags.Scope); 1117 1118 if (AATags.NoAlias) 1119 NewCall->setMetadata(LLVMContext::MD_noalias, AATags.NoAlias); 1120 } 1121 1122 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1123 1124 if (MSSAU) { 1125 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1126 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1127 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1128 } 1129 1130 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" 1131 << " from store to: " << *Ev << " at: " << *TheStore 1132 << "\n"); 1133 1134 ORE.emit([&]() { 1135 OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore", 1136 NewCall->getDebugLoc(), Preheader); 1137 R << "Transformed loop-strided store in " 1138 << ore::NV("Function", TheStore->getFunction()) 1139 << " function into a call to " 1140 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1141 << "() intrinsic"; 1142 if (!Stores.empty()) 1143 R << ore::setExtraArgs(); 1144 for (auto *I : Stores) { 1145 R << ore::NV("FromBlock", I->getParent()->getName()) 1146 << ore::NV("ToBlock", Preheader->getName()); 1147 } 1148 return R; 1149 }); 1150 1151 // Okay, the memset has been formed. Zap the original store and anything that 1152 // feeds into it. 1153 for (auto *I : Stores) { 1154 if (MSSAU) 1155 MSSAU->removeMemoryAccess(I, true); 1156 deleteDeadInstruction(I); 1157 } 1158 if (MSSAU && VerifyMemorySSA) 1159 MSSAU->getMemorySSA()->verifyMemorySSA(); 1160 ++NumMemSet; 1161 ExpCleaner.markResultUsed(); 1162 return true; 1163 } 1164 1165 /// If the stored value is a strided load in the same loop with the same stride 1166 /// this may be transformable into a memcpy. This kicks in for stuff like 1167 /// for (i) A[i] = B[i]; 1168 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, 1169 const SCEV *BECount) { 1170 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores."); 1171 1172 Value *StorePtr = SI->getPointerOperand(); 1173 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); 1174 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); 1175 1176 // The store must be feeding a non-volatile load. 1177 LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); 1178 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads."); 1179 1180 // See if the pointer expression is an AddRec like {base,+,1} on the current 1181 // loop, which indicates a strided load. If we have something else, it's a 1182 // random load we can't handle. 1183 Value *LoadPtr = LI->getPointerOperand(); 1184 const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); 1185 1186 const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); 1187 return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, 1188 SI->getAlign(), LI->getAlign(), SI, LI, 1189 StoreEv, LoadEv, BECount); 1190 } 1191 1192 namespace { 1193 class MemmoveVerifier { 1194 public: 1195 explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, 1196 const DataLayout &DL) 1197 : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset( 1198 LoadBasePtr.stripPointerCasts(), LoadOff, DL)), 1199 BP2(llvm::GetPointerBaseWithConstantOffset( 1200 StoreBasePtr.stripPointerCasts(), StoreOff, DL)), 1201 IsSameObject(BP1 == BP2) {} 1202 1203 bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, 1204 const Instruction &TheLoad, 1205 bool IsMemCpy) const { 1206 if (IsMemCpy) { 1207 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1208 // for negative stride. 1209 if ((!IsNegStride && LoadOff <= StoreOff) || 1210 (IsNegStride && LoadOff >= StoreOff)) 1211 return false; 1212 } else { 1213 // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr 1214 // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. 1215 int64_t LoadSize = 1216 DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8; 1217 if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) 1218 return false; 1219 if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || 1220 (IsNegStride && LoadOff + LoadSize > StoreOff)) 1221 return false; 1222 } 1223 return true; 1224 } 1225 1226 private: 1227 const DataLayout &DL; 1228 int64_t LoadOff = 0; 1229 int64_t StoreOff = 0; 1230 const Value *BP1; 1231 const Value *BP2; 1232 1233 public: 1234 const bool IsSameObject; 1235 }; 1236 } // namespace 1237 1238 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( 1239 Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, 1240 MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, 1241 Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, 1242 const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { 1243 1244 // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to 1245 // conservatively bail here, since otherwise we may have to transform 1246 // llvm.memcpy.inline into llvm.memcpy which is illegal. 1247 if (isa<MemCpyInlineInst>(TheStore)) 1248 return false; 1249 1250 // The trip count of the loop and the base pointer of the addrec SCEV is 1251 // guaranteed to be loop invariant, which means that it should dominate the 1252 // header. This allows us to insert code for it in the preheader. 1253 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1254 IRBuilder<> Builder(Preheader->getTerminator()); 1255 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 1256 1257 SCEVExpanderCleaner ExpCleaner(Expander); 1258 1259 bool Changed = false; 1260 const SCEV *StrStart = StoreEv->getStart(); 1261 unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); 1262 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); 1263 1264 APInt Stride = getStoreStride(StoreEv); 1265 const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); 1266 1267 // TODO: Deal with non-constant size; Currently expect constant store size 1268 assert(ConstStoreSize && "store size is expected to be a constant"); 1269 1270 int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); 1271 bool IsNegStride = StoreSize == -Stride; 1272 1273 // Handle negative strided loops. 1274 if (IsNegStride) 1275 StrStart = 1276 getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1277 1278 // Okay, we have a strided store "p[i]" of a loaded value. We can turn 1279 // this into a memcpy in the loop preheader now if we want. However, this 1280 // would be unsafe to do if there is anything else in the loop that may read 1281 // or write the memory region we're storing to. This includes the load that 1282 // feeds the stores. Check for an alias by generating the base address and 1283 // checking everything. 1284 Value *StoreBasePtr = Expander.expandCodeFor( 1285 StrStart, Builder.getPtrTy(StrAS), Preheader->getTerminator()); 1286 1287 // From here on out, conservatively report to the pass manager that we've 1288 // changed the IR, even if we later clean up these added instructions. There 1289 // may be structural differences e.g. in the order of use lists not accounted 1290 // for in just a textual dump of the IR. This is written as a variable, even 1291 // though statically all the places this dominates could be replaced with 1292 // 'true', with the hope that anyone trying to be clever / "more precise" with 1293 // the return value will read this comment, and leave them alone. 1294 Changed = true; 1295 1296 SmallPtrSet<Instruction *, 2> IgnoredInsts; 1297 IgnoredInsts.insert(TheStore); 1298 1299 bool IsMemCpy = isa<MemCpyInst>(TheStore); 1300 const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; 1301 1302 bool LoopAccessStore = 1303 mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, 1304 StoreSizeSCEV, *AA, IgnoredInsts); 1305 if (LoopAccessStore) { 1306 // For memmove case it's not enough to guarantee that loop doesn't access 1307 // TheStore and TheLoad. Additionally we need to make sure that TheStore is 1308 // the only user of TheLoad. 1309 if (!TheLoad->hasOneUse()) 1310 return Changed; 1311 IgnoredInsts.insert(TheLoad); 1312 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, 1313 BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { 1314 ORE.emit([&]() { 1315 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore", 1316 TheStore) 1317 << ore::NV("Inst", InstRemark) << " in " 1318 << ore::NV("Function", TheStore->getFunction()) 1319 << " function will not be hoisted: " 1320 << ore::NV("Reason", "The loop may access store location"); 1321 }); 1322 return Changed; 1323 } 1324 IgnoredInsts.erase(TheLoad); 1325 } 1326 1327 const SCEV *LdStart = LoadEv->getStart(); 1328 unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); 1329 1330 // Handle negative strided loops. 