xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFuse.cpp (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 ///       Code Transformations to Augment the Scope of Loop Fusion in a
14 ///         Production Compiler
15 ///       Christopher Mark Barton
16 ///       MSc Thesis
17 ///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 ///    1. The loops must be adjacent (there cannot be any statements between
23 ///       the two loops).
24 ///    2. The loops must be conforming (they must execute the same number of
25 ///       iterations).
26 ///    3. The loops must be control flow equivalent (if one loop executes, the
27 ///       other is guaranteed to execute).
28 ///    4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/DomTreeUpdater.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/PostDominators.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/InitializePasses.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
67 
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "loop-fusion"
71 
72 STATISTIC(FuseCounter, "Loops fused");
73 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
74 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
75 STATISTIC(InvalidHeader, "Loop has invalid header");
76 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
77 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
78 STATISTIC(InvalidLatch, "Loop has invalid latch");
79 STATISTIC(InvalidLoop, "Loop is invalid");
80 STATISTIC(AddressTakenBB, "Basic block has address taken");
81 STATISTIC(MayThrowException, "Loop may throw an exception");
82 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
83 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
84 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
85 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
86 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
87 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
88 STATISTIC(NonAdjacent, "Loops are not adjacent");
89 STATISTIC(
90     NonEmptyPreheader,
91     "Loop has a non-empty preheader with instructions that cannot be moved");
92 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
93 STATISTIC(NonIdenticalGuards, "Candidates have different guards");
94 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
95                              "instructions that cannot be moved");
96 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
97                               "instructions that cannot be moved");
98 STATISTIC(NotRotated, "Candidate is not rotated");
99 
100 enum FusionDependenceAnalysisChoice {
101   FUSION_DEPENDENCE_ANALYSIS_SCEV,
102   FUSION_DEPENDENCE_ANALYSIS_DA,
103   FUSION_DEPENDENCE_ANALYSIS_ALL,
104 };
105 
106 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
107     "loop-fusion-dependence-analysis",
108     cl::desc("Which dependence analysis should loop fusion use?"),
109     cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
110                           "Use the scalar evolution interface"),
111                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
112                           "Use the dependence analysis interface"),
113                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
114                           "Use all available analyses")),
115     cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
116 
117 #ifndef NDEBUG
118 static cl::opt<bool>
119     VerboseFusionDebugging("loop-fusion-verbose-debug",
120                            cl::desc("Enable verbose debugging for Loop Fusion"),
121                            cl::Hidden, cl::init(false), cl::ZeroOrMore);
122 #endif
123 
124 namespace {
125 /// This class is used to represent a candidate for loop fusion. When it is
126 /// constructed, it checks the conditions for loop fusion to ensure that it
127 /// represents a valid candidate. It caches several parts of a loop that are
128 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
129 /// of continually querying the underlying Loop to retrieve these values. It is
130 /// assumed these will not change throughout loop fusion.
131 ///
132 /// The invalidate method should be used to indicate that the FusionCandidate is
133 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
134 /// be used to ensure that the FusionCandidate is still valid for fusion.
135 struct FusionCandidate {
136   /// Cache of parts of the loop used throughout loop fusion. These should not
137   /// need to change throughout the analysis and transformation.
138   /// These parts are cached to avoid repeatedly looking up in the Loop class.
139 
140   /// Preheader of the loop this candidate represents
141   BasicBlock *Preheader;
142   /// Header of the loop this candidate represents
143   BasicBlock *Header;
144   /// Blocks in the loop that exit the loop
145   BasicBlock *ExitingBlock;
146   /// The successor block of this loop (where the exiting blocks go to)
147   BasicBlock *ExitBlock;
148   /// Latch of the loop
149   BasicBlock *Latch;
150   /// The loop that this fusion candidate represents
151   Loop *L;
152   /// Vector of instructions in this loop that read from memory
153   SmallVector<Instruction *, 16> MemReads;
154   /// Vector of instructions in this loop that write to memory
155   SmallVector<Instruction *, 16> MemWrites;
156   /// Are all of the members of this fusion candidate still valid
157   bool Valid;
158   /// Guard branch of the loop, if it exists
159   BranchInst *GuardBranch;
160 
161   /// Dominator and PostDominator trees are needed for the
162   /// FusionCandidateCompare function, required by FusionCandidateSet to
163   /// determine where the FusionCandidate should be inserted into the set. These
164   /// are used to establish ordering of the FusionCandidates based on dominance.
165   const DominatorTree *DT;
166   const PostDominatorTree *PDT;
167 
168   OptimizationRemarkEmitter &ORE;
169 
170   FusionCandidate(Loop *L, const DominatorTree *DT,
171                   const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
172       : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
173         ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
174         Latch(L->getLoopLatch()), L(L), Valid(true),
175         GuardBranch(L->getLoopGuardBranch()), DT(DT), PDT(PDT), ORE(ORE) {
176 
177     // Walk over all blocks in the loop and check for conditions that may
178     // prevent fusion. For each block, walk over all instructions and collect
179     // the memory reads and writes If any instructions that prevent fusion are
180     // found, invalidate this object and return.
181     for (BasicBlock *BB : L->blocks()) {
182       if (BB->hasAddressTaken()) {
183         invalidate();
184         reportInvalidCandidate(AddressTakenBB);
185         return;
186       }
187 
188       for (Instruction &I : *BB) {
189         if (I.mayThrow()) {
190           invalidate();
191           reportInvalidCandidate(MayThrowException);
192           return;
193         }
194         if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
195           if (SI->isVolatile()) {
196             invalidate();
197             reportInvalidCandidate(ContainsVolatileAccess);
198             return;
199           }
200         }
201         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
202           if (LI->isVolatile()) {
203             invalidate();
204             reportInvalidCandidate(ContainsVolatileAccess);
205             return;
206           }
207         }
208         if (I.mayWriteToMemory())
209           MemWrites.push_back(&I);
210         if (I.mayReadFromMemory())
211           MemReads.push_back(&I);
212       }
213     }
214   }
215 
216   /// Check if all members of the class are valid.
217   bool isValid() const {
218     return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
219            !L->isInvalid() && Valid;
220   }
221 
222   /// Verify that all members are in sync with the Loop object.
223   void verify() const {
224     assert(isValid() && "Candidate is not valid!!");
225     assert(!L->isInvalid() && "Loop is invalid!");
226     assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
227     assert(Header == L->getHeader() && "Header is out of sync");
228     assert(ExitingBlock == L->getExitingBlock() &&
229            "Exiting Blocks is out of sync");
230     assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
231     assert(Latch == L->getLoopLatch() && "Latch is out of sync");
232   }
233 
234   /// Get the entry block for this fusion candidate.
235   ///
236   /// If this fusion candidate represents a guarded loop, the entry block is the
237   /// loop guard block. If it represents an unguarded loop, the entry block is
238   /// the preheader of the loop.
