xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp (revision 05ab65497e06edd12683163480841aa9630b9d4c)
1 //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements an idiom recognizer that transforms simple loops into a
10 // non-loop form.  In cases that this kicks in, it can be a significant
11 // performance win.
12 //
13 // If compiling for code size we avoid idiom recognition if the resulting
14 // code could be larger than the code for the original loop. One way this could
15 // happen is if the loop is not removable after idiom recognition due to the
16 // presence of non-idiom instructions. The initial implementation of the
17 // heuristics applies to idioms in multi-block loops.
18 //
19 //===----------------------------------------------------------------------===//
20 //
21 // TODO List:
22 //
23 // Future loop memory idioms to recognize:
24 //   memcmp, memmove, strlen, etc.
25 // Future floating point idioms to recognize in -ffast-math mode:
26 //   fpowi
27 // Future integer operation idioms to recognize:
28 //   ctpop
29 //
30 // Beware that isel's default lowering for ctpop is highly inefficient for
31 // i64 and larger types when i64 is legal and the value has few bits set.  It
32 // would be good to enhance isel to emit a loop for ctpop in this case.
33 //
34 // This could recognize common matrix multiplies and dot product idioms and
35 // replace them with calls to BLAS (if linked in??).
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40 #include "llvm/ADT/APInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/MapVector.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringRef.h"
49 #include "llvm/Analysis/AliasAnalysis.h"
50 #include "llvm/Analysis/LoopAccessAnalysis.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/LoopPass.h"
53 #include "llvm/Analysis/MemoryLocation.h"
54 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/ScalarEvolutionExpander.h"
57 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
58 #include "llvm/Analysis/TargetLibraryInfo.h"
59 #include "llvm/Analysis/TargetTransformInfo.h"
60 #include "llvm/Analysis/ValueTracking.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugLoc.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/GlobalValue.h"
70 #include "llvm/IR/GlobalVariable.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instruction.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/LLVMContext.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/PassManager.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/User.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/IR/ValueHandle.h"
84 #include "llvm/InitializePasses.h"
85 #include "llvm/Pass.h"
86 #include "llvm/Support/Casting.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Transforms/Scalar.h"
91 #include "llvm/Transforms/Utils/BuildLibCalls.h"
92 #include "llvm/Transforms/Utils/Local.h"
93 #include "llvm/Transforms/Utils/LoopUtils.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <utility>
98 #include <vector>
99 
100 using namespace llvm;
101 
102 #define DEBUG_TYPE "loop-idiom"
103 
104 STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
105 STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");
106 
107 static cl::opt<bool> UseLIRCodeSizeHeurs(
108     "use-lir-code-size-heurs",
109     cl::desc("Use loop idiom recognition code size heuristics when compiling"
110              "with -Os/-Oz"),
111     cl::init(true), cl::Hidden);
112 
113 namespace {
114 
115 class LoopIdiomRecognize {
116   Loop *CurLoop = nullptr;
117   AliasAnalysis *AA;
118   DominatorTree *DT;
119   LoopInfo *LI;
120   ScalarEvolution *SE;
121   TargetLibraryInfo *TLI;
122   const TargetTransformInfo *TTI;
123   const DataLayout *DL;
124   OptimizationRemarkEmitter &ORE;
125   bool ApplyCodeSizeHeuristics;
126 
127 public:
128   explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
129                               LoopInfo *LI, ScalarEvolution *SE,
130                               TargetLibraryInfo *TLI,
131                               const TargetTransformInfo *TTI,
132                               const DataLayout *DL,
133                               OptimizationRemarkEmitter &ORE)
134       : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {}
135 
136   bool runOnLoop(Loop *L);
137 
138 private:
139   using StoreList = SmallVector<StoreInst *, 8>;
140   using StoreListMap = MapVector<Value *, StoreList>;
141 
142   StoreListMap StoreRefsForMemset;
143   StoreListMap StoreRefsForMemsetPattern;
144   StoreList StoreRefsForMemcpy;
145   bool HasMemset;
146   bool HasMemsetPattern;
147   bool HasMemcpy;
148 
149   /// Return code for isLegalStore()
150   enum LegalStoreKind {
151     None = 0,
152     Memset,
153     MemsetPattern,
154     Memcpy,
155     UnorderedAtomicMemcpy,
156     DontUse // Dummy retval never to be used. Allows catching errors in retval
157             // handling.
158   };
159 
160   /// \name Countable Loop Idiom Handling
161   /// @{
162 
163   bool runOnCountableLoop();
164   bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
165                       SmallVectorImpl<BasicBlock *> &ExitBlocks);
166 
167   void collectStores(BasicBlock *BB);
168   LegalStoreKind isLegalStore(StoreInst *SI);
169   enum class ForMemset { No, Yes };
170   bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
171                          ForMemset For);
172   bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
173 
174   bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
175                                MaybeAlign StoreAlignment, Value *StoredVal,
176                                Instruction *TheStore,
177                                SmallPtrSetImpl<Instruction *> &Stores,
178                                const SCEVAddRecExpr *Ev, const SCEV *BECount,
179                                bool NegStride, bool IsLoopMemset = false);
180   bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
181   bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
182                                  bool IsLoopMemset = false);
183 
184   /// @}
185   /// \name Noncountable Loop Idiom Handling
186   /// @{
187 
188   bool runOnNoncountableLoop();
189 
190   bool recognizePopcount();
191   void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
192                                PHINode *CntPhi, Value *Var);
193   bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
194   void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
195                                 Instruction *CntInst, PHINode *CntPhi,
196                                 Value *Var, Instruction *DefX,
197                                 const DebugLoc &DL, bool ZeroCheck,
198                                 bool IsCntPhiUsedOutsideLoop);
199 
200   /// @}
201 };
202 
203 class LoopIdiomRecognizeLegacyPass : public LoopPass {
204 public:
205   static char ID;
206 
207   explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
208     initializeLoopIdiomRecognizeLegacyPassPass(
209         *PassRegistry::getPassRegistry());
210   }
211 
212   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
213     if (skipLoop(L))
214       return false;
215 
216     AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
217     DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
218     LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
219     ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
220     TargetLibraryInfo *TLI =
221         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
222             *L->getHeader()->getParent());
223     const TargetTransformInfo *TTI =
224         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
225             *L->getHeader()->getParent());
226     const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
227 
228     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
229     // pass.  Function analyses need to be preserved across loop transformations
230     // but ORE cannot be preserved (see comment before the pass definition).
231     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
232 
233     LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, ORE);
234     return LIR.runOnLoop(L);
235   }
236 
237   /// This transformation requires natural loop information & requires that
238   /// loop preheaders be inserted into the CFG.
239   void getAnalysisUsage(AnalysisUsage &AU) const override {
240     AU.addRequired<TargetLibraryInfoWrapperPass>();
241     AU.addRequired<TargetTransformInfoWrapperPass>();
242     getLoopAnalysisUsage(AU);
243   }
244 };
245 
246 } // end anonymous namespace
247 
248 char LoopIdiomRecognizeLegacyPass::ID = 0;
249 
250 PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
251                                               LoopStandardAnalysisResults &AR,
252                                               LPMUpdater &) {
253   const auto *DL = &L.getHeader()->getModule()->getDataLayout();
254 
255   const auto &FAM =
256       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
257   Function *F = L.getHeader()->getParent();
258 
259   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
260   // FIXME: This should probably be optional rather than required.