1331 if (IsNegStride) 1332 LdStart = 1333 getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); 1334 1335 // For a memcpy, we have to make sure that the input array is not being 1336 // mutated by the loop. 1337 Value *LoadBasePtr = Expander.expandCodeFor(LdStart, Builder.getPtrTy(LdAS), 1338 Preheader->getTerminator()); 1339 1340 // If the store is a memcpy instruction, we must check if it will write to 1341 // the load memory locations. So remove it from the ignored stores. 1342 MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); 1343 if (IsMemCpy && !Verifier.IsSameObject) 1344 IgnoredInsts.erase(TheStore); 1345 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, 1346 StoreSizeSCEV, *AA, IgnoredInsts)) { 1347 ORE.emit([&]() { 1348 return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad) 1349 << ore::NV("Inst", InstRemark) << " in " 1350 << ore::NV("Function", TheStore->getFunction()) 1351 << " function will not be hoisted: " 1352 << ore::NV("Reason", "The loop may access load location"); 1353 }); 1354 return Changed; 1355 } 1356 1357 bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; 1358 if (UseMemMove) 1359 if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad, 1360 IsMemCpy)) 1361 return Changed; 1362 1363 if (avoidLIRForMultiBlockLoop()) 1364 return Changed; 1365 1366 // Okay, everything is safe, we can transform this! 1367 1368 const SCEV *NumBytesS = 1369 getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); 1370 1371 Value *NumBytes = 1372 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); 1373 1374 AAMDNodes AATags = TheLoad->getAAMetadata(); 1375 AAMDNodes StoreAATags = TheStore->getAAMetadata(); 1376 AATags = AATags.merge(StoreAATags); 1377 if (auto CI = dyn_cast<ConstantInt>(NumBytes)) 1378 AATags = AATags.extendTo(CI->getZExtValue()); 1379 else 1380 AATags = AATags.extendTo(-1); 1381 1382 CallInst *NewCall = nullptr; 1383 // Check whether to generate an unordered atomic memcpy: 1384 // If the load or store are atomic, then they must necessarily be unordered 1385 // by previous checks. 1386 if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { 1387 if (UseMemMove) 1388 NewCall = Builder.CreateMemMove( 1389 StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, 1390 /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); 1391 else 1392 NewCall = 1393 Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, 1394 NumBytes, /*isVolatile=*/false, AATags.TBAA, 1395 AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); 1396 } else { 1397 // For now don't support unordered atomic memmove. 1398 if (UseMemMove) 1399 return Changed; 1400 // We cannot allow unaligned ops for unordered load/store, so reject 1401 // anything where the alignment isn't at least the element size. 1402 assert((StoreAlign && LoadAlign) && 1403 "Expect unordered load/store to have align."); 1404 if (*StoreAlign < StoreSize || *LoadAlign < StoreSize) 1405 return Changed; 1406 1407 // If the element.atomic memcpy is not lowered into explicit 1408 // loads/stores later, then it will be lowered into an element-size 1409 // specific lib call. If the lib call doesn't exist for our store size, then 1410 // we shouldn't generate the memcpy. 1411 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) 1412 return Changed; 1413 1414 // Create the call. 1415 // Note that unordered atomic loads/stores are *required* by the spec to 1416 // have an alignment but non-atomic loads/stores may not. 1417 NewCall = Builder.CreateElementUnorderedAtomicMemCpy( 1418 StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize, 1419 AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); 1420 } 1421 NewCall->setDebugLoc(TheStore->getDebugLoc()); 1422 1423 if (MSSAU) { 1424 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1425 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); 1426 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1427 } 1428 1429 LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n" 1430 << " from load ptr=" << *LoadEv << " at: " << *TheLoad 1431 << "\n" 1432 << " from store ptr=" << *StoreEv << " at: " << *TheStore 1433 << "\n"); 1434 1435 ORE.emit([&]() { 1436 return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad", 1437 NewCall->getDebugLoc(), Preheader) 1438 << "Formed a call to " 1439 << ore::NV("NewFunction", NewCall->getCalledFunction()) 1440 << "() intrinsic from " << ore::NV("Inst", InstRemark) 1441 << " instruction in " << ore::NV("Function", TheStore->getFunction()) 1442 << " function" 1443 << ore::setExtraArgs() 1444 << ore::NV("FromBlock", TheStore->getParent()->getName()) 1445 << ore::NV("ToBlock", Preheader->getName()); 1446 }); 1447 1448 // Okay, a new call to memcpy/memmove has been formed. Zap the original store 1449 // and anything that feeds into it. 1450 if (MSSAU) 1451 MSSAU->removeMemoryAccess(TheStore, true); 1452 deleteDeadInstruction(TheStore); 1453 if (MSSAU && VerifyMemorySSA) 1454 MSSAU->getMemorySSA()->verifyMemorySSA(); 1455 if (UseMemMove) 1456 ++NumMemMove; 1457 else 1458 ++NumMemCpy; 1459 ExpCleaner.markResultUsed(); 1460 return true; 1461 } 1462 1463 // When compiling for codesize we avoid idiom recognition for a multi-block loop 1464 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. 1465 // 1466 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, 1467 bool IsLoopMemset) { 1468 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { 1469 if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { 1470 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName() 1471 << " : LIR " << (IsMemset ? "Memset" : "Memcpy") 1472 << " avoided: multi-block top-level loop\n"); 1473 return true; 1474 } 1475 } 1476 1477 return false; 1478 } 1479 1480 bool LoopIdiomRecognize::runOnNoncountableLoop() { 1481 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F[" 1482 << CurLoop->getHeader()->getParent()->getName() 1483 << "] Noncountable Loop %" 1484 << CurLoop->getHeader()->getName() << "\n"); 1485 1486 return recognizePopcount() || recognizeAndInsertFFS() || 1487 recognizeShiftUntilBitTest() || recognizeShiftUntilZero(); 1488 } 1489 1490 /// Check if the given conditional branch is based on the comparison between 1491 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is 1492 /// true), the control yields to the loop entry. If the branch matches the 1493 /// behavior, the variable involved in the comparison is returned. This function 1494 /// will be called to see if the precondition and postcondition of the loop are 1495 /// in desirable form. 1496 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, 1497 bool JmpOnZero = false) { 1498 if (!BI || !BI->isConditional()) 1499 return nullptr; 1500 1501 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1502 if (!Cond) 1503 return nullptr; 1504 1505 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); 1506 if (!CmpZero || !CmpZero->isZero()) 1507 return nullptr; 1508 1509 BasicBlock *TrueSucc = BI->getSuccessor(0); 1510 BasicBlock *FalseSucc = BI->getSuccessor(1); 1511 if (JmpOnZero) 1512 std::swap(TrueSucc, FalseSucc); 1513 1514 ICmpInst::Predicate Pred = Cond->getPredicate(); 1515 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || 1516 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) 1517 return Cond->getOperand(0); 1518 1519 return nullptr; 1520 } 1521 1522 // Check if the recurrence variable `VarX` is in the right form to create 1523 // the idiom. Returns the value coerced to a PHINode if so. 1524 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, 1525 BasicBlock *LoopEntry) { 1526 auto *PhiX = dyn_cast<PHINode>(VarX); 1527 if (PhiX && PhiX->getParent() == LoopEntry && 1528 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) 1529 return PhiX; 1530 return nullptr; 1531 } 1532 1533 /// Return true iff the idiom is detected in the loop. 1534 /// 1535 /// Additionally: 1536 /// 1) \p CntInst is set to the instruction counting the population bit. 1537 /// 2) \p CntPhi is set to the corresponding phi node. 1538 /// 3) \p Var is set to the value whose population bits are being counted. 