xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp (revision 6580f5c38dd5b01aeeaed16b370f1a12423437f0)
1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 //
28 // This could recognize common matrix multiplies and dot product idioms and
29 // replace them with calls to BLAS (if linked in??).
30 //
31 //===----------------------------------------------------------------------===//
32 
33 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
34 #include "llvm/ADT/APInt.h"
35 #include "llvm/ADT/ArrayRef.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/MapVector.h"
38 #include "llvm/ADT/SetVector.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/ADT/StringRef.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/CmpInstAnalysis.h"
45 #include "llvm/Analysis/LoopAccessAnalysis.h"
46 #include "llvm/Analysis/LoopInfo.h"
47 #include "llvm/Analysis/LoopPass.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/MemorySSA.h"
50 #include "llvm/Analysis/MemorySSAUpdater.h"
51 #include "llvm/Analysis/MustExecute.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/ScalarEvolution.h"
54 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
55 #include "llvm/Analysis/TargetLibraryInfo.h"
56 #include "llvm/Analysis/TargetTransformInfo.h"
57 #include "llvm/Analysis/ValueTracking.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Dominators.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/GlobalVariable.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/InstrTypes.h"
69 #include "llvm/IR/Instruction.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/Intrinsics.h"
73 #include "llvm/IR/LLVMContext.h"
74 #include "llvm/IR/Module.h"
75 #include "llvm/IR/PassManager.h"
76 #include "llvm/IR/PatternMatch.h"
77 #include "llvm/IR/Type.h"
78 #include "llvm/IR/User.h"
79 #include "llvm/IR/Value.h"
80 #include "llvm/IR/ValueHandle.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/InstructionCost.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Utils/BuildLibCalls.h"
87 #include "llvm/Transforms/Utils/Local.h"
88 #include "llvm/Transforms/Utils/LoopUtils.h"
89 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <utility>
94 #include <vector>
95 
96 using namespace llvm;
97 
98 #define DEBUG_TYPE "loop-idiom"
99 
100 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
101 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
102 STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores");
103 STATISTIC(
104     NumShiftUntilBitTest,
105     "Number of uncountable loops recognized as 'shift until bitttest' idiom");
106 STATISTIC(NumShiftUntilZero,
107           "Number of uncountable loops recognized as 'shift until zero' idiom");
108 
109 bool DisableLIRP::All;
110 static cl::opt<bool, true>
111     DisableLIRPAll("disable-" DEBUG_TYPE "-all",
112                    cl::desc("Options to disable Loop Idiom Recognize Pass."),
113                    cl::location(DisableLIRP::All), cl::init(false),
114                    cl::ReallyHidden);
115 
116 bool DisableLIRP::Memset;
117 static cl::opt<bool, true>
118     DisableLIRPMemset("disable-" DEBUG_TYPE "-memset",
119                       cl::desc("Proceed with loop idiom recognize pass, but do "
120                                "not convert loop(s) to memset."),
121                       cl::location(DisableLIRP::Memset), cl::init(false),
122                       cl::ReallyHidden);
123 
124 bool DisableLIRP::Memcpy;
125 static cl::opt<bool, true>
126     DisableLIRPMemcpy("disable-" DEBUG_TYPE "-memcpy",
127                       cl::desc("Proceed with loop idiom recognize pass, but do "
128                                "not convert loop(s) to memcpy."),
129                       cl::location(DisableLIRP::Memcpy), cl::init(false),
130                       cl::ReallyHidden);
131 
132 static cl::opt<bool> UseLIRCodeSizeHeurs(
133     "use-lir-code-size-heurs",
134     cl::desc("Use loop idiom recognition code size heuristics when compiling"
135              "with -Os/-Oz"),
136     cl::init(true), cl::Hidden);
137 
138 namespace {
139 
140 class LoopIdiomRecognize {
141   Loop *CurLoop = nullptr;
142   AliasAnalysis *AA;
143   DominatorTree *DT;
144   LoopInfo *LI;
145   ScalarEvolution *SE;
146   TargetLibraryInfo *TLI;
147   const TargetTransformInfo *TTI;
148   const DataLayout *DL;
149   OptimizationRemarkEmitter &ORE;
150   bool ApplyCodeSizeHeuristics;
151   std::unique_ptr<MemorySSAUpdater> MSSAU;
152 
153 public:
154   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
155                               LoopInfo *LI, ScalarEvolution *SE,
156                               TargetLibraryInfo *TLI,
157                               const TargetTransformInfo *TTI, MemorySSA *MSSA,
158                               const DataLayout *DL,
159                               OptimizationRemarkEmitter &ORE)
160       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
161     if (MSSA)
162       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
163   }
164 
165   bool runOnLoop(Loop *L);
166 
167 private:
168   using StoreList = SmallVector<StoreInst *, 8>;
169   using StoreListMap = MapVector<Value *, StoreList>;
170 
171   StoreListMap StoreRefsForMemset;
172   StoreListMap StoreRefsForMemsetPattern;
173   StoreList StoreRefsForMemcpy;
174   bool HasMemset;
175   bool HasMemsetPattern;
176   bool HasMemcpy;
177 
178   /// Return code for isLegalStore()
179   enum LegalStoreKind {
180     None = 0,
181     Memset,
182     MemsetPattern,
183     Memcpy,
184     UnorderedAtomicMemcpy,
185     DontUse // Dummy retval never to be used. Allows catching errors in retval
186             // handling.
187   };
188 
189   /// \name Countable Loop Idiom Handling
190   /// @{
191 
192   bool runOnCountableLoop();
193   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
194                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
195 
196   void collectStores(BasicBlock *BB);
197   LegalStoreKind isLegalStore(StoreInst *SI);
198   enum class ForMemset { No, Yes };
199   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
200                          ForMemset For);
201 
202   template <typename MemInst>
203   bool processLoopMemIntrinsic(
204       BasicBlock *BB,
205       bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
206       const SCEV *BECount);
207   bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount);
208   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
209 
210   bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV,
211                                MaybeAlign StoreAlignment, Value *StoredVal,
212                                Instruction *TheStore,
213                                SmallPtrSetImpl<Instruction *> &Stores,
214                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
215                                bool IsNegStride, bool IsLoopMemset = false);
216   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
217   bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr,
218                                   const SCEV *StoreSize, MaybeAlign StoreAlign,
219                                   MaybeAlign LoadAlign, Instruction *TheStore,
220                                   Instruction *TheLoad,
221                                   const SCEVAddRecExpr *StoreEv,
222                                   const SCEVAddRecExpr *LoadEv,
223                                   const SCEV *BECount);
224   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
225                                  bool IsLoopMemset = false);
226 
227   /// @}
228   /// \name Noncountable Loop Idiom Handling
229   /// @{
230 
231   bool runOnNoncountableLoop();
232 
233   bool recognizePopcount();
234   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
235                                PHINode *CntPhi, Value *Var);
236   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
237   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
238                                 Instruction *CntInst, PHINode *CntPhi,
239                                 Value *Var, Instruction *DefX,
240                                 const DebugLoc &DL, bool ZeroCheck,
241                                 bool IsCntPhiUsedOutsideLoop);
242 
243   bool recognizeShiftUntilBitTest();
244   bool recognizeShiftUntilZero();
245 
246   /// @}
247 };
248 } // end anonymous namespace
249 
250 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
251                                               LoopStandardAnalysisResults &AR,
252                                               LPMUpdater &) {
253   if (DisableLIRP::All)
254     return PreservedAnalyses::all();
255 
256   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
257 
258   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
259   // pass.  Function analyses need to be preserved across loop transformations
260   // but ORE cannot be preserved (see comment before the pass definition).
261   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
262 
263   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
264                          AR.MSSA, DL, ORE);
265   if (!LIR.runOnLoop(&L))
266     return PreservedAnalyses::all();
267 
268   auto PA = getLoopPassPreservedAnalyses();
269   if (AR.MSSA)
270     PA.preserve<MemorySSAAnalysis>();
271   return PA;
272 }
273 
274 static void deleteDeadInstruction(Instruction *I) {
275   I->replaceAllUsesWith(PoisonValue::get(I->getType()));
276   I->eraseFromParent();
277 }
278 
279 //===----------------------------------------------------------------------===//
280 //
281 //          Implementation of LoopIdiomRecognize
282 //
283 //===----------------------------------------------------------------------===//
284 
285 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
286   CurLoop = L;
287   // If the loop could not be converted to canonical form, it must have an
288   // indirectbr in it, just give up.
289   if (!L->getLoopPreheader())
290     return false;
291 
292   // Disable loop idiom recognition if the function's name is a common idiom.
293   StringRef Name = L->getHeader()->getParent()->getName();
294   if (Name == "memset" || Name == "memcpy")
295     return false;
296 
297   // Determine if code size heuristics need to be applied.
298   ApplyCodeSizeHeuristics =
299       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
300 
301   HasMemset = TLI->has(LibFunc_memset);
302   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
303   HasMemcpy = TLI->has(LibFunc_memcpy);
304 
305   if (HasMemset || HasMemsetPattern || HasMemcpy)
306     if (SE->hasLoopInvariantBackedgeTakenCount(L))
307       return runOnCountableLoop();
308 
309   return runOnNoncountableLoop();
310 }
311 
312 bool LoopIdiomRecognize::runOnCountableLoop() {
313   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
314   assert(!isa<SCEVCouldNotCompute>(BECount) &&
315          "runOnCountableLoop() called on a loop without a predictable"
316          "backedge-taken count");
317 
318   // If this loop executes exactly one time, then it should be peeled, not
319   // optimized by this pass.
320   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
321     if (BECst->getAPInt() == 0)
322       return false;
323 
324   SmallVector<BasicBlock *, 8> ExitBlocks;
325   CurLoop->getUniqueExitBlocks(ExitBlocks);
326 
327   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
328                     << CurLoop->getHeader()->getParent()->getName()
329                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
330                     << "\n");
331 
332   // The following transforms hoist stores/memsets into the loop pre-header.
333   // Give up if the loop has instructions that may throw.
334   SimpleLoopSafetyInfo SafetyInfo;
335   SafetyInfo.computeLoopSafetyInfo(CurLoop);
336   if (SafetyInfo.anyBlockMayThrow())
337     return false;
338 
339   bool MadeChange = false;
340 
341   // Scan all the blocks in the loop that are not in subloops.
342   for (auto *BB : CurLoop->getBlocks()) {
343     // Ignore blocks in subloops.
344     if (LI->getLoopFor(BB) != CurLoop)
345       continue;
346 
347     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
348   }
349   return MadeChange;
350 }
351 
352 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
353   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
354   return ConstStride->getAPInt();
355 }
356 
357 /// getMemSetPatternValue - If a strided store of the specified value is safe to
358 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
359 /// be passed in.  Otherwise, return null.
360 ///
361 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
362 /// just replicate their input array and then pass on to memset_pattern16.
363 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
364   // FIXME: This could check for UndefValue because it can be merged into any
365   // other valid pattern.
366 
367   // If the value isn't a constant, we can't promote it to being in a constant
368   // array.  We could theoretically do a store to an alloca or something, but
369   // that doesn't seem worthwhile.
370   Constant *C = dyn_cast<Constant>(V);
371   if (!C || isa<ConstantExpr>(C))
372     return nullptr;
373 
374   // Only handle simple values that are a power of two bytes in size.
375   uint64_t Size = DL->getTypeSizeInBits(V->getType());
376   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
377     return nullptr;
378 
379   // Don't care enough about darwin/ppc to implement this.
380   if (DL->isBigEndian())
381     return nullptr;
382 
383   // Convert to size in bytes.
384   Size /= 8;
385 
386   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
387   // if the top and bottom are the same (e.g. for vectors and large integers).
388   if (Size > 16)
389     return nullptr;
390 
391   // If the constant is exactly 16 bytes, just use it.
392   if (Size == 16)
393     return C;
394 
395   // Otherwise, we'll use an array of the constants.
396   unsigned ArraySize = 16 / Size;
397   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
398   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
399 }
400 
401 LoopIdiomRecognize::LegalStoreKind
402 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
403   // Don't touch volatile stores.
404   if (SI->isVolatile())
405     return LegalStoreKind::None;
406   // We only want simple or unordered-atomic stores.
407   if (!SI->isUnordered())
408     return LegalStoreKind::None;
409 
410   // Avoid merging nontemporal stores.