261   if (!ORE)
262     report_fatal_error(
263         "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached "
264         "at a higher level");
265 
266   LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL,
267                          *ORE);
268   if (!LIR.runOnLoop(&L))
269     return PreservedAnalyses::all();
270 
271   return getLoopPassPreservedAnalyses();
272 }
273 
274 INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
275                       "Recognize loop idioms", false, false)
276 INITIALIZE_PASS_DEPENDENCY(LoopPass)
277 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
278 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
279 INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
280                     "Recognize loop idioms", false, false)
281 
282 Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
283 
284 static void deleteDeadInstruction(Instruction *I) {
285   I->replaceAllUsesWith(UndefValue::get(I->getType()));
286   I->eraseFromParent();
287 }
288 
289 //===----------------------------------------------------------------------===//
290 //
291 //          Implementation of LoopIdiomRecognize
292 //
293 //===----------------------------------------------------------------------===//
294 
295 bool LoopIdiomRecognize::runOnLoop(Loop *L) {
296   CurLoop = L;
297   // If the loop could not be converted to canonical form, it must have an
298   // indirectbr in it, just give up.
299   if (!L->getLoopPreheader())
300     return false;
301 
302   // Disable loop idiom recognition if the function's name is a common idiom.
303   StringRef Name = L->getHeader()->getParent()->getName();
304   if (Name == "memset" || Name == "memcpy")
305     return false;
306 
307   // Determine if code size heuristics need to be applied.
308   ApplyCodeSizeHeuristics =
309       L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
310 
311   HasMemset = TLI->has(LibFunc_memset);
312   HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
313   HasMemcpy = TLI->has(LibFunc_memcpy);
314 
315   if (HasMemset || HasMemsetPattern || HasMemcpy)
316     if (SE->hasLoopInvariantBackedgeTakenCount(L))
317       return runOnCountableLoop();
318 
319   return runOnNoncountableLoop();
320 }
321 
322 bool LoopIdiomRecognize::runOnCountableLoop() {
323   const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
324   assert(!isa<SCEVCouldNotCompute>(BECount) &&
325          "runOnCountableLoop() called on a loop without a predictable"
326          "backedge-taken count");
327 
328   // If this loop executes exactly one time, then it should be peeled, not
329   // optimized by this pass.
330   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
331     if (BECst->getAPInt() == 0)
332       return false;
333 
334   SmallVector<BasicBlock *, 8> ExitBlocks;
335   CurLoop->getUniqueExitBlocks(ExitBlocks);
336 
337   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
338                     << CurLoop->getHeader()->getParent()->getName()
339                     << "] Countable Loop %" << CurLoop->getHeader()->getName()
340                     << "\n");
341 
342   bool MadeChange = false;
343 
344   // The following transforms hoist stores/memsets into the loop pre-header.
345   // Give up if the loop has instructions may throw.
346   SimpleLoopSafetyInfo SafetyInfo;
347   SafetyInfo.computeLoopSafetyInfo(CurLoop);
348   if (SafetyInfo.anyBlockMayThrow())
349     return MadeChange;
350 
351   // Scan all the blocks in the loop that are not in subloops.
352   for (auto *BB : CurLoop->getBlocks()) {
353     // Ignore blocks in subloops.
354     if (LI->getLoopFor(BB) != CurLoop)
355       continue;
356 
357     MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
358   }
359   return MadeChange;
360 }
361 
362 static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
363   const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
364   return ConstStride->getAPInt();
365 }
366 
367 /// getMemSetPatternValue - If a strided store of the specified value is safe to
368 /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
369 /// be passed in.  Otherwise, return null.
370 ///
371 /// Note that we don't ever attempt to use memset_pattern8 or 4, because these
372 /// just replicate their input array and then pass on to memset_pattern16.
373 static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
374   // FIXME: This could check for UndefValue because it can be merged into any
375   // other valid pattern.
376 
377   // If the value isn't a constant, we can't promote it to being in a constant
378   // array.  We could theoretically do a store to an alloca or something, but
379   // that doesn't seem worthwhile.
380   Constant *C = dyn_cast<Constant>(V);
381   if (!C)
382     return nullptr;
383 
384   // Only handle simple values that are a power of two bytes in size.
385   uint64_t Size = DL->getTypeSizeInBits(V->getType());
386   if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
387     return nullptr;
388 
389   // Don't care enough about darwin/ppc to implement this.
390   if (DL->isBigEndian())
391     return nullptr;
392 
393   // Convert to size in bytes.
394   Size /= 8;
395 
396   // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
397   // if the top and bottom are the same (e.g. for vectors and large integers).
398   if (Size > 16)
399     return nullptr;
400 
401   // If the constant is exactly 16 bytes, just use it.
402   if (Size == 16)
403     return C;
404 
405   // Otherwise, we'll use an array of the constants.
406   unsigned ArraySize = 16 / Size;
407   ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
408   return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
409 }
410 
411 LoopIdiomRecognize::LegalStoreKind
412 LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
413   // Don't touch volatile stores.
414   if (SI->isVolatile())
415     return LegalStoreKind::None;
416   // We only want simple or unordered-atomic stores.
417   if (!SI->isUnordered())
418     return LegalStoreKind::None;
419 
420   // Don't convert stores of non-integral pointer types to memsets (which stores
421   // integers).
422   if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
423     return LegalStoreKind::None;
424 
425   // Avoid merging nontemporal stores.
426   if (SI->getMetadata(LLVMContext::MD_nontemporal))
427     return LegalStoreKind::None;
428 
429   Value *StoredVal = SI->getValueOperand();
430   Value *StorePtr = SI->getPointerOperand();
431 
432   // Reject stores that are so large that they overflow an unsigned.
433   uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
434   if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
435     return LegalStoreKind::None;
436 
437   // See if the pointer expression is an AddRec like {base,+,1} on the current
438   // loop, which indicates a strided store.  If we have something else, it's a
439   // random store we can't handle.
440   const SCEVAddRecExpr *StoreEv =
441       dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
442   if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
443     return LegalStoreKind::None;
444 
445   // Check to see if we have a constant stride.
446   if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
447     return LegalStoreKind::None;
448 
449   // See if the store can be turned into a memset.
450 
451   // If the stored value is a byte-wise value (like i32 -1), then it may be
452   // turned into a memset of i8 -1, assuming that all the consecutive bytes
453   // are stored.  A store of i32 0x01020304 can never be turned into a memset,
454   // but it can be turned into memset_pattern if the target supports it.
455   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
456   Constant *PatternValue = nullptr;
457 
458   // Note: memset and memset_pattern on unordered-atomic is yet not supported
459   bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
460 
461   // If we're allowed to form a memset, and the stored value would be
462   // acceptable for memset, use it.
463   if (!UnorderedAtomic && HasMemset && SplatValue &&
464       // Verify that the stored value is loop invariant.  If not, we can't
465       // promote the memset.
466       CurLoop->isLoopInvariant(SplatValue)) {
467     // It looks like we can use SplatValue.
468     return LegalStoreKind::Memset;
469   } else if (!UnorderedAtomic && HasMemsetPattern &&
470              // Don't create memset_pattern16s with address spaces.
471              StorePtr->getType()->getPointerAddressSpace() == 0 &&
472              (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
473     // It looks like we can use PatternValue!
474     return LegalStoreKind::MemsetPattern;
475   }
476 
477   // Otherwise, see if the store can be turned into a memcpy.
478   if (HasMemcpy) {
479     // Check to see if the stride matches the size of the store.  If so, then we
480     // know that every byte is touched in the loop.
481     APInt Stride = getStoreStride(StoreEv);
482     unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
483     if (StoreSize != Stride && StoreSize != -Stride)
484       return LegalStoreKind::None;
485 
486     // The store must be feeding a non-volatile load.