1539 /// 1540 /// The core idiom we are trying to detect is: 1541 /// \code 1542 /// if (x0 != 0) 1543 /// goto loop-exit // the precondition of the loop 1544 /// cnt0 = init-val; 1545 /// do { 1546 /// x1 = phi (x0, x2); 1547 /// cnt1 = phi(cnt0, cnt2); 1548 /// 1549 /// cnt2 = cnt1 + 1; 1550 /// ... 1551 /// x2 = x1 & (x1 - 1); 1552 /// ... 1553 /// } while(x != 0); 1554 /// 1555 /// loop-exit: 1556 /// \endcode 1557 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, 1558 Instruction *&CntInst, PHINode *&CntPhi, 1559 Value *&Var) { 1560 // step 1: Check to see if the look-back branch match this pattern: 1561 // "if (a!=0) goto loop-entry". 1562 BasicBlock *LoopEntry; 1563 Instruction *DefX2, *CountInst; 1564 Value *VarX1, *VarX0; 1565 PHINode *PhiX, *CountPhi; 1566 1567 DefX2 = CountInst = nullptr; 1568 VarX1 = VarX0 = nullptr; 1569 PhiX = CountPhi = nullptr; 1570 LoopEntry = *(CurLoop->block_begin()); 1571 1572 // step 1: Check if the loop-back branch is in desirable form. 1573 { 1574 if (Value *T = matchCondition( 1575 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1576 DefX2 = dyn_cast<Instruction>(T); 1577 else 1578 return false; 1579 } 1580 1581 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" 1582 { 1583 if (!DefX2 || DefX2->getOpcode() != Instruction::And) 1584 return false; 1585 1586 BinaryOperator *SubOneOp; 1587 1588 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) 1589 VarX1 = DefX2->getOperand(1); 1590 else { 1591 VarX1 = DefX2->getOperand(0); 1592 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); 1593 } 1594 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) 1595 return false; 1596 1597 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); 1598 if (!Dec || 1599 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || 1600 (SubOneOp->getOpcode() == Instruction::Add && 1601 Dec->isMinusOne()))) { 1602 return false; 1603 } 1604 } 1605 1606 // step 3: Check the recurrence of variable X 1607 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); 1608 if (!PhiX) 1609 return false; 1610 1611 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 1612 { 1613 CountInst = nullptr; 1614 for (Instruction &Inst : llvm::make_range( 1615 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1616 if (Inst.getOpcode() != Instruction::Add) 1617 continue; 1618 1619 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1620 if (!Inc || !Inc->isOne()) 1621 continue; 1622 1623 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1624 if (!Phi) 1625 continue; 1626 1627 // Check if the result of the instruction is live of the loop. 1628 bool LiveOutLoop = false; 1629 for (User *U : Inst.users()) { 1630 if ((cast<Instruction>(U))->getParent() != LoopEntry) { 1631 LiveOutLoop = true; 1632 break; 1633 } 1634 } 1635 1636 if (LiveOutLoop) { 1637 CountInst = &Inst; 1638 CountPhi = Phi; 1639 break; 1640 } 1641 } 1642 1643 if (!CountInst) 1644 return false; 1645 } 1646 1647 // step 5: check if the precondition is in this form: 1648 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" 1649 { 1650 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1651 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); 1652 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) 1653 return false; 1654 1655 CntInst = CountInst; 1656 CntPhi = CountPhi; 1657 Var = T; 1658 } 1659 1660 return true; 1661 } 1662 1663 /// Return true if the idiom is detected in the loop. 1664 /// 1665 /// Additionally: 1666 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) 1667 /// or nullptr if there is no such. 1668 /// 2) \p CntPhi is set to the corresponding phi node 1669 /// or nullptr if there is no such. 1670 /// 3) \p Var is set to the value whose CTLZ could be used. 1671 /// 4) \p DefX is set to the instruction calculating Loop exit condition. 1672 /// 1673 /// The core idiom we are trying to detect is: 1674 /// \code 1675 /// if (x0 == 0) 1676 /// goto loop-exit // the precondition of the loop 1677 /// cnt0 = init-val; 1678 /// do { 1679 /// x = phi (x0, x.next); //PhiX 1680 /// cnt = phi(cnt0, cnt.next); 1681 /// 1682 /// cnt.next = cnt + 1; 1683 /// ... 1684 /// x.next = x >> 1; // DefX 1685 /// ... 1686 /// } while(x.next != 0); 1687 /// 1688 /// loop-exit: 1689 /// \endcode 1690 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, 1691 Intrinsic::ID &IntrinID, Value *&InitX, 1692 Instruction *&CntInst, PHINode *&CntPhi, 1693 Instruction *&DefX) { 1694 BasicBlock *LoopEntry; 1695 Value *VarX = nullptr; 1696 1697 DefX = nullptr; 1698 CntInst = nullptr; 1699 CntPhi = nullptr; 1700 LoopEntry = *(CurLoop->block_begin()); 1701 1702 // step 1: Check if the loop-back branch is in desirable form. 1703 if (Value *T = matchCondition( 1704 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) 1705 DefX = dyn_cast<Instruction>(T); 1706 else 1707 return false; 1708 1709 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" 1710 if (!DefX || !DefX->isShift()) 1711 return false; 1712 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : 1713 Intrinsic::ctlz; 1714 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); 1715 if (!Shft || !Shft->isOne()) 1716 return false; 1717 VarX = DefX->getOperand(0); 1718 1719 // step 3: Check the recurrence of variable X 1720 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); 1721 if (!PhiX) 1722 return false; 1723 1724 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); 1725 1726 // Make sure the initial value can't be negative otherwise the ashr in the 1727 // loop might never reach zero which would make the loop infinite. 1728 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) 1729 return false; 1730 1731 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 1732 // or cnt.next = cnt + -1. 1733 // TODO: We can skip the step. If loop trip count is known (CTLZ), 1734 // then all uses of "cnt.next" could be optimized to the trip count 1735 // plus "cnt0". Currently it is not optimized. 1736 // This step could be used to detect POPCNT instruction: 1737 // cnt.next = cnt + (x.next & 1) 1738 for (Instruction &Inst : llvm::make_range( 1739 LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { 1740 if (Inst.getOpcode() != Instruction::Add) 1741 continue; 1742 1743 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); 1744 if (!Inc || (!Inc->isOne() && !Inc->isMinusOne())) 1745 continue; 1746 1747 PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); 1748 if (!Phi) 1749 continue; 1750 1751 CntInst = &Inst; 1752 CntPhi = Phi; 1753 break; 1754 } 1755 if (!CntInst) 1756 return false; 1757 1758 return true; 1759 } 1760 1761 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop 1762 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new 1763 /// trip count returns true; otherwise, returns false. 1764 bool LoopIdiomRecognize::recognizeAndInsertFFS() { 1765 // Give up if the loop has multiple blocks or multiple backedges. 1766 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1767 return false; 1768 1769 Intrinsic::ID IntrinID; 1770 Value *InitX; 1771 Instruction *DefX = nullptr; 1772 PHINode *CntPhi = nullptr; 1773 Instruction *CntInst = nullptr; 1774 // Help decide if transformation is profitable. For ShiftUntilZero idiom, 1775 // this is always 6. 1776 size_t IdiomCanonicalSize = 6; 1777 1778 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, 1779 CntInst, CntPhi, DefX)) 1780 return false; 1781 1782 bool IsCntPhiUsedOutsideLoop = false; 1783 for (User *U : CntPhi->users()) 1784 if (!CurLoop->contains(cast<Instruction>(U))) { 1785 IsCntPhiUsedOutsideLoop = true; 1786 break; 1787 } 1788 bool IsCntInstUsedOutsideLoop = false; 1789 for (User *U : CntInst->users()) 1790 if (!CurLoop->contains(cast<Instruction>(U))) { 1791 IsCntInstUsedOutsideLoop = true; 1792 break; 1793 } 1794 // If both CntInst and CntPhi are used outside the loop the profitability 1795 // is questionable. 