239   BasicBlock *getEntryBlock() const {
240     if (GuardBranch)
241       return GuardBranch->getParent();
242     else
243       return Preheader;
244   }
245 
246   /// Given a guarded loop, get the successor of the guard that is not in the
247   /// loop.
248   ///
249   /// This method returns the successor of the loop guard that is not located
250   /// within the loop (i.e., the successor of the guard that is not the
251   /// preheader).
252   /// This method is only valid for guarded loops.
253   BasicBlock *getNonLoopBlock() const {
254     assert(GuardBranch && "Only valid on guarded loops.");
255     assert(GuardBranch->isConditional() &&
256            "Expecting guard to be a conditional branch.");
257     return (GuardBranch->getSuccessor(0) == Preheader)
258                ? GuardBranch->getSuccessor(1)
259                : GuardBranch->getSuccessor(0);
260   }
261 
262 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
263   LLVM_DUMP_METHOD void dump() const {
264     dbgs() << "\tGuardBranch: ";
265     if (GuardBranch)
266       dbgs() << *GuardBranch;
267     else
268       dbgs() << "nullptr";
269     dbgs() << "\n"
270            << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
271            << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
272            << "\n"
273            << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
274            << "\tExitingBB: "
275            << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
276            << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
277            << "\n"
278            << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
279            << "\tEntryBlock: "
280            << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
281            << "\n";
282   }
283 #endif
284 
285   /// Determine if a fusion candidate (representing a loop) is eligible for
286   /// fusion. Note that this only checks whether a single loop can be fused - it
287   /// does not check whether it is *legal* to fuse two loops together.
288   bool isEligibleForFusion(ScalarEvolution &SE) const {
289     if (!isValid()) {
290       LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
291       if (!Preheader)
292         ++InvalidPreheader;
293       if (!Header)
294         ++InvalidHeader;
295       if (!ExitingBlock)
296         ++InvalidExitingBlock;
297       if (!ExitBlock)
298         ++InvalidExitBlock;
299       if (!Latch)
300         ++InvalidLatch;
301       if (L->isInvalid())
302         ++InvalidLoop;
303 
304       return false;
305     }
306 
307     // Require ScalarEvolution to be able to determine a trip count.
308     if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
309       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
310                         << " trip count not computable!\n");
311       return reportInvalidCandidate(UnknownTripCount);
312     }
313 
314     if (!L->isLoopSimplifyForm()) {
315       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
316                         << " is not in simplified form!\n");
317       return reportInvalidCandidate(NotSimplifiedForm);
318     }
319 
320     if (!L->isRotatedForm()) {
321       LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
322       return reportInvalidCandidate(NotRotated);
323     }
324 
325     return true;
326   }
327 
328 private:
329   // This is only used internally for now, to clear the MemWrites and MemReads
330   // list and setting Valid to false. I can't envision other uses of this right
331   // now, since once FusionCandidates are put into the FusionCandidateSet they
332   // are immutable. Thus, any time we need to change/update a FusionCandidate,
333   // we must create a new one and insert it into the FusionCandidateSet to
334   // ensure the FusionCandidateSet remains ordered correctly.
335   void invalidate() {
336     MemWrites.clear();
337     MemReads.clear();
338     Valid = false;
339   }
340 
341   bool reportInvalidCandidate(llvm::Statistic &Stat) const {
342     using namespace ore;
343     assert(L && Preheader && "Fusion candidate not initialized properly!");
344     ++Stat;
345     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
346                                         L->getStartLoc(), Preheader)
347              << "[" << Preheader->getParent()->getName() << "]: "
348              << "Loop is not a candidate for fusion: " << Stat.getDesc());
349     return false;
350   }
351 };
352 
353 struct FusionCandidateCompare {
354   /// Comparison functor to sort two Control Flow Equivalent fusion candidates
355   /// into dominance order.
356   /// If LHS dominates RHS and RHS post-dominates LHS, return true;
357   /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
358   bool operator()(const FusionCandidate &LHS,
359                   const FusionCandidate &RHS) const {
360     const DominatorTree *DT = LHS.DT;
361 
362     BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
363     BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
364 
365     // Do not save PDT to local variable as it is only used in asserts and thus
366     // will trigger an unused variable warning if building without asserts.
367     assert(DT && LHS.PDT && "Expecting valid dominator tree");
368 
369     // Do this compare first so if LHS == RHS, function returns false.
370     if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
371       // RHS dominates LHS
372       // Verify LHS post-dominates RHS
373       assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
374       return false;
375     }
376 
377     if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
378       // Verify RHS Postdominates LHS
379       assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
380       return true;
381     }
382 
383     // If LHS does not dominate RHS and RHS does not dominate LHS then there is
384     // no dominance relationship between the two FusionCandidates. Thus, they
385     // should not be in the same set together.
386     llvm_unreachable(
387         "No dominance relationship between these fusion candidates!");
388   }
389 };
390 
391 using LoopVector = SmallVector<Loop *, 4>;
392 
393 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
394 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
395 // dominates FC1 and FC1 post-dominates FC0.
396 // std::set was chosen because we want a sorted data structure with stable
397 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
398 // loops by moving intervening code around. When this intervening code contains
399 // loops, those loops will be moved also. The corresponding FusionCandidates
400 // will also need to be moved accordingly. As this is done, having stable
401 // iterators will simplify the logic. Similarly, having an efficient insert that
402 // keeps the FusionCandidateSet sorted will also simplify the implementation.
403 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
404 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
405 
406 #if !defined(NDEBUG)
407 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
408                                      const FusionCandidate &FC) {
409   if (FC.isValid())
410     OS << FC.Preheader->getName();
411   else
412     OS << "<Invalid>";
413 
414   return OS;
415 }
416 
417 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
418                                      const FusionCandidateSet &CandSet) {
419   for (const FusionCandidate &FC : CandSet)
420     OS << FC << '\n';
421 
422   return OS;
423 }
424 
425 static void
426 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
427   dbgs() << "Fusion Candidates: \n";
428   for (const auto &CandidateSet : FusionCandidates) {
429     dbgs() << "*** Fusion Candidate Set ***\n";
430     dbgs() << CandidateSet;
431     dbgs() << "****************************\n";
432   }
433 }
434 #endif
435 
436 /// Collect all loops in function at the same nest level, starting at the
437 /// outermost level.
438 ///
439 /// This data structure collects all loops at the same nest level for a
440 /// given function (specified by the LoopInfo object). It starts at the
441 /// outermost level.
442 struct LoopDepthTree {
443   using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
444   using iterator = LoopsOnLevelTy::iterator;
445   using const_iterator = LoopsOnLevelTy::const_iterator;
446 
447   LoopDepthTree(LoopInfo &LI) : Depth(1) {
448     if (!LI.empty())
449       LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
450   }
451 
452   /// Test whether a given loop has been removed from the function, and thus is
453   /// no longer valid.
