1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the loop fusion pass. 11 /// The implementation is largely based on the following document: 12 /// 13 /// Code Transformations to Augment the Scope of Loop Fusion in a 14 /// Production Compiler 15 /// Christopher Mark Barton 16 /// MSc Thesis 17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf 18 /// 19 /// The general approach taken is to collect sets of control flow equivalent 20 /// loops and test whether they can be fused. The necessary conditions for 21 /// fusion are: 22 /// 1. The loops must be adjacent (there cannot be any statements between 23 /// the two loops). 24 /// 2. The loops must be conforming (they must execute the same number of 25 /// iterations). 26 /// 3. The loops must be control flow equivalent (if one loop executes, the 27 /// other is guaranteed to execute). 28 /// 4. There cannot be any negative distance dependencies between the loops. 29 /// If all of these conditions are satisfied, it is safe to fuse the loops. 30 /// 31 /// This implementation creates FusionCandidates that represent the loop and the 32 /// necessary information needed by fusion. It then operates on the fusion 33 /// candidates, first confirming that the candidate is eligible for fusion. The 34 /// candidates are then collected into control flow equivalent sets, sorted in 35 /// dominance order. Each set of control flow equivalent candidates is then 36 /// traversed, attempting to fuse pairs of candidates in the set. If all 37 /// requirements for fusion are met, the two candidates are fused, creating a 38 /// new (fused) candidate which is then added back into the set to consider for 39 /// additional fusion. 40 /// 41 /// This implementation currently does not make any modifications to remove 42 /// conditions for fusion. Code transformations to make loops conform to each of 43 /// the conditions for fusion are discussed in more detail in the document 44 /// above. These can be added to the current implementation in the future. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/Transforms/Scalar/LoopFuse.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/DependenceAnalysis.h" 51 #include "llvm/Analysis/DomTreeUpdater.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 54 #include "llvm/Analysis/PostDominators.h" 55 #include "llvm/Analysis/ScalarEvolution.h" 56 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 57 #include "llvm/Analysis/TargetTransformInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/Verifier.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/CodeMoverUtils.h" 69 #include "llvm/Transforms/Utils/LoopPeel.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "loop-fusion" 74 75 STATISTIC(FuseCounter, "Loops fused"); 76 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); 77 STATISTIC(InvalidPreheader, "Loop has invalid preheader"); 78 STATISTIC(InvalidHeader, "Loop has invalid header"); 79 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); 80 STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); 81 STATISTIC(InvalidLatch, "Loop has invalid latch"); 82 STATISTIC(InvalidLoop, "Loop is invalid"); 83 STATISTIC(AddressTakenBB, "Basic block has address taken"); 84 STATISTIC(MayThrowException, "Loop may throw an exception"); 85 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); 86 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); 87 STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); 88 STATISTIC(UnknownTripCount, "Loop has unknown trip count"); 89 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); 90 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same"); 91 STATISTIC(NonAdjacent, "Loops are not adjacent"); 92 STATISTIC( 93 NonEmptyPreheader, 94 "Loop has a non-empty preheader with instructions that cannot be moved"); 95 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial"); 96 STATISTIC(NonIdenticalGuards, "Candidates have different guards"); 97 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with " 98 "instructions that cannot be moved"); 99 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with " 100 "instructions that cannot be moved"); 101 STATISTIC(NotRotated, "Candidate is not rotated"); 102 STATISTIC(OnlySecondCandidateIsGuarded, 103 "The second candidate is guarded while the first one is not"); 104 105 enum FusionDependenceAnalysisChoice { 106 FUSION_DEPENDENCE_ANALYSIS_SCEV, 107 FUSION_DEPENDENCE_ANALYSIS_DA, 108 FUSION_DEPENDENCE_ANALYSIS_ALL, 109 }; 110 111 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis( 112 "loop-fusion-dependence-analysis", 113 cl::desc("Which dependence analysis should loop fusion use?"), 114 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", 115 "Use the scalar evolution interface"), 116 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", 117 "Use the dependence analysis interface"), 118 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", 119 "Use all available analyses")), 120 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore); 121 122 static cl::opt<unsigned> FusionPeelMaxCount( 123 "loop-fusion-peel-max-count", cl::init(0), cl::Hidden, 124 cl::desc("Max number of iterations to be peeled from a loop, such that " 125 "fusion can take place")); 126 127 #ifndef NDEBUG 128 static cl::opt<bool> 129 VerboseFusionDebugging("loop-fusion-verbose-debug", 130 cl::desc("Enable verbose debugging for Loop Fusion"), 131 cl::Hidden, cl::init(false), cl::ZeroOrMore); 132 #endif 133 134 namespace { 135 /// This class is used to represent a candidate for loop fusion. When it is 136 /// constructed, it checks the conditions for loop fusion to ensure that it 137 /// represents a valid candidate. It caches several parts of a loop that are 138 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead 139 /// of continually querying the underlying Loop to retrieve these values. It is 140 /// assumed these will not change throughout loop fusion. 141 /// 142 /// The invalidate method should be used to indicate that the FusionCandidate is 143 /// no longer a valid candidate for fusion. Similarly, the isValid() method can 144 /// be used to ensure that the FusionCandidate is still valid for fusion. 145 struct FusionCandidate { 146 /// Cache of parts of the loop used throughout loop fusion. These should not 147 /// need to change throughout the analysis and transformation. 148 /// These parts are cached to avoid repeatedly looking up in the Loop class. 149 150 /// Preheader of the loop this candidate represents 151 BasicBlock *Preheader; 152 /// Header of the loop this candidate represents 153 BasicBlock *Header; 154 /// Blocks in the loop that exit the loop 155 BasicBlock *ExitingBlock; 156 /// The successor block of this loop (where the exiting blocks go to) 157 BasicBlock *ExitBlock; 158 /// Latch of the loop 159 BasicBlock *Latch; 160 /// The loop that this fusion candidate represents 161 Loop *L; 162 /// Vector of instructions in this loop that read from memory 163 SmallVector<Instruction *, 16> MemReads; 164 /// Vector of instructions in this loop that write to memory 165 SmallVector<Instruction *, 16> MemWrites; 166 /// Are all of the members of this fusion candidate still valid 167 bool Valid; 168 /// Guard branch of the loop, if it exists 169 BranchInst *GuardBranch; 170 /// Peeling Paramaters of the Loop. 171 TTI::PeelingPreferences PP; 172 /// Can you Peel this Loop? 173 bool AbleToPeel; 174 /// Has this loop been Peeled 175 bool Peeled; 176 177 /// Dominator and PostDominator trees are needed for the 178 /// FusionCandidateCompare function, required by FusionCandidateSet to 179 /// determine where the FusionCandidate should be inserted into the set. These 180 /// are used to establish ordering of the FusionCandidates based on dominance. 181 const DominatorTree *DT; 182 const PostDominatorTree *PDT; 183 184 OptimizationRemarkEmitter &ORE; 185 186 FusionCandidate(Loop *L, const DominatorTree *DT, 187 const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE, 188 TTI::PeelingPreferences PP) 189 : Preheader(L->getLoopPreheader()), Header(L->getHeader()), 190 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), 191 Latch(L->getLoopLatch()), L(L), Valid(true), 192 GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)), 193 Peeled(false), DT(DT), PDT(PDT), ORE(ORE) { 194 195 assert(DT && "Expected non-null DT!"); 196 // Walk over all blocks in the loop and check for conditions that may 197 // prevent fusion. For each block, walk over all instructions and collect 198 // the memory reads and writes If any instructions that prevent fusion are 199 // found, invalidate this object and return. 200 for (BasicBlock *BB : L->blocks()) { 201 if (BB->hasAddressTaken()) { 202 invalidate(); 203 reportInvalidCandidate(AddressTakenBB); 204 return; 205 } 206 207 for (Instruction &I : *BB) { 208 if (I.mayThrow()) { 209 invalidate(); 210 reportInvalidCandidate(MayThrowException); 211 return; 212 } 213 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 214 if (SI->isVolatile()) { 215 invalidate(); 216 reportInvalidCandidate(ContainsVolatileAccess); 217 return; 218 } 219 } 220 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 221 if (LI->isVolatile()) { 222 invalidate(); 223 reportInvalidCandidate(ContainsVolatileAccess); 224 return; 225 } 226 } 227 if (I.mayWriteToMemory()) 228 MemWrites.push_back(&I); 229 if (I.mayReadFromMemory()) 230 MemReads.push_back(&I); 231 } 232 } 233 } 234 235 /// Check if all members of the class are valid. 