1796 if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop) 1797 return false; 1798 1799 // For some CPUs result of CTLZ(X) intrinsic is undefined 1800 // when X is 0. If we can not guarantee X != 0, we need to check this 1801 // when expand. 1802 bool ZeroCheck = false; 1803 // It is safe to assume Preheader exist as it was checked in 1804 // parent function RunOnLoop. 1805 BasicBlock *PH = CurLoop->getLoopPreheader(); 1806 1807 // If we are using the count instruction outside the loop, make sure we 1808 // have a zero check as a precondition. Without the check the loop would run 1809 // one iteration for before any check of the input value. This means 0 and 1 1810 // would have identical behavior in the original loop and thus 1811 if (!IsCntPhiUsedOutsideLoop) { 1812 auto *PreCondBB = PH->getSinglePredecessor(); 1813 if (!PreCondBB) 1814 return false; 1815 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1816 if (!PreCondBI) 1817 return false; 1818 if (matchCondition(PreCondBI, PH) != InitX) 1819 return false; 1820 ZeroCheck = true; 1821 } 1822 1823 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always 1824 // profitable if we delete the loop. 1825 1826 // the loop has only 6 instructions: 1827 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] 1828 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] 1829 // %shr = ashr %n.addr.0, 1 1830 // %tobool = icmp eq %shr, 0 1831 // %inc = add nsw %i.0, 1 1832 // br i1 %tobool 1833 1834 const Value *Args[] = {InitX, 1835 ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; 1836 1837 // @llvm.dbg doesn't count as they have no semantic effect. 1838 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); 1839 uint32_t HeaderSize = 1840 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); 1841 1842 IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); 1843 InstructionCost Cost = 1844 TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); 1845 if (HeaderSize != IdiomCanonicalSize && 1846 Cost > TargetTransformInfo::TCC_Basic) 1847 return false; 1848 1849 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, 1850 DefX->getDebugLoc(), ZeroCheck, 1851 IsCntPhiUsedOutsideLoop); 1852 return true; 1853 } 1854 1855 /// Recognizes a population count idiom in a non-countable loop. 1856 /// 1857 /// If detected, transforms the relevant code to issue the popcount intrinsic 1858 /// function call, and returns true; otherwise, returns false. 1859 bool LoopIdiomRecognize::recognizePopcount() { 1860 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) 1861 return false; 1862 1863 // Counting population are usually conducted by few arithmetic instructions. 1864 // Such instructions can be easily "absorbed" by vacant slots in a 1865 // non-compact loop. Therefore, recognizing popcount idiom only makes sense 1866 // in a compact loop. 1867 1868 // Give up if the loop has multiple blocks or multiple backedges. 1869 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) 1870 return false; 1871 1872 BasicBlock *LoopBody = *(CurLoop->block_begin()); 1873 if (LoopBody->size() >= 20) { 1874 // The loop is too big, bail out. 1875 return false; 1876 } 1877 1878 // It should have a preheader containing nothing but an unconditional branch. 1879 BasicBlock *PH = CurLoop->getLoopPreheader(); 1880 if (!PH || &PH->front() != PH->getTerminator()) 1881 return false; 1882 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); 1883 if (!EntryBI || EntryBI->isConditional()) 1884 return false; 1885 1886 // It should have a precondition block where the generated popcount intrinsic 1887 // function can be inserted. 1888 auto *PreCondBB = PH->getSinglePredecessor(); 1889 if (!PreCondBB) 1890 return false; 1891 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); 1892 if (!PreCondBI || PreCondBI->isUnconditional()) 1893 return false; 1894 1895 Instruction *CntInst; 1896 PHINode *CntPhi; 1897 Value *Val; 1898 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) 1899 return false; 1900 1901 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); 1902 return true; 1903 } 1904 1905 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1906 const DebugLoc &DL) { 1907 Value *Ops[] = {Val}; 1908 Type *Tys[] = {Val->getType()}; 1909 1910 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1911 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); 1912 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1913 CI->setDebugLoc(DL); 1914 1915 return CI; 1916 } 1917 1918 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, 1919 const DebugLoc &DL, bool ZeroCheck, 1920 Intrinsic::ID IID) { 1921 Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; 1922 Type *Tys[] = {Val->getType()}; 1923 1924 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); 1925 Function *Func = Intrinsic::getDeclaration(M, IID, Tys); 1926 CallInst *CI = IRBuilder.CreateCall(Func, Ops); 1927 CI->setDebugLoc(DL); 1928 1929 return CI; 1930 } 1931 1932 /// Transform the following loop (Using CTLZ, CTTZ is similar): 1933 /// loop: 1934 /// CntPhi = PHI [Cnt0, CntInst] 1935 /// PhiX = PHI [InitX, DefX] 1936 /// CntInst = CntPhi + 1 1937 /// DefX = PhiX >> 1 1938 /// LOOP_BODY 1939 /// Br: loop if (DefX != 0) 1940 /// Use(CntPhi) or Use(CntInst) 1941 /// 1942 /// Into: 1943 /// If CntPhi used outside the loop: 1944 /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) 1945 /// Count = CountPrev + 1 1946 /// else 1947 /// Count = BitWidth(InitX) - CTLZ(InitX) 1948 /// loop: 1949 /// CntPhi = PHI [Cnt0, CntInst] 1950 /// PhiX = PHI [InitX, DefX] 1951 /// PhiCount = PHI [Count, Dec] 1952 /// CntInst = CntPhi + 1 1953 /// DefX = PhiX >> 1 1954 /// Dec = PhiCount - 1 1955 /// LOOP_BODY 1956 /// Br: loop if (Dec != 0) 1957 /// Use(CountPrev + Cnt0) // Use(CntPhi) 1958 /// or 1959 /// Use(Count + Cnt0) // Use(CntInst) 1960 /// 1961 /// If LOOP_BODY is empty the loop will be deleted. 1962 /// If CntInst and DefX are not used in LOOP_BODY they will be removed. 1963 void LoopIdiomRecognize::transformLoopToCountable( 1964 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, 1965 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, 1966 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { 1967 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); 1968 1969 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block 1970 IRBuilder<> Builder(PreheaderBr); 1971 Builder.SetCurrentDebugLocation(DL); 1972 1973 // If there are no uses of CntPhi crate: 1974 // Count = BitWidth - CTLZ(InitX); 1975 // NewCount = Count; 1976 // If there are uses of CntPhi create: 1977 // NewCount = BitWidth - CTLZ(InitX >> 1); 1978 // Count = NewCount + 1; 1979 Value *InitXNext; 1980 if (IsCntPhiUsedOutsideLoop) { 1981 if (DefX->getOpcode() == Instruction::AShr) 1982 InitXNext = Builder.CreateAShr(InitX, 1); 1983 else if (DefX->getOpcode() == Instruction::LShr) 1984 InitXNext = Builder.CreateLShr(InitX, 1); 1985 else if (DefX->getOpcode() == Instruction::Shl) // cttz 1986 InitXNext = Builder.CreateShl(InitX, 1); 1987 else 1988 llvm_unreachable("Unexpected opcode!"); 1989 } else 1990 InitXNext = InitX; 1991 Value *Count = 1992 createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); 1993 Type *CountTy = Count->getType(); 1994 Count = Builder.CreateSub( 1995 ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); 1996 Value *NewCount = Count; 1997 if (IsCntPhiUsedOutsideLoop) 1998 Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); 1999 2000 NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); 2001 2002 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); 2003 if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { 2004 // If the counter was being incremented in the loop, add NewCount to the 2005 // counter's initial value, but only if the initial value is not zero. 2006 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2007 if (!InitConst || !InitConst->isZero()) 2008 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2009 } else { 2010 // If the count was being decremented in the loop, subtract NewCount from 2011 // the counter's initial value. 2012 NewCount = Builder.CreateSub(CntInitVal, NewCount); 2013 } 2014 2015 // Step 2: Insert new IV and loop condition: 2016 // loop: 2017 // ... 2018 // PhiCount = PHI [Count, Dec] 2019 // ... 