454   bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
455 
456   /// Record that a given loop has been removed from the function and is no
457   /// longer valid.
458   void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
459 
460   /// Descend the tree to the next (inner) nesting level
461   void descend() {
462     LoopsOnLevelTy LoopsOnNextLevel;
463 
464     for (const LoopVector &LV : *this)
465       for (Loop *L : LV)
466         if (!isRemovedLoop(L) && L->begin() != L->end())
467           LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
468 
469     LoopsOnLevel = LoopsOnNextLevel;
470     RemovedLoops.clear();
471     Depth++;
472   }
473 
474   bool empty() const { return size() == 0; }
475   size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
476   unsigned getDepth() const { return Depth; }
477 
478   iterator begin() { return LoopsOnLevel.begin(); }
479   iterator end() { return LoopsOnLevel.end(); }
480   const_iterator begin() const { return LoopsOnLevel.begin(); }
481   const_iterator end() const { return LoopsOnLevel.end(); }
482 
483 private:
484   /// Set of loops that have been removed from the function and are no longer
485   /// valid.
486   SmallPtrSet<const Loop *, 8> RemovedLoops;
487 
488   /// Depth of the current level, starting at 1 (outermost loops).
489   unsigned Depth;
490 
491   /// Vector of loops at the current depth level that have the same parent loop
492   LoopsOnLevelTy LoopsOnLevel;
493 };
494 
495 #ifndef NDEBUG
496 static void printLoopVector(const LoopVector &LV) {
497   dbgs() << "****************************\n";
498   for (auto L : LV)
499     printLoop(*L, dbgs());
500   dbgs() << "****************************\n";
501 }
502 #endif
503 
504 struct LoopFuser {
505 private:
506   // Sets of control flow equivalent fusion candidates for a given nest level.
507   FusionCandidateCollection FusionCandidates;
508 
509   LoopDepthTree LDT;
510   DomTreeUpdater DTU;
511 
512   LoopInfo &LI;
513   DominatorTree &DT;
514   DependenceInfo &DI;
515   ScalarEvolution &SE;
516   PostDominatorTree &PDT;
517   OptimizationRemarkEmitter &ORE;
518 
519 public:
520   LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
521             ScalarEvolution &SE, PostDominatorTree &PDT,
522             OptimizationRemarkEmitter &ORE, const DataLayout &DL)
523       : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
524         DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
525 
526   /// This is the main entry point for loop fusion. It will traverse the
527   /// specified function and collect candidate loops to fuse, starting at the
528   /// outermost nesting level and working inwards.
529   bool fuseLoops(Function &F) {
530 #ifndef NDEBUG
531     if (VerboseFusionDebugging) {
532       LI.print(dbgs());
533     }
534 #endif
535 
536     LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
537                       << "\n");
538     bool Changed = false;
539 
540     while (!LDT.empty()) {
541       LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
542                         << LDT.getDepth() << "\n";);
543 
544       for (const LoopVector &LV : LDT) {
545         assert(LV.size() > 0 && "Empty loop set was build!");
546 
547         // Skip singleton loop sets as they do not offer fusion opportunities on
548         // this level.
549         if (LV.size() == 1)
550           continue;
551 #ifndef NDEBUG
552         if (VerboseFusionDebugging) {
553           LLVM_DEBUG({
554             dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
555             printLoopVector(LV);
556           });
557         }
558 #endif
559 
560         collectFusionCandidates(LV);
561         Changed |= fuseCandidates();
562       }
563 
564       // Finished analyzing candidates at this level.
565       // Descend to the next level and clear all of the candidates currently
566       // collected. Note that it will not be possible to fuse any of the
567       // existing candidates with new candidates because the new candidates will
568       // be at a different nest level and thus not be control flow equivalent
569       // with all of the candidates collected so far.
570       LLVM_DEBUG(dbgs() << "Descend one level!\n");
571       LDT.descend();
572       FusionCandidates.clear();
573     }
574 
575     if (Changed)
576       LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
577 
578 #ifndef NDEBUG
579     assert(DT.verify());
580     assert(PDT.verify());
581     LI.verify(DT);
582     SE.verify();
583 #endif
584 
585     LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
586     return Changed;
587   }
588 
589 private:
590   /// Determine if two fusion candidates are control flow equivalent.
591   ///
592   /// Two fusion candidates are control flow equivalent if when one executes,
593   /// the other is guaranteed to execute. This is determined using dominators
594   /// and post-dominators: if A dominates B and B post-dominates A then A and B
595   /// are control-flow equivalent.
596   bool isControlFlowEquivalent(const FusionCandidate &FC0,
597                                const FusionCandidate &FC1) const {
598     assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
599 
600     return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
601                                      DT, PDT);
602   }
603 
604   /// Iterate over all loops in the given loop set and identify the loops that
605   /// are eligible for fusion. Place all eligible fusion candidates into Control
606   /// Flow Equivalent sets, sorted by dominance.
607   void collectFusionCandidates(const LoopVector &LV) {
608     for (Loop *L : LV) {
609       FusionCandidate CurrCand(L, &DT, &PDT, ORE);
610       if (!CurrCand.isEligibleForFusion(SE))
611         continue;
612 
613       // Go through each list in FusionCandidates and determine if L is control
614       // flow equivalent with the first loop in that list. If it is, append LV.
615       // If not, go to the next list.
616       // If no suitable list is found, start another list and add it to
617       // FusionCandidates.
618       bool FoundSet = false;
619 
620       for (auto &CurrCandSet : FusionCandidates) {
621         if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
622           CurrCandSet.insert(CurrCand);
623           FoundSet = true;
624 #ifndef NDEBUG
625           if (VerboseFusionDebugging)
626             LLVM_DEBUG(dbgs() << "Adding " << CurrCand
627                               << " to existing candidate set\n");
628 #endif
629           break;
630         }
631       }
632       if (!FoundSet) {
633         // No set was found. Create a new set and add to FusionCandidates
634 #ifndef NDEBUG
635         if (VerboseFusionDebugging)
636           LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
637 #endif
638         FusionCandidateSet NewCandSet;
639         NewCandSet.insert(CurrCand);
640         FusionCandidates.push_back(NewCandSet);
641       }
642       NumFusionCandidates++;
643     }
644   }
645 
646   /// Determine if it is beneficial to fuse two loops.
647   ///
648   /// For now, this method simply returns true because we want to fuse as much
649   /// as possible (primarily to test the pass). This method will evolve, over
650   /// time, to add heuristics for profitability of fusion.
651   bool isBeneficialFusion(const FusionCandidate &FC0,
652                           const FusionCandidate &FC1) {
653     return true;
654   }
655 
656   /// Determine if two fusion candidates have the same trip count (i.e., they
657   /// execute the same number of iterations).