411   if (SI->getMetadata(LLVMContext::MD_nontemporal))
412     return LegalStoreKind::None;
413 
414   Value *StoredVal = SI->getValueOperand();
415   Value *StorePtr = SI->getPointerOperand();
416 
417   // Don't convert stores of non-integral pointer types to memsets (which stores
418   // integers).
419   if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
420     return LegalStoreKind::None;
421 
422   // Reject stores that are so large that they overflow an unsigned.
423   // When storing out scalable vectors we bail out for now, since the code
424   // below currently only works for constant strides.
425   TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
426   if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) ||
427       (SizeInBits.getFixedValue() >> 32) != 0)
428     return LegalStoreKind::None;
429 
430   // See if the pointer expression is an AddRec like {base,+,1} on the current
431   // loop, which indicates a strided store.  If we have something else, it's a
432   // random store we can't handle.
433   const SCEVAddRecExpr *StoreEv =
434       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
435   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
436     return LegalStoreKind::None;
437 
438   // Check to see if we have a constant stride.
439   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
440     return LegalStoreKind::None;
441 
442   // See if the store can be turned into a memset.
443 
444   // If the stored value is a byte-wise value (like i32 -1), then it may be
445   // turned into a memset of i8 -1, assuming that all the consecutive bytes
446   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
447   // but it can be turned into memset_pattern if the target supports it.
448   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
449 
450   // Note: memset and memset_pattern on unordered-atomic is yet not supported
451   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
452 
453   // If we're allowed to form a memset, and the stored value would be
454   // acceptable for memset, use it.
455   if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset &&
456       // Verify that the stored value is loop invariant.  If not, we can't
457       // promote the memset.
458       CurLoop->isLoopInvariant(SplatValue)) {
459     // It looks like we can use SplatValue.
460     return LegalStoreKind::Memset;
461   }
462   if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset &&
463       // Don't create memset_pattern16s with address spaces.
464       StorePtr->getType()->getPointerAddressSpace() == 0 &&
465       getMemSetPatternValue(StoredVal, DL)) {
466     // It looks like we can use PatternValue!
467     return LegalStoreKind::MemsetPattern;
468   }
469 
470   // Otherwise, see if the store can be turned into a memcpy.
471   if (HasMemcpy && !DisableLIRP::Memcpy) {
472     // Check to see if the stride matches the size of the store.  If so, then we
473     // know that every byte is touched in the loop.
474     APInt Stride = getStoreStride(StoreEv);
475     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
476     if (StoreSize != Stride && StoreSize != -Stride)
477       return LegalStoreKind::None;
478 
479     // The store must be feeding a non-volatile load.
480     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
481 
482     // Only allow non-volatile loads
483     if (!LI || LI->isVolatile())
484       return LegalStoreKind::None;
485     // Only allow simple or unordered-atomic loads
486     if (!LI->isUnordered())
487       return LegalStoreKind::None;
488 
489     // See if the pointer expression is an AddRec like {base,+,1} on the current
490     // loop, which indicates a strided load.  If we have something else, it's a
491     // random load we can't handle.
492     const SCEVAddRecExpr *LoadEv =
493         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
494     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
495       return LegalStoreKind::None;
496 
497     // The store and load must share the same stride.
498     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
499       return LegalStoreKind::None;
500 
501     // Success.  This store can be converted into a memcpy.
502     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
503     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
504                            : LegalStoreKind::Memcpy;
505   }
506   // This store can't be transformed into a memset/memcpy.
507   return LegalStoreKind::None;
508 }
509 
510 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
511   StoreRefsForMemset.clear();
512   StoreRefsForMemsetPattern.clear();
513   StoreRefsForMemcpy.clear();
514   for (Instruction &I : *BB) {
515     StoreInst *SI = dyn_cast<StoreInst>(&I);
516     if (!SI)
517       continue;
518 
519     // Make sure this is a strided store with a constant stride.
520     switch (isLegalStore(SI)) {
521     case LegalStoreKind::None:
522       // Nothing to do
523       break;
524     case LegalStoreKind::Memset: {
525       // Find the base pointer.
526       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
527       StoreRefsForMemset[Ptr].push_back(SI);
528     } break;
529     case LegalStoreKind::MemsetPattern: {
530       // Find the base pointer.
531       Value *Ptr = getUnderlyingObject(SI->getPointerOperand());
532       StoreRefsForMemsetPattern[Ptr].push_back(SI);
533     } break;
534     case LegalStoreKind::Memcpy:
535     case LegalStoreKind::UnorderedAtomicMemcpy:
536       StoreRefsForMemcpy.push_back(SI);
537       break;
538     default:
539       assert(false && "unhandled return value");
540       break;
541     }
542   }
543 }
544 
545 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
546 /// with the specified backedge count.  This block is known to be in the current
547 /// loop and not in any subloops.
548 bool LoopIdiomRecognize::runOnLoopBlock(
549     BasicBlock *BB, const SCEV *BECount,
550     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
551   // We can only promote stores in this block if they are unconditionally
552   // executed in the loop.  For a block to be unconditionally executed, it has
553   // to dominate all the exit blocks of the loop.  Verify this now.
554   for (BasicBlock *ExitBlock : ExitBlocks)
555     if (!DT->dominates(BB, ExitBlock))
556       return false;
557 
558   bool MadeChange = false;
559   // Look for store instructions, which may be optimized to memset/memcpy.
560   collectStores(BB);
561 
562   // Look for a single store or sets of stores with a common base, which can be
563   // optimized into a memset (memset_pattern).  The latter most commonly happens
564   // with structs and handunrolled loops.
565   for (auto &SL : StoreRefsForMemset)
566     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
567 
568   for (auto &SL : StoreRefsForMemsetPattern)
569     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
570 
571   // Optimize the store into a memcpy, if it feeds an similarly strided load.
572   for (auto &SI : StoreRefsForMemcpy)
573     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
574 
575   MadeChange |= processLoopMemIntrinsic<MemCpyInst>(
576       BB, &LoopIdiomRecognize::processLoopMemCpy, BECount);
577   MadeChange |= processLoopMemIntrinsic<MemSetInst>(
578       BB, &LoopIdiomRecognize::processLoopMemSet, BECount);
579 
580   return MadeChange;
581 }
582 
583 /// See if this store(s) can be promoted to a memset.
584 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
585                                            const SCEV *BECount, ForMemset For) {
586   // Try to find consecutive stores that can be transformed into memsets.
587   SetVector<StoreInst *> Heads, Tails;
588   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
589 
590   // Do a quadratic search on all of the given stores and find
591   // all of the pairs of stores that follow each other.
592   SmallVector<unsigned, 16> IndexQueue;
593   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
594     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
595 
596     Value *FirstStoredVal = SL[i]->getValueOperand();
597     Value *FirstStorePtr = SL[i]->getPointerOperand();
598     const SCEVAddRecExpr *FirstStoreEv =
599         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
600     APInt FirstStride = getStoreStride(FirstStoreEv);
601     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
602 
603     // See if we can optimize just this store in isolation.
604     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
605       Heads.insert(SL[i]);
606       continue;
607     }
608 
609     Value *FirstSplatValue = nullptr;
610     Constant *FirstPatternValue = nullptr;
611 
612     if (For == ForMemset::Yes)
613       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
614     else
615       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
616 
617     assert((FirstSplatValue || FirstPatternValue) &&
618            "Expected either splat value or pattern value.");
619 
620     IndexQueue.clear();
621     // If a store has multiple consecutive store candidates, search Stores
622     // array according to the sequence: from i+1 to e, then from i-1 to 0.
623     // This is because usually pairing with immediate succeeding or preceding
624     // candidate create the best chance to find memset opportunity.
625     unsigned j = 0;
626     for (j = i + 1; j < e; ++j)
627       IndexQueue.push_back(j);
628     for (j = i; j > 0; --j)
629       IndexQueue.push_back(j - 1);
630 
631     for (auto &k : IndexQueue) {
632       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
633       Value *SecondStorePtr = SL[k]->getPointerOperand();
634       const SCEVAddRecExpr *SecondStoreEv =
635           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
636       APInt SecondStride = getStoreStride(SecondStoreEv);
637 
638       if (FirstStride != SecondStride)
639         continue;
640 
641       Value *SecondStoredVal = SL[k]->getValueOperand();
642       Value *SecondSplatValue = nullptr;
643       Constant *SecondPatternValue = nullptr;
644 
645       if (For == ForMemset::Yes)
646         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
647       else
648         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
649 
650       assert((SecondSplatValue || SecondPatternValue) &&
651              "Expected either splat value or pattern value.");
652 
653       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
654         if (For == ForMemset::Yes) {
655           if (isa<UndefValue>(FirstSplatValue))
656             FirstSplatValue = SecondSplatValue;
657           if (FirstSplatValue != SecondSplatValue)
658             continue;
659         } else {
660           if (isa<UndefValue>(FirstPatternValue))
661             FirstPatternValue = SecondPatternValue;
662           if (FirstPatternValue != SecondPatternValue)
663             continue;
664         }
665         Tails.insert(SL[k]);
666         Heads.insert(SL[i]);
667         ConsecutiveChain[SL[i]] = SL[k];
668         break;
669       }
670     }
671   }
672 
673   // We may run into multiple chains that merge into a single chain. We mark the
674   // stores that we transformed so that we don't visit the same store twice.
675   SmallPtrSet<Value *, 16> TransformedStores;
676   bool Changed = false;
677 
678   // For stores that start but don't end a link in the chain:
679   for (StoreInst *I : Heads) {
680     if (Tails.count(I))
681       continue;
682 
683     // We found a store instr that starts a chain. Now follow the chain and try
684     // to transform it.
685     SmallPtrSet<Instruction *, 8> AdjacentStores;
686     StoreInst *HeadStore = I;
687     unsigned StoreSize = 0;
688 
689     // Collect the chain into a list.
690     while (Tails.count(I) || Heads.count(I)) {
691       if (TransformedStores.count(I))
692         break;
693       AdjacentStores.insert(I);
694 
695       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
696       // Move to the next value in the chain.
697       I = ConsecutiveChain[I];
698     }
699 
700     Value *StoredVal = HeadStore->getValueOperand();
701     Value *StorePtr = HeadStore->getPointerOperand();
702     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
703     APInt Stride = getStoreStride(StoreEv);
704 
705     // Check to see if the stride matches the size of the stores.  If so, then
706     // we know that every byte is touched in the loop.
707     if (StoreSize != Stride && StoreSize != -Stride)
708       continue;
709 
710     bool IsNegStride = StoreSize == -Stride;
711 
712     Type *IntIdxTy = DL->getIndexType(StorePtr->getType());
713     const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize);
714     if (processLoopStridedStore(StorePtr, StoreSizeSCEV,
715                                 MaybeAlign(HeadStore->getAlign()), StoredVal,
716                                 HeadStore, AdjacentStores, StoreEv, BECount,
717                                 IsNegStride)) {
718       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
719       Changed = true;
720     }
721   }
722 
723   return Changed;
724 }
725 
726 /// processLoopMemIntrinsic - Template function for calling different processor
727 /// functions based on mem intrinsic type.
728 template <typename MemInst>
729 bool LoopIdiomRecognize::processLoopMemIntrinsic(
730     BasicBlock *BB,
731     bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *),
732     const SCEV *BECount) {
733   bool MadeChange = false;
734   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
735     Instruction *Inst = &*I++;
736     // Look for memory instructions, which may be optimized to a larger one.
737     if (MemInst *MI = dyn_cast<MemInst>(Inst)) {
738       WeakTrackingVH InstPtr(&*I);
739       if (!(this->*Processor)(MI, BECount))
740         continue;
741       MadeChange = true;
742 
743       // If processing the instruction invalidated our iterator, start over from
744       // the top of the block.
745       if (!InstPtr)
746         I = BB->begin();
747     }
748   }
749   return MadeChange;
750 }
751 
752 /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy
753 bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI,
754                                            const SCEV *BECount) {
755   // We can only handle non-volatile memcpys with a constant size.
756   if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength()))
757     return false;
758 
759   // If we're not allowed to hack on memcpy, we fail.
760   if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy)
761     return false;
762 
763   Value *Dest = MCI->getDest();
764   Value *Source = MCI->getSource();
765   if (!Dest || !Source)
766     return false;
767 
768   // See if the load and store pointer expressions are AddRec like {base,+,1} on
769   // the current loop, which indicates a strided load and store.  If we have
770   // something else, it's a random load or store we can't handle.