487     LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
488 
489     // Only allow non-volatile loads
490     if (!LI || LI->isVolatile())
491       return LegalStoreKind::None;
492     // Only allow simple or unordered-atomic loads
493     if (!LI->isUnordered())
494       return LegalStoreKind::None;
495 
496     // See if the pointer expression is an AddRec like {base,+,1} on the current
497     // loop, which indicates a strided load.  If we have something else, it's a
498     // random load we can't handle.
499     const SCEVAddRecExpr *LoadEv =
500         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
501     if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
502       return LegalStoreKind::None;
503 
504     // The store and load must share the same stride.
505     if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
506       return LegalStoreKind::None;
507 
508     // Success.  This store can be converted into a memcpy.
509     UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
510     return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
511                            : LegalStoreKind::Memcpy;
512   }
513   // This store can't be transformed into a memset/memcpy.
514   return LegalStoreKind::None;
515 }
516 
517 void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
518   StoreRefsForMemset.clear();
519   StoreRefsForMemsetPattern.clear();
520   StoreRefsForMemcpy.clear();
521   for (Instruction &I : *BB) {
522     StoreInst *SI = dyn_cast<StoreInst>(&I);
523     if (!SI)
524       continue;
525 
526     // Make sure this is a strided store with a constant stride.
527     switch (isLegalStore(SI)) {
528     case LegalStoreKind::None:
529       // Nothing to do
530       break;
531     case LegalStoreKind::Memset: {
532       // Find the base pointer.
533       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
534       StoreRefsForMemset[Ptr].push_back(SI);
535     } break;
536     case LegalStoreKind::MemsetPattern: {
537       // Find the base pointer.
538       Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
539       StoreRefsForMemsetPattern[Ptr].push_back(SI);
540     } break;
541     case LegalStoreKind::Memcpy:
542     case LegalStoreKind::UnorderedAtomicMemcpy:
543       StoreRefsForMemcpy.push_back(SI);
544       break;
545     default:
546       assert(false && "unhandled return value");
547       break;
548     }
549   }
550 }
551 
552 /// runOnLoopBlock - Process the specified block, which lives in a counted loop
553 /// with the specified backedge count.  This block is known to be in the current
554 /// loop and not in any subloops.
555 bool LoopIdiomRecognize::runOnLoopBlock(
556     BasicBlock *BB, const SCEV *BECount,
557     SmallVectorImpl<BasicBlock *> &ExitBlocks) {
558   // We can only promote stores in this block if they are unconditionally
559   // executed in the loop.  For a block to be unconditionally executed, it has
560   // to dominate all the exit blocks of the loop.  Verify this now.
561   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
562     if (!DT->dominates(BB, ExitBlocks[i]))
563       return false;
564 
565   bool MadeChange = false;
566   // Look for store instructions, which may be optimized to memset/memcpy.
567   collectStores(BB);
568 
569   // Look for a single store or sets of stores with a common base, which can be
570   // optimized into a memset (memset_pattern).  The latter most commonly happens
571   // with structs and handunrolled loops.
572   for (auto &SL : StoreRefsForMemset)
573     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
574 
575   for (auto &SL : StoreRefsForMemsetPattern)
576     MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
577 
578   // Optimize the store into a memcpy, if it feeds an similarly strided load.
579   for (auto &SI : StoreRefsForMemcpy)
580     MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
581 
582   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
583     Instruction *Inst = &*I++;
584     // Look for memset instructions, which may be optimized to a larger memset.
585     if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
586       WeakTrackingVH InstPtr(&*I);
587       if (!processLoopMemSet(MSI, BECount))
588         continue;
589       MadeChange = true;
590 
591       // If processing the memset invalidated our iterator, start over from the
592       // top of the block.
593       if (!InstPtr)
594         I = BB->begin();
595       continue;
596     }
597   }
598 
599   return MadeChange;
600 }
601 
602 /// See if this store(s) can be promoted to a memset.
603 bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
604                                            const SCEV *BECount, ForMemset For) {
605   // Try to find consecutive stores that can be transformed into memsets.
606   SetVector<StoreInst *> Heads, Tails;
607   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
608 
609   // Do a quadratic search on all of the given stores and find
610   // all of the pairs of stores that follow each other.
611   SmallVector<unsigned, 16> IndexQueue;
612   for (unsigned i = 0, e = SL.size(); i < e; ++i) {
613     assert(SL[i]->isSimple() && "Expected only non-volatile stores.");
614 
615     Value *FirstStoredVal = SL[i]->getValueOperand();
616     Value *FirstStorePtr = SL[i]->getPointerOperand();
617     const SCEVAddRecExpr *FirstStoreEv =
618         cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
619     APInt FirstStride = getStoreStride(FirstStoreEv);
620     unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
621 
622     // See if we can optimize just this store in isolation.
623     if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
624       Heads.insert(SL[i]);
625       continue;
626     }
627 
628     Value *FirstSplatValue = nullptr;
629     Constant *FirstPatternValue = nullptr;
630 
631     if (For == ForMemset::Yes)
632       FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
633     else
634       FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
635 
636     assert((FirstSplatValue || FirstPatternValue) &&
637            "Expected either splat value or pattern value.");
638 
639     IndexQueue.clear();
640     // If a store has multiple consecutive store candidates, search Stores
641     // array according to the sequence: from i+1 to e, then from i-1 to 0.
642     // This is because usually pairing with immediate succeeding or preceding
643     // candidate create the best chance to find memset opportunity.
644     unsigned j = 0;
645     for (j = i + 1; j < e; ++j)
646       IndexQueue.push_back(j);
647     for (j = i; j > 0; --j)
648       IndexQueue.push_back(j - 1);
649 
650     for (auto &k : IndexQueue) {
651       assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
652       Value *SecondStorePtr = SL[k]->getPointerOperand();
653       const SCEVAddRecExpr *SecondStoreEv =
654           cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
655       APInt SecondStride = getStoreStride(SecondStoreEv);
656 
657       if (FirstStride != SecondStride)
658         continue;
659 
660       Value *SecondStoredVal = SL[k]->getValueOperand();
661       Value *SecondSplatValue = nullptr;
662       Constant *SecondPatternValue = nullptr;
663 
664       if (For == ForMemset::Yes)
665         SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
666       else
667         SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
668 
669       assert((SecondSplatValue || SecondPatternValue) &&
670              "Expected either splat value or pattern value.");
671 
672       if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
673         if (For == ForMemset::Yes) {
674           if (isa<UndefValue>(FirstSplatValue))
675             FirstSplatValue = SecondSplatValue;
676           if (FirstSplatValue != SecondSplatValue)
677             continue;
678         } else {
679           if (isa<UndefValue>(FirstPatternValue))
680             FirstPatternValue = SecondPatternValue;
681           if (FirstPatternValue != SecondPatternValue)
682             continue;
683         }
684         Tails.insert(SL[k]);
685         Heads.insert(SL[i]);
686         ConsecutiveChain[SL[i]] = SL[k];
687         break;
688       }
689     }
690   }
691 
692   // We may run into multiple chains that merge into a single chain. We mark the
693   // stores that we transformed so that we don't visit the same store twice.
694   SmallPtrSet<Value *, 16> TransformedStores;
695   bool Changed = false;
696 
697   // For stores that start but don't end a link in the chain:
698   for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
699        it != e; ++it) {
700     if (Tails.count(*it))
701       continue;
702 
703     // We found a store instr that starts a chain. Now follow the chain and try
704     // to transform it.