236 bool isValid() const { 237 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && 238 !L->isInvalid() && Valid; 239 } 240 241 /// Verify that all members are in sync with the Loop object. 242 void verify() const { 243 assert(isValid() && "Candidate is not valid!!"); 244 assert(!L->isInvalid() && "Loop is invalid!"); 245 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); 246 assert(Header == L->getHeader() && "Header is out of sync"); 247 assert(ExitingBlock == L->getExitingBlock() && 248 "Exiting Blocks is out of sync"); 249 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); 250 assert(Latch == L->getLoopLatch() && "Latch is out of sync"); 251 } 252 253 /// Get the entry block for this fusion candidate. 254 /// 255 /// If this fusion candidate represents a guarded loop, the entry block is the 256 /// loop guard block. If it represents an unguarded loop, the entry block is 257 /// the preheader of the loop. 258 BasicBlock *getEntryBlock() const { 259 if (GuardBranch) 260 return GuardBranch->getParent(); 261 else 262 return Preheader; 263 } 264 265 /// After Peeling the loop is modified quite a bit, hence all of the Blocks 266 /// need to be updated accordingly. 267 void updateAfterPeeling() { 268 Preheader = L->getLoopPreheader(); 269 Header = L->getHeader(); 270 ExitingBlock = L->getExitingBlock(); 271 ExitBlock = L->getExitBlock(); 272 Latch = L->getLoopLatch(); 273 verify(); 274 } 275 276 /// Given a guarded loop, get the successor of the guard that is not in the 277 /// loop. 278 /// 279 /// This method returns the successor of the loop guard that is not located 280 /// within the loop (i.e., the successor of the guard that is not the 281 /// preheader). 282 /// This method is only valid for guarded loops. 283 BasicBlock *getNonLoopBlock() const { 284 assert(GuardBranch && "Only valid on guarded loops."); 285 assert(GuardBranch->isConditional() && 286 "Expecting guard to be a conditional branch."); 287 if (Peeled) 288 return GuardBranch->getSuccessor(1); 289 return (GuardBranch->getSuccessor(0) == Preheader) 290 ? GuardBranch->getSuccessor(1) 291 : GuardBranch->getSuccessor(0); 292 } 293 294 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 295 LLVM_DUMP_METHOD void dump() const { 296 dbgs() << "\tGuardBranch: "; 297 if (GuardBranch) 298 dbgs() << *GuardBranch; 299 else 300 dbgs() << "nullptr"; 301 dbgs() << "\n" 302 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n" 303 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") 304 << "\n" 305 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" 306 << "\tExitingBB: " 307 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" 308 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") 309 << "\n" 310 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n" 311 << "\tEntryBlock: " 312 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr") 313 << "\n"; 314 } 315 #endif 316 317 /// Determine if a fusion candidate (representing a loop) is eligible for 318 /// fusion. Note that this only checks whether a single loop can be fused - it 319 /// does not check whether it is *legal* to fuse two loops together. 320 bool isEligibleForFusion(ScalarEvolution &SE) const { 321 if (!isValid()) { 322 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n"); 323 if (!Preheader) 324 ++InvalidPreheader; 325 if (!Header) 326 ++InvalidHeader; 327 if (!ExitingBlock) 328 ++InvalidExitingBlock; 329 if (!ExitBlock) 330 ++InvalidExitBlock; 331 if (!Latch) 332 ++InvalidLatch; 333 if (L->isInvalid()) 334 ++InvalidLoop; 335 336 return false; 337 } 338 339 // Require ScalarEvolution to be able to determine a trip count. 340 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 341 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 342 << " trip count not computable!\n"); 343 return reportInvalidCandidate(UnknownTripCount); 344 } 345 346 if (!L->isLoopSimplifyForm()) { 347 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 348 << " is not in simplified form!\n"); 349 return reportInvalidCandidate(NotSimplifiedForm); 350 } 351 352 if (!L->isRotatedForm()) { 353 LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n"); 354 return reportInvalidCandidate(NotRotated); 355 } 356 357 return true; 358 } 359 360 private: 361 // This is only used internally for now, to clear the MemWrites and MemReads 362 // list and setting Valid to false. I can't envision other uses of this right 363 // now, since once FusionCandidates are put into the FusionCandidateSet they 364 // are immutable. Thus, any time we need to change/update a FusionCandidate, 365 // we must create a new one and insert it into the FusionCandidateSet to 366 // ensure the FusionCandidateSet remains ordered correctly. 367 void invalidate() { 368 MemWrites.clear(); 369 MemReads.clear(); 370 Valid = false; 371 } 372 373 bool reportInvalidCandidate(llvm::Statistic &Stat) const { 374 using namespace ore; 375 assert(L && Preheader && "Fusion candidate not initialized properly!"); 376 #if LLVM_ENABLE_STATS 377 ++Stat; 378 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(), 379 L->getStartLoc(), Preheader) 380 << "[" << Preheader->getParent()->getName() << "]: " 381 << "Loop is not a candidate for fusion: " << Stat.getDesc()); 382 #endif 383 return false; 384 } 385 }; 386 387 struct FusionCandidateCompare { 388 /// Comparison functor to sort two Control Flow Equivalent fusion candidates 389 /// into dominance order. 390 /// If LHS dominates RHS and RHS post-dominates LHS, return true; 391 /// IF RHS dominates LHS and LHS post-dominates RHS, return false; 392 bool operator()(const FusionCandidate &LHS, 393 const FusionCandidate &RHS) const { 394 const DominatorTree *DT = LHS.DT; 395 396 BasicBlock *LHSEntryBlock = LHS.getEntryBlock(); 397 BasicBlock *RHSEntryBlock = RHS.getEntryBlock(); 398 399 // Do not save PDT to local variable as it is only used in asserts and thus 400 // will trigger an unused variable warning if building without asserts. 401 assert(DT && LHS.PDT && "Expecting valid dominator tree"); 402 403 // Do this compare first so if LHS == RHS, function returns false. 404 if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) { 405 // RHS dominates LHS 406 // Verify LHS post-dominates RHS 407 assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock)); 408 return false; 409 } 410 411 if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) { 412 // Verify RHS Postdominates LHS 413 assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock)); 414 return true; 415 } 416 417 // If LHS does not dominate RHS and RHS does not dominate LHS then there is 418 // no dominance relationship between the two FusionCandidates. Thus, they 419 // should not be in the same set together. 420 llvm_unreachable( 421 "No dominance relationship between these fusion candidates!"); 422 } 423 }; 424 425 using LoopVector = SmallVector<Loop *, 4>; 426 427 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance 428 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 429 // dominates FC1 and FC1 post-dominates FC0. 430 // std::set was chosen because we want a sorted data structure with stable 431 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent 432 // loops by moving intervening code around. When this intervening code contains 433 // loops, those loops will be moved also. The corresponding FusionCandidates 434 // will also need to be moved accordingly. As this is done, having stable 435 // iterators will simplify the logic. Similarly, having an efficient insert that 436 // keeps the FusionCandidateSet sorted will also simplify the implementation. 437 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>; 438 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>; 439 440 #if !defined(NDEBUG) 441 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 442 const FusionCandidate &FC) { 443 if (FC.isValid()) 444 OS << FC.Preheader->getName(); 445 else 446 OS << "<Invalid>"; 447 448 return OS; 449 } 450 451 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 452 const FusionCandidateSet &CandSet) { 453 for (const FusionCandidate &FC : CandSet) 454 OS << FC << '\n'; 455 456 return OS; 457 } 458 459 static void 460 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { 461 dbgs() << "Fusion Candidates: \n"; 462 for (const auto &CandidateSet : FusionCandidates) { 463 dbgs() << "*** Fusion Candidate Set ***\n"; 464 dbgs() << CandidateSet; 465 dbgs() << "****************************\n"; 466 } 467 } 468 #endif 469 470 /// Collect all loops in function at the same nest level, starting at the 471 /// outermost level. 472 /// 473 /// This data structure collects all loops at the same nest level for a 474 /// given function (specified by the LoopInfo object). It starts at the 475 /// outermost level. 476 struct LoopDepthTree { 477 using LoopsOnLevelTy = SmallVector<LoopVector, 4>; 478 using iterator = LoopsOnLevelTy::iterator; 479 using const_iterator = LoopsOnLevelTy::const_iterator; 480 481 LoopDepthTree(LoopInfo &LI) : Depth(1) { 482 if (!LI.empty()) 483 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); 484 } 485 486 /// Test whether a given loop has been removed from the function, and thus is 487 /// no longer valid. 