771   const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest));
772   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
773     return false;
774   const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source));
775   if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
776     return false;
777 
778   // Reject memcpys that are so large that they overflow an unsigned.
779   uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue();
780   if ((SizeInBytes >> 32) != 0)
781     return false;
782 
783   // Check if the stride matches the size of the memcpy. If so, then we know
784   // that every byte is touched in the loop.
785   const SCEVConstant *ConstStoreStride =
786       dyn_cast<SCEVConstant>(StoreEv->getOperand(1));
787   const SCEVConstant *ConstLoadStride =
788       dyn_cast<SCEVConstant>(LoadEv->getOperand(1));
789   if (!ConstStoreStride || !ConstLoadStride)
790     return false;
791 
792   APInt StoreStrideValue = ConstStoreStride->getAPInt();
793   APInt LoadStrideValue = ConstLoadStride->getAPInt();
794   // Huge stride value - give up
795   if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64)
796     return false;
797 
798   if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) {
799     ORE.emit([&]() {
800       return OptimizationRemarkMissed(DEBUG_TYPE, "SizeStrideUnequal", MCI)
801              << ore::NV("Inst", "memcpy") << " in "
802              << ore::NV("Function", MCI->getFunction())
803              << " function will not be hoisted: "
804              << ore::NV("Reason", "memcpy size is not equal to stride");
805     });
806     return false;
807   }
808 
809   int64_t StoreStrideInt = StoreStrideValue.getSExtValue();
810   int64_t LoadStrideInt = LoadStrideValue.getSExtValue();
811   // Check if the load stride matches the store stride.
812   if (StoreStrideInt != LoadStrideInt)
813     return false;
814 
815   return processLoopStoreOfLoopLoad(
816       Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes),
817       MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv,
818       BECount);
819 }
820 
821 /// processLoopMemSet - See if this memset can be promoted to a large memset.
822 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
823                                            const SCEV *BECount) {
824   // We can only handle non-volatile memsets.
825   if (MSI->isVolatile())
826     return false;
827 
828   // If we're not allowed to hack on memset, we fail.
829   if (!HasMemset || DisableLIRP::Memset)
830     return false;
831 
832   Value *Pointer = MSI->getDest();
833 
834   // See if the pointer expression is an AddRec like {base,+,1} on the current
835   // loop, which indicates a strided store.  If we have something else, it's a
836   // random store we can't handle.
837   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
838   if (!Ev || Ev->getLoop() != CurLoop)
839     return false;
840   if (!Ev->isAffine()) {
841     LLVM_DEBUG(dbgs() << "  Pointer is not affine, abort\n");
842     return false;
843   }
844 
845   const SCEV *PointerStrideSCEV = Ev->getOperand(1);
846   const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength());
847   if (!PointerStrideSCEV || !MemsetSizeSCEV)
848     return false;
849 
850   bool IsNegStride = false;
851   const bool IsConstantSize = isa<ConstantInt>(MSI->getLength());
852 
853   if (IsConstantSize) {
854     // Memset size is constant.
855     // Check if the pointer stride matches the memset size. If so, then
856     // we know that every byte is touched in the loop.
857     LLVM_DEBUG(dbgs() << "  memset size is constant\n");
858     uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
859     const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
860     if (!ConstStride)
861       return false;
862 
863     APInt Stride = ConstStride->getAPInt();
864     if (SizeInBytes != Stride && SizeInBytes != -Stride)
865       return false;
866 
867     IsNegStride = SizeInBytes == -Stride;
868   } else {
869     // Memset size is non-constant.
870     // Check if the pointer stride matches the memset size.
871     // To be conservative, the pass would not promote pointers that aren't in
872     // address space zero. Also, the pass only handles memset length and stride
873     // that are invariant for the top level loop.
874     LLVM_DEBUG(dbgs() << "  memset size is non-constant\n");
875     if (Pointer->getType()->getPointerAddressSpace() != 0) {
876       LLVM_DEBUG(dbgs() << "  pointer is not in address space zero, "
877                         << "abort\n");
878       return false;
879     }
880     if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) {
881       LLVM_DEBUG(dbgs() << "  memset size is not a loop-invariant, "
882                         << "abort\n");
883       return false;
884     }
885 
886     // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV
887     IsNegStride = PointerStrideSCEV->isNonConstantNegative();
888     const SCEV *PositiveStrideSCEV =
889         IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV)
890                     : PointerStrideSCEV;
891     LLVM_DEBUG(dbgs() << "  MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"
892                       << "  PositiveStrideSCEV: " << *PositiveStrideSCEV
893                       << "\n");
894 
895     if (PositiveStrideSCEV != MemsetSizeSCEV) {
896       // If an expression is covered by the loop guard, compare again and
897       // proceed with optimization if equal.
898       const SCEV *FoldedPositiveStride =
899           SE->applyLoopGuards(PositiveStrideSCEV, CurLoop);
900       const SCEV *FoldedMemsetSize =
901           SE->applyLoopGuards(MemsetSizeSCEV, CurLoop);
902 
903       LLVM_DEBUG(dbgs() << "  Try to fold SCEV based on loop guard\n"
904                         << "    FoldedMemsetSize: " << *FoldedMemsetSize << "\n"
905                         << "    FoldedPositiveStride: " << *FoldedPositiveStride
906                         << "\n");
907 
908       if (FoldedPositiveStride != FoldedMemsetSize) {
909         LLVM_DEBUG(dbgs() << "  SCEV don't match, abort\n");
910         return false;
911       }
912     }
913   }
914 
915   // Verify that the memset value is loop invariant.  If not, we can't promote
916   // the memset.
917   Value *SplatValue = MSI->getValue();
918   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
919     return false;
920 
921   SmallPtrSet<Instruction *, 1> MSIs;
922   MSIs.insert(MSI);
923   return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()),
924                                  MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev,
925                                  BECount, IsNegStride, /*IsLoopMemset=*/true);
926 }
927 
928 /// mayLoopAccessLocation - Return true if the specified loop might access the
929 /// specified pointer location, which is a loop-strided access.  The 'Access'
930 /// argument specifies what the verboten forms of access are (read or write).
931 static bool
932 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
933                       const SCEV *BECount, const SCEV *StoreSizeSCEV,
934                       AliasAnalysis &AA,
935                       SmallPtrSetImpl<Instruction *> &IgnoredInsts) {
936   // Get the location that may be stored across the loop.  Since the access is
937   // strided positively through memory, we say that the modified location starts
938   // at the pointer and has infinite size.
939   LocationSize AccessSize = LocationSize::afterPointer();
940 
941   // If the loop iterates a fixed number of times, we can refine the access size
942   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
943   const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount);
944   const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
945   if (BECst && ConstSize) {
946     std::optional<uint64_t> BEInt = BECst->getAPInt().tryZExtValue();
947     std::optional<uint64_t> SizeInt = ConstSize->getAPInt().tryZExtValue();
948     // FIXME: Should this check for overflow?
949     if (BEInt && SizeInt)
950       AccessSize = LocationSize::precise((*BEInt + 1) * *SizeInt);
951   }
952 
953   // TODO: For this to be really effective, we have to dive into the pointer
954   // operand in the store.  Store to &A[i] of 100 will always return may alias
955   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
956   // which will then no-alias a store to &A[100].
957   MemoryLocation StoreLoc(Ptr, AccessSize);
958 
959   for (BasicBlock *B : L->blocks())
960     for (Instruction &I : *B)
961       if (!IgnoredInsts.contains(&I) &&
962           isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access))
963         return true;
964   return false;
965 }
966 
967 // If we have a negative stride, Start refers to the end of the memory location
968 // we're trying to memset.  Therefore, we need to recompute the base pointer,
969 // which is just Start - BECount*Size.
970 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
971                                         Type *IntPtr, const SCEV *StoreSizeSCEV,
972                                         ScalarEvolution *SE) {
973   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
974   if (!StoreSizeSCEV->isOne()) {
975     // index = back edge count * store size
976     Index = SE->getMulExpr(Index,
977                            SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
978                            SCEV::FlagNUW);
979   }
980   // base pointer = start - index * store size
981   return SE->getMinusSCEV(Start, Index);
982 }
983 
984 /// Compute the number of bytes as a SCEV from the backedge taken count.
985 ///
986 /// This also maps the SCEV into the provided type and tries to handle the
987 /// computation in a way that will fold cleanly.
988 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
989                                const SCEV *StoreSizeSCEV, Loop *CurLoop,
990                                const DataLayout *DL, ScalarEvolution *SE) {
991   const SCEV *TripCountSCEV =
992       SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop);
993   return SE->getMulExpr(TripCountSCEV,
994                         SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr),
995                         SCEV::FlagNUW);
996 }
997 
998 /// processLoopStridedStore - We see a strided store of some value.  If we can
999 /// transform this into a memset or memset_pattern in the loop preheader, do so.
1000 bool LoopIdiomRecognize::processLoopStridedStore(
1001     Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment,
1002     Value *StoredVal, Instruction *TheStore,
1003     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
1004     const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) {
1005   Module *M = TheStore->getModule();
1006   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
1007   Constant *PatternValue = nullptr;
1008 
1009   if (!SplatValue)
1010     PatternValue = getMemSetPatternValue(StoredVal, DL);
1011 
1012   assert((SplatValue || PatternValue) &&
1013          "Expected either splat value or pattern value.");
1014 
1015   // The trip count of the loop and the base pointer of the addrec SCEV is
1016   // guaranteed to be loop invariant, which means that it should dominate the
1017   // header.  This allows us to insert code for it in the preheader.
1018   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
1019   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1020   IRBuilder<> Builder(Preheader->getTerminator());
1021   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1022   SCEVExpanderCleaner ExpCleaner(Expander);
1023 
1024   Type *DestInt8PtrTy = Builder.getPtrTy(DestAS);
1025   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
1026 
1027   bool Changed = false;
1028   const SCEV *Start = Ev->getStart();
1029   // Handle negative strided loops.
1030   if (IsNegStride)
1031     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE);
1032 
1033   // TODO: ideally we should still be able to generate memset if SCEV expander
1034   // is taught to generate the dependencies at the latest point.
1035   if (!Expander.isSafeToExpand(Start))
1036     return Changed;
1037 
1038   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
1039   // this into a memset in the loop preheader now if we want.  However, this
1040   // would be unsafe to do if there is anything else in the loop that may read
1041   // or write to the aliased location.  Check for any overlap by generating the
1042   // base pointer and checking the region.
1043   Value *BasePtr =
1044       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
1045 
1046   // From here on out, conservatively report to the pass manager that we've
1047   // changed the IR, even if we later clean up these added instructions. There
1048   // may be structural differences e.g. in the order of use lists not accounted
1049   // for in just a textual dump of the IR. This is written as a variable, even
1050   // though statically all the places this dominates could be replaced with
1051   // 'true', with the hope that anyone trying to be clever / "more precise" with
1052   // the return value will read this comment, and leave them alone.
1053   Changed = true;
1054 
1055   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1056                             StoreSizeSCEV, *AA, Stores))
1057     return Changed;
1058 
1059   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
1060     return Changed;
1061 
1062   // Okay, everything looks good, insert the memset.
1063 
1064   const SCEV *NumBytesS =
1065       getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1066 
1067   // TODO: ideally we should still be able to generate memset if SCEV expander
1068   // is taught to generate the dependencies at the latest point.
1069   if (!Expander.isSafeToExpand(NumBytesS))
1070     return Changed;
1071 
1072   Value *NumBytes =
1073       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1074 
1075   if (!SplatValue && !isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16))
1076     return Changed;
1077 
1078   AAMDNodes AATags = TheStore->getAAMetadata();
1079   for (Instruction *Store : Stores)
1080     AATags = AATags.merge(Store->getAAMetadata());
1081   if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1082     AATags = AATags.extendTo(CI->getZExtValue());
1083   else
1084     AATags = AATags.extendTo(-1);
1085 
1086   CallInst *NewCall;
1087   if (SplatValue) {
1088     NewCall = Builder.CreateMemSet(
1089         BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment),
1090         /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1091   } else {
1092     assert (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16));
1093     // Everything is emitted in default address space
1094     Type *Int8PtrTy = DestInt8PtrTy;
1095 
1096     StringRef FuncName = "memset_pattern16";
1097     FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16,
1098                             Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy);
1099     inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI);
1100 
1101     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
1102     // an constant array of 16-bytes.  Plop the value into a mergable global.