658   ///
659   /// Note that for now this method simply returns a boolean value because there
660   /// are no mechanisms in loop fusion to handle different trip counts. In the
661   /// future, this behaviour can be extended to adjust one of the loops to make
662   /// the trip counts equal (e.g., loop peeling). When this is added, this
663   /// interface may need to change to return more information than just a
664   /// boolean value.
665   bool identicalTripCounts(const FusionCandidate &FC0,
666                            const FusionCandidate &FC1) const {
667     const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
668     if (isa<SCEVCouldNotCompute>(TripCount0)) {
669       UncomputableTripCount++;
670       LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
671       return false;
672     }
673 
674     const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
675     if (isa<SCEVCouldNotCompute>(TripCount1)) {
676       UncomputableTripCount++;
677       LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
678       return false;
679     }
680     LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
681                       << *TripCount1 << " are "
682                       << (TripCount0 == TripCount1 ? "identical" : "different")
683                       << "\n");
684 
685     return (TripCount0 == TripCount1);
686   }
687 
688   /// Walk each set of control flow equivalent fusion candidates and attempt to
689   /// fuse them. This does a single linear traversal of all candidates in the
690   /// set. The conditions for legal fusion are checked at this point. If a pair
691   /// of fusion candidates passes all legality checks, they are fused together
692   /// and a new fusion candidate is created and added to the FusionCandidateSet.
693   /// The original fusion candidates are then removed, as they are no longer
694   /// valid.
695   bool fuseCandidates() {
696     bool Fused = false;
697     LLVM_DEBUG(printFusionCandidates(FusionCandidates));
698     for (auto &CandidateSet : FusionCandidates) {
699       if (CandidateSet.size() < 2)
700         continue;
701 
702       LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
703                         << CandidateSet << "\n");
704 
705       for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
706         assert(!LDT.isRemovedLoop(FC0->L) &&
707                "Should not have removed loops in CandidateSet!");
708         auto FC1 = FC0;
709         for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
710           assert(!LDT.isRemovedLoop(FC1->L) &&
711                  "Should not have removed loops in CandidateSet!");
712 
713           LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
714                      dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
715 
716           FC0->verify();
717           FC1->verify();
718 
719           if (!identicalTripCounts(*FC0, *FC1)) {
720             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
721                                  "counts. Not fusing.\n");
722             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
723                                                        NonEqualTripCount);
724             continue;
725           }
726 
727           if (!isAdjacent(*FC0, *FC1)) {
728             LLVM_DEBUG(dbgs()
729                        << "Fusion candidates are not adjacent. Not fusing.\n");
730             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
731             continue;
732           }
733 
734           // Ensure that FC0 and FC1 have identical guards.
735           // If one (or both) are not guarded, this check is not necessary.
736           if (FC0->GuardBranch && FC1->GuardBranch &&
737               !haveIdenticalGuards(*FC0, *FC1)) {
738             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
739                                  "guards. Not Fusing.\n");
740             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
741                                                        NonIdenticalGuards);
742             continue;
743           }
744 
745           if (!isSafeToMoveBefore(*FC1->Preheader,
746                                   *FC0->Preheader->getTerminator(), DT, &PDT,
747                                   &DI)) {
748             LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
749                                  "instructions in preheader. Not fusing.\n");
750             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
751                                                        NonEmptyPreheader);
752             continue;
753           }
754 
755           if (FC0->GuardBranch) {
756             assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");
757 
758             if (!isSafeToMoveBefore(*FC0->ExitBlock,
759                                     *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
760                                     &PDT, &DI)) {
761               LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
762                                    "instructions in exit block. Not fusing.\n");
763               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
764                                                          NonEmptyExitBlock);
765               continue;
766             }
767 
768             if (!isSafeToMoveBefore(
769                     *FC1->GuardBranch->getParent(),
770                     *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
771                     &DI)) {
772               LLVM_DEBUG(dbgs()
773                          << "Fusion candidate contains unsafe "
774                             "instructions in guard block. Not fusing.\n");
775               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
776                                                          NonEmptyGuardBlock);
777               continue;
778             }
779           }
780 
781           // Check the dependencies across the loops and do not fuse if it would
782           // violate them.
783           if (!dependencesAllowFusion(*FC0, *FC1)) {
784             LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
785             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
786                                                        InvalidDependencies);
787             continue;
788           }
789 
790           bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
791           LLVM_DEBUG(dbgs()
792                      << "\tFusion appears to be "
793                      << (BeneficialToFuse ? "" : "un") << "profitable!\n");
794           if (!BeneficialToFuse) {
795             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
796                                                        FusionNotBeneficial);
797             continue;
798           }
799           // All analysis has completed and has determined that fusion is legal
800           // and profitable. At this point, start transforming the code and
801           // perform fusion.
802 
803           LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
804                             << *FC1 << "\n");
805 
806           // Report fusion to the Optimization Remarks.
807           // Note this needs to be done *before* performFusion because
808           // performFusion will change the original loops, making it not
809           // possible to identify them after fusion is complete.
810           reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);
811 
812           FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
813           FusedCand.verify();
814           assert(FusedCand.isEligibleForFusion(SE) &&
815                  "Fused candidate should be eligible for fusion!");
816 
817           // Notify the loop-depth-tree that these loops are not valid objects
818           LDT.removeLoop(FC1->L);
819 
820           CandidateSet.erase(FC0);
821           CandidateSet.erase(FC1);
822 
823           auto InsertPos = CandidateSet.insert(FusedCand);
824 
825           assert(InsertPos.second &&
826                  "Unable to insert TargetCandidate in CandidateSet!");
827 
828           // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
829           // of the FC1 loop will attempt to fuse the new (fused) loop with the
830           // remaining candidates in the current candidate set.
831           FC0 = FC1 = InsertPos.first;
832 
833           LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
834                             << "\n");
835 
836           Fused = true;
837         }
838       }
839     }
840     return Fused;
841   }
842 
843   /// Rewrite all additive recurrences in a SCEV to use a new loop.
844   class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
845   public:
846     AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
847                        bool UseMax = true)
848         : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
849           NewL(NewL) {}
850 
851     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
852       const Loop *ExprL = Expr->getLoop();
853       SmallVector<const SCEV *, 2> Operands;
854       if (ExprL == &OldL) {
855         Operands.append(Expr->op_begin(), Expr->op_end());
856         return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
857       }
858 
859       if (OldL.contains(ExprL)) {
860         bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
861         if (!UseMax || !Pos || !Expr->isAffine()) {
862           Valid = false;
863           return Expr;
864         }
865         return visit(Expr->getStart());
866       }
867 
868       for (const SCEV *Op : Expr->operands())
869         Operands.push_back(visit(Op));
870       return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
871     }
872 
873     bool wasValidSCEV() const { return Valid; }
874 
875   private:
876     bool Valid, UseMax;
877     const Loop &OldL, &NewL;
878   };
879 
880   /// Return false if the access functions of \p I0 and \p I1 could cause
881   /// a negative dependence.