705     SmallPtrSet<Instruction *, 8> AdjacentStores;
706     StoreInst *I = *it;
707 
708     StoreInst *HeadStore = I;
709     unsigned StoreSize = 0;
710 
711     // Collect the chain into a list.
712     while (Tails.count(I) || Heads.count(I)) {
713       if (TransformedStores.count(I))
714         break;
715       AdjacentStores.insert(I);
716 
717       StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
718       // Move to the next value in the chain.
719       I = ConsecutiveChain[I];
720     }
721 
722     Value *StoredVal = HeadStore->getValueOperand();
723     Value *StorePtr = HeadStore->getPointerOperand();
724     const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
725     APInt Stride = getStoreStride(StoreEv);
726 
727     // Check to see if the stride matches the size of the stores.  If so, then
728     // we know that every byte is touched in the loop.
729     if (StoreSize != Stride && StoreSize != -Stride)
730       continue;
731 
732     bool NegStride = StoreSize == -Stride;
733 
734     if (processLoopStridedStore(StorePtr, StoreSize,
735                                 MaybeAlign(HeadStore->getAlignment()),
736                                 StoredVal, HeadStore, AdjacentStores, StoreEv,
737                                 BECount, NegStride)) {
738       TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
739       Changed = true;
740     }
741   }
742 
743   return Changed;
744 }
745 
746 /// processLoopMemSet - See if this memset can be promoted to a large memset.
747 bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
748                                            const SCEV *BECount) {
749   // We can only handle non-volatile memsets with a constant size.
750   if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
751     return false;
752 
753   // If we're not allowed to hack on memset, we fail.
754   if (!HasMemset)
755     return false;
756 
757   Value *Pointer = MSI->getDest();
758 
759   // See if the pointer expression is an AddRec like {base,+,1} on the current
760   // loop, which indicates a strided store.  If we have something else, it's a
761   // random store we can't handle.
762   const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
763   if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
764     return false;
765 
766   // Reject memsets that are so large that they overflow an unsigned.
767   uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
768   if ((SizeInBytes >> 32) != 0)
769     return false;
770 
771   // Check to see if the stride matches the size of the memset.  If so, then we
772   // know that every byte is touched in the loop.
773   const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
774   if (!ConstStride)
775     return false;
776 
777   APInt Stride = ConstStride->getAPInt();
778   if (SizeInBytes != Stride && SizeInBytes != -Stride)
779     return false;
780 
781   // Verify that the memset value is loop invariant.  If not, we can't promote
782   // the memset.
783   Value *SplatValue = MSI->getValue();
784   if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
785     return false;
786 
787   SmallPtrSet<Instruction *, 1> MSIs;
788   MSIs.insert(MSI);
789   bool NegStride = SizeInBytes == -Stride;
790   return processLoopStridedStore(
791       Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()),
792       SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true);
793 }
794 
795 /// mayLoopAccessLocation - Return true if the specified loop might access the
796 /// specified pointer location, which is a loop-strided access.  The 'Access'
797 /// argument specifies what the verboten forms of access are (read or write).
798 static bool
799 mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
800                       const SCEV *BECount, unsigned StoreSize,
801                       AliasAnalysis &AA,
802                       SmallPtrSetImpl<Instruction *> &IgnoredStores) {
803   // Get the location that may be stored across the loop.  Since the access is
804   // strided positively through memory, we say that the modified location starts
805   // at the pointer and has infinite size.
806   LocationSize AccessSize = LocationSize::unknown();
807 
808   // If the loop iterates a fixed number of times, we can refine the access size
809   // to be exactly the size of the memset, which is (BECount+1)*StoreSize
810   if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
811     AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
812                                        StoreSize);
813 
814   // TODO: For this to be really effective, we have to dive into the pointer
815   // operand in the store.  Store to &A[i] of 100 will always return may alias
816   // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
817   // which will then no-alias a store to &A[100].
818   MemoryLocation StoreLoc(Ptr, AccessSize);
819 
820   for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
821        ++BI)
822     for (Instruction &I : **BI)
823       if (IgnoredStores.count(&I) == 0 &&
824           isModOrRefSet(
825               intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
826         return true;
827 
828   return false;
829 }
830 
831 // If we have a negative stride, Start refers to the end of the memory location
832 // we're trying to memset.  Therefore, we need to recompute the base pointer,
833 // which is just Start - BECount*Size.
834 static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
835                                         Type *IntPtr, unsigned StoreSize,
836                                         ScalarEvolution *SE) {
837   const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
838   if (StoreSize != 1)
839     Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
840                            SCEV::FlagNUW);
841   return SE->getMinusSCEV(Start, Index);
842 }
843 
844 /// Compute the number of bytes as a SCEV from the backedge taken count.
845 ///
846 /// This also maps the SCEV into the provided type and tries to handle the
847 /// computation in a way that will fold cleanly.
848 static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
849                                unsigned StoreSize, Loop *CurLoop,
850                                const DataLayout *DL, ScalarEvolution *SE) {
851   const SCEV *NumBytesS;
852   // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
853   // pointer size if it isn't already.
854   //
855   // If we're going to need to zero extend the BE count, check if we can add
856   // one to it prior to zero extending without overflow. Provided this is safe,
857   // it allows better simplification of the +1.
858   if (DL->getTypeSizeInBits(BECount->getType()) <
859           DL->getTypeSizeInBits(IntPtr) &&
860       SE->isLoopEntryGuardedByCond(
861           CurLoop, ICmpInst::ICMP_NE, BECount,
862           SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
863     NumBytesS = SE->getZeroExtendExpr(
864         SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
865         IntPtr);
866   } else {
867     NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
868                                SE->getOne(IntPtr), SCEV::FlagNUW);
869   }
870 
871   // And scale it based on the store size.
872   if (StoreSize != 1) {
873     NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
874                                SCEV::FlagNUW);
875   }
876   return NumBytesS;
877 }
878 
879 /// processLoopStridedStore - We see a strided store of some value.  If we can
880 /// transform this into a memset or memset_pattern in the loop preheader, do so.
881 bool LoopIdiomRecognize::processLoopStridedStore(
882     Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment,
883     Value *StoredVal, Instruction *TheStore,
884     SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
885     const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
886   Value *SplatValue = isBytewiseValue(StoredVal, *DL);
887   Constant *PatternValue = nullptr;
888 
889   if (!SplatValue)
890     PatternValue = getMemSetPatternValue(StoredVal, DL);
891 
892   assert((SplatValue || PatternValue) &&
893          "Expected either splat value or pattern value.");
894 
895   // The trip count of the loop and the base pointer of the addrec SCEV is
896   // guaranteed to be loop invariant, which means that it should dominate the
897   // header.  This allows us to insert code for it in the preheader.
898   unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
899   BasicBlock *Preheader = CurLoop->getLoopPreheader();
900   IRBuilder<> Builder(Preheader->getTerminator());
901   SCEVExpander Expander(*SE, *DL, "loop-idiom");
902 
903   Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
904   Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
905 
906   const SCEV *Start = Ev->getStart();
907   // Handle negative strided loops.
908   if (NegStride)
909     Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);
910 
911   // TODO: ideally we should still be able to generate memset if SCEV expander
912   // is taught to generate the dependencies at the latest point.
913   if (!isSafeToExpand(Start, *SE))
914     return false;
915 
916   // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
917   // this into a memset in the loop preheader now if we want.  However, this
918   // would be unsafe to do if there is anything else in the loop that may read
919   // or write to the aliased location.  Check for any overlap by generating the
920   // base pointer and checking the region.