1103     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
1104                                             GlobalValue::PrivateLinkage,
1105                                             PatternValue, ".memset_pattern");
1106     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
1107     GV->setAlignment(Align(16));
1108     Value *PatternPtr = GV;
1109     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
1110 
1111     // Set the TBAA info if present.
1112     if (AATags.TBAA)
1113       NewCall->setMetadata(LLVMContext::MD_tbaa, AATags.TBAA);
1114 
1115     if (AATags.Scope)
1116       NewCall->setMetadata(LLVMContext::MD_alias_scope, AATags.Scope);
1117 
1118     if (AATags.NoAlias)
1119       NewCall->setMetadata(LLVMContext::MD_noalias, AATags.NoAlias);
1120   }
1121 
1122   NewCall->setDebugLoc(TheStore->getDebugLoc());
1123 
1124   if (MSSAU) {
1125     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1126         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1127     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1128   }
1129 
1130   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
1131                     << "    from store to: " << *Ev << " at: " << *TheStore
1132                     << "\n");
1133 
1134   ORE.emit([&]() {
1135     OptimizationRemark R(DEBUG_TYPE, "ProcessLoopStridedStore",
1136                          NewCall->getDebugLoc(), Preheader);
1137     R << "Transformed loop-strided store in "
1138       << ore::NV("Function", TheStore->getFunction())
1139       << " function into a call to "
1140       << ore::NV("NewFunction", NewCall->getCalledFunction())
1141       << "() intrinsic";
1142     if (!Stores.empty())
1143       R << ore::setExtraArgs();
1144     for (auto *I : Stores) {
1145       R << ore::NV("FromBlock", I->getParent()->getName())
1146         << ore::NV("ToBlock", Preheader->getName());
1147     }
1148     return R;
1149   });
1150 
1151   // Okay, the memset has been formed.  Zap the original store and anything that
1152   // feeds into it.
1153   for (auto *I : Stores) {
1154     if (MSSAU)
1155       MSSAU->removeMemoryAccess(I, true);
1156     deleteDeadInstruction(I);
1157   }
1158   if (MSSAU && VerifyMemorySSA)
1159     MSSAU->getMemorySSA()->verifyMemorySSA();
1160   ++NumMemSet;
1161   ExpCleaner.markResultUsed();
1162   return true;
1163 }
1164 
1165 /// If the stored value is a strided load in the same loop with the same stride
1166 /// this may be transformable into a memcpy.  This kicks in for stuff like
1167 /// for (i) A[i] = B[i];
1168 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1169                                                     const SCEV *BECount) {
1170   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
1171 
1172   Value *StorePtr = SI->getPointerOperand();
1173   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1174   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1175 
1176   // The store must be feeding a non-volatile load.
1177   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1178   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1179 
1180   // See if the pointer expression is an AddRec like {base,+,1} on the current
1181   // loop, which indicates a strided load.  If we have something else, it's a
1182   // random load we can't handle.
1183   Value *LoadPtr = LI->getPointerOperand();
1184   const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
1185 
1186   const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize);
1187   return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV,
1188                                     SI->getAlign(), LI->getAlign(), SI, LI,
1189                                     StoreEv, LoadEv, BECount);
1190 }
1191 
1192 namespace {
1193 class MemmoveVerifier {
1194 public:
1195   explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr,
1196                            const DataLayout &DL)
1197       : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset(
1198                     LoadBasePtr.stripPointerCasts(), LoadOff, DL)),
1199         BP2(llvm::GetPointerBaseWithConstantOffset(
1200             StoreBasePtr.stripPointerCasts(), StoreOff, DL)),
1201         IsSameObject(BP1 == BP2) {}
1202 
1203   bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride,
1204                                   const Instruction &TheLoad,
1205                                   bool IsMemCpy) const {
1206     if (IsMemCpy) {
1207       // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1208       // for negative stride.
1209       if ((!IsNegStride && LoadOff <= StoreOff) ||
1210           (IsNegStride && LoadOff >= StoreOff))
1211         return false;
1212     } else {
1213       // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr
1214       // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr.
1215       int64_t LoadSize =
1216           DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8;
1217       if (BP1 != BP2 || LoadSize != int64_t(StoreSize))
1218         return false;
1219       if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) ||
1220           (IsNegStride && LoadOff + LoadSize > StoreOff))
1221         return false;
1222     }
1223     return true;
1224   }
1225 
1226 private:
1227   const DataLayout &DL;
1228   int64_t LoadOff = 0;
1229   int64_t StoreOff = 0;
1230   const Value *BP1;
1231   const Value *BP2;
1232 
1233 public:
1234   const bool IsSameObject;
1235 };
1236 } // namespace
1237 
1238 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
1239     Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV,
1240     MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore,
1241     Instruction *TheLoad, const SCEVAddRecExpr *StoreEv,
1242     const SCEVAddRecExpr *LoadEv, const SCEV *BECount) {
1243 
1244   // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to
1245   // conservatively bail here, since otherwise we may have to transform
1246   // llvm.memcpy.inline into llvm.memcpy which is illegal.
1247   if (isa<MemCpyInlineInst>(TheStore))
1248     return false;
1249 
1250   // The trip count of the loop and the base pointer of the addrec SCEV is
1251   // guaranteed to be loop invariant, which means that it should dominate the
1252   // header.  This allows us to insert code for it in the preheader.
1253   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1254   IRBuilder<> Builder(Preheader->getTerminator());
1255   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1256 
1257   SCEVExpanderCleaner ExpCleaner(Expander);
1258 
1259   bool Changed = false;
1260   const SCEV *StrStart = StoreEv->getStart();
1261   unsigned StrAS = DestPtr->getType()->getPointerAddressSpace();
1262   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1263 
1264   APInt Stride = getStoreStride(StoreEv);
1265   const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV);
1266 
1267   // TODO: Deal with non-constant size; Currently expect constant store size
1268   assert(ConstStoreSize && "store size is expected to be a constant");
1269 
1270   int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue();
1271   bool IsNegStride = StoreSize == -Stride;
1272 
1273   // Handle negative strided loops.
1274   if (IsNegStride)
1275     StrStart =
1276         getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1277 
1278   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1279   // this into a memcpy in the loop preheader now if we want.  However, this
1280   // would be unsafe to do if there is anything else in the loop that may read
1281   // or write the memory region we're storing to.  This includes the load that
1282   // feeds the stores.  Check for an alias by generating the base address and
1283   // checking everything.
1284   Value *StoreBasePtr = Expander.expandCodeFor(
1285       StrStart, Builder.getPtrTy(StrAS), Preheader->getTerminator());
1286 
1287   // From here on out, conservatively report to the pass manager that we've
1288   // changed the IR, even if we later clean up these added instructions. There
1289   // may be structural differences e.g. in the order of use lists not accounted
1290   // for in just a textual dump of the IR. This is written as a variable, even
1291   // though statically all the places this dominates could be replaced with
1292   // 'true', with the hope that anyone trying to be clever / "more precise" with
1293   // the return value will read this comment, and leave them alone.
1294   Changed = true;
1295 
1296   SmallPtrSet<Instruction *, 2> IgnoredInsts;
1297   IgnoredInsts.insert(TheStore);
1298 
1299   bool IsMemCpy = isa<MemCpyInst>(TheStore);
1300   const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store";
1301 
1302   bool LoopAccessStore =
1303       mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1304                             StoreSizeSCEV, *AA, IgnoredInsts);
1305   if (LoopAccessStore) {
1306     // For memmove case it's not enough to guarantee that loop doesn't access
1307     // TheStore and TheLoad. Additionally we need to make sure that TheStore is
1308     // the only user of TheLoad.
1309     if (!TheLoad->hasOneUse())
1310       return Changed;
1311     IgnoredInsts.insert(TheLoad);
1312     if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop,
1313                               BECount, StoreSizeSCEV, *AA, IgnoredInsts)) {
1314       ORE.emit([&]() {
1315         return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessStore",
1316                                         TheStore)
1317                << ore::NV("Inst", InstRemark) << " in "
1318                << ore::NV("Function", TheStore->getFunction())
1319                << " function will not be hoisted: "
1320                << ore::NV("Reason", "The loop may access store location");
1321       });
1322       return Changed;
1323     }
1324     IgnoredInsts.erase(TheLoad);
1325   }
1326 
1327   const SCEV *LdStart = LoadEv->getStart();
1328   unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace();
1329 
1330   // Handle negative strided loops.
1331   if (IsNegStride)
1332     LdStart =
1333         getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE);
1334 
1335   // For a memcpy, we have to make sure that the input array is not being
1336   // mutated by the loop.
1337   Value *LoadBasePtr = Expander.expandCodeFor(LdStart, Builder.getPtrTy(LdAS),
1338                                               Preheader->getTerminator());
1339 
1340   // If the store is a memcpy instruction, we must check if it will write to
1341   // the load memory locations. So remove it from the ignored stores.
1342   MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL);
1343   if (IsMemCpy && !Verifier.IsSameObject)
1344     IgnoredInsts.erase(TheStore);
1345   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1346                             StoreSizeSCEV, *AA, IgnoredInsts)) {
1347     ORE.emit([&]() {
1348       return OptimizationRemarkMissed(DEBUG_TYPE, "LoopMayAccessLoad", TheLoad)
1349              << ore::NV("Inst", InstRemark) << " in "
1350              << ore::NV("Function", TheStore->getFunction())
1351              << " function will not be hoisted: "
1352              << ore::NV("Reason", "The loop may access load location");
1353     });
1354     return Changed;
1355   }
1356 
1357   bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore;
1358   if (UseMemMove)
1359     if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad,
1360                                              IsMemCpy))
1361       return Changed;
1362 
1363   if (avoidLIRForMultiBlockLoop())
1364     return Changed;
1365 
1366   // Okay, everything is safe, we can transform this!
1367 
1368   const SCEV *NumBytesS =
1369       getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE);
1370 
1371   Value *NumBytes =
1372       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1373 
1374   AAMDNodes AATags = TheLoad->getAAMetadata();
1375   AAMDNodes StoreAATags = TheStore->getAAMetadata();
1376   AATags = AATags.merge(StoreAATags);
1377   if (auto CI = dyn_cast<ConstantInt>(NumBytes))
1378     AATags = AATags.extendTo(CI->getZExtValue());
1379   else
1380     AATags = AATags.extendTo(-1);
1381 
1382   CallInst *NewCall = nullptr;
1383   // Check whether to generate an unordered atomic memcpy:
1384   //  If the load or store are atomic, then they must necessarily be unordered
1385   //  by previous checks.
1386   if (!TheStore->isAtomic() && !TheLoad->isAtomic()) {
1387     if (UseMemMove)
1388       NewCall = Builder.CreateMemMove(
1389           StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes,
1390           /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias);
1391     else
1392       NewCall =
1393           Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign,
1394                                NumBytes, /*isVolatile=*/false, AATags.TBAA,
1395                                AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1396   } else {
1397     // For now don't support unordered atomic memmove.
1398     if (UseMemMove)
1399       return Changed;
1400     // We cannot allow unaligned ops for unordered load/store, so reject
1401     // anything where the alignment isn't at least the element size.
1402     assert((StoreAlign && LoadAlign) &&
1403            "Expect unordered load/store to have align.");
1404     if (*StoreAlign < StoreSize || *LoadAlign < StoreSize)
1405       return Changed;
1406 
1407     // If the element.atomic memcpy is not lowered into explicit
1408     // loads/stores later, then it will be lowered into an element-size
1409     // specific lib call. If the lib call doesn't exist for our store size, then
1410     // we shouldn't generate the memcpy.
1411     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1412       return Changed;
1413 
1414     // Create the call.
1415     // Note that unordered atomic loads/stores are *required* by the spec to
1416     // have an alignment but non-atomic loads/stores may not.