488 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } 489 490 /// Record that a given loop has been removed from the function and is no 491 /// longer valid. 492 void removeLoop(const Loop *L) { RemovedLoops.insert(L); } 493 494 /// Descend the tree to the next (inner) nesting level 495 void descend() { 496 LoopsOnLevelTy LoopsOnNextLevel; 497 498 for (const LoopVector &LV : *this) 499 for (Loop *L : LV) 500 if (!isRemovedLoop(L) && L->begin() != L->end()) 501 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); 502 503 LoopsOnLevel = LoopsOnNextLevel; 504 RemovedLoops.clear(); 505 Depth++; 506 } 507 508 bool empty() const { return size() == 0; } 509 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } 510 unsigned getDepth() const { return Depth; } 511 512 iterator begin() { return LoopsOnLevel.begin(); } 513 iterator end() { return LoopsOnLevel.end(); } 514 const_iterator begin() const { return LoopsOnLevel.begin(); } 515 const_iterator end() const { return LoopsOnLevel.end(); } 516 517 private: 518 /// Set of loops that have been removed from the function and are no longer 519 /// valid. 520 SmallPtrSet<const Loop *, 8> RemovedLoops; 521 522 /// Depth of the current level, starting at 1 (outermost loops). 523 unsigned Depth; 524 525 /// Vector of loops at the current depth level that have the same parent loop 526 LoopsOnLevelTy LoopsOnLevel; 527 }; 528 529 #ifndef NDEBUG 530 static void printLoopVector(const LoopVector &LV) { 531 dbgs() << "****************************\n"; 532 for (auto L : LV) 533 printLoop(*L, dbgs()); 534 dbgs() << "****************************\n"; 535 } 536 #endif 537 538 struct LoopFuser { 539 private: 540 // Sets of control flow equivalent fusion candidates for a given nest level. 541 FusionCandidateCollection FusionCandidates; 542 543 LoopDepthTree LDT; 544 DomTreeUpdater DTU; 545 546 LoopInfo &LI; 547 DominatorTree &DT; 548 DependenceInfo &DI; 549 ScalarEvolution &SE; 550 PostDominatorTree &PDT; 551 OptimizationRemarkEmitter &ORE; 552 AssumptionCache &AC; 553 554 const TargetTransformInfo &TTI; 555 556 public: 557 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, 558 ScalarEvolution &SE, PostDominatorTree &PDT, 559 OptimizationRemarkEmitter &ORE, const DataLayout &DL, 560 AssumptionCache &AC, const TargetTransformInfo &TTI) 561 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), 562 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {} 563 564 /// This is the main entry point for loop fusion. It will traverse the 565 /// specified function and collect candidate loops to fuse, starting at the 566 /// outermost nesting level and working inwards. 567 bool fuseLoops(Function &F) { 568 #ifndef NDEBUG 569 if (VerboseFusionDebugging) { 570 LI.print(dbgs()); 571 } 572 #endif 573 574 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() 575 << "\n"); 576 bool Changed = false; 577 578 while (!LDT.empty()) { 579 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " 580 << LDT.getDepth() << "\n";); 581 582 for (const LoopVector &LV : LDT) { 583 assert(LV.size() > 0 && "Empty loop set was build!"); 584 585 // Skip singleton loop sets as they do not offer fusion opportunities on 586 // this level. 587 if (LV.size() == 1) 588 continue; 589 #ifndef NDEBUG 590 if (VerboseFusionDebugging) { 591 LLVM_DEBUG({ 592 dbgs() << " Visit loop set (#" << LV.size() << "):\n"; 593 printLoopVector(LV); 594 }); 595 } 596 #endif 597 598 collectFusionCandidates(LV); 599 Changed |= fuseCandidates(); 600 } 601 602 // Finished analyzing candidates at this level. 603 // Descend to the next level and clear all of the candidates currently 604 // collected. Note that it will not be possible to fuse any of the 605 // existing candidates with new candidates because the new candidates will 606 // be at a different nest level and thus not be control flow equivalent 607 // with all of the candidates collected so far. 608 LLVM_DEBUG(dbgs() << "Descend one level!\n"); 609 LDT.descend(); 610 FusionCandidates.clear(); 611 } 612 613 if (Changed) 614 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); 615 616 #ifndef NDEBUG 617 assert(DT.verify()); 618 assert(PDT.verify()); 619 LI.verify(DT); 620 SE.verify(); 621 #endif 622 623 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); 624 return Changed; 625 } 626 627 private: 628 /// Determine if two fusion candidates are control flow equivalent. 629 /// 630 /// Two fusion candidates are control flow equivalent if when one executes, 631 /// the other is guaranteed to execute. This is determined using dominators 632 /// and post-dominators: if A dominates B and B post-dominates A then A and B 633 /// are control-flow equivalent. 634 bool isControlFlowEquivalent(const FusionCandidate &FC0, 635 const FusionCandidate &FC1) const { 636 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); 637 638 return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(), 639 DT, PDT); 640 } 641 642 /// Iterate over all loops in the given loop set and identify the loops that 643 /// are eligible for fusion. Place all eligible fusion candidates into Control 644 /// Flow Equivalent sets, sorted by dominance. 645 void collectFusionCandidates(const LoopVector &LV) { 646 for (Loop *L : LV) { 647 TTI::PeelingPreferences PP = 648 gatherPeelingPreferences(L, SE, TTI, None, None); 649 FusionCandidate CurrCand(L, &DT, &PDT, ORE, PP); 650 if (!CurrCand.isEligibleForFusion(SE)) 651 continue; 652 653 // Go through each list in FusionCandidates and determine if L is control 654 // flow equivalent with the first loop in that list. If it is, append LV. 655 // If not, go to the next list. 656 // If no suitable list is found, start another list and add it to 657 // FusionCandidates. 658 bool FoundSet = false; 659 660 for (auto &CurrCandSet : FusionCandidates) { 661 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { 662 CurrCandSet.insert(CurrCand); 663 FoundSet = true; 664 #ifndef NDEBUG 665 if (VerboseFusionDebugging) 666 LLVM_DEBUG(dbgs() << "Adding " << CurrCand 667 << " to existing candidate set\n"); 668 #endif 669 break; 670 } 671 } 672 if (!FoundSet) { 673 // No set was found. Create a new set and add to FusionCandidates 674 #ifndef NDEBUG 675 if (VerboseFusionDebugging) 676 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); 677 #endif 678 FusionCandidateSet NewCandSet; 679 NewCandSet.insert(CurrCand); 680 FusionCandidates.push_back(NewCandSet); 681 } 682 NumFusionCandidates++; 683 } 684 } 685 686 /// Determine if it is beneficial to fuse two loops. 687 /// 688 /// For now, this method simply returns true because we want to fuse as much 689 /// as possible (primarily to test the pass). This method will evolve, over 690 /// time, to add heuristics for profitability of fusion. 691 bool isBeneficialFusion(const FusionCandidate &FC0, 692 const FusionCandidate &FC1) { 693 return true; 694 } 695 696 /// Determine if two fusion candidates have the same trip count (i.e., they 697 /// execute the same number of iterations). 698 /// 699 /// This function will return a pair of values. The first is a boolean, 700 /// stating whether or not the two candidates are known at compile time to 701 /// have the same TripCount. The second is the difference in the two 702 /// TripCounts. This information can be used later to determine whether or not 703 /// peeling can be performed on either one of the candiates. 704 std::pair<bool, Optional<unsigned>> 705 haveIdenticalTripCounts(const FusionCandidate &FC0, 706 const FusionCandidate &FC1) const { 707 708 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); 709 if (isa<SCEVCouldNotCompute>(TripCount0)) { 710 UncomputableTripCount++; 711 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); 712 return {false, None}; 713 } 714 715 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); 716 if (isa<SCEVCouldNotCompute>(TripCount1)) { 717 UncomputableTripCount++; 718 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); 719 return {false, None}; 720 } 721 722 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " 723 << *TripCount1 << " are " 724 << (TripCount0 == TripCount1 ? "identical" : "different") 725 << "\n"); 726 727 if (TripCount0 == TripCount1) 728 return {true, 0}; 729 730 LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, " 731 "determining the difference between trip counts\n"); 732 733 // Currently only considering loops with a single exit point 734 // and a non-constant trip count. 735 const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L); 736 const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L); 737 738 // If any of the tripcounts are zero that means that loop(s) do not have 739 // a single exit or a constant tripcount. 