921   Value *BasePtr =
922       Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
923   if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
924                             StoreSize, *AA, Stores)) {
925     Expander.clear();
926     // If we generated new code for the base pointer, clean up.
927     RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
928     return false;
929   }
930 
931   if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
932     return false;
933 
934   // Okay, everything looks good, insert the memset.
935 
936   const SCEV *NumBytesS =
937       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
938 
939   // TODO: ideally we should still be able to generate memset if SCEV expander
940   // is taught to generate the dependencies at the latest point.
941   if (!isSafeToExpand(NumBytesS, *SE))
942     return false;
943 
944   Value *NumBytes =
945       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
946 
947   CallInst *NewCall;
948   if (SplatValue) {
949     NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
950                                    MaybeAlign(StoreAlignment));
951   } else {
952     // Everything is emitted in default address space
953     Type *Int8PtrTy = DestInt8PtrTy;
954 
955     Module *M = TheStore->getModule();
956     StringRef FuncName = "memset_pattern16";
957     FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
958                                                 Int8PtrTy, Int8PtrTy, IntIdxTy);
959     inferLibFuncAttributes(M, FuncName, *TLI);
960 
961     // Otherwise we should form a memset_pattern16.  PatternValue is known to be
962     // an constant array of 16-bytes.  Plop the value into a mergable global.
963     GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
964                                             GlobalValue::PrivateLinkage,
965                                             PatternValue, ".memset_pattern");
966     GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
967     GV->setAlignment(Align(16));
968     Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
969     NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
970   }
971 
972   LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
973                     << "    from store to: " << *Ev << " at: " << *TheStore
974                     << "\n");
975   NewCall->setDebugLoc(TheStore->getDebugLoc());
976 
977   ORE.emit([&]() {
978     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
979                               NewCall->getDebugLoc(), Preheader)
980            << "Transformed loop-strided store into a call to "
981            << ore::NV("NewFunction", NewCall->getCalledFunction())
982            << "() function";
983   });
984 
985   // Okay, the memset has been formed.  Zap the original store and anything that
986   // feeds into it.
987   for (auto *I : Stores)
988     deleteDeadInstruction(I);
989   ++NumMemSet;
990   return true;
991 }
992 
993 /// If the stored value is a strided load in the same loop with the same stride
994 /// this may be transformable into a memcpy.  This kicks in for stuff like
995 /// for (i) A[i] = B[i];
996 bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
997                                                     const SCEV *BECount) {
998   assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");
999 
1000   Value *StorePtr = SI->getPointerOperand();
1001   const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1002   APInt Stride = getStoreStride(StoreEv);
1003   unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1004   bool NegStride = StoreSize == -Stride;
1005 
1006   // The store must be feeding a non-volatile load.
1007   LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1008   assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");
1009 
1010   // See if the pointer expression is an AddRec like {base,+,1} on the current
1011   // loop, which indicates a strided load.  If we have something else, it's a
1012   // random load we can't handle.
1013   const SCEVAddRecExpr *LoadEv =
1014       cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1015 
1016   // The trip count of the loop and the base pointer of the addrec SCEV is
1017   // guaranteed to be loop invariant, which means that it should dominate the
1018   // header.  This allows us to insert code for it in the preheader.
1019   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1020   IRBuilder<> Builder(Preheader->getTerminator());
1021   SCEVExpander Expander(*SE, *DL, "loop-idiom");
1022 
1023   const SCEV *StrStart = StoreEv->getStart();
1024   unsigned StrAS = SI->getPointerAddressSpace();
1025   Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1026 
1027   // Handle negative strided loops.
1028   if (NegStride)
1029     StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);
1030 
1031   // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
1032   // this into a memcpy in the loop preheader now if we want.  However, this
1033   // would be unsafe to do if there is anything else in the loop that may read
1034   // or write the memory region we're storing to.  This includes the load that
1035   // feeds the stores.  Check for an alias by generating the base address and
1036   // checking everything.
1037   Value *StoreBasePtr = Expander.expandCodeFor(
1038       StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1039 
1040   SmallPtrSet<Instruction *, 1> Stores;
1041   Stores.insert(SI);
1042   if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1043                             StoreSize, *AA, Stores)) {
1044     Expander.clear();
1045     // If we generated new code for the base pointer, clean up.
1046     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1047     return false;
1048   }
1049 
1050   const SCEV *LdStart = LoadEv->getStart();
1051   unsigned LdAS = LI->getPointerAddressSpace();
1052 
1053   // Handle negative strided loops.
1054   if (NegStride)
1055     LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);
1056 
1057   // For a memcpy, we have to make sure that the input array is not being
1058   // mutated by the loop.
1059   Value *LoadBasePtr = Expander.expandCodeFor(
1060       LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1061 
1062   if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1063                             StoreSize, *AA, Stores)) {
1064     Expander.clear();
1065     // If we generated new code for the base pointer, clean up.
1066     RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
1067     RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1068     return false;
1069   }
1070 
1071   if (avoidLIRForMultiBlockLoop())
1072     return false;
1073 
1074   // Okay, everything is safe, we can transform this!
1075 
1076   const SCEV *NumBytesS =
1077       getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
1078 
1079   Value *NumBytes =
1080       Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1081 
1082   CallInst *NewCall = nullptr;
1083   // Check whether to generate an unordered atomic memcpy:
1084   //  If the load or store are atomic, then they must necessarily be unordered
1085   //  by previous checks.
1086   if (!SI->isAtomic() && !LI->isAtomic())
1087     NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
1088                                    LI->getAlign(), NumBytes);
1089   else {
1090     // We cannot allow unaligned ops for unordered load/store, so reject
1091     // anything where the alignment isn't at least the element size.
1092     unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
1093     if (Align < StoreSize)
1094       return false;
1095 
1096     // If the element.atomic memcpy is not lowered into explicit
1097     // loads/stores later, then it will be lowered into an element-size
1098     // specific lib call. If the lib call doesn't exist for our store size, then
1099     // we shouldn't generate the memcpy.
1100     if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1101       return false;
1102 
1103     // Create the call.
1104     // Note that unordered atomic loads/stores are *required* by the spec to
1105     // have an alignment but non-atomic loads/stores may not.
1106     NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1107         StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
1108         NumBytes, StoreSize);
1109   }
1110   NewCall->setDebugLoc(SI->getDebugLoc());
1111 
1112   LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
1113                     << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
1114                     << "    from store ptr=" << *StoreEv << " at: " << *SI
1115                     << "\n");
1116 
1117   ORE.emit([&]() {
1118     return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
1119                               NewCall->getDebugLoc(), Preheader)
1120            << "Formed a call to "
1121            << ore::NV("NewFunction", NewCall->getCalledFunction())
1122            << "() function";
1123   });
1124 
1125   // Okay, the memcpy has been formed.  Zap the original store and anything that
1126   // feeds into it.
1127   deleteDeadInstruction(SI);
1128   ++NumMemCpy;
1129   return true;
1130 }
1131 
1132 // When compiling for codesize we avoid idiom recognition for a multi-block loop
1133 // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1134 //
1135 bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1136                                                    bool IsLoopMemset) {
1137   if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1138     if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1139       LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
1140                         << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
1141                         << " avoided: multi-block top-level loop\n");
1142       return true;
1143     }
1144   }
1145 
1146   return false;
1147 }
1148 
1149 bool LoopIdiomRecognize::runOnNoncountableLoop() {
1150   LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
1151                     << CurLoop->getHeader()->getParent()->getName()
1152                     << "] Noncountable Loop %"
1153                     << CurLoop->getHeader()->getName() << "\n");
1154 
1155   return recognizePopcount() || recognizeAndInsertFFS();
1156 }
1157 
1158 /// Check if the given conditional branch is based on the comparison between
1159 /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1160 /// true), the control yields to the loop entry. If the branch matches the
1161 /// behavior, the variable involved in the comparison is returned. This function
1162 /// will be called to see if the precondition and postcondition of the loop are
1163 /// in desirable form.