882   bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
883                             Instruction &I1, bool EqualIsInvalid) {
884     Value *Ptr0 = getLoadStorePointerOperand(&I0);
885     Value *Ptr1 = getLoadStorePointerOperand(&I1);
886     if (!Ptr0 || !Ptr1)
887       return false;
888 
889     const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
890     const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
891 #ifndef NDEBUG
892     if (VerboseFusionDebugging)
893       LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
894                         << *SCEVPtr1 << "\n");
895 #endif
896     AddRecLoopReplacer Rewriter(SE, L0, L1);
897     SCEVPtr0 = Rewriter.visit(SCEVPtr0);
898 #ifndef NDEBUG
899     if (VerboseFusionDebugging)
900       LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
901                         << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
902 #endif
903     if (!Rewriter.wasValidSCEV())
904       return false;
905 
906     // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
907     //       L0) and the other is not. We could check if it is monotone and test
908     //       the beginning and end value instead.
909 
910     BasicBlock *L0Header = L0.getHeader();
911     auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
912       const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
913       if (!AddRec)
914         return false;
915       return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
916              !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
917     };
918     if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
919       return false;
920 
921     ICmpInst::Predicate Pred =
922         EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
923     bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
924 #ifndef NDEBUG
925     if (VerboseFusionDebugging)
926       LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
927                         << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
928                         << "\n");
929 #endif
930     return IsAlwaysGE;
931   }
932 
933   /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
934   /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
935   /// specified by @p DepChoice are used to determine this.
936   bool dependencesAllowFusion(const FusionCandidate &FC0,
937                               const FusionCandidate &FC1, Instruction &I0,
938                               Instruction &I1, bool AnyDep,
939                               FusionDependenceAnalysisChoice DepChoice) {
940 #ifndef NDEBUG
941     if (VerboseFusionDebugging) {
942       LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
943                         << DepChoice << "\n");
944     }
945 #endif
946     switch (DepChoice) {
947     case FUSION_DEPENDENCE_ANALYSIS_SCEV:
948       return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
949     case FUSION_DEPENDENCE_ANALYSIS_DA: {
950       auto DepResult = DI.depends(&I0, &I1, true);
951       if (!DepResult)
952         return true;
953 #ifndef NDEBUG
954       if (VerboseFusionDebugging) {
955         LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
956                    dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
957                           << (DepResult->isOrdered() ? "true" : "false")
958                           << "]\n");
959         LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
960                           << "\n");
961       }
962 #endif
963 
964       if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
965         LLVM_DEBUG(
966             dbgs() << "TODO: Implement pred/succ dependence handling!\n");
967 
968       // TODO: Can we actually use the dependence info analysis here?
969       return false;
970     }
971 
972     case FUSION_DEPENDENCE_ANALYSIS_ALL:
973       return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
974                                     FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
975              dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
976                                     FUSION_DEPENDENCE_ANALYSIS_DA);
977     }
978 
979     llvm_unreachable("Unknown fusion dependence analysis choice!");
980   }
981 
982   /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
983   bool dependencesAllowFusion(const FusionCandidate &FC0,
984                               const FusionCandidate &FC1) {
985     LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
986                       << "\n");
987     assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
988     assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
989 
990     for (Instruction *WriteL0 : FC0.MemWrites) {
991       for (Instruction *WriteL1 : FC1.MemWrites)
992         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
993                                     /* AnyDep */ false,
994                                     FusionDependenceAnalysis)) {
995           InvalidDependencies++;
996           return false;
997         }
998       for (Instruction *ReadL1 : FC1.MemReads)
999         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
1000                                     /* AnyDep */ false,
1001                                     FusionDependenceAnalysis)) {
1002           InvalidDependencies++;
1003           return false;
1004         }
1005     }
1006 
1007     for (Instruction *WriteL1 : FC1.MemWrites) {
1008       for (Instruction *WriteL0 : FC0.MemWrites)
1009         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1010                                     /* AnyDep */ false,
1011                                     FusionDependenceAnalysis)) {
1012           InvalidDependencies++;
1013           return false;
1014         }
1015       for (Instruction *ReadL0 : FC0.MemReads)
1016         if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1017                                     /* AnyDep */ false,
1018                                     FusionDependenceAnalysis)) {
1019           InvalidDependencies++;
1020           return false;
1021         }
1022     }
1023 
1024     // Walk through all uses in FC1. For each use, find the reaching def. If the
1025     // def is located in FC0 then it is is not safe to fuse.
1026     for (BasicBlock *BB : FC1.L->blocks())
1027       for (Instruction &I : *BB)
1028         for (auto &Op : I.operands())
1029           if (Instruction *Def = dyn_cast<Instruction>(Op))
1030             if (FC0.L->contains(Def->getParent())) {
1031               InvalidDependencies++;
1032               return false;
1033             }
1034 
1035     return true;
1036   }
1037 
1038   /// Determine if two fusion candidates are adjacent in the CFG.
1039   ///
1040   /// This method will determine if there are additional basic blocks in the CFG
1041   /// between the exit of \p FC0 and the entry of \p FC1.
1042   /// If the two candidates are guarded loops, then it checks whether the
1043   /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1044   /// FC1. If not, then the loops are not adjacent. If the two candidates are
1045   /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1046   /// preheader of \p FC1.
1047   bool isAdjacent(const FusionCandidate &FC0,
1048                   const FusionCandidate &FC1) const {
1049     // If the successor of the guard branch is FC1, then the loops are adjacent
1050     if (FC0.GuardBranch)
1051       return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1052     else
1053       return FC0.ExitBlock == FC1.getEntryBlock();
1054   }
1055 
1056   /// Determine if two fusion candidates have identical guards
1057   ///
1058   /// This method will determine if two fusion candidates have the same guards.
1059   /// The guards are considered the same if:
1060   ///   1. The instructions to compute the condition used in the compare are
1061   ///      identical.
1062   ///   2. The successors of the guard have the same flow into/around the loop.
1063   /// If the compare instructions are identical, then the first successor of the
1064   /// guard must go to the same place (either the preheader of the loop or the
1065   /// NonLoopBlock). In other words, the the first successor of both loops must
1066   /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1067   /// the NonLoopBlock). The same must be true for the second successor.
1068   bool haveIdenticalGuards(const FusionCandidate &FC0,
1069                            const FusionCandidate &FC1) const {
1070     assert(FC0.GuardBranch && FC1.GuardBranch &&
1071            "Expecting FC0 and FC1 to be guarded loops.");
1072 
1073     if (auto FC0CmpInst =
1074             dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1075       if (auto FC1CmpInst =
1076               dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1077         if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1078           return false;
1079 
1080     // The compare instructions are identical.