1417     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1418         StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize,
1419         AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias);
1420   }
1421   NewCall->setDebugLoc(TheStore->getDebugLoc());
1422 
1423   if (MSSAU) {
1424     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1425         NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1426     MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1427   }
1428 
1429   LLVM_DEBUG(dbgs() << "  Formed new call: " << *NewCall << "\n"
1430                     << "    from load ptr=" << *LoadEv << " at: " << *TheLoad
1431                     << "\n"
1432                     << "    from store ptr=" << *StoreEv << " at: " << *TheStore
1433                     << "\n");
1434 
1435   ORE.emit([&]() {
1436     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1437                               NewCall->getDebugLoc(), Preheader)
1438            << "Formed a call to "
1439            << ore::NV("NewFunction", NewCall->getCalledFunction())
1440            << "() intrinsic from " << ore::NV("Inst", InstRemark)
1441            << " instruction in " << ore::NV("Function", TheStore->getFunction())
1442            << " function"
1443            << ore::setExtraArgs()
1444            << ore::NV("FromBlock", TheStore->getParent()->getName())
1445            << ore::NV("ToBlock", Preheader->getName());
1446   });
1447 
1448   // Okay, a new call to memcpy/memmove has been formed.  Zap the original store
1449   // and anything that feeds into it.
1450   if (MSSAU)
1451     MSSAU->removeMemoryAccess(TheStore, true);
1452   deleteDeadInstruction(TheStore);
1453   if (MSSAU && VerifyMemorySSA)
1454     MSSAU->getMemorySSA()->verifyMemorySSA();
1455   if (UseMemMove)
1456     ++NumMemMove;
1457   else
1458     ++NumMemCpy;
1459   ExpCleaner.markResultUsed();
1460   return true;
1461 }
1462 
1463 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1464 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1465 //
1466 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1467                                                    bool IsLoopMemset) {
1468   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1469     if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) {
1470       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1471                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1472                         << " avoided: multi-block top-level loop\n");
1473       return true;
1474     }
1475   }
1476 
1477   return false;
1478 }
1479 
1480 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1481   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1482                     << CurLoop->getHeader()->getParent()->getName()
1483                     << "] Noncountable Loop %"
1484                     << CurLoop->getHeader()->getName() << "\n");
1485 
1486   return recognizePopcount() || recognizeAndInsertFFS() ||
1487          recognizeShiftUntilBitTest() || recognizeShiftUntilZero();
1488 }
1489 
1490 /// Check if the given conditional branch is based on the comparison between
1491 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1492 /// true), the control yields to the loop entry. If the branch matches the
1493 /// behavior, the variable involved in the comparison is returned. This function
1494 /// will be called to see if the precondition and postcondition of the loop are
1495 /// in desirable form.
1496 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1497                              bool JmpOnZero = false) {
1498   if (!BI || !BI->isConditional())
1499     return nullptr;
1500 
1501   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1502   if (!Cond)
1503     return nullptr;
1504 
1505   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1506   if (!CmpZero || !CmpZero->isZero())
1507     return nullptr;
1508 
1509   BasicBlock *TrueSucc = BI->getSuccessor(0);
1510   BasicBlock *FalseSucc = BI->getSuccessor(1);
1511   if (JmpOnZero)
1512     std::swap(TrueSucc, FalseSucc);
1513 
1514   ICmpInst::Predicate Pred = Cond->getPredicate();
1515   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1516       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1517     return Cond->getOperand(0);
1518 
1519   return nullptr;
1520 }
1521 
1522 // Check if the recurrence variable `VarX` is in the right form to create
1523 // the idiom. Returns the value coerced to a PHINode if so.
1524 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1525                                  BasicBlock *LoopEntry) {
1526   auto *PhiX = dyn_cast<PHINode>(VarX);
1527   if (PhiX && PhiX->getParent() == LoopEntry &&
1528       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1529     return PhiX;
1530   return nullptr;
1531 }
1532 
1533 /// Return true iff the idiom is detected in the loop.
1534 ///
1535 /// Additionally:
1536 /// 1) \p CntInst is set to the instruction counting the population bit.
1537 /// 2) \p CntPhi is set to the corresponding phi node.
1538 /// 3) \p Var is set to the value whose population bits are being counted.
1539 ///
1540 /// The core idiom we are trying to detect is:
1541 /// \code
1542 ///    if (x0 != 0)
1543 ///      goto loop-exit // the precondition of the loop
1544 ///    cnt0 = init-val;
1545 ///    do {
1546 ///       x1 = phi (x0, x2);
1547 ///       cnt1 = phi(cnt0, cnt2);
1548 ///
1549 ///       cnt2 = cnt1 + 1;
1550 ///        ...
1551 ///       x2 = x1 & (x1 - 1);
1552 ///        ...
1553 ///    } while(x != 0);
1554 ///
1555 /// loop-exit:
1556 /// \endcode
1557 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1558                                 Instruction *&CntInst, PHINode *&CntPhi,
1559                                 Value *&Var) {
1560   // step 1: Check to see if the look-back branch match this pattern:
1561   //    "if (a!=0) goto loop-entry".
1562   BasicBlock *LoopEntry;
1563   Instruction *DefX2, *CountInst;
1564   Value *VarX1, *VarX0;
1565   PHINode *PhiX, *CountPhi;
1566 
1567   DefX2 = CountInst = nullptr;
1568   VarX1 = VarX0 = nullptr;
1569   PhiX = CountPhi = nullptr;
1570   LoopEntry = *(CurLoop->block_begin());
1571 
1572   // step 1: Check if the loop-back branch is in desirable form.
1573   {
1574     if (Value *T = matchCondition(
1575             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1576       DefX2 = dyn_cast<Instruction>(T);
1577     else
1578       return false;
1579   }
1580 
1581   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1582   {
1583     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1584       return false;
1585 
1586     BinaryOperator *SubOneOp;
1587 
1588     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1589       VarX1 = DefX2->getOperand(1);
1590     else {
1591       VarX1 = DefX2->getOperand(0);
1592       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1593     }
1594     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1595       return false;
1596 
1597     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1598     if (!Dec ||
1599         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1600           (SubOneOp->getOpcode() == Instruction::Add &&
1601            Dec->isMinusOne()))) {
1602       return false;
1603     }
1604   }
1605 
1606   // step 3: Check the recurrence of variable X
1607   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1608   if (!PhiX)
1609     return false;
1610 
1611   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1612   {
1613     CountInst = nullptr;
1614     for (Instruction &Inst : llvm::make_range(
1615              LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1616       if (Inst.getOpcode() != Instruction::Add)
1617         continue;
1618 
1619       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1620       if (!Inc || !Inc->isOne())
1621         continue;
1622 
1623       PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1624       if (!Phi)
1625         continue;
1626 
1627       // Check if the result of the instruction is live of the loop.
1628       bool LiveOutLoop = false;
1629       for (User *U : Inst.users()) {
1630         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1631           LiveOutLoop = true;
1632           break;
1633         }
1634       }
1635 
1636       if (LiveOutLoop) {
1637         CountInst = &Inst;
1638         CountPhi = Phi;
1639         break;
1640       }
1641     }
1642 
1643     if (!CountInst)
1644       return false;
1645   }
1646 
1647   // step 5: check if the precondition is in this form:
1648   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1649   {
1650     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1651     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1652     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1653       return false;
1654 
1655     CntInst = CountInst;
1656     CntPhi = CountPhi;
1657     Var = T;
1658   }
1659 
1660   return true;
1661 }
1662 
1663 /// Return true if the idiom is detected in the loop.
1664 ///
1665 /// Additionally:
1666 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1667 ///       or nullptr if there is no such.
1668 /// 2) \p CntPhi is set to the corresponding phi node
1669 ///       or nullptr if there is no such.
1670 /// 3) \p Var is set to the value whose CTLZ could be used.
1671 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1672 ///
1673 /// The core idiom we are trying to detect is:
1674 /// \code
1675 ///    if (x0 == 0)
1676 ///      goto loop-exit // the precondition of the loop
1677 ///    cnt0 = init-val;
1678 ///    do {
1679 ///       x = phi (x0, x.next);   //PhiX
1680 ///       cnt = phi(cnt0, cnt.next);
1681 ///
1682 ///       cnt.next = cnt + 1;
1683 ///        ...
1684 ///       x.next = x >> 1;   // DefX
1685 ///        ...
1686 ///    } while(x.next != 0);
1687 ///
1688 /// loop-exit:
1689 /// \endcode
1690 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1691                                       Intrinsic::ID &IntrinID, Value *&InitX,
1692                                       Instruction *&CntInst, PHINode *&CntPhi,
1693                                       Instruction *&DefX) {
1694   BasicBlock *LoopEntry;
1695   Value *VarX = nullptr;
1696 
1697   DefX = nullptr;
1698   CntInst = nullptr;
1699   CntPhi = nullptr;
1700   LoopEntry = *(CurLoop->block_begin());
1701 
1702   // step 1: Check if the loop-back branch is in desirable form.
1703   if (Value *T = matchCondition(
1704           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1705     DefX = dyn_cast<Instruction>(T);
1706   else
1707     return false;
1708 
1709   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1710   if (!DefX || !DefX->isShift())
1711     return false;
1712   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1713                                                      Intrinsic::ctlz;
1714   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1715   if (!Shft || !Shft->isOne())
1716     return false;
1717   VarX = DefX->getOperand(0);
1718 
1719   // step 3: Check the recurrence of variable X
1720   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1721   if (!PhiX)
1722     return false;
1723 
1724   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1725 
1726   // Make sure the initial value can't be negative otherwise the ashr in the
1727   // loop might never reach zero which would make the loop infinite.
1728   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1729     return false;
1730 
1731   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1732   //         or cnt.next = cnt + -1.
1733   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1734   //       then all uses of "cnt.next" could be optimized to the trip count
1735   //       plus "cnt0". Currently it is not optimized.
1736   //       This step could be used to detect POPCNT instruction:
1737   //       cnt.next = cnt + (x.next & 1)
1738   for (Instruction &Inst : llvm::make_range(
1739            LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) {
1740     if (Inst.getOpcode() != Instruction::Add)
1741       continue;
1742 
1743     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1));
1744     if (!Inc || (!Inc->isOne() && !Inc->isMinusOne()))
1745       continue;
1746 
1747     PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry);
1748     if (!Phi)
1749       continue;
1750 
1751     CntInst = &Inst;
1752     CntPhi = Phi;
1753     break;
1754   }
1755   if (!CntInst)
1756     return false;
1757 
1758   return true;
1759 }
1760 
1761 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1762 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1763 /// trip count returns true; otherwise, returns false.
1764 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1765   // Give up if the loop has multiple blocks or multiple backedges.
1766   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1767     return false;
1768 
1769   Intrinsic::ID IntrinID;
1770   Value *InitX;
1771   Instruction *DefX = nullptr;
1772   PHINode *CntPhi = nullptr;
1773   Instruction *CntInst = nullptr;
1774   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1775   // this is always 6.
1776   size_t IdiomCanonicalSize = 6;
1777 
1778   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1779                                  CntInst, CntPhi, DefX))
1780     return false;
1781 
1782   bool IsCntPhiUsedOutsideLoop = false;
1783   for (User *U : CntPhi->users())
1784     if (!CurLoop->contains(cast<Instruction>(U))) {
1785       IsCntPhiUsedOutsideLoop = true;
1786       break;
1787     }
1788   bool IsCntInstUsedOutsideLoop = false;
1789   for (User *U : CntInst->users())
1790     if (!CurLoop->contains(cast<Instruction>(U))) {
1791       IsCntInstUsedOutsideLoop = true;
1792       break;
1793     }
1794   // If both CntInst and CntPhi are used outside the loop the profitability
1795   // is questionable.
1796   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1797     return false;
1798 
1799   // For some CPUs result of CTLZ(X) intrinsic is undefined
1800   // when X is 0. If we can not guarantee X != 0, we need to check this
1801   // when expand.
1802   bool ZeroCheck = false;
1803   // It is safe to assume Preheader exist as it was checked in
1804   // parent function RunOnLoop.
1805   BasicBlock *PH = CurLoop->getLoopPreheader();
1806 
1807   // If we are using the count instruction outside the loop, make sure we
1808   // have a zero check as a precondition. Without the check the loop would run
1809   // one iteration for before any check of the input value. This means 0 and 1
1810   // would have identical behavior in the original loop and thus
1811   if (!IsCntPhiUsedOutsideLoop) {
1812     auto *PreCondBB = PH->getSinglePredecessor();
1813     if (!PreCondBB)
1814       return false;
1815     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1816     if (!PreCondBI)
1817       return false;
1818     if (matchCondition(PreCondBI, PH) != InitX)
1819       return false;
1820     ZeroCheck = true;
1821   }
1822 
1823   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1824   // profitable if we delete the loop.