1164 static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1165                              bool JmpOnZero = false) {
1166   if (!BI || !BI->isConditional())
1167     return nullptr;
1168 
1169   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1170   if (!Cond)
1171     return nullptr;
1172 
1173   ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1174   if (!CmpZero || !CmpZero->isZero())
1175     return nullptr;
1176 
1177   BasicBlock *TrueSucc = BI->getSuccessor(0);
1178   BasicBlock *FalseSucc = BI->getSuccessor(1);
1179   if (JmpOnZero)
1180     std::swap(TrueSucc, FalseSucc);
1181 
1182   ICmpInst::Predicate Pred = Cond->getPredicate();
1183   if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1184       (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1185     return Cond->getOperand(0);
1186 
1187   return nullptr;
1188 }
1189 
1190 // Check if the recurrence variable `VarX` is in the right form to create
1191 // the idiom. Returns the value coerced to a PHINode if so.
1192 static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1193                                  BasicBlock *LoopEntry) {
1194   auto *PhiX = dyn_cast<PHINode>(VarX);
1195   if (PhiX && PhiX->getParent() == LoopEntry &&
1196       (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1197     return PhiX;
1198   return nullptr;
1199 }
1200 
1201 /// Return true iff the idiom is detected in the loop.
1202 ///
1203 /// Additionally:
1204 /// 1) \p CntInst is set to the instruction counting the population bit.
1205 /// 2) \p CntPhi is set to the corresponding phi node.
1206 /// 3) \p Var is set to the value whose population bits are being counted.
1207 ///
1208 /// The core idiom we are trying to detect is:
1209 /// \code
1210 ///    if (x0 != 0)
1211 ///      goto loop-exit // the precondition of the loop
1212 ///    cnt0 = init-val;
1213 ///    do {
1214 ///       x1 = phi (x0, x2);
1215 ///       cnt1 = phi(cnt0, cnt2);
1216 ///
1217 ///       cnt2 = cnt1 + 1;
1218 ///        ...
1219 ///       x2 = x1 & (x1 - 1);
1220 ///        ...
1221 ///    } while(x != 0);
1222 ///
1223 /// loop-exit:
1224 /// \endcode
1225 static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1226                                 Instruction *&CntInst, PHINode *&CntPhi,
1227                                 Value *&Var) {
1228   // step 1: Check to see if the look-back branch match this pattern:
1229   //    "if (a!=0) goto loop-entry".
1230   BasicBlock *LoopEntry;
1231   Instruction *DefX2, *CountInst;
1232   Value *VarX1, *VarX0;
1233   PHINode *PhiX, *CountPhi;
1234 
1235   DefX2 = CountInst = nullptr;
1236   VarX1 = VarX0 = nullptr;
1237   PhiX = CountPhi = nullptr;
1238   LoopEntry = *(CurLoop->block_begin());
1239 
1240   // step 1: Check if the loop-back branch is in desirable form.
1241   {
1242     if (Value *T = matchCondition(
1243             dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1244       DefX2 = dyn_cast<Instruction>(T);
1245     else
1246       return false;
1247   }
1248 
1249   // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1250   {
1251     if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1252       return false;
1253 
1254     BinaryOperator *SubOneOp;
1255 
1256     if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1257       VarX1 = DefX2->getOperand(1);
1258     else {
1259       VarX1 = DefX2->getOperand(0);
1260       SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1261     }
1262     if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1263       return false;
1264 
1265     ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1266     if (!Dec ||
1267         !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1268           (SubOneOp->getOpcode() == Instruction::Add &&
1269            Dec->isMinusOne()))) {
1270       return false;
1271     }
1272   }
1273 
1274   // step 3: Check the recurrence of variable X
1275   PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1276   if (!PhiX)
1277     return false;
1278 
1279   // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1280   {
1281     CountInst = nullptr;
1282     for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1283                               IterE = LoopEntry->end();
1284          Iter != IterE; Iter++) {
1285       Instruction *Inst = &*Iter;
1286       if (Inst->getOpcode() != Instruction::Add)
1287         continue;
1288 
1289       ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1290       if (!Inc || !Inc->isOne())
1291         continue;
1292 
1293       PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1294       if (!Phi)
1295         continue;
1296 
1297       // Check if the result of the instruction is live of the loop.
1298       bool LiveOutLoop = false;
1299       for (User *U : Inst->users()) {
1300         if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1301           LiveOutLoop = true;
1302           break;
1303         }
1304       }
1305 
1306       if (LiveOutLoop) {
1307         CountInst = Inst;
1308         CountPhi = Phi;
1309         break;
1310       }
1311     }
1312 
1313     if (!CountInst)
1314       return false;
1315   }
1316 
1317   // step 5: check if the precondition is in this form:
1318   //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1319   {
1320     auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1321     Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1322     if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1323       return false;
1324 
1325     CntInst = CountInst;
1326     CntPhi = CountPhi;
1327     Var = T;
1328   }
1329 
1330   return true;
1331 }
1332 
1333 /// Return true if the idiom is detected in the loop.
1334 ///
1335 /// Additionally:
1336 /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1337 ///       or nullptr if there is no such.
1338 /// 2) \p CntPhi is set to the corresponding phi node
1339 ///       or nullptr if there is no such.
1340 /// 3) \p Var is set to the value whose CTLZ could be used.
1341 /// 4) \p DefX is set to the instruction calculating Loop exit condition.
1342 ///
1343 /// The core idiom we are trying to detect is:
1344 /// \code
1345 ///    if (x0 == 0)
1346 ///      goto loop-exit // the precondition of the loop
1347 ///    cnt0 = init-val;
1348 ///    do {
1349 ///       x = phi (x0, x.next);   //PhiX
1350 ///       cnt = phi(cnt0, cnt.next);
1351 ///
1352 ///       cnt.next = cnt + 1;
1353 ///        ...
1354 ///       x.next = x >> 1;   // DefX
1355 ///        ...
1356 ///    } while(x.next != 0);
1357 ///
1358 /// loop-exit:
1359 /// \endcode
1360 static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1361                                       Intrinsic::ID &IntrinID, Value *&InitX,
1362                                       Instruction *&CntInst, PHINode *&CntPhi,
1363                                       Instruction *&DefX) {
1364   BasicBlock *LoopEntry;
1365   Value *VarX = nullptr;
1366 
1367   DefX = nullptr;
1368   CntInst = nullptr;
1369   CntPhi = nullptr;
1370   LoopEntry = *(CurLoop->block_begin());
1371 
1372   // step 1: Check if the loop-back branch is in desirable form.
1373   if (Value *T = matchCondition(
1374           dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1375     DefX = dyn_cast<Instruction>(T);
1376   else
1377     return false;
1378 
1379   // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1380   if (!DefX || !DefX->isShift())
1381     return false;
1382   IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
1383                                                      Intrinsic::ctlz;
1384   ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
1385   if (!Shft || !Shft->isOne())
1386     return false;
1387   VarX = DefX->getOperand(0);
1388 
1389   // step 3: Check the recurrence of variable X
1390   PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1391   if (!PhiX)
1392     return false;
1393 
1394   InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
1395 
1396   // Make sure the initial value can't be negative otherwise the ashr in the
1397   // loop might never reach zero which would make the loop infinite.