740 if (TC0 == 0 || TC1 == 0) { 741 LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not " 742 "have a constant number of iterations. Peeling " 743 "is not benefical\n"); 744 return {false, None}; 745 } 746 747 Optional<unsigned> Difference = None; 748 int Diff = TC0 - TC1; 749 750 if (Diff > 0) 751 Difference = Diff; 752 else { 753 LLVM_DEBUG( 754 dbgs() << "Difference is less than 0. FC1 (second loop) has more " 755 "iterations than the first one. Currently not supported\n"); 756 } 757 758 LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference 759 << "\n"); 760 761 return {false, Difference}; 762 } 763 764 void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1, 765 unsigned PeelCount) { 766 assert(FC0.AbleToPeel && "Should be able to peel loop"); 767 768 LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount 769 << " iterations of the first loop. \n"); 770 771 FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, DT, &AC, true); 772 if (FC0.Peeled) { 773 LLVM_DEBUG(dbgs() << "Done Peeling\n"); 774 775 #ifndef NDEBUG 776 auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1); 777 778 assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 && 779 "Loops should have identical trip counts after peeling"); 780 #endif 781 782 FC0.PP.PeelCount += PeelCount; 783 784 // Peeling does not update the PDT 785 PDT.recalculate(*FC0.Preheader->getParent()); 786 787 FC0.updateAfterPeeling(); 788 789 // In this case the iterations of the loop are constant, so the first 790 // loop will execute completely (will not jump from one of 791 // the peeled blocks to the second loop). Here we are updating the 792 // branch conditions of each of the peeled blocks, such that it will 793 // branch to its successor which is not the preheader of the second loop 794 // in the case of unguarded loops, or the succesors of the exit block of 795 // the first loop otherwise. Doing this update will ensure that the entry 796 // block of the first loop dominates the entry block of the second loop. 797 BasicBlock *BB = 798 FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader; 799 if (BB) { 800 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 801 SmallVector<Instruction *, 8> WorkList; 802 for (BasicBlock *Pred : predecessors(BB)) { 803 if (Pred != FC0.ExitBlock) { 804 WorkList.emplace_back(Pred->getTerminator()); 805 TreeUpdates.emplace_back( 806 DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB)); 807 } 808 } 809 // Cannot modify the predecessors inside the above loop as it will cause 810 // the iterators to be nullptrs, causing memory errors. 811 for (Instruction *CurrentBranch: WorkList) { 812 BasicBlock *Succ = CurrentBranch->getSuccessor(0); 813 if (Succ == BB) 814 Succ = CurrentBranch->getSuccessor(1); 815 ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ)); 816 } 817 818 DTU.applyUpdates(TreeUpdates); 819 DTU.flush(); 820 } 821 LLVM_DEBUG( 822 dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount 823 << " iterations from the first loop.\n" 824 "Both Loops have the same number of iterations now.\n"); 825 } 826 } 827 828 /// Walk each set of control flow equivalent fusion candidates and attempt to 829 /// fuse them. This does a single linear traversal of all candidates in the 830 /// set. The conditions for legal fusion are checked at this point. If a pair 831 /// of fusion candidates passes all legality checks, they are fused together 832 /// and a new fusion candidate is created and added to the FusionCandidateSet. 833 /// The original fusion candidates are then removed, as they are no longer 834 /// valid. 835 bool fuseCandidates() { 836 bool Fused = false; 837 LLVM_DEBUG(printFusionCandidates(FusionCandidates)); 838 for (auto &CandidateSet : FusionCandidates) { 839 if (CandidateSet.size() < 2) 840 continue; 841 842 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" 843 << CandidateSet << "\n"); 844 845 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { 846 assert(!LDT.isRemovedLoop(FC0->L) && 847 "Should not have removed loops in CandidateSet!"); 848 auto FC1 = FC0; 849 for (++FC1; FC1 != CandidateSet.end(); ++FC1) { 850 assert(!LDT.isRemovedLoop(FC1->L) && 851 "Should not have removed loops in CandidateSet!"); 852 853 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); 854 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); 855 856 FC0->verify(); 857 FC1->verify(); 858 859 // Check if the candidates have identical tripcounts (first value of 860 // pair), and if not check the difference in the tripcounts between 861 // the loops (second value of pair). The difference is not equal to 862 // None iff the loops iterate a constant number of times, and have a 863 // single exit. 864 std::pair<bool, Optional<unsigned>> IdenticalTripCountRes = 865 haveIdenticalTripCounts(*FC0, *FC1); 866 bool SameTripCount = IdenticalTripCountRes.first; 867 Optional<unsigned> TCDifference = IdenticalTripCountRes.second; 868 869 // Here we are checking that FC0 (the first loop) can be peeled, and 870 // both loops have different tripcounts. 871 if (FC0->AbleToPeel && !SameTripCount && TCDifference) { 872 if (*TCDifference > FusionPeelMaxCount) { 873 LLVM_DEBUG(dbgs() 874 << "Difference in loop trip counts: " << *TCDifference 875 << " is greater than maximum peel count specificed: " 876 << FusionPeelMaxCount << "\n"); 877 } else { 878 // Dependent on peeling being performed on the first loop, and 879 // assuming all other conditions for fusion return true. 880 SameTripCount = true; 881 } 882 } 883 884 if (!SameTripCount) { 885 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " 886 "counts. Not fusing.\n"); 887 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 888 NonEqualTripCount); 889 continue; 890 } 891 892 if (!isAdjacent(*FC0, *FC1)) { 893 LLVM_DEBUG(dbgs() 894 << "Fusion candidates are not adjacent. Not fusing.\n"); 895 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent); 896 continue; 897 } 898 899 if (!FC0->GuardBranch && FC1->GuardBranch) { 900 LLVM_DEBUG(dbgs() << "The second candidate is guarded while the " 901 "first one is not. Not fusing.\n"); 902 reportLoopFusion<OptimizationRemarkMissed>( 903 *FC0, *FC1, OnlySecondCandidateIsGuarded); 904 continue; 905 } 906 907 // Ensure that FC0 and FC1 have identical guards. 908 // If one (or both) are not guarded, this check is not necessary. 909 if (FC0->GuardBranch && FC1->GuardBranch && 910 !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) { 911 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical " 912 "guards. Not Fusing.\n"); 913 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 914 NonIdenticalGuards); 915 continue; 916 } 917 918 if (!isSafeToMoveBefore(*FC1->Preheader, 919 *FC0->Preheader->getTerminator(), DT, &PDT, 920 &DI)) { 921 LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe " 922 "instructions in preheader. Not fusing.\n"); 923 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 924 NonEmptyPreheader); 925 continue; 926 } 927 928 if (FC0->GuardBranch) { 929 assert(FC1->GuardBranch && "Expecting valid FC1 guard branch"); 930 931 if (!isSafeToMoveBefore(*FC0->ExitBlock, 932 *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT, 933 &PDT, &DI)) { 934 LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe " 935 "instructions in exit block. Not fusing.\n"); 936 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 937 NonEmptyExitBlock); 938 continue; 939 } 940 941 if (!isSafeToMoveBefore( 942 *FC1->GuardBranch->getParent(), 943 *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT, 944 &DI)) { 945 LLVM_DEBUG(dbgs() 946 << "Fusion candidate contains unsafe " 947 "instructions in guard block. Not fusing.\n"); 948 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 949 NonEmptyGuardBlock); 950 continue; 951 } 952 } 953 954 // Check the dependencies across the loops and do not fuse if it would 955 // violate them. 956 if (!dependencesAllowFusion(*FC0, *FC1)) { 957 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); 958 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 959 InvalidDependencies); 960 continue; 961 } 962 963 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); 964 LLVM_DEBUG(dbgs() 965 << "\tFusion appears to be " 966 << (BeneficialToFuse ? "" : "un") << "profitable!\n"); 967 if (!BeneficialToFuse) { 968 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 969 FusionNotBeneficial); 970 continue; 971 } 972 // All analysis has completed and has determined that fusion is legal 973 // and profitable. At this point, start transforming the code and 974 // perform fusion. 975 976 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " 977 << *FC1 << "\n"); 978 979 FusionCandidate FC0Copy = *FC0; 980 // Peel the loop after determining that fusion is legal. The Loops 981 // will still be safe to fuse after the peeling is performed. 982 bool Peel = TCDifference && *TCDifference > 0; 983 if (Peel) 984 peelFusionCandidate(FC0Copy, *FC1, *TCDifference); 985 986 // Report fusion to the Optimization Remarks. 987 // Note this needs to be done *before* performFusion because 988 // performFusion will change the original loops, making it not 989 // possible to identify them after fusion is complete. 