1825 
1826   // the loop has only 6 instructions:
1827   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1828   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1829   //  %shr = ashr %n.addr.0, 1
1830   //  %tobool = icmp eq %shr, 0
1831   //  %inc = add nsw %i.0, 1
1832   //  br i1 %tobool
1833 
1834   const Value *Args[] = {InitX,
1835                          ConstantInt::getBool(InitX->getContext(), ZeroCheck)};
1836 
1837   // @llvm.dbg doesn't count as they have no semantic effect.
1838   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1839   uint32_t HeaderSize =
1840       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1841 
1842   IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args);
1843   InstructionCost Cost =
1844     TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency);
1845   if (HeaderSize != IdiomCanonicalSize &&
1846       Cost > TargetTransformInfo::TCC_Basic)
1847     return false;
1848 
1849   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1850                            DefX->getDebugLoc(), ZeroCheck,
1851                            IsCntPhiUsedOutsideLoop);
1852   return true;
1853 }
1854 
1855 /// Recognizes a population count idiom in a non-countable loop.
1856 ///
1857 /// If detected, transforms the relevant code to issue the popcount intrinsic
1858 /// function call, and returns true; otherwise, returns false.
1859 bool LoopIdiomRecognize::recognizePopcount() {
1860   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1861     return false;
1862 
1863   // Counting population are usually conducted by few arithmetic instructions.
1864   // Such instructions can be easily "absorbed" by vacant slots in a
1865   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1866   // in a compact loop.
1867 
1868   // Give up if the loop has multiple blocks or multiple backedges.
1869   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1870     return false;
1871 
1872   BasicBlock *LoopBody = *(CurLoop->block_begin());
1873   if (LoopBody->size() >= 20) {
1874     // The loop is too big, bail out.
1875     return false;
1876   }
1877 
1878   // It should have a preheader containing nothing but an unconditional branch.
1879   BasicBlock *PH = CurLoop->getLoopPreheader();
1880   if (!PH || &PH->front() != PH->getTerminator())
1881     return false;
1882   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1883   if (!EntryBI || EntryBI->isConditional())
1884     return false;
1885 
1886   // It should have a precondition block where the generated popcount intrinsic
1887   // function can be inserted.
1888   auto *PreCondBB = PH->getSinglePredecessor();
1889   if (!PreCondBB)
1890     return false;
1891   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1892   if (!PreCondBI || PreCondBI->isUnconditional())
1893     return false;
1894 
1895   Instruction *CntInst;
1896   PHINode *CntPhi;
1897   Value *Val;
1898   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1899     return false;
1900 
1901   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1902   return true;
1903 }
1904 
1905 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1906                                        const DebugLoc &DL) {
1907   Value *Ops[] = {Val};
1908   Type *Tys[] = {Val->getType()};
1909 
1910   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1911   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1912   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1913   CI->setDebugLoc(DL);
1914 
1915   return CI;
1916 }
1917 
1918 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1919                                     const DebugLoc &DL, bool ZeroCheck,
1920                                     Intrinsic::ID IID) {
1921   Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)};
1922   Type *Tys[] = {Val->getType()};
1923 
1924   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1925   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1926   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1927   CI->setDebugLoc(DL);
1928 
1929   return CI;
1930 }
1931 
1932 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1933 /// loop:
1934 ///   CntPhi = PHI [Cnt0, CntInst]
1935 ///   PhiX = PHI [InitX, DefX]
1936 ///   CntInst = CntPhi + 1
1937 ///   DefX = PhiX >> 1
1938 ///   LOOP_BODY
1939 ///   Br: loop if (DefX != 0)
1940 /// Use(CntPhi) or Use(CntInst)
1941 ///
1942 /// Into:
1943 /// If CntPhi used outside the loop:
1944 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1945 ///   Count = CountPrev + 1
1946 /// else
1947 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1948 /// loop:
1949 ///   CntPhi = PHI [Cnt0, CntInst]
1950 ///   PhiX = PHI [InitX, DefX]
1951 ///   PhiCount = PHI [Count, Dec]
1952 ///   CntInst = CntPhi + 1
1953 ///   DefX = PhiX >> 1
1954 ///   Dec = PhiCount - 1
1955 ///   LOOP_BODY
1956 ///   Br: loop if (Dec != 0)
1957 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1958 /// or
1959 /// Use(Count + Cnt0) // Use(CntInst)
1960 ///
1961 /// If LOOP_BODY is empty the loop will be deleted.
1962 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1963 void LoopIdiomRecognize::transformLoopToCountable(
1964     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1965     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1966     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1967   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1968 
1969   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1970   IRBuilder<> Builder(PreheaderBr);
1971   Builder.SetCurrentDebugLocation(DL);
1972 
1973   // If there are no uses of CntPhi crate:
1974   //   Count = BitWidth - CTLZ(InitX);
1975   //   NewCount = Count;
1976   // If there are uses of CntPhi create:
1977   //   NewCount = BitWidth - CTLZ(InitX >> 1);
1978   //   Count = NewCount + 1;
1979   Value *InitXNext;
1980   if (IsCntPhiUsedOutsideLoop) {
1981     if (DefX->getOpcode() == Instruction::AShr)
1982       InitXNext = Builder.CreateAShr(InitX, 1);
1983     else if (DefX->getOpcode() == Instruction::LShr)
1984       InitXNext = Builder.CreateLShr(InitX, 1);
1985     else if (DefX->getOpcode() == Instruction::Shl) // cttz
1986       InitXNext = Builder.CreateShl(InitX, 1);
1987     else
1988       llvm_unreachable("Unexpected opcode!");
1989   } else
1990     InitXNext = InitX;
1991   Value *Count =
1992       createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1993   Type *CountTy = Count->getType();
1994   Count = Builder.CreateSub(
1995       ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count);
1996   Value *NewCount = Count;
1997   if (IsCntPhiUsedOutsideLoop)
1998     Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1));
1999 
2000   NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType());
2001 
2002   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
2003   if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) {
2004     // If the counter was being incremented in the loop, add NewCount to the
2005     // counter's initial value, but only if the initial value is not zero.
2006     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2007     if (!InitConst || !InitConst->isZero())
2008       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2009   } else {
2010     // If the count was being decremented in the loop, subtract NewCount from
2011     // the counter's initial value.
2012     NewCount = Builder.CreateSub(CntInitVal, NewCount);
2013   }
2014 
2015   // Step 2: Insert new IV and loop condition:
2016   // loop:
2017   //   ...
2018   //   PhiCount = PHI [Count, Dec]
2019   //   ...
2020   //   Dec = PhiCount - 1
2021   //   ...
2022   //   Br: loop if (Dec != 0)
2023   BasicBlock *Body = *(CurLoop->block_begin());
2024   auto *LbBr = cast<BranchInst>(Body->getTerminator());
2025   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2026 
2027   PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi");
2028   TcPhi->insertBefore(Body->begin());
2029 
2030   Builder.SetInsertPoint(LbCond);
2031   Instruction *TcDec = cast<Instruction>(Builder.CreateSub(
2032       TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true));
2033 
2034   TcPhi->addIncoming(Count, Preheader);
2035   TcPhi->addIncoming(TcDec, Body);
2036 
2037   CmpInst::Predicate Pred =
2038       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
2039   LbCond->setPredicate(Pred);
2040   LbCond->setOperand(0, TcDec);
2041   LbCond->setOperand(1, ConstantInt::get(CountTy, 0));
2042 
2043   // Step 3: All the references to the original counter outside
2044   //  the loop are replaced with the NewCount
2045   if (IsCntPhiUsedOutsideLoop)
2046     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
2047   else
2048     CntInst->replaceUsesOutsideBlock(NewCount, Body);
2049 
2050   // step 4: Forget the "non-computable" trip-count SCEV associated with the
2051   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2052   SE->forgetLoop(CurLoop);
2053 }
2054 
2055 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
2056                                                  Instruction *CntInst,
2057                                                  PHINode *CntPhi, Value *Var) {
2058   BasicBlock *PreHead = CurLoop->getLoopPreheader();
2059   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
2060   const DebugLoc &DL = CntInst->getDebugLoc();
2061 
2062   // Assuming before transformation, the loop is following:
2063   //  if (x) // the precondition
2064   //     do { cnt++; x &= x - 1; } while(x);
2065 
2066   // Step 1: Insert the ctpop instruction at the end of the precondition block
2067   IRBuilder<> Builder(PreCondBr);
2068   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
2069   {
2070     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
2071     NewCount = PopCntZext =
2072         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
2073 
2074     if (NewCount != PopCnt)
2075       (cast<Instruction>(NewCount))->setDebugLoc(DL);
2076 
2077     // TripCnt is exactly the number of iterations the loop has
2078     TripCnt = NewCount;
2079 
2080     // If the population counter's initial value is not zero, insert Add Inst.
2081     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
2082     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
2083     if (!InitConst || !InitConst->isZero()) {
2084       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
2085       (cast<Instruction>(NewCount))->setDebugLoc(DL);
2086     }
2087   }
2088 
2089   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
2090   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
2091   //   function would be partial dead code, and downstream passes will drag
2092   //   it back from the precondition block to the preheader.
2093   {
2094     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
2095 
2096     Value *Opnd0 = PopCntZext;
2097     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
2098     if (PreCond->getOperand(0) != Var)
2099       std::swap(Opnd0, Opnd1);
2100 
2101     ICmpInst *NewPreCond = cast<ICmpInst>(
2102         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
2103     PreCondBr->setCondition(NewPreCond);
2104 
2105     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
2106   }
2107 
2108   // Step 3: Note that the population count is exactly the trip count of the
2109   // loop in question, which enable us to convert the loop from noncountable
2110   // loop into a countable one. The benefit is twofold:
2111   //
2112   //  - If the loop only counts population, the entire loop becomes dead after
2113   //    the transformation. It is a lot easier to prove a countable loop dead
2114   //    than to prove a noncountable one. (In some C dialects, an infinite loop
2115   //    isn't dead even if it computes nothing useful. In general, DCE needs
2116   //    to prove a noncountable loop finite before safely delete it.)
2117   //
2118   //  - If the loop also performs something else, it remains alive.
2119   //    Since it is transformed to countable form, it can be aggressively
2120   //    optimized by some optimizations which are in general not applicable
2121   //    to a noncountable loop.
2122   //
2123   // After this step, this loop (conceptually) would look like following:
2124   //   newcnt = __builtin_ctpop(x);
2125   //   t = newcnt;
2126   //   if (x)
2127   //     do { cnt++; x &= x-1; t--) } while (t > 0);
2128   BasicBlock *Body = *(CurLoop->block_begin());
2129   {
2130     auto *LbBr = cast<BranchInst>(Body->getTerminator());
2131     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
2132     Type *Ty = TripCnt->getType();
2133 
2134     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi");
2135     TcPhi->insertBefore(Body->begin());
2136 
2137     Builder.SetInsertPoint(LbCond);
2138     Instruction *TcDec = cast<Instruction>(
2139         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
2140                           "tcdec", false, true));
2141 
2142     TcPhi->addIncoming(TripCnt, PreHead);
2143     TcPhi->addIncoming(TcDec, Body);
2144 
2145     CmpInst::Predicate Pred =
2146         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
2147     LbCond->setPredicate(Pred);
2148     LbCond->setOperand(0, TcDec);
2149     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
2150   }
2151 
2152   // Step 4: All the references to the original population counter outside
2153   //  the loop are replaced with the NewCount -- the value returned from
2154   //  __builtin_ctpop().
2155   CntInst->replaceUsesOutsideBlock(NewCount, Body);
2156 
2157   // step 5: Forget the "non-computable" trip-count SCEV associated with the
2158   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2159   SE->forgetLoop(CurLoop);
2160 }
2161 
2162 /// Match loop-invariant value.
2163 template <typename SubPattern_t> struct match_LoopInvariant {
2164   SubPattern_t SubPattern;
2165   const Loop *L;
2166 
2167   match_LoopInvariant(const SubPattern_t &SP, const Loop *L)
2168       : SubPattern(SP), L(L) {}
2169 
2170   template <typename ITy> bool match(ITy *V) {
2171     return L->isLoopInvariant(V) && SubPattern.match(V);
2172   }
2173 };
2174 
2175 /// Matches if the value is loop-invariant.
2176 template <typename Ty>
2177 inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) {
2178   return match_LoopInvariant<Ty>(M, L);
2179 }
2180 
2181 /// Return true if the idiom is detected in the loop.