1398   if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
1399     return false;
1400 
1401   // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1402   // TODO: We can skip the step. If loop trip count is known (CTLZ),
1403   //       then all uses of "cnt.next" could be optimized to the trip count
1404   //       plus "cnt0". Currently it is not optimized.
1405   //       This step could be used to detect POPCNT instruction:
1406   //       cnt.next = cnt + (x.next & 1)
1407   for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1408                             IterE = LoopEntry->end();
1409        Iter != IterE; Iter++) {
1410     Instruction *Inst = &*Iter;
1411     if (Inst->getOpcode() != Instruction::Add)
1412       continue;
1413 
1414     ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1415     if (!Inc || !Inc->isOne())
1416       continue;
1417 
1418     PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1419     if (!Phi)
1420       continue;
1421 
1422     CntInst = Inst;
1423     CntPhi = Phi;
1424     break;
1425   }
1426   if (!CntInst)
1427     return false;
1428 
1429   return true;
1430 }
1431 
1432 /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1433 /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1434 /// trip count returns true; otherwise, returns false.
1435 bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1436   // Give up if the loop has multiple blocks or multiple backedges.
1437   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1438     return false;
1439 
1440   Intrinsic::ID IntrinID;
1441   Value *InitX;
1442   Instruction *DefX = nullptr;
1443   PHINode *CntPhi = nullptr;
1444   Instruction *CntInst = nullptr;
1445   // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1446   // this is always 6.
1447   size_t IdiomCanonicalSize = 6;
1448 
1449   if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
1450                                  CntInst, CntPhi, DefX))
1451     return false;
1452 
1453   bool IsCntPhiUsedOutsideLoop = false;
1454   for (User *U : CntPhi->users())
1455     if (!CurLoop->contains(cast<Instruction>(U))) {
1456       IsCntPhiUsedOutsideLoop = true;
1457       break;
1458     }
1459   bool IsCntInstUsedOutsideLoop = false;
1460   for (User *U : CntInst->users())
1461     if (!CurLoop->contains(cast<Instruction>(U))) {
1462       IsCntInstUsedOutsideLoop = true;
1463       break;
1464     }
1465   // If both CntInst and CntPhi are used outside the loop the profitability
1466   // is questionable.
1467   if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
1468     return false;
1469 
1470   // For some CPUs result of CTLZ(X) intrinsic is undefined
1471   // when X is 0. If we can not guarantee X != 0, we need to check this
1472   // when expand.
1473   bool ZeroCheck = false;
1474   // It is safe to assume Preheader exist as it was checked in
1475   // parent function RunOnLoop.
1476   BasicBlock *PH = CurLoop->getLoopPreheader();
1477 
1478   // If we are using the count instruction outside the loop, make sure we
1479   // have a zero check as a precondition. Without the check the loop would run
1480   // one iteration for before any check of the input value. This means 0 and 1
1481   // would have identical behavior in the original loop and thus
1482   if (!IsCntPhiUsedOutsideLoop) {
1483     auto *PreCondBB = PH->getSinglePredecessor();
1484     if (!PreCondBB)
1485       return false;
1486     auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1487     if (!PreCondBI)
1488       return false;
1489     if (matchCondition(PreCondBI, PH) != InitX)
1490       return false;
1491     ZeroCheck = true;
1492   }
1493 
1494   // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1495   // profitable if we delete the loop.
1496 
1497   // the loop has only 6 instructions:
1498   //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1499   //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1500   //  %shr = ashr %n.addr.0, 1
1501   //  %tobool = icmp eq %shr, 0
1502   //  %inc = add nsw %i.0, 1
1503   //  br i1 %tobool
1504 
1505   const Value *Args[] =
1506       {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
1507                         : ConstantInt::getFalse(InitX->getContext())};
1508 
1509   // @llvm.dbg doesn't count as they have no semantic effect.
1510   auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1511   uint32_t HeaderSize =
1512       std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1513 
1514   if (HeaderSize != IdiomCanonicalSize &&
1515       TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) >
1516           TargetTransformInfo::TCC_Basic)
1517     return false;
1518 
1519   transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1520                            DefX->getDebugLoc(), ZeroCheck,
1521                            IsCntPhiUsedOutsideLoop);
1522   return true;
1523 }
1524 
1525 /// Recognizes a population count idiom in a non-countable loop.
1526 ///
1527 /// If detected, transforms the relevant code to issue the popcount intrinsic
1528 /// function call, and returns true; otherwise, returns false.
1529 bool LoopIdiomRecognize::recognizePopcount() {
1530   if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1531     return false;
1532 
1533   // Counting population are usually conducted by few arithmetic instructions.
1534   // Such instructions can be easily "absorbed" by vacant slots in a
1535   // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1536   // in a compact loop.
1537 
1538   // Give up if the loop has multiple blocks or multiple backedges.
1539   if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1540     return false;
1541 
1542   BasicBlock *LoopBody = *(CurLoop->block_begin());
1543   if (LoopBody->size() >= 20) {
1544     // The loop is too big, bail out.
1545     return false;
1546   }
1547 
1548   // It should have a preheader containing nothing but an unconditional branch.
1549   BasicBlock *PH = CurLoop->getLoopPreheader();
1550   if (!PH || &PH->front() != PH->getTerminator())
1551     return false;
1552   auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1553   if (!EntryBI || EntryBI->isConditional())
1554     return false;
1555 
1556   // It should have a precondition block where the generated popcount intrinsic
1557   // function can be inserted.
1558   auto *PreCondBB = PH->getSinglePredecessor();
1559   if (!PreCondBB)
1560     return false;
1561   auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1562   if (!PreCondBI || PreCondBI->isUnconditional())
1563     return false;
1564 
1565   Instruction *CntInst;
1566   PHINode *CntPhi;
1567   Value *Val;
1568   if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1569     return false;
1570 
1571   transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1572   return true;
1573 }
1574 
1575 static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1576                                        const DebugLoc &DL) {
1577   Value *Ops[] = {Val};
1578   Type *Tys[] = {Val->getType()};
1579 
1580   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1581   Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1582   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1583   CI->setDebugLoc(DL);
1584 
1585   return CI;
1586 }
1587 
1588 static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1589                                     const DebugLoc &DL, bool ZeroCheck,
1590                                     Intrinsic::ID IID) {
1591   Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1592   Type *Tys[] = {Val->getType()};
1593 
1594   Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1595   Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1596   CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1597   CI->setDebugLoc(DL);
1598 
1599   return CI;
1600 }
1601 
1602 /// Transform the following loop (Using CTLZ, CTTZ is similar):
1603 /// loop:
1604 ///   CntPhi = PHI [Cnt0, CntInst]
1605 ///   PhiX = PHI [InitX, DefX]
1606 ///   CntInst = CntPhi + 1
1607 ///   DefX = PhiX >> 1
1608 ///   LOOP_BODY
1609 ///   Br: loop if (DefX != 0)
1610 /// Use(CntPhi) or Use(CntInst)
1611 ///
1612 /// Into:
1613 /// If CntPhi used outside the loop:
1614 ///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1615 ///   Count = CountPrev + 1
1616 /// else
1617 ///   Count = BitWidth(InitX) - CTLZ(InitX)
1618 /// loop:
1619 ///   CntPhi = PHI [Cnt0, CntInst]
1620 ///   PhiX = PHI [InitX, DefX]
1621 ///   PhiCount = PHI [Count, Dec]
1622 ///   CntInst = CntPhi + 1
1623 ///   DefX = PhiX >> 1
1624 ///   Dec = PhiCount - 1
1625 ///   LOOP_BODY
1626 ///   Br: loop if (Dec != 0)
1627 /// Use(CountPrev + Cnt0) // Use(CntPhi)
1628 /// or
1629 /// Use(Count + Cnt0) // Use(CntInst)
1630 ///
1631 /// If LOOP_BODY is empty the loop will be deleted.