1081     // Now make sure the successor of the guards have the same flow into/around
1082     // the loop
1083     if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1084       return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1085     else
1086       return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1087   }
1088 
1089   /// Simplify the condition of the latch branch of \p FC to true, when both of
1090   /// its successors are the same.
1091   void simplifyLatchBranch(const FusionCandidate &FC) const {
1092     BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1093     if (FCLatchBranch) {
1094       assert(FCLatchBranch->isConditional() &&
1095              FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1096              "Expecting the two successors of FCLatchBranch to be the same");
1097       FCLatchBranch->setCondition(
1098           llvm::ConstantInt::getTrue(FCLatchBranch->getCondition()->getType()));
1099     }
1100   }
1101 
1102   /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1103   /// successor, then merge FC0.Latch with its unique successor.
1104   void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1105     moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1106     if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1107       MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1108       DTU.flush();
1109     }
1110   }
1111 
1112   /// Fuse two fusion candidates, creating a new fused loop.
1113   ///
1114   /// This method contains the mechanics of fusing two loops, represented by \p
1115   /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1116   /// postdominates \p FC0 (making them control flow equivalent). It also
1117   /// assumes that the other conditions for fusion have been met: adjacent,
1118   /// identical trip counts, and no negative distance dependencies exist that
1119   /// would prevent fusion. Thus, there is no checking for these conditions in
1120   /// this method.
1121   ///
1122   /// Fusion is performed by rewiring the CFG to update successor blocks of the
1123   /// components of tho loop. Specifically, the following changes are done:
1124   ///
1125   ///   1. The preheader of \p FC1 is removed as it is no longer necessary
1126   ///   (because it is currently only a single statement block).
1127   ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1128   ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1129   ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1130   ///
1131   /// All of these modifications are done with dominator tree updates, thus
1132   /// keeping the dominator (and post dominator) information up-to-date.
1133   ///
1134   /// This can be improved in the future by actually merging blocks during
1135   /// fusion. For example, the preheader of \p FC1 can be merged with the
1136   /// preheader of \p FC0. This would allow loops with more than a single
1137   /// statement in the preheader to be fused. Similarly, the latch blocks of the
1138   /// two loops could also be fused into a single block. This will require
1139   /// analysis to prove it is safe to move the contents of the block past
1140   /// existing code, which currently has not been implemented.
1141   Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1142     assert(FC0.isValid() && FC1.isValid() &&
1143            "Expecting valid fusion candidates");
1144 
1145     LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1146                dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1147 
1148     // Move instructions from the preheader of FC1 to the end of the preheader
1149     // of FC0.
1150     moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
1151 
1152     // Fusing guarded loops is handled slightly differently than non-guarded
1153     // loops and has been broken out into a separate method instead of trying to
1154     // intersperse the logic within a single method.
1155     if (FC0.GuardBranch)
1156       return fuseGuardedLoops(FC0, FC1);
1157 
1158     assert(FC1.Preheader == FC0.ExitBlock);
1159     assert(FC1.Preheader->size() == 1 &&
1160            FC1.Preheader->getSingleSuccessor() == FC1.Header);
1161 
1162     // Remember the phi nodes originally in the header of FC0 in order to rewire
1163     // them later. However, this is only necessary if the new loop carried
1164     // values might not dominate the exiting branch. While we do not generally
1165     // test if this is the case but simply insert intermediate phi nodes, we
1166     // need to make sure these intermediate phi nodes have different
1167     // predecessors. To this end, we filter the special case where the exiting
1168     // block is the latch block of the first loop. Nothing needs to be done
1169     // anyway as all loop carried values dominate the latch and thereby also the
1170     // exiting branch.
1171     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1172     if (FC0.ExitingBlock != FC0.Latch)
1173       for (PHINode &PHI : FC0.Header->phis())
1174         OriginalFC0PHIs.push_back(&PHI);
1175 
1176     // Replace incoming blocks for header PHIs first.
1177     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1178     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1179 
1180     // Then modify the control flow and update DT and PDT.
1181     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1182 
1183     // The old exiting block of the first loop (FC0) has to jump to the header
1184     // of the second as we need to execute the code in the second header block
1185     // regardless of the trip count. That is, if the trip count is 0, so the
1186     // back edge is never taken, we still have to execute both loop headers,
1187     // especially (but not only!) if the second is a do-while style loop.
1188     // However, doing so might invalidate the phi nodes of the first loop as
1189     // the new values do only need to dominate their latch and not the exiting
1190     // predicate. To remedy this potential problem we always introduce phi
1191     // nodes in the header of the second loop later that select the loop carried
1192     // value, if the second header was reached through an old latch of the
1193     // first, or undef otherwise. This is sound as exiting the first implies the
1194     // second will exit too, __without__ taking the back-edge. [Their
1195     // trip-counts are equal after all.
1196     // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1197     // to FC1.Header? I think this is basically what the three sequences are
1198     // trying to accomplish; however, doing this directly in the CFG may mean
1199     // the DT/PDT becomes invalid
1200     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1201                                                          FC1.Header);
1202     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1203         DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1204     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1205         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1206 
1207     // The pre-header of L1 is not necessary anymore.
1208     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1209     FC1.Preheader->getTerminator()->eraseFromParent();
1210     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1211     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1212         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1213 
1214     // Moves the phi nodes from the second to the first loops header block.
1215     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1216       if (SE.isSCEVable(PHI->getType()))
1217         SE.forgetValue(PHI);
1218       if (PHI->hasNUsesOrMore(1))
1219         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1220       else
1221         PHI->eraseFromParent();
1222     }
1223 
1224     // Introduce new phi nodes in the second loop header to ensure
1225     // exiting the first and jumping to the header of the second does not break
1226     // the SSA property of the phis originally in the first loop. See also the
1227     // comment above.
1228     Instruction *L1HeaderIP = &FC1.Header->front();
1229     for (PHINode *LCPHI : OriginalFC0PHIs) {
1230       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1231       assert(L1LatchBBIdx >= 0 &&
1232              "Expected loop carried value to be rewired at this point!");
1233 
1234       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1235 
1236       PHINode *L1HeaderPHI = PHINode::Create(
1237           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1238       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1239       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1240                                FC0.ExitingBlock);
1241 
1242       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1243     }
1244 
1245     // Replace latch terminator destinations.
1246     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1247     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1248 
1249     // Change the condition of FC0 latch branch to true, as both successors of
1250     // the branch are the same.
1251     simplifyLatchBranch(FC0);
1252 
1253     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1254     // performed the updates above.
1255     if (FC0.Latch != FC0.ExitingBlock)
1256       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1257           DominatorTree::Insert, FC0.Latch, FC1.Header));
1258 
1259     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1260                                                        FC0.Latch, FC0.Header));
1261     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1262                                                        FC1.Latch, FC0.Header));
1263     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1264                                                        FC1.Latch, FC1.Header));
1265 
1266     // Update DT/PDT
1267     DTU.applyUpdates(TreeUpdates);
1268 
1269     LI.removeBlock(FC1.Preheader);
1270     DTU.deleteBB(FC1.Preheader);
1271     DTU.flush();
1272 
1273     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1274     // and rebuild the information in subsequent passes of fusion?