2020 // Dec = PhiCount - 1 2021 // ... 2022 // Br: loop if (Dec != 0) 2023 BasicBlock *Body = *(CurLoop->block_begin()); 2024 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2025 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2026 2027 PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi"); 2028 TcPhi->insertBefore(Body->begin()); 2029 2030 Builder.SetInsertPoint(LbCond); 2031 Instruction *TcDec = cast<Instruction>(Builder.CreateSub( 2032 TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); 2033 2034 TcPhi->addIncoming(Count, Preheader); 2035 TcPhi->addIncoming(TcDec, Body); 2036 2037 CmpInst::Predicate Pred = 2038 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 2039 LbCond->setPredicate(Pred); 2040 LbCond->setOperand(0, TcDec); 2041 LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); 2042 2043 // Step 3: All the references to the original counter outside 2044 // the loop are replaced with the NewCount 2045 if (IsCntPhiUsedOutsideLoop) 2046 CntPhi->replaceUsesOutsideBlock(NewCount, Body); 2047 else 2048 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2049 2050 // step 4: Forget the "non-computable" trip-count SCEV associated with the 2051 // loop. The loop would otherwise not be deleted even if it becomes empty. 2052 SE->forgetLoop(CurLoop); 2053 } 2054 2055 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, 2056 Instruction *CntInst, 2057 PHINode *CntPhi, Value *Var) { 2058 BasicBlock *PreHead = CurLoop->getLoopPreheader(); 2059 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); 2060 const DebugLoc &DL = CntInst->getDebugLoc(); 2061 2062 // Assuming before transformation, the loop is following: 2063 // if (x) // the precondition 2064 // do { cnt++; x &= x - 1; } while(x); 2065 2066 // Step 1: Insert the ctpop instruction at the end of the precondition block 2067 IRBuilder<> Builder(PreCondBr); 2068 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; 2069 { 2070 PopCnt = createPopcntIntrinsic(Builder, Var, DL); 2071 NewCount = PopCntZext = 2072 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); 2073 2074 if (NewCount != PopCnt) 2075 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2076 2077 // TripCnt is exactly the number of iterations the loop has 2078 TripCnt = NewCount; 2079 2080 // If the population counter's initial value is not zero, insert Add Inst. 2081 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); 2082 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); 2083 if (!InitConst || !InitConst->isZero()) { 2084 NewCount = Builder.CreateAdd(NewCount, CntInitVal); 2085 (cast<Instruction>(NewCount))->setDebugLoc(DL); 2086 } 2087 } 2088 2089 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to 2090 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic 2091 // function would be partial dead code, and downstream passes will drag 2092 // it back from the precondition block to the preheader. 2093 { 2094 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); 2095 2096 Value *Opnd0 = PopCntZext; 2097 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); 2098 if (PreCond->getOperand(0) != Var) 2099 std::swap(Opnd0, Opnd1); 2100 2101 ICmpInst *NewPreCond = cast<ICmpInst>( 2102 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); 2103 PreCondBr->setCondition(NewPreCond); 2104 2105 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); 2106 } 2107 2108 // Step 3: Note that the population count is exactly the trip count of the 2109 // loop in question, which enable us to convert the loop from noncountable 2110 // loop into a countable one. The benefit is twofold: 2111 // 2112 // - If the loop only counts population, the entire loop becomes dead after 2113 // the transformation. It is a lot easier to prove a countable loop dead 2114 // than to prove a noncountable one. (In some C dialects, an infinite loop 2115 // isn't dead even if it computes nothing useful. In general, DCE needs 2116 // to prove a noncountable loop finite before safely delete it.) 2117 // 2118 // - If the loop also performs something else, it remains alive. 2119 // Since it is transformed to countable form, it can be aggressively 2120 // optimized by some optimizations which are in general not applicable 2121 // to a noncountable loop. 2122 // 2123 // After this step, this loop (conceptually) would look like following: 2124 // newcnt = __builtin_ctpop(x); 2125 // t = newcnt; 2126 // if (x) 2127 // do { cnt++; x &= x-1; t--) } while (t > 0); 2128 BasicBlock *Body = *(CurLoop->block_begin()); 2129 { 2130 auto *LbBr = cast<BranchInst>(Body->getTerminator()); 2131 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); 2132 Type *Ty = TripCnt->getType(); 2133 2134 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi"); 2135 TcPhi->insertBefore(Body->begin()); 2136 2137 Builder.SetInsertPoint(LbCond); 2138 Instruction *TcDec = cast<Instruction>( 2139 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), 2140 "tcdec", false, true)); 2141 2142 TcPhi->addIncoming(TripCnt, PreHead); 2143 TcPhi->addIncoming(TcDec, Body); 2144 2145 CmpInst::Predicate Pred = 2146 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; 2147 LbCond->setPredicate(Pred); 2148 LbCond->setOperand(0, TcDec); 2149 LbCond->setOperand(1, ConstantInt::get(Ty, 0)); 2150 } 2151 2152 // Step 4: All the references to the original population counter outside 2153 // the loop are replaced with the NewCount -- the value returned from 2154 // __builtin_ctpop(). 2155 CntInst->replaceUsesOutsideBlock(NewCount, Body); 2156 2157 // step 5: Forget the "non-computable" trip-count SCEV associated with the 2158 // loop. The loop would otherwise not be deleted even if it becomes empty. 2159 SE->forgetLoop(CurLoop); 2160 } 2161 2162 /// Match loop-invariant value. 2163 template <typename SubPattern_t> struct match_LoopInvariant { 2164 SubPattern_t SubPattern; 2165 const Loop *L; 2166 2167 match_LoopInvariant(const SubPattern_t &SP, const Loop *L) 2168 : SubPattern(SP), L(L) {} 2169 2170 template <typename ITy> bool match(ITy *V) { 2171 return L->isLoopInvariant(V) && SubPattern.match(V); 2172 } 2173 }; 2174 2175 /// Matches if the value is loop-invariant. 2176 template <typename Ty> 2177 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { 2178 return match_LoopInvariant<Ty>(M, L); 2179 } 2180 2181 /// Return true if the idiom is detected in the loop. 2182 /// 2183 /// The core idiom we are trying to detect is: 2184 /// \code 2185 /// entry: 2186 /// <...> 2187 /// %bitmask = shl i32 1, %bitpos 2188 /// br label %loop 2189 /// 2190 /// loop: 2191 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2192 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2193 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2194 /// %x.next = shl i32 %x.curr, 1 2195 /// <...> 2196 /// br i1 %x.curr.isbitunset, label %loop, label %end 2197 /// 2198 /// end: 2199 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2200 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2201 /// <...> 2202 /// \endcode 2203 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, 2204 Value *&BitMask, Value *&BitPos, 2205 Value *&CurrX, Instruction *&NextX) { 2206 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2207 " Performing shift-until-bittest idiom detection.\n"); 2208 2209 // Give up if the loop has multiple blocks or multiple backedges. 