990 reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1, 991 FuseCounter); 992 993 FusionCandidate FusedCand( 994 performFusion((Peel ? FC0Copy : *FC0), *FC1), &DT, &PDT, ORE, 995 FC0Copy.PP); 996 FusedCand.verify(); 997 assert(FusedCand.isEligibleForFusion(SE) && 998 "Fused candidate should be eligible for fusion!"); 999 1000 // Notify the loop-depth-tree that these loops are not valid objects 1001 LDT.removeLoop(FC1->L); 1002 1003 CandidateSet.erase(FC0); 1004 CandidateSet.erase(FC1); 1005 1006 auto InsertPos = CandidateSet.insert(FusedCand); 1007 1008 assert(InsertPos.second && 1009 "Unable to insert TargetCandidate in CandidateSet!"); 1010 1011 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations 1012 // of the FC1 loop will attempt to fuse the new (fused) loop with the 1013 // remaining candidates in the current candidate set. 1014 FC0 = FC1 = InsertPos.first; 1015 1016 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet 1017 << "\n"); 1018 1019 Fused = true; 1020 } 1021 } 1022 } 1023 return Fused; 1024 } 1025 1026 /// Rewrite all additive recurrences in a SCEV to use a new loop. 1027 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> { 1028 public: 1029 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, 1030 bool UseMax = true) 1031 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), 1032 NewL(NewL) {} 1033 1034 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 1035 const Loop *ExprL = Expr->getLoop(); 1036 SmallVector<const SCEV *, 2> Operands; 1037 if (ExprL == &OldL) { 1038 Operands.append(Expr->op_begin(), Expr->op_end()); 1039 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); 1040 } 1041 1042 if (OldL.contains(ExprL)) { 1043 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); 1044 if (!UseMax || !Pos || !Expr->isAffine()) { 1045 Valid = false; 1046 return Expr; 1047 } 1048 return visit(Expr->getStart()); 1049 } 1050 1051 for (const SCEV *Op : Expr->operands()) 1052 Operands.push_back(visit(Op)); 1053 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); 1054 } 1055 1056 bool wasValidSCEV() const { return Valid; } 1057 1058 private: 1059 bool Valid, UseMax; 1060 const Loop &OldL, &NewL; 1061 }; 1062 1063 /// Return false if the access functions of \p I0 and \p I1 could cause 1064 /// a negative dependence. 1065 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, 1066 Instruction &I1, bool EqualIsInvalid) { 1067 Value *Ptr0 = getLoadStorePointerOperand(&I0); 1068 Value *Ptr1 = getLoadStorePointerOperand(&I1); 1069 if (!Ptr0 || !Ptr1) 1070 return false; 1071 1072 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); 1073 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); 1074 #ifndef NDEBUG 1075 if (VerboseFusionDebugging) 1076 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs " 1077 << *SCEVPtr1 << "\n"); 1078 #endif 1079 AddRecLoopReplacer Rewriter(SE, L0, L1); 1080 SCEVPtr0 = Rewriter.visit(SCEVPtr0); 1081 #ifndef NDEBUG 1082 if (VerboseFusionDebugging) 1083 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0 1084 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); 1085 #endif 1086 if (!Rewriter.wasValidSCEV()) 1087 return false; 1088 1089 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by 1090 // L0) and the other is not. We could check if it is monotone and test 1091 // the beginning and end value instead. 1092 1093 BasicBlock *L0Header = L0.getHeader(); 1094 auto HasNonLinearDominanceRelation = [&](const SCEV *S) { 1095 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S); 1096 if (!AddRec) 1097 return false; 1098 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && 1099 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); 1100 }; 1101 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) 1102 return false; 1103 1104 ICmpInst::Predicate Pred = 1105 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; 1106 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); 1107 #ifndef NDEBUG 1108 if (VerboseFusionDebugging) 1109 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0 1110 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1 1111 << "\n"); 1112 #endif 1113 return IsAlwaysGE; 1114 } 1115 1116 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in 1117 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses 1118 /// specified by @p DepChoice are used to determine this. 1119 bool dependencesAllowFusion(const FusionCandidate &FC0, 1120 const FusionCandidate &FC1, Instruction &I0, 1121 Instruction &I1, bool AnyDep, 1122 FusionDependenceAnalysisChoice DepChoice) { 1123 #ifndef NDEBUG 1124 if (VerboseFusionDebugging) { 1125 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " 1126 << DepChoice << "\n"); 1127 } 1128 #endif 1129 switch (DepChoice) { 1130 case FUSION_DEPENDENCE_ANALYSIS_SCEV: 1131 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); 1132 case FUSION_DEPENDENCE_ANALYSIS_DA: { 1133 auto DepResult = DI.depends(&I0, &I1, true); 1134 if (!DepResult) 1135 return true; 1136 #ifndef NDEBUG 1137 if (VerboseFusionDebugging) { 1138 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); 1139 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " 1140 << (DepResult->isOrdered() ? "true" : "false") 1141 << "]\n"); 1142 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() 1143 << "\n"); 1144 } 1145 #endif 1146 1147 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) 1148 LLVM_DEBUG( 1149 dbgs() << "TODO: Implement pred/succ dependence handling!\n"); 1150 1151 // TODO: Can we actually use the dependence info analysis here? 1152 return false; 1153 } 1154 1155 case FUSION_DEPENDENCE_ANALYSIS_ALL: 1156 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 1157 FUSION_DEPENDENCE_ANALYSIS_SCEV) || 1158 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 1159 FUSION_DEPENDENCE_ANALYSIS_DA); 1160 } 1161 1162 llvm_unreachable("Unknown fusion dependence analysis choice!"); 1163 } 1164 1165 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. 1166 bool dependencesAllowFusion(const FusionCandidate &FC0, 1167 const FusionCandidate &FC1) { 1168 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 1169 << "\n"); 1170 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); 1171 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock())); 1172 1173 for (Instruction *WriteL0 : FC0.MemWrites) { 1174 for (Instruction *WriteL1 : FC1.MemWrites) 1175 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 1176 /* AnyDep */ false, 1177 FusionDependenceAnalysis)) { 1178 InvalidDependencies++; 1179 return false; 1180 } 1181 for (Instruction *ReadL1 : FC1.MemReads) 1182 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, 1183 /* AnyDep */ false, 1184 FusionDependenceAnalysis)) { 1185 InvalidDependencies++; 1186 return false; 1187 } 1188 } 1189 1190 for (Instruction *WriteL1 : FC1.MemWrites) { 1191 for (Instruction *WriteL0 : FC0.MemWrites) 1192 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 1193 /* AnyDep */ false, 1194 FusionDependenceAnalysis)) { 1195 InvalidDependencies++; 1196 return false; 1197 } 1198 for (Instruction *ReadL0 : FC0.MemReads) 1199 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, 1200 /* AnyDep */ false, 1201 FusionDependenceAnalysis)) { 1202 InvalidDependencies++; 1203 return false; 1204 } 1205 } 1206 1207 // Walk through all uses in FC1. For each use, find the reaching def. If the 1208 // def is located in FC0 then it is is not safe to fuse. 1209 for (BasicBlock *BB : FC1.L->blocks()) 1210 for (Instruction &I : *BB) 1211 for (auto &Op : I.operands()) 1212 if (Instruction *Def = dyn_cast<Instruction>(Op)) 1213 if (FC0.L->contains(Def->getParent())) { 1214 InvalidDependencies++; 1215 return false; 1216 } 1217 1218 return true; 1219 } 1220 1221 /// Determine if two fusion candidates are adjacent in the CFG. 1222 /// 1223 /// This method will determine if there are additional basic blocks in the CFG 1224 /// between the exit of \p FC0 and the entry of \p FC1. 1225 /// If the two candidates are guarded loops, then it checks whether the 1226 /// non-loop successor of the \p FC0 guard branch is the entry block of \p 1227 /// FC1. If not, then the loops are not adjacent. If the two candidates are 1228 /// not guarded loops, then it checks whether the exit block of \p FC0 is the 1229 /// preheader of \p FC1. 1230 bool isAdjacent(const FusionCandidate &FC0, 1231 const FusionCandidate &FC1) const { 1232 // If the successor of the guard branch is FC1, then the loops are adjacent 1233 if (FC0.GuardBranch) 1234 return FC0.getNonLoopBlock() == FC1.getEntryBlock(); 1235 else 1236 return FC0.ExitBlock == FC1.getEntryBlock(); 1237 } 1238 1239 /// Determine if two fusion candidates have identical guards 1240 /// 1241 /// This method will determine if two fusion candidates have the same guards. 1242 /// The guards are considered the same if: 1243 /// 1. The instructions to compute the condition used in the compare are 1244 /// identical. 1245 /// 2. The successors of the guard have the same flow into/around the loop. 1246 /// If the compare instructions are identical, then the first successor of the 1247 /// guard must go to the same place (either the preheader of the loop or the 1248 /// NonLoopBlock). In other words, the the first successor of both loops must 1249 /// both go into the loop (i.e., the preheader) or go around the loop (i.e., 1250 /// the NonLoopBlock). The same must be true for the second successor. 1251 bool haveIdenticalGuards(const FusionCandidate &FC0, 1252 const FusionCandidate &FC1) const { 1253 assert(FC0.GuardBranch && FC1.GuardBranch && 1254 "Expecting FC0 and FC1 to be guarded loops."); 1255 1256 if (auto FC0CmpInst = 1257 dyn_cast<Instruction>(FC0.GuardBranch->getCondition())) 1258 if (auto FC1CmpInst = 1259 dyn_cast<Instruction>(FC1.GuardBranch->getCondition())) 1260 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst)) 1261 return false; 1262 1263 // The compare instructions are identical. 