1275     // Note: Need to forget the loops before merging the loop latches, as
1276     // mergeLatch may remove the only block in FC1.
1277     SE.forgetLoop(FC1.L);
1278     SE.forgetLoop(FC0.L);
1279 
1280     // Move instructions from FC0.Latch to FC1.Latch.
1281     // Note: mergeLatch requires an updated DT.
1282     mergeLatch(FC0, FC1);
1283 
1284     // Merge the loops.
1285     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1286                                         FC1.L->block_end());
1287     for (BasicBlock *BB : Blocks) {
1288       FC0.L->addBlockEntry(BB);
1289       FC1.L->removeBlockFromLoop(BB);
1290       if (LI.getLoopFor(BB) != FC1.L)
1291         continue;
1292       LI.changeLoopFor(BB, FC0.L);
1293     }
1294     while (!FC1.L->empty()) {
1295       const auto &ChildLoopIt = FC1.L->begin();
1296       Loop *ChildLoop = *ChildLoopIt;
1297       FC1.L->removeChildLoop(ChildLoopIt);
1298       FC0.L->addChildLoop(ChildLoop);
1299     }
1300 
1301     // Delete the now empty loop L1.
1302     LI.erase(FC1.L);
1303 
1304 #ifndef NDEBUG
1305     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1306     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1307     assert(PDT.verify());
1308     LI.verify(DT);
1309     SE.verify();
1310 #endif
1311 
1312     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1313 
1314     return FC0.L;
1315   }
1316 
1317   /// Report details on loop fusion opportunities.
1318   ///
1319   /// This template function can be used to report both successful and missed
1320   /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1321   /// be one of:
1322   ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1323   ///     given two valid fusion candidates.
1324   ///   - OptimizationRemark to report successful fusion of two fusion
1325   ///     candidates.
1326   /// The remarks will be printed using the form:
1327   ///    <path/filename>:<line number>:<column number>: [<function name>]:
1328   ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1329   template <typename RemarkKind>
1330   void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1331                         llvm::Statistic &Stat) {
1332     assert(FC0.Preheader && FC1.Preheader &&
1333            "Expecting valid fusion candidates");
1334     using namespace ore;
1335     ++Stat;
1336     ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1337                         FC0.Preheader)
1338              << "[" << FC0.Preheader->getParent()->getName()
1339              << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1340              << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1341              << ": " << Stat.getDesc());
1342   }
1343 
1344   /// Fuse two guarded fusion candidates, creating a new fused loop.
1345   ///
1346   /// Fusing guarded loops is handled much the same way as fusing non-guarded
1347   /// loops. The rewiring of the CFG is slightly different though, because of
1348   /// the presence of the guards around the loops and the exit blocks after the
1349   /// loop body. As such, the new loop is rewired as follows:
1350   ///    1. Keep the guard branch from FC0 and use the non-loop block target
1351   /// from the FC1 guard branch.
1352   ///    2. Remove the exit block from FC0 (this exit block should be empty
1353   /// right now).
1354   ///    3. Remove the guard branch for FC1
1355   ///    4. Remove the preheader for FC1.
1356   /// The exit block successor for the latch of FC0 is updated to be the header
1357   /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1358   /// be the header of FC0, thus creating the fused loop.
1359   Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1360                          const FusionCandidate &FC1) {
1361     assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1362 
1363     BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1364     BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1365     BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1366     BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1367 
1368     // Move instructions from the exit block of FC0 to the beginning of the exit
1369     // block of FC1.
1370     moveInstructionsToTheBeginning(*FC0.ExitBlock, *FC1.ExitBlock, DT, PDT, DI);
1371 
1372     // Move instructions from the guard block of FC1 to the end of the guard
1373     // block of FC0.
1374     moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
1375 
1376     assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1377 
1378     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1379 
1380     ////////////////////////////////////////////////////////////////////////////
1381     // Update the Loop Guard
1382     ////////////////////////////////////////////////////////////////////////////
1383     // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1384     // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1385     // Thus, one path from the guard goes to the preheader for FC0 (and thus
1386     // executes the new fused loop) and the other path goes to the NonLoopBlock
1387     // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1388     FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
1389     FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1390     FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock,
1391                                                       FC1.Header);
1392 
1393     // The guard of FC1 is not necessary anymore.
1394     FC1.GuardBranch->eraseFromParent();
1395     new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1396 
1397     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1398         DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1399     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1400         DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1401     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1402         DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1403     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1404         DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1405 
1406     assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1407            "Expecting guard block to have no predecessors");
1408     assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1409            "Expecting guard block to have no successors");
1410 
1411     // Remember the phi nodes originally in the header of FC0 in order to rewire
1412     // them later. However, this is only necessary if the new loop carried
1413     // values might not dominate the exiting branch. While we do not generally
1414     // test if this is the case but simply insert intermediate phi nodes, we
1415     // need to make sure these intermediate phi nodes have different
1416     // predecessors. To this end, we filter the special case where the exiting
1417     // block is the latch block of the first loop. Nothing needs to be done
1418     // anyway as all loop carried values dominate the latch and thereby also the
1419     // exiting branch.
1420     // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1421     // (because the loops are rotated. Thus, nothing will ever be added to
1422     // OriginalFC0PHIs.
1423     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1424     if (FC0.ExitingBlock != FC0.Latch)
1425       for (PHINode &PHI : FC0.Header->phis())
1426         OriginalFC0PHIs.push_back(&PHI);
1427 
1428     assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1429 
1430     // Replace incoming blocks for header PHIs first.
1431     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1432     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1433 
1434     // The old exiting block of the first loop (FC0) has to jump to the header
1435     // of the second as we need to execute the code in the second header block
1436     // regardless of the trip count. That is, if the trip count is 0, so the
1437     // back edge is never taken, we still have to execute both loop headers,
1438     // especially (but not only!) if the second is a do-while style loop.
1439     // However, doing so might invalidate the phi nodes of the first loop as
1440     // the new values do only need to dominate their latch and not the exiting
1441     // predicate. To remedy this potential problem we always introduce phi
1442     // nodes in the header of the second loop later that select the loop carried
1443     // value, if the second header was reached through an old latch of the
1444     // first, or undef otherwise. This is sound as exiting the first implies the
1445     // second will exit too, __without__ taking the back-edge (their
1446     // trip-counts are equal after all).
1447     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1448                                                          FC1.Header);
1449 
1450     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1451         DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1452     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1453         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1454 
1455     // Remove FC0 Exit Block
1456     // The exit block for FC0 is no longer needed since control will flow
1457     // directly to the header of FC1. Since it is an empty block, it can be
1458     // removed at this point.