2210 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2211 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2212 return false; 2213 } 2214 2215 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2216 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2217 assert(LoopPreheaderBB && "There is always a loop preheader."); 2218 2219 using namespace PatternMatch; 2220 2221 // Step 1: Check if the loop backedge is in desirable form. 2222 2223 ICmpInst::Predicate Pred; 2224 Value *CmpLHS, *CmpRHS; 2225 BasicBlock *TrueBB, *FalseBB; 2226 if (!match(LoopHeaderBB->getTerminator(), 2227 m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), 2228 m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { 2229 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2230 return false; 2231 } 2232 2233 // Step 2: Check if the backedge's condition is in desirable form. 2234 2235 auto MatchVariableBitMask = [&]() { 2236 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2237 match(CmpLHS, 2238 m_c_And(m_Value(CurrX), 2239 m_CombineAnd( 2240 m_Value(BitMask), 2241 m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), 2242 CurLoop)))); 2243 }; 2244 auto MatchConstantBitMask = [&]() { 2245 return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && 2246 match(CmpLHS, m_And(m_Value(CurrX), 2247 m_CombineAnd(m_Value(BitMask), m_Power2()))) && 2248 (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); 2249 }; 2250 auto MatchDecomposableConstantBitMask = [&]() { 2251 APInt Mask; 2252 return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && 2253 ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && 2254 (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && 2255 (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); 2256 }; 2257 2258 if (!MatchVariableBitMask() && !MatchConstantBitMask() && 2259 !MatchDecomposableConstantBitMask()) { 2260 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n"); 2261 return false; 2262 } 2263 2264 // Step 3: Check if the recurrence is in desirable form. 2265 auto *CurrXPN = dyn_cast<PHINode>(CurrX); 2266 if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { 2267 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2268 return false; 2269 } 2270 2271 BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); 2272 NextX = 2273 dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); 2274 2275 assert(CurLoop->isLoopInvariant(BaseX) && 2276 "Expected BaseX to be avaliable in the preheader!"); 2277 2278 if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { 2279 // FIXME: support right-shift? 2280 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2281 return false; 2282 } 2283 2284 // Step 4: Check if the backedge's destinations are in desirable form. 2285 2286 assert(ICmpInst::isEquality(Pred) && 2287 "Should only get equality predicates here."); 2288 2289 // cmp-br is commutative, so canonicalize to a single variant. 2290 if (Pred != ICmpInst::Predicate::ICMP_EQ) { 2291 Pred = ICmpInst::getInversePredicate(Pred); 2292 std::swap(TrueBB, FalseBB); 2293 } 2294 2295 // We expect to exit loop when comparison yields false, 2296 // so when it yields true we should branch back to loop header. 2297 if (TrueBB != LoopHeaderBB) { 2298 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2299 return false; 2300 } 2301 2302 // Okay, idiom checks out. 2303 return true; 2304 } 2305 2306 /// Look for the following loop: 2307 /// \code 2308 /// entry: 2309 /// <...> 2310 /// %bitmask = shl i32 1, %bitpos 2311 /// br label %loop 2312 /// 2313 /// loop: 2314 /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] 2315 /// %x.curr.bitmasked = and i32 %x.curr, %bitmask 2316 /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 2317 /// %x.next = shl i32 %x.curr, 1 2318 /// <...> 2319 /// br i1 %x.curr.isbitunset, label %loop, label %end 2320 /// 2321 /// end: 2322 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2323 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2324 /// <...> 2325 /// \endcode 2326 /// 2327 /// And transform it into: 2328 /// \code 2329 /// entry: 2330 /// %bitmask = shl i32 1, %bitpos 2331 /// %lowbitmask = add i32 %bitmask, -1 2332 /// %mask = or i32 %lowbitmask, %bitmask 2333 /// %x.masked = and i32 %x, %mask 2334 /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, 2335 /// i1 true) 2336 /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros 2337 /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 2338 /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos 2339 /// %tripcount = add i32 %backedgetakencount, 1 2340 /// %x.curr = shl i32 %x, %backedgetakencount 2341 /// %x.next = shl i32 %x, %tripcount 2342 /// br label %loop 2343 /// 2344 /// loop: 2345 /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] 2346 /// %loop.iv.next = add nuw i32 %loop.iv, 1 2347 /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount 2348 /// <...> 2349 /// br i1 %loop.ivcheck, label %end, label %loop 2350 /// 2351 /// end: 2352 /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> 2353 /// %x.next.res = phi i32 [ %x.next, %loop ] <...> 2354 /// <...> 2355 /// \endcode 2356 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { 2357 bool MadeChange = false; 2358 2359 Value *X, *BitMask, *BitPos, *XCurr; 2360 Instruction *XNext; 2361 if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, 2362 XNext)) { 2363 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2364 " shift-until-bittest idiom detection failed.\n"); 2365 return MadeChange; 2366 } 2367 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n"); 2368 2369 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2370 // but is it profitable to transform? 2371 2372 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2373 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2374 assert(LoopPreheaderBB && "There is always a loop preheader."); 2375 2376 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2377 assert(SuccessorBB && "There is only a single successor."); 2378 2379 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2380 Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); 2381 2382 Intrinsic::ID IntrID = Intrinsic::ctlz; 2383 Type *Ty = X->getType(); 2384 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2385 2386 TargetTransformInfo::TargetCostKind CostKind = 2387 TargetTransformInfo::TCK_SizeAndLatency; 2388 2389 // The rewrite is considered to be unprofitable iff and only iff the 2390 // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* 2391 // making the loop countable, even if nothing else changes. 2392 IntrinsicCostAttributes Attrs( 2393 IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getTrue()}); 2394 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2395 if (Cost > TargetTransformInfo::TCC_Basic) { 2396 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2397 " Intrinsic is too costly, not beneficial\n"); 2398 return MadeChange; 2399 } 2400 if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > 2401 TargetTransformInfo::TCC_Basic) { 2402 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n"); 2403 return MadeChange; 2404 } 2405 2406 // Ok, transform appears worthwhile. 2407 MadeChange = true; 2408 2409 if (!isGuaranteedNotToBeUndefOrPoison(BitPos)) { 2410 // BitMask may be computed from BitPos, Freeze BitPos so we can increase 2411 // it's use count. 2412 Instruction *InsertPt = nullptr; 2413 if (auto *BitPosI = dyn_cast<Instruction>(BitPos)) 2414 InsertPt = &**BitPosI->getInsertionPointAfterDef(); 2415 else 2416 InsertPt = &*DT->getRoot()->getFirstNonPHIOrDbgOrAlloca(); 2417 if (!InsertPt) 2418 return false; 2419 FreezeInst *BitPosFrozen = 2420 new FreezeInst(BitPos, BitPos->getName() + ".fr", InsertPt); 2421 BitPos->replaceUsesWithIf(BitPosFrozen, [BitPosFrozen](Use &U) { 2422 return U.getUser() != BitPosFrozen; 2423 }); 2424 BitPos = BitPosFrozen; 2425 } 2426 2427 // Step 1: Compute the loop trip count. 2428 2429 Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), 2430 BitPos->getName() + ".lowbitmask"); 2431 Value *Mask = 2432 Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); 2433 Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); 2434 CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( 2435 IntrID, Ty, {XMasked, /*is_zero_poison=*/Builder.getTrue()}, 2436 /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); 2437 Value *XMaskedNumActiveBits = Builder.CreateSub( 2438 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, 2439 XMasked->getName() + ".numactivebits", /*HasNUW=*/true, 2440 /*HasNSW=*/Bitwidth != 2); 2441 Value *XMaskedLeadingOnePos = 2442 Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), 2443 XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, 2444 /*HasNSW=*/Bitwidth > 2); 2445 2446 Value *LoopBackedgeTakenCount = Builder.CreateSub( 2447 BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", 2448 /*HasNUW=*/true, /*HasNSW=*/true); 2449 // We know loop's backedge-taken count, but what's loop's trip count? 