1264 // Now make sure the successor of the guards have the same flow into/around 1265 // the loop 1266 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader) 1267 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader); 1268 else 1269 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader); 1270 } 1271 1272 /// Modify the latch branch of FC to be unconditional since successors of the 1273 /// branch are the same. 1274 void simplifyLatchBranch(const FusionCandidate &FC) const { 1275 BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator()); 1276 if (FCLatchBranch) { 1277 assert(FCLatchBranch->isConditional() && 1278 FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) && 1279 "Expecting the two successors of FCLatchBranch to be the same"); 1280 BranchInst *NewBranch = 1281 BranchInst::Create(FCLatchBranch->getSuccessor(0)); 1282 ReplaceInstWithInst(FCLatchBranch, NewBranch); 1283 } 1284 } 1285 1286 /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique 1287 /// successor, then merge FC0.Latch with its unique successor. 1288 void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1289 moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI); 1290 if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) { 1291 MergeBlockIntoPredecessor(Succ, &DTU, &LI); 1292 DTU.flush(); 1293 } 1294 } 1295 1296 /// Fuse two fusion candidates, creating a new fused loop. 1297 /// 1298 /// This method contains the mechanics of fusing two loops, represented by \p 1299 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 1300 /// postdominates \p FC0 (making them control flow equivalent). It also 1301 /// assumes that the other conditions for fusion have been met: adjacent, 1302 /// identical trip counts, and no negative distance dependencies exist that 1303 /// would prevent fusion. Thus, there is no checking for these conditions in 1304 /// this method. 1305 /// 1306 /// Fusion is performed by rewiring the CFG to update successor blocks of the 1307 /// components of tho loop. Specifically, the following changes are done: 1308 /// 1309 /// 1. The preheader of \p FC1 is removed as it is no longer necessary 1310 /// (because it is currently only a single statement block). 1311 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1. 1312 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0. 1313 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0. 1314 /// 1315 /// All of these modifications are done with dominator tree updates, thus 1316 /// keeping the dominator (and post dominator) information up-to-date. 1317 /// 1318 /// This can be improved in the future by actually merging blocks during 1319 /// fusion. For example, the preheader of \p FC1 can be merged with the 1320 /// preheader of \p FC0. This would allow loops with more than a single 1321 /// statement in the preheader to be fused. Similarly, the latch blocks of the 1322 /// two loops could also be fused into a single block. This will require 1323 /// analysis to prove it is safe to move the contents of the block past 1324 /// existing code, which currently has not been implemented. 1325 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1326 assert(FC0.isValid() && FC1.isValid() && 1327 "Expecting valid fusion candidates"); 1328 1329 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); 1330 dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); 1331 1332 // Move instructions from the preheader of FC1 to the end of the preheader 1333 // of FC0. 1334 moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI); 1335 1336 // Fusing guarded loops is handled slightly differently than non-guarded 1337 // loops and has been broken out into a separate method instead of trying to 1338 // intersperse the logic within a single method. 1339 if (FC0.GuardBranch) 1340 return fuseGuardedLoops(FC0, FC1); 1341 1342 assert(FC1.Preheader == 1343 (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock)); 1344 assert(FC1.Preheader->size() == 1 && 1345 FC1.Preheader->getSingleSuccessor() == FC1.Header); 1346 1347 // Remember the phi nodes originally in the header of FC0 in order to rewire 1348 // them later. However, this is only necessary if the new loop carried 1349 // values might not dominate the exiting branch. While we do not generally 1350 // test if this is the case but simply insert intermediate phi nodes, we 1351 // need to make sure these intermediate phi nodes have different 1352 // predecessors. To this end, we filter the special case where the exiting 1353 // block is the latch block of the first loop. Nothing needs to be done 1354 // anyway as all loop carried values dominate the latch and thereby also the 1355 // exiting branch. 1356 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1357 if (FC0.ExitingBlock != FC0.Latch) 1358 for (PHINode &PHI : FC0.Header->phis()) 1359 OriginalFC0PHIs.push_back(&PHI); 1360 1361 // Replace incoming blocks for header PHIs first. 1362 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1363 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1364 1365 // Then modify the control flow and update DT and PDT. 1366 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1367 1368 // The old exiting block of the first loop (FC0) has to jump to the header 1369 // of the second as we need to execute the code in the second header block 1370 // regardless of the trip count. That is, if the trip count is 0, so the 1371 // back edge is never taken, we still have to execute both loop headers, 1372 // especially (but not only!) if the second is a do-while style loop. 1373 // However, doing so might invalidate the phi nodes of the first loop as 1374 // the new values do only need to dominate their latch and not the exiting 1375 // predicate. To remedy this potential problem we always introduce phi 1376 // nodes in the header of the second loop later that select the loop carried 1377 // value, if the second header was reached through an old latch of the 1378 // first, or undef otherwise. This is sound as exiting the first implies the 1379 // second will exit too, __without__ taking the back-edge. [Their 1380 // trip-counts are equal after all. 1381 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go 1382 // to FC1.Header? I think this is basically what the three sequences are 1383 // trying to accomplish; however, doing this directly in the CFG may mean 1384 // the DT/PDT becomes invalid 1385 if (!FC0.Peeled) { 1386 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, 1387 FC1.Header); 1388 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1389 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); 1390 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1391 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1392 } else { 1393 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1394 DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader)); 1395 1396 // Remove the ExitBlock of the first Loop (also not needed) 1397 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock, 1398 FC1.Header); 1399 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1400 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock)); 1401 FC0.ExitBlock->getTerminator()->eraseFromParent(); 1402 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1403 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1404 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock); 1405 } 1406 1407 // The pre-header of L1 is not necessary anymore. 1408 assert(pred_empty(FC1.Preheader)); 1409 FC1.Preheader->getTerminator()->eraseFromParent(); 1410 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1411 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1412 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1413 1414 // Moves the phi nodes from the second to the first loops header block. 1415 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1416 if (SE.isSCEVable(PHI->getType())) 1417 SE.forgetValue(PHI); 1418 if (PHI->hasNUsesOrMore(1)) 1419 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1420 else 1421 PHI->eraseFromParent(); 1422 } 1423 1424 // Introduce new phi nodes in the second loop header to ensure 1425 // exiting the first and jumping to the header of the second does not break 1426 // the SSA property of the phis originally in the first loop. See also the 1427 // comment above. 1428 Instruction *L1HeaderIP = &FC1.Header->front(); 1429 for (PHINode *LCPHI : OriginalFC0PHIs) { 1430 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1431 assert(L1LatchBBIdx >= 0 && 1432 "Expected loop carried value to be rewired at this point!"); 1433 1434 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1435 1436 PHINode *L1HeaderPHI = PHINode::Create( 1437 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1438 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1439 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1440 FC0.ExitingBlock); 1441 1442 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1443 } 1444 1445 // Replace latch terminator destinations. 1446 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1447 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1448 1449 // Modify the latch branch of FC0 to be unconditional as both successors of 1450 // the branch are the same. 1451 simplifyLatchBranch(FC0); 1452 1453 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1454 // performed the updates above. 