1459     // TODO: In the future, we can handle non-empty exit blocks my merging any
1460     // instructions from FC0 exit block into FC1 exit block prior to removing
1461     // the block.
1462     assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
1463            "Expecting exit block to be empty");
1464     FC0.ExitBlock->getTerminator()->eraseFromParent();
1465     new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1466 
1467     // Remove FC1 Preheader
1468     // The pre-header of L1 is not necessary anymore.
1469     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1470     FC1.Preheader->getTerminator()->eraseFromParent();
1471     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1472     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1473         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1474 
1475     // Moves the phi nodes from the second to the first loops header block.
1476     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1477       if (SE.isSCEVable(PHI->getType()))
1478         SE.forgetValue(PHI);
1479       if (PHI->hasNUsesOrMore(1))
1480         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1481       else
1482         PHI->eraseFromParent();
1483     }
1484 
1485     // Introduce new phi nodes in the second loop header to ensure
1486     // exiting the first and jumping to the header of the second does not break
1487     // the SSA property of the phis originally in the first loop. See also the
1488     // comment above.
1489     Instruction *L1HeaderIP = &FC1.Header->front();
1490     for (PHINode *LCPHI : OriginalFC0PHIs) {
1491       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1492       assert(L1LatchBBIdx >= 0 &&
1493              "Expected loop carried value to be rewired at this point!");
1494 
1495       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1496 
1497       PHINode *L1HeaderPHI = PHINode::Create(
1498           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1499       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1500       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1501                                FC0.ExitingBlock);
1502 
1503       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1504     }
1505 
1506     // Update the latches
1507 
1508     // Replace latch terminator destinations.
1509     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1510     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1511 
1512     // Change the condition of FC0 latch branch to true, as both successors of
1513     // the branch are the same.
1514     simplifyLatchBranch(FC0);
1515 
1516     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1517     // performed the updates above.
1518     if (FC0.Latch != FC0.ExitingBlock)
1519       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1520           DominatorTree::Insert, FC0.Latch, FC1.Header));
1521 
1522     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1523                                                        FC0.Latch, FC0.Header));
1524     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1525                                                        FC1.Latch, FC0.Header));
1526     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1527                                                        FC1.Latch, FC1.Header));
1528 
1529     // All done
1530     // Apply the updates to the Dominator Tree and cleanup.
1531 
1532     assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1533            "FC1GuardBlock has successors!!");
1534     assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1535            "FC1GuardBlock has predecessors!!");
1536 
1537     // Update DT/PDT
1538     DTU.applyUpdates(TreeUpdates);
1539 
1540     LI.removeBlock(FC1GuardBlock);
1541     LI.removeBlock(FC1.Preheader);
1542     LI.removeBlock(FC0.ExitBlock);
1543     DTU.deleteBB(FC1GuardBlock);
1544     DTU.deleteBB(FC1.Preheader);
1545     DTU.deleteBB(FC0.ExitBlock);
1546     DTU.flush();
1547 
1548     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1549     // and rebuild the information in subsequent passes of fusion?
1550     // Note: Need to forget the loops before merging the loop latches, as
1551     // mergeLatch may remove the only block in FC1.
1552     SE.forgetLoop(FC1.L);
1553     SE.forgetLoop(FC0.L);
1554 
1555     // Move instructions from FC0.Latch to FC1.Latch.
1556     // Note: mergeLatch requires an updated DT.
1557     mergeLatch(FC0, FC1);
1558 
1559     // Merge the loops.
1560     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1561                                         FC1.L->block_end());
1562     for (BasicBlock *BB : Blocks) {
1563       FC0.L->addBlockEntry(BB);
1564       FC1.L->removeBlockFromLoop(BB);
1565       if (LI.getLoopFor(BB) != FC1.L)
1566         continue;
1567       LI.changeLoopFor(BB, FC0.L);
1568     }
1569     while (!FC1.L->empty()) {
1570       const auto &ChildLoopIt = FC1.L->begin();
1571       Loop *ChildLoop = *ChildLoopIt;
1572       FC1.L->removeChildLoop(ChildLoopIt);
1573       FC0.L->addChildLoop(ChildLoop);
1574     }
1575 
1576     // Delete the now empty loop L1.
1577     LI.erase(FC1.L);
1578 
1579 #ifndef NDEBUG
1580     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1581     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1582     assert(PDT.verify());
1583     LI.verify(DT);
1584     SE.verify();
1585 #endif
1586 
1587     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1588 
1589     return FC0.L;
1590   }
1591 };
1592 
1593 struct LoopFuseLegacy : public FunctionPass {
1594 
1595   static char ID;
1596 
1597   LoopFuseLegacy() : FunctionPass(ID) {
1598     initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1599   }
1600 
1601   void getAnalysisUsage(AnalysisUsage &AU) const override {
1602     AU.addRequiredID(LoopSimplifyID);
1603     AU.addRequired<ScalarEvolutionWrapperPass>();
1604     AU.addRequired<LoopInfoWrapperPass>();
1605     AU.addRequired<DominatorTreeWrapperPass>();
1606     AU.addRequired<PostDominatorTreeWrapperPass>();
1607     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1608     AU.addRequired<DependenceAnalysisWrapperPass>();
1609 
1610     AU.addPreserved<ScalarEvolutionWrapperPass>();
1611     AU.addPreserved<LoopInfoWrapperPass>();
1612     AU.addPreserved<DominatorTreeWrapperPass>();
1613     AU.addPreserved<PostDominatorTreeWrapperPass>();
1614   }
1615 
1616   bool runOnFunction(Function &F) override {
1617     if (skipFunction(F))
1618       return false;
1619     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1620     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1621     auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1622     auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1623     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1624     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1625 
1626     const DataLayout &DL = F.getParent()->getDataLayout();
1627     LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1628     return LF.fuseLoops(F);
1629   }
1630 };
1631 } // namespace
1632 
1633 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1634   auto &LI = AM.getResult<LoopAnalysis>(F);
1635   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1636   auto &DI = AM.getResult<DependenceAnalysis>(F);
1637   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1638   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1639   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1640 
1641   const DataLayout &DL = F.getParent()->getDataLayout();
1642   LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1643   bool Changed = LF.fuseLoops(F);
1644   if (!Changed)
1645     return PreservedAnalyses::all();
1646 
1647   PreservedAnalyses PA;
1648   PA.preserve<DominatorTreeAnalysis>();
1649   PA.preserve<PostDominatorTreeAnalysis>();
1650   PA.preserve<ScalarEvolutionAnalysis>();
1651   PA.preserve<LoopAnalysis>();
1652   return PA;
1653 }
1654 
1655 char LoopFuseLegacy::ID = 0;
1656 
1657 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1658                       false)
1659 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1660 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1661 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1662 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1663 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1664 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1665 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1666 
1667 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
1668