2182 ///
2183 /// The core idiom we are trying to detect is:
2184 /// \code
2185 ///   entry:
2186 ///     <...>
2187 ///     %bitmask = shl i32 1, %bitpos
2188 ///     br label %loop
2189 ///
2190 ///   loop:
2191 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2192 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2193 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2194 ///     %x.next = shl i32 %x.curr, 1
2195 ///     <...>
2196 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2197 ///
2198 ///   end:
2199 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2200 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2201 ///     <...>
2202 /// \endcode
2203 static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX,
2204                                          Value *&BitMask, Value *&BitPos,
2205                                          Value *&CurrX, Instruction *&NextX) {
2206   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2207              " Performing shift-until-bittest idiom detection.\n");
2208 
2209   // Give up if the loop has multiple blocks or multiple backedges.
2210   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2211     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2212     return false;
2213   }
2214 
2215   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2216   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2217   assert(LoopPreheaderBB && "There is always a loop preheader.");
2218 
2219   using namespace PatternMatch;
2220 
2221   // Step 1: Check if the loop backedge is in desirable form.
2222 
2223   ICmpInst::Predicate Pred;
2224   Value *CmpLHS, *CmpRHS;
2225   BasicBlock *TrueBB, *FalseBB;
2226   if (!match(LoopHeaderBB->getTerminator(),
2227              m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)),
2228                   m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) {
2229     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2230     return false;
2231   }
2232 
2233   // Step 2: Check if the backedge's condition is in desirable form.
2234 
2235   auto MatchVariableBitMask = [&]() {
2236     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2237            match(CmpLHS,
2238                  m_c_And(m_Value(CurrX),
2239                          m_CombineAnd(
2240                              m_Value(BitMask),
2241                              m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)),
2242                                              CurLoop))));
2243   };
2244   auto MatchConstantBitMask = [&]() {
2245     return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) &&
2246            match(CmpLHS, m_And(m_Value(CurrX),
2247                                m_CombineAnd(m_Value(BitMask), m_Power2()))) &&
2248            (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask)));
2249   };
2250   auto MatchDecomposableConstantBitMask = [&]() {
2251     APInt Mask;
2252     return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) &&
2253            ICmpInst::isEquality(Pred) && Mask.isPowerOf2() &&
2254            (BitMask = ConstantInt::get(CurrX->getType(), Mask)) &&
2255            (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2()));
2256   };
2257 
2258   if (!MatchVariableBitMask() && !MatchConstantBitMask() &&
2259       !MatchDecomposableConstantBitMask()) {
2260     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n");
2261     return false;
2262   }
2263 
2264   // Step 3: Check if the recurrence is in desirable form.
2265   auto *CurrXPN = dyn_cast<PHINode>(CurrX);
2266   if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) {
2267     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2268     return false;
2269   }
2270 
2271   BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB);
2272   NextX =
2273       dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB));
2274 
2275   assert(CurLoop->isLoopInvariant(BaseX) &&
2276          "Expected BaseX to be avaliable in the preheader!");
2277 
2278   if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) {
2279     // FIXME: support right-shift?
2280     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2281     return false;
2282   }
2283 
2284   // Step 4: Check if the backedge's destinations are in desirable form.
2285 
2286   assert(ICmpInst::isEquality(Pred) &&
2287          "Should only get equality predicates here.");
2288 
2289   // cmp-br is commutative, so canonicalize to a single variant.
2290   if (Pred != ICmpInst::Predicate::ICMP_EQ) {
2291     Pred = ICmpInst::getInversePredicate(Pred);
2292     std::swap(TrueBB, FalseBB);
2293   }
2294 
2295   // We expect to exit loop when comparison yields false,
2296   // so when it yields true we should branch back to loop header.
2297   if (TrueBB != LoopHeaderBB) {
2298     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2299     return false;
2300   }
2301 
2302   // Okay, idiom checks out.
2303   return true;
2304 }
2305 
2306 /// Look for the following loop:
2307 /// \code
2308 ///   entry:
2309 ///     <...>
2310 ///     %bitmask = shl i32 1, %bitpos
2311 ///     br label %loop
2312 ///
2313 ///   loop:
2314 ///     %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ]
2315 ///     %x.curr.bitmasked = and i32 %x.curr, %bitmask
2316 ///     %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0
2317 ///     %x.next = shl i32 %x.curr, 1
2318 ///     <...>
2319 ///     br i1 %x.curr.isbitunset, label %loop, label %end
2320 ///
2321 ///   end:
2322 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2323 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2324 ///     <...>
2325 /// \endcode
2326 ///
2327 /// And transform it into:
2328 /// \code
2329 ///   entry:
2330 ///     %bitmask = shl i32 1, %bitpos
2331 ///     %lowbitmask = add i32 %bitmask, -1
2332 ///     %mask = or i32 %lowbitmask, %bitmask
2333 ///     %x.masked = and i32 %x, %mask
2334 ///     %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked,
2335 ///                                                         i1 true)
2336 ///     %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros
2337 ///     %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1
2338 ///     %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos
2339 ///     %tripcount = add i32 %backedgetakencount, 1
2340 ///     %x.curr = shl i32 %x, %backedgetakencount
2341 ///     %x.next = shl i32 %x, %tripcount
2342 ///     br label %loop
2343 ///
2344 ///   loop:
2345 ///     %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ]
2346 ///     %loop.iv.next = add nuw i32 %loop.iv, 1
2347 ///     %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount
2348 ///     <...>
2349 ///     br i1 %loop.ivcheck, label %end, label %loop
2350 ///
2351 ///   end:
2352 ///     %x.curr.res = phi i32 [ %x.curr, %loop ] <...>
2353 ///     %x.next.res = phi i32 [ %x.next, %loop ] <...>
2354 ///     <...>
2355 /// \endcode
2356 bool LoopIdiomRecognize::recognizeShiftUntilBitTest() {
2357   bool MadeChange = false;
2358 
2359   Value *X, *BitMask, *BitPos, *XCurr;
2360   Instruction *XNext;
2361   if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr,
2362                                     XNext)) {
2363     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2364                " shift-until-bittest idiom detection failed.\n");
2365     return MadeChange;
2366   }
2367   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n");
2368 
2369   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2370   // but is it profitable to transform?
2371 
2372   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2373   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2374   assert(LoopPreheaderBB && "There is always a loop preheader.");
2375 
2376   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2377   assert(SuccessorBB && "There is only a single successor.");
2378 
2379   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2380   Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc());
2381 
2382   Intrinsic::ID IntrID = Intrinsic::ctlz;
2383   Type *Ty = X->getType();
2384   unsigned Bitwidth = Ty->getScalarSizeInBits();
2385 
2386   TargetTransformInfo::TargetCostKind CostKind =
2387       TargetTransformInfo::TCK_SizeAndLatency;
2388 
2389   // The rewrite is considered to be unprofitable iff and only iff the
2390   // intrinsic/shift we'll use are not cheap. Note that we are okay with *just*
2391   // making the loop countable, even if nothing else changes.
2392   IntrinsicCostAttributes Attrs(
2393       IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getTrue()});
2394   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2395   if (Cost > TargetTransformInfo::TCC_Basic) {
2396     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2397                " Intrinsic is too costly, not beneficial\n");
2398     return MadeChange;
2399   }
2400   if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) >
2401       TargetTransformInfo::TCC_Basic) {
2402     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n");
2403     return MadeChange;
2404   }
2405 
2406   // Ok, transform appears worthwhile.
2407   MadeChange = true;
2408 
2409   if (!isGuaranteedNotToBeUndefOrPoison(BitPos)) {
2410     // BitMask may be computed from BitPos, Freeze BitPos so we can increase
2411     // it's use count.
2412     Instruction *InsertPt = nullptr;
2413     if (auto *BitPosI = dyn_cast<Instruction>(BitPos))
2414       InsertPt = &**BitPosI->getInsertionPointAfterDef();
2415     else
2416       InsertPt = &*DT->getRoot()->getFirstNonPHIOrDbgOrAlloca();
2417     if (!InsertPt)
2418       return false;
2419     FreezeInst *BitPosFrozen =
2420         new FreezeInst(BitPos, BitPos->getName() + ".fr", InsertPt);
2421     BitPos->replaceUsesWithIf(BitPosFrozen, [BitPosFrozen](Use &U) {
2422       return U.getUser() != BitPosFrozen;
2423     });
2424     BitPos = BitPosFrozen;
2425   }
2426 
2427   // Step 1: Compute the loop trip count.
2428 
2429   Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty),
2430                                         BitPos->getName() + ".lowbitmask");
2431   Value *Mask =
2432       Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask");
2433   Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked");
2434   CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic(
2435       IntrID, Ty, {XMasked, /*is_zero_poison=*/Builder.getTrue()},
2436       /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros");
2437   Value *XMaskedNumActiveBits = Builder.CreateSub(
2438       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros,
2439       XMasked->getName() + ".numactivebits", /*HasNUW=*/true,
2440       /*HasNSW=*/Bitwidth != 2);
2441   Value *XMaskedLeadingOnePos =
2442       Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty),
2443                         XMasked->getName() + ".leadingonepos", /*HasNUW=*/false,
2444                         /*HasNSW=*/Bitwidth > 2);
2445 
2446   Value *LoopBackedgeTakenCount = Builder.CreateSub(
2447       BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount",
2448       /*HasNUW=*/true, /*HasNSW=*/true);
2449   // We know loop's backedge-taken count, but what's loop's trip count?
2450   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2451   Value *LoopTripCount =
2452       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2453                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2454                         /*HasNSW=*/Bitwidth != 2);
2455 
2456   // Step 2: Compute the recurrence's final value without a loop.
2457 
2458   // NewX is always safe to compute, because `LoopBackedgeTakenCount`
2459   // will always be smaller than `bitwidth(X)`, i.e. we never get poison.
2460   Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount);
2461   NewX->takeName(XCurr);
2462   if (auto *I = dyn_cast<Instruction>(NewX))
2463     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2464 
2465   Value *NewXNext;
2466   // Rewriting XNext is more complicated, however, because `X << LoopTripCount`
2467   // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen
2468   // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know
2469   // that isn't the case, we'll need to emit an alternative, safe IR.
2470   if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() ||
2471       PatternMatch::match(
2472           BitPos, PatternMatch::m_SpecificInt_ICMP(
2473                       ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(),
2474                                                Ty->getScalarSizeInBits() - 1))))
2475     NewXNext = Builder.CreateShl(X, LoopTripCount);
2476   else {
2477     // Otherwise, just additionally shift by one. It's the smallest solution,
2478     // alternatively, we could check that NewX is INT_MIN (or BitPos is )
2479     // and select 0 instead.
2480     NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1));
2481   }
2482 
2483   NewXNext->takeName(XNext);
2484   if (auto *I = dyn_cast<Instruction>(NewXNext))
2485     I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true);
2486 
2487   // Step 3: Adjust the successor basic block to recieve the computed
2488   //         recurrence's final value instead of the recurrence itself.
2489 
2490   XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB);
2491   XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB);
2492 
2493   // Step 4: Rewrite the loop into a countable form, with canonical IV.
2494 
2495   // The new canonical induction variable.
2496   Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin());
2497   auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2498 
2499   // The induction itself.
2500   // Note that while NUW is always safe, while NSW is only for bitwidths != 2.
2501   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2502   auto *IVNext =
2503       Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next",
2504                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2505 
2506   // The loop trip count check.
2507   auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount,
2508                                        CurLoop->getName() + ".ivcheck");
2509   Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB);
2510   LoopHeaderBB->getTerminator()->eraseFromParent();
2511 
2512   // Populate the IV PHI.
2513   IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2514   IV->addIncoming(IVNext, LoopHeaderBB);
2515 
2516   // Step 5: Forget the "non-computable" trip-count SCEV associated with the
2517   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2518 
2519   SE->forgetLoop(CurLoop);
2520 
2521   // Other passes will take care of actually deleting the loop if possible.
2522 
2523   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n");
2524 
2525   ++NumShiftUntilBitTest;
2526   return MadeChange;
2527 }
2528 
2529 /// Return true if the idiom is detected in the loop.