2450 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2451 Value *LoopTripCount = 2452 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2453 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2454 /*HasNSW=*/Bitwidth != 2); 2455 2456 // Step 2: Compute the recurrence's final value without a loop. 2457 2458 // NewX is always safe to compute, because `LoopBackedgeTakenCount` 2459 // will always be smaller than `bitwidth(X)`, i.e. we never get poison. 2460 Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); 2461 NewX->takeName(XCurr); 2462 if (auto *I = dyn_cast<Instruction>(NewX)) 2463 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2464 2465 Value *NewXNext; 2466 // Rewriting XNext is more complicated, however, because `X << LoopTripCount` 2467 // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen 2468 // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know 2469 // that isn't the case, we'll need to emit an alternative, safe IR. 2470 if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || 2471 PatternMatch::match( 2472 BitPos, PatternMatch::m_SpecificInt_ICMP( 2473 ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), 2474 Ty->getScalarSizeInBits() - 1)))) 2475 NewXNext = Builder.CreateShl(X, LoopTripCount); 2476 else { 2477 // Otherwise, just additionally shift by one. It's the smallest solution, 2478 // alternatively, we could check that NewX is INT_MIN (or BitPos is ) 2479 // and select 0 instead. 2480 NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); 2481 } 2482 2483 NewXNext->takeName(XNext); 2484 if (auto *I = dyn_cast<Instruction>(NewXNext)) 2485 I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); 2486 2487 // Step 3: Adjust the successor basic block to recieve the computed 2488 // recurrence's final value instead of the recurrence itself. 2489 2490 XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); 2491 XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); 2492 2493 // Step 4: Rewrite the loop into a countable form, with canonical IV. 2494 2495 // The new canonical induction variable. 2496 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin()); 2497 auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2498 2499 // The induction itself. 2500 // Note that while NUW is always safe, while NSW is only for bitwidths != 2. 2501 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2502 auto *IVNext = 2503 Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", 2504 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2505 2506 // The loop trip count check. 2507 auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, 2508 CurLoop->getName() + ".ivcheck"); 2509 Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); 2510 LoopHeaderBB->getTerminator()->eraseFromParent(); 2511 2512 // Populate the IV PHI. 2513 IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2514 IV->addIncoming(IVNext, LoopHeaderBB); 2515 2516 // Step 5: Forget the "non-computable" trip-count SCEV associated with the 2517 // loop. The loop would otherwise not be deleted even if it becomes empty. 2518 2519 SE->forgetLoop(CurLoop); 2520 2521 // Other passes will take care of actually deleting the loop if possible. 2522 2523 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n"); 2524 2525 ++NumShiftUntilBitTest; 2526 return MadeChange; 2527 } 2528 2529 /// Return true if the idiom is detected in the loop. 2530 /// 2531 /// The core idiom we are trying to detect is: 2532 /// \code 2533 /// entry: 2534 /// <...> 2535 /// %start = <...> 2536 /// %extraoffset = <...> 2537 /// <...> 2538 /// br label %for.cond 2539 /// 2540 /// loop: 2541 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2542 /// %nbits = add nsw i8 %iv, %extraoffset 2543 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2544 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2545 /// %iv.next = add i8 %iv, 1 2546 /// <...> 2547 /// br i1 %val.shifted.iszero, label %end, label %loop 2548 /// 2549 /// end: 2550 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2551 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2552 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2553 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2554 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2555 /// <...> 2556 /// \endcode 2557 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, 2558 Instruction *&ValShiftedIsZero, 2559 Intrinsic::ID &IntrinID, Instruction *&IV, 2560 Value *&Start, Value *&Val, 2561 const SCEV *&ExtraOffsetExpr, 2562 bool &InvertedCond) { 2563 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2564 " Performing shift-until-zero idiom detection.\n"); 2565 2566 // Give up if the loop has multiple blocks or multiple backedges. 2567 if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { 2568 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n"); 2569 return false; 2570 } 2571 2572 Instruction *ValShifted, *NBits, *IVNext; 2573 Value *ExtraOffset; 2574 2575 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2576 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2577 assert(LoopPreheaderBB && "There is always a loop preheader."); 2578 2579 using namespace PatternMatch; 2580 2581 // Step 1: Check if the loop backedge, condition is in desirable form. 2582 2583 ICmpInst::Predicate Pred; 2584 BasicBlock *TrueBB, *FalseBB; 2585 if (!match(LoopHeaderBB->getTerminator(), 2586 m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), 2587 m_BasicBlock(FalseBB))) || 2588 !match(ValShiftedIsZero, 2589 m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || 2590 !ICmpInst::isEquality(Pred)) { 2591 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n"); 2592 return false; 2593 } 2594 2595 // Step 2: Check if the comparison's operand is in desirable form. 2596 // FIXME: Val could be a one-input PHI node, which we should look past. 2597 if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), 2598 m_Instruction(NBits)))) { 2599 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n"); 2600 return false; 2601 } 2602 IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz 2603 : Intrinsic::ctlz; 2604 2605 // Step 3: Check if the shift amount is in desirable form. 2606 2607 if (match(NBits, m_c_Add(m_Instruction(IV), 2608 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2609 (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) 2610 ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); 2611 else if (match(NBits, 2612 m_Sub(m_Instruction(IV), 2613 m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && 2614 NBits->hasNoSignedWrap()) 2615 ExtraOffsetExpr = SE->getSCEV(ExtraOffset); 2616 else { 2617 IV = NBits; 2618 ExtraOffsetExpr = SE->getZero(NBits->getType()); 2619 } 2620 2621 // Step 4: Check if the recurrence is in desirable form. 2622 auto *IVPN = dyn_cast<PHINode>(IV); 2623 if (!IVPN || IVPN->getParent() != LoopHeaderBB) { 2624 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n"); 2625 return false; 2626 } 2627 2628 Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); 2629 IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); 2630 2631 if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { 2632 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n"); 2633 return false; 2634 } 2635 2636 // Step 4: Check if the backedge's destinations are in desirable form. 2637 2638 assert(ICmpInst::isEquality(Pred) && 2639 "Should only get equality predicates here."); 2640 2641 // cmp-br is commutative, so canonicalize to a single variant. 2642 InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; 2643 if (InvertedCond) { 2644 Pred = ICmpInst::getInversePredicate(Pred); 2645 std::swap(TrueBB, FalseBB); 2646 } 2647 2648 // We expect to exit loop when comparison yields true, 2649 // so when it yields false we should branch back to loop header. 2650 if (FalseBB != LoopHeaderBB) { 2651 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n"); 2652 return false; 2653 } 2654 2655 // The new, countable, loop will certainly only run a known number of 2656 // iterations, It won't be infinite. But the old loop might be infinite 2657 // under certain conditions. For logical shifts, the value will become zero 2658 // after at most bitwidth(%Val) loop iterations. However, for arithmetic 2659 // right-shift, iff the sign bit was set, the value will never become zero, 2660 // and the loop may never finish. 