1455 if (FC0.Latch != FC0.ExitingBlock) 1456 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1457 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1458 1459 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1460 FC0.Latch, FC0.Header)); 1461 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1462 FC1.Latch, FC0.Header)); 1463 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1464 FC1.Latch, FC1.Header)); 1465 1466 // Update DT/PDT 1467 DTU.applyUpdates(TreeUpdates); 1468 1469 LI.removeBlock(FC1.Preheader); 1470 DTU.deleteBB(FC1.Preheader); 1471 if (FC0.Peeled) { 1472 LI.removeBlock(FC0.ExitBlock); 1473 DTU.deleteBB(FC0.ExitBlock); 1474 } 1475 1476 DTU.flush(); 1477 1478 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1479 // and rebuild the information in subsequent passes of fusion? 1480 // Note: Need to forget the loops before merging the loop latches, as 1481 // mergeLatch may remove the only block in FC1. 1482 SE.forgetLoop(FC1.L); 1483 SE.forgetLoop(FC0.L); 1484 1485 // Move instructions from FC0.Latch to FC1.Latch. 1486 // Note: mergeLatch requires an updated DT. 1487 mergeLatch(FC0, FC1); 1488 1489 // Merge the loops. 1490 SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks()); 1491 for (BasicBlock *BB : Blocks) { 1492 FC0.L->addBlockEntry(BB); 1493 FC1.L->removeBlockFromLoop(BB); 1494 if (LI.getLoopFor(BB) != FC1.L) 1495 continue; 1496 LI.changeLoopFor(BB, FC0.L); 1497 } 1498 while (!FC1.L->isInnermost()) { 1499 const auto &ChildLoopIt = FC1.L->begin(); 1500 Loop *ChildLoop = *ChildLoopIt; 1501 FC1.L->removeChildLoop(ChildLoopIt); 1502 FC0.L->addChildLoop(ChildLoop); 1503 } 1504 1505 // Delete the now empty loop L1. 1506 LI.erase(FC1.L); 1507 1508 #ifndef NDEBUG 1509 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1510 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1511 assert(PDT.verify()); 1512 LI.verify(DT); 1513 SE.verify(); 1514 #endif 1515 1516 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1517 1518 return FC0.L; 1519 } 1520 1521 /// Report details on loop fusion opportunities. 1522 /// 1523 /// This template function can be used to report both successful and missed 1524 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should 1525 /// be one of: 1526 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful 1527 /// given two valid fusion candidates. 1528 /// - OptimizationRemark to report successful fusion of two fusion 1529 /// candidates. 1530 /// The remarks will be printed using the form: 1531 /// <path/filename>:<line number>:<column number>: [<function name>]: 1532 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description> 1533 template <typename RemarkKind> 1534 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1, 1535 llvm::Statistic &Stat) { 1536 assert(FC0.Preheader && FC1.Preheader && 1537 "Expecting valid fusion candidates"); 1538 using namespace ore; 1539 #if LLVM_ENABLE_STATS 1540 ++Stat; 1541 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(), 1542 FC0.Preheader) 1543 << "[" << FC0.Preheader->getParent()->getName() 1544 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName())) 1545 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName())) 1546 << ": " << Stat.getDesc()); 1547 #endif 1548 } 1549 1550 /// Fuse two guarded fusion candidates, creating a new fused loop. 1551 /// 1552 /// Fusing guarded loops is handled much the same way as fusing non-guarded 1553 /// loops. The rewiring of the CFG is slightly different though, because of 1554 /// the presence of the guards around the loops and the exit blocks after the 1555 /// loop body. As such, the new loop is rewired as follows: 1556 /// 1. Keep the guard branch from FC0 and use the non-loop block target 1557 /// from the FC1 guard branch. 1558 /// 2. Remove the exit block from FC0 (this exit block should be empty 1559 /// right now). 1560 /// 3. Remove the guard branch for FC1 1561 /// 4. Remove the preheader for FC1. 1562 /// The exit block successor for the latch of FC0 is updated to be the header 1563 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to 1564 /// be the header of FC0, thus creating the fused loop. 1565 Loop *fuseGuardedLoops(const FusionCandidate &FC0, 1566 const FusionCandidate &FC1) { 1567 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops"); 1568 1569 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent(); 1570 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent(); 1571 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock(); 1572 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock(); 1573 BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor(); 1574 1575 // Move instructions from the exit block of FC0 to the beginning of the exit 1576 // block of FC1, in the case that the FC0 loop has not been peeled. In the 1577 // case that FC0 loop is peeled, then move the instructions of the successor 1578 // of the FC0 Exit block to the beginning of the exit block of FC1. 1579 moveInstructionsToTheBeginning( 1580 (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock, 1581 DT, PDT, DI); 1582 1583 // Move instructions from the guard block of FC1 to the end of the guard 1584 // block of FC0. 1585 moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI); 1586 1587 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent"); 1588 1589 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1590 1591 //////////////////////////////////////////////////////////////////////////// 1592 // Update the Loop Guard 1593 //////////////////////////////////////////////////////////////////////////// 1594 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by 1595 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1. 1596 // Thus, one path from the guard goes to the preheader for FC0 (and thus 1597 // executes the new fused loop) and the other path goes to the NonLoopBlock 1598 // for FC1 (where FC1 guard would have gone if FC1 was not executed). 1599 FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock); 1600 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock); 1601 1602 BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock; 1603 BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header); 1604 1605 // The guard of FC1 is not necessary anymore. 1606 FC1.GuardBranch->eraseFromParent(); 1607 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock); 1608 1609 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1610 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader)); 1611 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1612 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock)); 1613 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1614 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock)); 1615 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1616 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock)); 1617 1618 if (FC0.Peeled) { 1619 // Remove the Block after the ExitBlock of FC0 1620 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1621 DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock)); 1622 FC0ExitBlockSuccessor->getTerminator()->eraseFromParent(); 1623 new UnreachableInst(FC0ExitBlockSuccessor->getContext(), 1624 FC0ExitBlockSuccessor); 1625 } 1626 1627 assert(pred_empty(FC1GuardBlock) && 1628 "Expecting guard block to have no predecessors"); 1629 assert(succ_empty(FC1GuardBlock) && 1630 "Expecting guard block to have no successors"); 1631 1632 // Remember the phi nodes originally in the header of FC0 in order to rewire 1633 // them later. However, this is only necessary if the new loop carried 1634 // values might not dominate the exiting branch. While we do not generally 1635 // test if this is the case but simply insert intermediate phi nodes, we 1636 // need to make sure these intermediate phi nodes have different 1637 // predecessors. To this end, we filter the special case where the exiting 1638 // block is the latch block of the first loop. Nothing needs to be done 1639 // anyway as all loop carried values dominate the latch and thereby also the 1640 // exiting branch. 1641 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch 1642 // (because the loops are rotated. Thus, nothing will ever be added to 1643 // OriginalFC0PHIs. 1644 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1645 if (FC0.ExitingBlock != FC0.Latch) 1646 for (PHINode &PHI : FC0.Header->phis()) 1647 OriginalFC0PHIs.push_back(&PHI); 1648 1649 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!"); 1650 1651 // Replace incoming blocks for header PHIs first. 1652 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1653 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1654 1655 // The old exiting block of the first loop (FC0) has to jump to the header 1656 // of the second as we need to execute the code in the second header block 1657 // regardless of the trip count. That is, if the trip count is 0, so the 1658 // back edge is never taken, we still have to execute both loop headers, 1659 // especially (but not only!) if the second is a do-while style loop. 1660 // However, doing so might invalidate the phi nodes of the first loop as 1661 // the new values do only need to dominate their latch and not the exiting 1662 // predicate. To remedy this potential problem we always introduce phi 1663 // nodes in the header of the second loop later that select the loop carried 1664 // value, if the second header was reached through an old latch of the 1665 // first, or undef otherwise. This is sound as exiting the first implies the 1666 // second will exit too, __without__ taking the back-edge (their 1667 // trip-counts are equal after all). 