2530 ///
2531 /// The core idiom we are trying to detect is:
2532 /// \code
2533 ///   entry:
2534 ///     <...>
2535 ///     %start = <...>
2536 ///     %extraoffset = <...>
2537 ///     <...>
2538 ///     br label %for.cond
2539 ///
2540 ///   loop:
2541 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2542 ///     %nbits = add nsw i8 %iv, %extraoffset
2543 ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2544 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2545 ///     %iv.next = add i8 %iv, 1
2546 ///     <...>
2547 ///     br i1 %val.shifted.iszero, label %end, label %loop
2548 ///
2549 ///   end:
2550 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2551 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2552 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2553 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2554 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2555 ///     <...>
2556 /// \endcode
2557 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE,
2558                                       Instruction *&ValShiftedIsZero,
2559                                       Intrinsic::ID &IntrinID, Instruction *&IV,
2560                                       Value *&Start, Value *&Val,
2561                                       const SCEV *&ExtraOffsetExpr,
2562                                       bool &InvertedCond) {
2563   LLVM_DEBUG(dbgs() << DEBUG_TYPE
2564              " Performing shift-until-zero idiom detection.\n");
2565 
2566   // Give up if the loop has multiple blocks or multiple backedges.
2567   if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) {
2568     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n");
2569     return false;
2570   }
2571 
2572   Instruction *ValShifted, *NBits, *IVNext;
2573   Value *ExtraOffset;
2574 
2575   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2576   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2577   assert(LoopPreheaderBB && "There is always a loop preheader.");
2578 
2579   using namespace PatternMatch;
2580 
2581   // Step 1: Check if the loop backedge, condition is in desirable form.
2582 
2583   ICmpInst::Predicate Pred;
2584   BasicBlock *TrueBB, *FalseBB;
2585   if (!match(LoopHeaderBB->getTerminator(),
2586              m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB),
2587                   m_BasicBlock(FalseBB))) ||
2588       !match(ValShiftedIsZero,
2589              m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) ||
2590       !ICmpInst::isEquality(Pred)) {
2591     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n");
2592     return false;
2593   }
2594 
2595   // Step 2: Check if the comparison's operand is in desirable form.
2596   // FIXME: Val could be a one-input PHI node, which we should look past.
2597   if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop),
2598                                  m_Instruction(NBits)))) {
2599     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n");
2600     return false;
2601   }
2602   IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz
2603                                                          : Intrinsic::ctlz;
2604 
2605   // Step 3: Check if the shift amount is in desirable form.
2606 
2607   if (match(NBits, m_c_Add(m_Instruction(IV),
2608                            m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2609       (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap()))
2610     ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset));
2611   else if (match(NBits,
2612                  m_Sub(m_Instruction(IV),
2613                        m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) &&
2614            NBits->hasNoSignedWrap())
2615     ExtraOffsetExpr = SE->getSCEV(ExtraOffset);
2616   else {
2617     IV = NBits;
2618     ExtraOffsetExpr = SE->getZero(NBits->getType());
2619   }
2620 
2621   // Step 4: Check if the recurrence is in desirable form.
2622   auto *IVPN = dyn_cast<PHINode>(IV);
2623   if (!IVPN || IVPN->getParent() != LoopHeaderBB) {
2624     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n");
2625     return false;
2626   }
2627 
2628   Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB);
2629   IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB));
2630 
2631   if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) {
2632     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n");
2633     return false;
2634   }
2635 
2636   // Step 4: Check if the backedge's destinations are in desirable form.
2637 
2638   assert(ICmpInst::isEquality(Pred) &&
2639          "Should only get equality predicates here.");
2640 
2641   // cmp-br is commutative, so canonicalize to a single variant.
2642   InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ;
2643   if (InvertedCond) {
2644     Pred = ICmpInst::getInversePredicate(Pred);
2645     std::swap(TrueBB, FalseBB);
2646   }
2647 
2648   // We expect to exit loop when comparison yields true,
2649   // so when it yields false we should branch back to loop header.
2650   if (FalseBB != LoopHeaderBB) {
2651     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n");
2652     return false;
2653   }
2654 
2655   // The new, countable, loop will certainly only run a known number of
2656   // iterations, It won't be infinite. But the old loop might be infinite
2657   // under certain conditions. For logical shifts, the value will become zero
2658   // after at most bitwidth(%Val) loop iterations. However, for arithmetic
2659   // right-shift, iff the sign bit was set, the value will never become zero,
2660   // and the loop may never finish.
2661   if (ValShifted->getOpcode() == Instruction::AShr &&
2662       !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) {
2663     LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n");
2664     return false;
2665   }
2666 
2667   // Okay, idiom checks out.
2668   return true;
2669 }
2670 
2671 /// Look for the following loop:
2672 /// \code
2673 ///   entry:
2674 ///     <...>
2675 ///     %start = <...>
2676 ///     %extraoffset = <...>
2677 ///     <...>
2678 ///     br label %for.cond
2679 ///
2680 ///   loop:
2681 ///     %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ]
2682 ///     %nbits = add nsw i8 %iv, %extraoffset
2683 ///     %val.shifted = {{l,a}shr,shl} i8 %val, %nbits
2684 ///     %val.shifted.iszero = icmp eq i8 %val.shifted, 0
2685 ///     %iv.next = add i8 %iv, 1
2686 ///     <...>
2687 ///     br i1 %val.shifted.iszero, label %end, label %loop
2688 ///
2689 ///   end:
2690 ///     %iv.res = phi i8 [ %iv, %loop ] <...>
2691 ///     %nbits.res = phi i8 [ %nbits, %loop ] <...>
2692 ///     %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...>
2693 ///     %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...>
2694 ///     %iv.next.res = phi i8 [ %iv.next, %loop ] <...>
2695 ///     <...>
2696 /// \endcode
2697 ///
2698 /// And transform it into:
2699 /// \code
2700 ///   entry:
2701 ///     <...>
2702 ///     %start = <...>
2703 ///     %extraoffset = <...>
2704 ///     <...>
2705 ///     %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0)
2706 ///     %val.numactivebits = sub i8 8, %val.numleadingzeros
2707 ///     %extraoffset.neg = sub i8 0, %extraoffset
2708 ///     %tmp = add i8 %val.numactivebits, %extraoffset.neg
2709 ///     %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start)
2710 ///     %loop.tripcount = sub i8 %iv.final, %start
2711 ///     br label %loop
2712 ///
2713 ///   loop:
2714 ///     %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ]
2715 ///     %loop.iv.next = add i8 %loop.iv, 1
2716 ///     %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount
2717 ///     %iv = add i8 %loop.iv, %start
2718 ///     <...>
2719 ///     br i1 %loop.ivcheck, label %end, label %loop
2720 ///
2721 ///   end:
2722 ///     %iv.res = phi i8 [ %iv.final, %loop ] <...>
2723 ///     <...>
2724 /// \endcode
2725 bool LoopIdiomRecognize::recognizeShiftUntilZero() {
2726   bool MadeChange = false;
2727 
2728   Instruction *ValShiftedIsZero;
2729   Intrinsic::ID IntrID;
2730   Instruction *IV;
2731   Value *Start, *Val;
2732   const SCEV *ExtraOffsetExpr;
2733   bool InvertedCond;
2734   if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV,
2735                                  Start, Val, ExtraOffsetExpr, InvertedCond)) {
2736     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2737                " shift-until-zero idiom detection failed.\n");
2738     return MadeChange;
2739   }
2740   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n");
2741 
2742   // Ok, it is the idiom we were looking for, we *could* transform this loop,
2743   // but is it profitable to transform?
2744 
2745   BasicBlock *LoopHeaderBB = CurLoop->getHeader();
2746   BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader();
2747   assert(LoopPreheaderBB && "There is always a loop preheader.");
2748 
2749   BasicBlock *SuccessorBB = CurLoop->getExitBlock();
2750   assert(SuccessorBB && "There is only a single successor.");
2751 
2752   IRBuilder<> Builder(LoopPreheaderBB->getTerminator());
2753   Builder.SetCurrentDebugLocation(IV->getDebugLoc());
2754 
2755   Type *Ty = Val->getType();
2756   unsigned Bitwidth = Ty->getScalarSizeInBits();
2757 
2758   TargetTransformInfo::TargetCostKind CostKind =
2759       TargetTransformInfo::TCK_SizeAndLatency;
2760 
2761   // The rewrite is considered to be unprofitable iff and only iff the
2762   // intrinsic we'll use are not cheap. Note that we are okay with *just*
2763   // making the loop countable, even if nothing else changes.
2764   IntrinsicCostAttributes Attrs(
2765       IntrID, Ty, {PoisonValue::get(Ty), /*is_zero_poison=*/Builder.getFalse()});
2766   InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind);
2767   if (Cost > TargetTransformInfo::TCC_Basic) {
2768     LLVM_DEBUG(dbgs() << DEBUG_TYPE
2769                " Intrinsic is too costly, not beneficial\n");
2770     return MadeChange;
2771   }
2772 
2773   // Ok, transform appears worthwhile.
2774   MadeChange = true;
2775 
2776   bool OffsetIsZero = false;
2777   if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr))
2778     OffsetIsZero = ExtraOffsetExprC->isZero();
2779 
2780   // Step 1: Compute the loop's final IV value / trip count.
2781 
2782   CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic(
2783       IntrID, Ty, {Val, /*is_zero_poison=*/Builder.getFalse()},
2784       /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros");
2785   Value *ValNumActiveBits = Builder.CreateSub(
2786       ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros,
2787       Val->getName() + ".numactivebits", /*HasNUW=*/true,
2788       /*HasNSW=*/Bitwidth != 2);
2789 
2790   SCEVExpander Expander(*SE, *DL, "loop-idiom");
2791   Expander.setInsertPoint(&*Builder.GetInsertPoint());
2792   Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr);
2793 
2794   Value *ValNumActiveBitsOffset = Builder.CreateAdd(
2795       ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset",
2796       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true);
2797   Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty},
2798                                            {ValNumActiveBitsOffset, Start},
2799                                            /*FMFSource=*/nullptr, "iv.final");
2800 
2801   auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub(
2802       IVFinal, Start, CurLoop->getName() + ".backedgetakencount",
2803       /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true));
2804   // FIXME: or when the offset was `add nuw`
2805 
2806   // We know loop's backedge-taken count, but what's loop's trip count?
2807   Value *LoopTripCount =
2808       Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1),
2809                         CurLoop->getName() + ".tripcount", /*HasNUW=*/true,
2810                         /*HasNSW=*/Bitwidth != 2);
2811 
2812   // Step 2: Adjust the successor basic block to recieve the original
2813   //         induction variable's final value instead of the orig. IV itself.
2814 
2815   IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB);
2816 
2817   // Step 3: Rewrite the loop into a countable form, with canonical IV.
2818 
2819   // The new canonical induction variable.
2820   Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->begin());
2821   auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv");
2822 
2823   // The induction itself.
2824   Builder.SetInsertPoint(LoopHeaderBB, LoopHeaderBB->getFirstNonPHIIt());
2825   auto *CIVNext =
2826       Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next",
2827                         /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2);
2828 
2829   // The loop trip count check.
2830   auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount,
2831                                         CurLoop->getName() + ".ivcheck");
2832   auto *NewIVCheck = CIVCheck;
2833   if (InvertedCond) {
2834     NewIVCheck = Builder.CreateNot(CIVCheck);
2835     NewIVCheck->takeName(ValShiftedIsZero);
2836   }
2837 
2838   // The original IV, but rebased to be an offset to the CIV.
2839   auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false,
2840                                      /*HasNSW=*/true); // FIXME: what about NUW?
2841   IVDePHId->takeName(IV);
2842 
2843   // The loop terminator.
2844   Builder.SetInsertPoint(LoopHeaderBB->getTerminator());
2845   Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB);
2846   LoopHeaderBB->getTerminator()->eraseFromParent();
2847 
2848   // Populate the IV PHI.
2849   CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB);
2850   CIV->addIncoming(CIVNext, LoopHeaderBB);
2851 
2852   // Step 4: Forget the "non-computable" trip-count SCEV associated with the
2853   //   loop. The loop would otherwise not be deleted even if it becomes empty.
2854 
2855   SE->forgetLoop(CurLoop);
2856 
2857   // Step 5: Try to cleanup the loop's body somewhat.
2858   IV->replaceAllUsesWith(IVDePHId);
2859   IV->eraseFromParent();
2860 
2861   ValShiftedIsZero->replaceAllUsesWith(NewIVCheck);
2862   ValShiftedIsZero->eraseFromParent();
2863 
2864   // Other passes will take care of actually deleting the loop if possible.
2865 
2866   LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n");
2867 
2868   ++NumShiftUntilZero;
2869   return MadeChange;
2870 }
2871