1632 /// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1633 void LoopIdiomRecognize::transformLoopToCountable(
1634     Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1635     PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1636     bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1637   BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1638 
1639   // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1640   IRBuilder<> Builder(PreheaderBr);
1641   Builder.SetCurrentDebugLocation(DL);
1642   Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
1643 
1644   //   Count = BitWidth - CTLZ(InitX);
1645   // If there are uses of CntPhi create:
1646   //   CountPrev = BitWidth - CTLZ(InitX >> 1);
1647   if (IsCntPhiUsedOutsideLoop) {
1648     if (DefX->getOpcode() == Instruction::AShr)
1649       InitXNext =
1650           Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1651     else if (DefX->getOpcode() == Instruction::LShr)
1652       InitXNext =
1653           Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1654     else if (DefX->getOpcode() == Instruction::Shl) // cttz
1655       InitXNext =
1656           Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
1657     else
1658       llvm_unreachable("Unexpected opcode!");
1659   } else
1660     InitXNext = InitX;
1661   FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1662   Count = Builder.CreateSub(
1663       ConstantInt::get(FFS->getType(),
1664                        FFS->getType()->getIntegerBitWidth()),
1665       FFS);
1666   if (IsCntPhiUsedOutsideLoop) {
1667     CountPrev = Count;
1668     Count = Builder.CreateAdd(
1669         CountPrev,
1670         ConstantInt::get(CountPrev->getType(), 1));
1671   }
1672 
1673   NewCount = Builder.CreateZExtOrTrunc(
1674                       IsCntPhiUsedOutsideLoop ? CountPrev : Count,
1675                       cast<IntegerType>(CntInst->getType()));
1676 
1677   // If the counter's initial value is not zero, insert Add Inst.
1678   Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1679   ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1680   if (!InitConst || !InitConst->isZero())
1681     NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1682 
1683   // Step 2: Insert new IV and loop condition:
1684   // loop:
1685   //   ...
1686   //   PhiCount = PHI [Count, Dec]
1687   //   ...
1688   //   Dec = PhiCount - 1
1689   //   ...
1690   //   Br: loop if (Dec != 0)
1691   BasicBlock *Body = *(CurLoop->block_begin());
1692   auto *LbBr = cast<BranchInst>(Body->getTerminator());
1693   ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1694   Type *Ty = Count->getType();
1695 
1696   PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1697 
1698   Builder.SetInsertPoint(LbCond);
1699   Instruction *TcDec = cast<Instruction>(
1700       Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1701                         "tcdec", false, true));
1702 
1703   TcPhi->addIncoming(Count, Preheader);
1704   TcPhi->addIncoming(TcDec, Body);
1705 
1706   CmpInst::Predicate Pred =
1707       (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1708   LbCond->setPredicate(Pred);
1709   LbCond->setOperand(0, TcDec);
1710   LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1711 
1712   // Step 3: All the references to the original counter outside
1713   //  the loop are replaced with the NewCount
1714   if (IsCntPhiUsedOutsideLoop)
1715     CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1716   else
1717     CntInst->replaceUsesOutsideBlock(NewCount, Body);
1718 
1719   // step 4: Forget the "non-computable" trip-count SCEV associated with the
1720   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1721   SE->forgetLoop(CurLoop);
1722 }
1723 
1724 void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1725                                                  Instruction *CntInst,
1726                                                  PHINode *CntPhi, Value *Var) {
1727   BasicBlock *PreHead = CurLoop->getLoopPreheader();
1728   auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1729   const DebugLoc &DL = CntInst->getDebugLoc();
1730 
1731   // Assuming before transformation, the loop is following:
1732   //  if (x) // the precondition
1733   //     do { cnt++; x &= x - 1; } while(x);
1734 
1735   // Step 1: Insert the ctpop instruction at the end of the precondition block
1736   IRBuilder<> Builder(PreCondBr);
1737   Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1738   {
1739     PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1740     NewCount = PopCntZext =
1741         Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1742 
1743     if (NewCount != PopCnt)
1744       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1745 
1746     // TripCnt is exactly the number of iterations the loop has
1747     TripCnt = NewCount;
1748 
1749     // If the population counter's initial value is not zero, insert Add Inst.
1750     Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1751     ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1752     if (!InitConst || !InitConst->isZero()) {
1753       NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1754       (cast<Instruction>(NewCount))->setDebugLoc(DL);
1755     }
1756   }
1757 
1758   // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1759   //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1760   //   function would be partial dead code, and downstream passes will drag
1761   //   it back from the precondition block to the preheader.
1762   {
1763     ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1764 
1765     Value *Opnd0 = PopCntZext;
1766     Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1767     if (PreCond->getOperand(0) != Var)
1768       std::swap(Opnd0, Opnd1);
1769 
1770     ICmpInst *NewPreCond = cast<ICmpInst>(
1771         Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1772     PreCondBr->setCondition(NewPreCond);
1773 
1774     RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1775   }
1776 
1777   // Step 3: Note that the population count is exactly the trip count of the
1778   // loop in question, which enable us to convert the loop from noncountable
1779   // loop into a countable one. The benefit is twofold:
1780   //
1781   //  - If the loop only counts population, the entire loop becomes dead after
1782   //    the transformation. It is a lot easier to prove a countable loop dead
1783   //    than to prove a noncountable one. (In some C dialects, an infinite loop
1784   //    isn't dead even if it computes nothing useful. In general, DCE needs
1785   //    to prove a noncountable loop finite before safely delete it.)
1786   //
1787   //  - If the loop also performs something else, it remains alive.
1788   //    Since it is transformed to countable form, it can be aggressively
1789   //    optimized by some optimizations which are in general not applicable
1790   //    to a noncountable loop.
1791   //
1792   // After this step, this loop (conceptually) would look like following:
1793   //   newcnt = __builtin_ctpop(x);
1794   //   t = newcnt;
1795   //   if (x)
1796   //     do { cnt++; x &= x-1; t--) } while (t > 0);
1797   BasicBlock *Body = *(CurLoop->block_begin());
1798   {
1799     auto *LbBr = cast<BranchInst>(Body->getTerminator());
1800     ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1801     Type *Ty = TripCnt->getType();
1802 
1803     PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1804 
1805     Builder.SetInsertPoint(LbCond);
1806     Instruction *TcDec = cast<Instruction>(
1807         Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1808                           "tcdec", false, true));
1809 
1810     TcPhi->addIncoming(TripCnt, PreHead);
1811     TcPhi->addIncoming(TcDec, Body);
1812 
1813     CmpInst::Predicate Pred =
1814         (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1815     LbCond->setPredicate(Pred);
1816     LbCond->setOperand(0, TcDec);
1817     LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1818   }
1819 
1820   // Step 4: All the references to the original population counter outside
1821   //  the loop are replaced with the NewCount -- the value returned from
1822   //  __builtin_ctpop().
1823   CntInst->replaceUsesOutsideBlock(NewCount, Body);
1824 
1825   // step 5: Forget the "non-computable" trip-count SCEV associated with the
1826   //   loop. The loop would otherwise not be deleted even if it becomes empty.
1827   SE->forgetLoop(CurLoop);
1828 }
1829