1668 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock, 1669 FC1.Header); 1670 1671 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1672 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock)); 1673 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1674 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1675 1676 // Remove FC0 Exit Block 1677 // The exit block for FC0 is no longer needed since control will flow 1678 // directly to the header of FC1. Since it is an empty block, it can be 1679 // removed at this point. 1680 // TODO: In the future, we can handle non-empty exit blocks my merging any 1681 // instructions from FC0 exit block into FC1 exit block prior to removing 1682 // the block. 1683 assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty"); 1684 FC0.ExitBlock->getTerminator()->eraseFromParent(); 1685 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock); 1686 1687 // Remove FC1 Preheader 1688 // The pre-header of L1 is not necessary anymore. 1689 assert(pred_empty(FC1.Preheader)); 1690 FC1.Preheader->getTerminator()->eraseFromParent(); 1691 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1692 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1693 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1694 1695 // Moves the phi nodes from the second to the first loops header block. 1696 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1697 if (SE.isSCEVable(PHI->getType())) 1698 SE.forgetValue(PHI); 1699 if (PHI->hasNUsesOrMore(1)) 1700 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1701 else 1702 PHI->eraseFromParent(); 1703 } 1704 1705 // Introduce new phi nodes in the second loop header to ensure 1706 // exiting the first and jumping to the header of the second does not break 1707 // the SSA property of the phis originally in the first loop. See also the 1708 // comment above. 1709 Instruction *L1HeaderIP = &FC1.Header->front(); 1710 for (PHINode *LCPHI : OriginalFC0PHIs) { 1711 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1712 assert(L1LatchBBIdx >= 0 && 1713 "Expected loop carried value to be rewired at this point!"); 1714 1715 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1716 1717 PHINode *L1HeaderPHI = PHINode::Create( 1718 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1719 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1720 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1721 FC0.ExitingBlock); 1722 1723 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1724 } 1725 1726 // Update the latches 1727 1728 // Replace latch terminator destinations. 1729 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1730 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1731 1732 // Modify the latch branch of FC0 to be unconditional as both successors of 1733 // the branch are the same. 1734 simplifyLatchBranch(FC0); 1735 1736 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1737 // performed the updates above. 1738 if (FC0.Latch != FC0.ExitingBlock) 1739 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1740 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1741 1742 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1743 FC0.Latch, FC0.Header)); 1744 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1745 FC1.Latch, FC0.Header)); 1746 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1747 FC1.Latch, FC1.Header)); 1748 1749 // All done 1750 // Apply the updates to the Dominator Tree and cleanup. 1751 1752 assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!"); 1753 assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!"); 1754 1755 // Update DT/PDT 1756 DTU.applyUpdates(TreeUpdates); 1757 1758 LI.removeBlock(FC1GuardBlock); 1759 LI.removeBlock(FC1.Preheader); 1760 LI.removeBlock(FC0.ExitBlock); 1761 if (FC0.Peeled) { 1762 LI.removeBlock(FC0ExitBlockSuccessor); 1763 DTU.deleteBB(FC0ExitBlockSuccessor); 1764 } 1765 DTU.deleteBB(FC1GuardBlock); 1766 DTU.deleteBB(FC1.Preheader); 1767 DTU.deleteBB(FC0.ExitBlock); 1768 DTU.flush(); 1769 1770 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1771 // and rebuild the information in subsequent passes of fusion? 1772 // Note: Need to forget the loops before merging the loop latches, as 1773 // mergeLatch may remove the only block in FC1. 1774 SE.forgetLoop(FC1.L); 1775 SE.forgetLoop(FC0.L); 1776 1777 // Move instructions from FC0.Latch to FC1.Latch. 1778 // Note: mergeLatch requires an updated DT. 1779 mergeLatch(FC0, FC1); 1780 1781 // Merge the loops. 1782 SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks()); 1783 for (BasicBlock *BB : Blocks) { 1784 FC0.L->addBlockEntry(BB); 1785 FC1.L->removeBlockFromLoop(BB); 1786 if (LI.getLoopFor(BB) != FC1.L) 1787 continue; 1788 LI.changeLoopFor(BB, FC0.L); 1789 } 1790 while (!FC1.L->isInnermost()) { 1791 const auto &ChildLoopIt = FC1.L->begin(); 1792 Loop *ChildLoop = *ChildLoopIt; 1793 FC1.L->removeChildLoop(ChildLoopIt); 1794 FC0.L->addChildLoop(ChildLoop); 1795 } 1796 1797 // Delete the now empty loop L1. 1798 LI.erase(FC1.L); 1799 1800 #ifndef NDEBUG 1801 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1802 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1803 assert(PDT.verify()); 1804 LI.verify(DT); 1805 SE.verify(); 1806 #endif 1807 1808 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1809 1810 return FC0.L; 1811 } 1812 }; 1813 1814 struct LoopFuseLegacy : public FunctionPass { 1815 1816 static char ID; 1817 1818 LoopFuseLegacy() : FunctionPass(ID) { 1819 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry()); 1820 } 1821 1822 void getAnalysisUsage(AnalysisUsage &AU) const override { 1823 AU.addRequiredID(LoopSimplifyID); 1824 AU.addRequired<ScalarEvolutionWrapperPass>(); 1825 AU.addRequired<LoopInfoWrapperPass>(); 1826 AU.addRequired<DominatorTreeWrapperPass>(); 1827 AU.addRequired<PostDominatorTreeWrapperPass>(); 1828 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1829 AU.addRequired<DependenceAnalysisWrapperPass>(); 1830 AU.addRequired<AssumptionCacheTracker>(); 1831 AU.addRequired<TargetTransformInfoWrapperPass>(); 1832 1833 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1834 AU.addPreserved<LoopInfoWrapperPass>(); 1835 AU.addPreserved<DominatorTreeWrapperPass>(); 1836 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1837 } 1838 1839 bool runOnFunction(Function &F) override { 1840 if (skipFunction(F)) 1841 return false; 1842 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1843 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1844 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1845 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1846 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1847 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1848 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1849 const TargetTransformInfo &TTI = 1850 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1851 const DataLayout &DL = F.getParent()->getDataLayout(); 1852 1853 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI); 1854 return LF.fuseLoops(F); 1855 } 1856 }; 1857 } // namespace 1858 1859 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { 1860 auto &LI = AM.getResult<LoopAnalysis>(F); 1861 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1862 auto &DI = AM.getResult<DependenceAnalysis>(F); 1863 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1864 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1865 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1866 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1867 const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 1868 const DataLayout &DL = F.getParent()->getDataLayout(); 1869 1870 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI); 1871 bool Changed = LF.fuseLoops(F); 1872 if (!Changed) 1873 return PreservedAnalyses::all(); 1874 1875 PreservedAnalyses PA; 1876 PA.preserve<DominatorTreeAnalysis>(); 1877 PA.preserve<PostDominatorTreeAnalysis>(); 1878 PA.preserve<ScalarEvolutionAnalysis>(); 1879 PA.preserve<LoopAnalysis>(); 1880 return PA; 1881 } 1882 1883 char LoopFuseLegacy::ID = 0; 1884 1885 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, 1886 false) 1887 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1888 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1889 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1890 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1891 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1892 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1893 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1894 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1895 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) 1896 1897 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); } 1898