2661 if (ValShifted->getOpcode() == Instruction::AShr && 2662 !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { 2663 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n"); 2664 return false; 2665 } 2666 2667 // Okay, idiom checks out. 2668 return true; 2669 } 2670 2671 /// Look for the following loop: 2672 /// \code 2673 /// entry: 2674 /// <...> 2675 /// %start = <...> 2676 /// %extraoffset = <...> 2677 /// <...> 2678 /// br label %for.cond 2679 /// 2680 /// loop: 2681 /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] 2682 /// %nbits = add nsw i8 %iv, %extraoffset 2683 /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits 2684 /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 2685 /// %iv.next = add i8 %iv, 1 2686 /// <...> 2687 /// br i1 %val.shifted.iszero, label %end, label %loop 2688 /// 2689 /// end: 2690 /// %iv.res = phi i8 [ %iv, %loop ] <...> 2691 /// %nbits.res = phi i8 [ %nbits, %loop ] <...> 2692 /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> 2693 /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> 2694 /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> 2695 /// <...> 2696 /// \endcode 2697 /// 2698 /// And transform it into: 2699 /// \code 2700 /// entry: 2701 /// <...> 2702 /// %start = <...> 2703 /// %extraoffset = <...> 2704 /// <...> 2705 /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) 2706 /// %val.numactivebits = sub i8 8, %val.numleadingzeros 2707 /// %extraoffset.neg = sub i8 0, %extraoffset 2708 /// %tmp = add i8 %val.numactivebits, %extraoffset.neg 2709 /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) 2710 /// %loop.tripcount = sub i8 %iv.final, %start 2711 /// br label %loop 2712 /// 2713 /// loop: 2714 /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] 2715 /// %loop.iv.next = add i8 %loop.iv, 1 2716 /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount 2717 /// %iv = add i8 %loop.iv, %start 2718 /// <...> 2719 /// br i1 %loop.ivcheck, label %end, label %loop 2720 /// 2721 /// end: 2722 /// %iv.res = phi i8 [ %iv.final, %loop ] <...> 2723 /// <...> 2724 /// \endcode 2725 bool LoopIdiomRecognize::recognizeShiftUntilZero() { 2726 bool MadeChange = false; 2727 2728 Instruction *ValShiftedIsZero; 2729 Intrinsic::ID IntrID; 2730 Instruction *IV; 2731 Value *Start, *Val; 2732 const SCEV *ExtraOffsetExpr; 2733 bool InvertedCond; 2734 if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, 2735 Start, Val, ExtraOffsetExpr, InvertedCond)) { 2736 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2737 " shift-until-zero idiom detection failed.\n"); 2738 return MadeChange; 2739 } 2740 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n"); 2741 2742 // Ok, it is the idiom we were looking for, we *could* transform this loop, 2743 // but is it profitable to transform? 2744 2745 BasicBlock *LoopHeaderBB = CurLoop->getHeader(); 2746 BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); 2747 assert(LoopPreheaderBB && "There is always a loop preheader."); 2748 2749 BasicBlock *SuccessorBB = CurLoop->getExitBlock(); 2750 assert(SuccessorBB && "There is only a single successor."); 2751 2752 IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); 2753 Builder.SetCurrentDebugLocation(IV->getDebugLoc()); 2754 2755 Type *Ty = Val->getType(); 2756 unsigned Bitwidth = Ty->getScalarSizeInBits(); 2757 2758 TargetTransformInfo::TargetCostKind CostKind = 2759 TargetTransformInfo::TCK_SizeAndLatency; 2760 2761 // The rewrite is considered to be unprofitable iff and only iff the 2762 // intrinsic we'll use are not cheap. Note that we are okay with *just* 2763 // making the loop countable, even if nothing else changes. 2764 IntrinsicCostAttributes Attrs( 2765 IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getFalse()}); 2766 InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); 2767 if (Cost > TargetTransformInfo::TCC_Basic) { 2768 LLVM_DEBUG(dbgs() << DEBUG_TYPE 2769 " Intrinsic is too costly, not beneficial\n"); 2770 return MadeChange; 2771 } 2772 2773 // Ok, transform appears worthwhile. 2774 MadeChange = true; 2775 2776 bool OffsetIsZero = false; 2777 if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) 2778 OffsetIsZero = ExtraOffsetExprC->isZero(); 2779 2780 // Step 1: Compute the loop's final IV value / trip count. 2781 2782 CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( 2783 IntrID, Ty, {Val, /*is_zero_poison=*/Builder.getFalse()}, 2784 /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); 2785 Value *ValNumActiveBits = Builder.CreateSub( 2786 ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, 2787 Val->getName() + ".numactivebits", /*HasNUW=*/true, 2788 /*HasNSW=*/Bitwidth != 2); 2789 2790 SCEVExpander Expander(*SE, *DL, "loop-idiom"); 2791 Expander.setInsertPoint(&*Builder.GetInsertPoint()); 2792 Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); 2793 2794 Value *ValNumActiveBitsOffset = Builder.CreateAdd( 2795 ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", 2796 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); 2797 Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, 2798 {ValNumActiveBitsOffset, Start}, 2799 /*FMFSource=*/nullptr, "iv.final"); 2800 2801 auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( 2802 IVFinal, Start, CurLoop->getName() + ".backedgetakencount", 2803 /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); 2804 // FIXME: or when the offset was `add nuw` 2805 2806 // We know loop's backedge-taken count, but what's loop's trip count? 2807 Value *LoopTripCount = 2808 Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), 2809 CurLoop->getName() + ".tripcount", /*HasNUW=*/true, 2810 /*HasNSW=*/Bitwidth != 2); 2811 2812 // Step 2: Adjust the successor basic block to recieve the original 2813 // induction variable's final value instead of the orig. IV itself. 2814 2815 IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); 2816 2817 // Step 3: Rewrite the loop into a countable form, with canonical IV. 2818 2819 // The new canonical induction variable. 2820 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin()); 2821 auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); 2822 2823 // The induction itself. 2824 Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->getFirstNonPHIIt()); 2825 auto *CIVNext = 2826 Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", 2827 /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); 2828 2829 // The loop trip count check. 2830 auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, 2831 CurLoop->getName() + ".ivcheck"); 2832 auto *NewIVCheck = CIVCheck; 2833 if (InvertedCond) { 2834 NewIVCheck = Builder.CreateNot(CIVCheck); 2835 NewIVCheck->takeName(ValShiftedIsZero); 2836 } 2837 2838 // The original IV, but rebased to be an offset to the CIV. 2839 auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, 2840 /*HasNSW=*/true); // FIXME: what about NUW? 2841 IVDePHId->takeName(IV); 2842 2843 // The loop terminator. 2844 Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); 2845 Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); 2846 LoopHeaderBB->getTerminator()->eraseFromParent(); 2847 2848 // Populate the IV PHI. 2849 CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); 2850 CIV->addIncoming(CIVNext, LoopHeaderBB); 2851 2852 // Step 4: Forget the "non-computable" trip-count SCEV associated with the 2853 // loop. The loop would otherwise not be deleted even if it becomes empty. 2854 2855 SE->forgetLoop(CurLoop); 2856 2857 // Step 5: Try to cleanup the loop's body somewhat. 2858 IV->replaceAllUsesWith(IVDePHId); 2859 IV->eraseFromParent(); 2860 2861 ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); 2862 ValShiftedIsZero->eraseFromParent(); 2863 2864 // Other passes will take care of actually deleting the loop if possible. 2865 2866 LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n"); 2867 2868 ++NumShiftUntilZero; 2869 return MadeChange; 2870 } 2871