1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the loop fusion pass. 11 /// The implementation is largely based on the following document: 12 /// 13 /// Code Transformations to Augment the Scope of Loop Fusion in a 14 /// Production Compiler 15 /// Christopher Mark Barton 16 /// MSc Thesis 17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf 18 /// 19 /// The general approach taken is to collect sets of control flow equivalent 20 /// loops and test whether they can be fused. The necessary conditions for 21 /// fusion are: 22 /// 1. The loops must be adjacent (there cannot be any statements between 23 /// the two loops). 24 /// 2. The loops must be conforming (they must execute the same number of 25 /// iterations). 26 /// 3. The loops must be control flow equivalent (if one loop executes, the 27 /// other is guaranteed to execute). 28 /// 4. There cannot be any negative distance dependencies between the loops. 29 /// If all of these conditions are satisfied, it is safe to fuse the loops. 30 /// 31 /// This implementation creates FusionCandidates that represent the loop and the 32 /// necessary information needed by fusion. It then operates on the fusion 33 /// candidates, first confirming that the candidate is eligible for fusion. The 34 /// candidates are then collected into control flow equivalent sets, sorted in 35 /// dominance order. Each set of control flow equivalent candidates is then 36 /// traversed, attempting to fuse pairs of candidates in the set. If all 37 /// requirements for fusion are met, the two candidates are fused, creating a 38 /// new (fused) candidate which is then added back into the set to consider for 39 /// additional fusion. 40 /// 41 /// This implementation currently does not make any modifications to remove 42 /// conditions for fusion. Code transformations to make loops conform to each of 43 /// the conditions for fusion are discussed in more detail in the document 44 /// above. These can be added to the current implementation in the future. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/Transforms/Scalar/LoopFuse.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/DependenceAnalysis.h" 50 #include "llvm/Analysis/DomTreeUpdater.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 53 #include "llvm/Analysis/PostDominators.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/Verifier.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Transforms/Scalar.h" 62 #include "llvm/Transforms/Utils.h" 63 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "loop-fusion" 68 69 STATISTIC(FuseCounter, "Loops fused"); 70 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); 71 STATISTIC(InvalidPreheader, "Loop has invalid preheader"); 72 STATISTIC(InvalidHeader, "Loop has invalid header"); 73 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); 74 STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); 75 STATISTIC(InvalidLatch, "Loop has invalid latch"); 76 STATISTIC(InvalidLoop, "Loop is invalid"); 77 STATISTIC(AddressTakenBB, "Basic block has address taken"); 78 STATISTIC(MayThrowException, "Loop may throw an exception"); 79 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); 80 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); 81 STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); 82 STATISTIC(UnknownTripCount, "Loop has unknown trip count"); 83 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); 84 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same"); 85 STATISTIC(NonAdjacent, "Loops are not adjacent"); 86 STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader"); 87 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial"); 88 STATISTIC(NonIdenticalGuards, "Candidates have different guards"); 89 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block"); 90 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block"); 91 92 enum FusionDependenceAnalysisChoice { 93 FUSION_DEPENDENCE_ANALYSIS_SCEV, 94 FUSION_DEPENDENCE_ANALYSIS_DA, 95 FUSION_DEPENDENCE_ANALYSIS_ALL, 96 }; 97 98 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis( 99 "loop-fusion-dependence-analysis", 100 cl::desc("Which dependence analysis should loop fusion use?"), 101 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", 102 "Use the scalar evolution interface"), 103 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", 104 "Use the dependence analysis interface"), 105 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", 106 "Use all available analyses")), 107 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore); 108 109 #ifndef NDEBUG 110 static cl::opt<bool> 111 VerboseFusionDebugging("loop-fusion-verbose-debug", 112 cl::desc("Enable verbose debugging for Loop Fusion"), 113 cl::Hidden, cl::init(false), cl::ZeroOrMore); 114 #endif 115 116 namespace { 117 /// This class is used to represent a candidate for loop fusion. When it is 118 /// constructed, it checks the conditions for loop fusion to ensure that it 119 /// represents a valid candidate. It caches several parts of a loop that are 120 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead 121 /// of continually querying the underlying Loop to retrieve these values. It is 122 /// assumed these will not change throughout loop fusion. 123 /// 124 /// The invalidate method should be used to indicate that the FusionCandidate is 125 /// no longer a valid candidate for fusion. Similarly, the isValid() method can 126 /// be used to ensure that the FusionCandidate is still valid for fusion. 127 struct FusionCandidate { 128 /// Cache of parts of the loop used throughout loop fusion. These should not 129 /// need to change throughout the analysis and transformation. 130 /// These parts are cached to avoid repeatedly looking up in the Loop class. 131 132 /// Preheader of the loop this candidate represents 133 BasicBlock *Preheader; 134 /// Header of the loop this candidate represents 135 BasicBlock *Header; 136 /// Blocks in the loop that exit the loop 137 BasicBlock *ExitingBlock; 138 /// The successor block of this loop (where the exiting blocks go to) 139 BasicBlock *ExitBlock; 140 /// Latch of the loop 141 BasicBlock *Latch; 142 /// The loop that this fusion candidate represents 143 Loop *L; 144 /// Vector of instructions in this loop that read from memory 145 SmallVector<Instruction *, 16> MemReads; 146 /// Vector of instructions in this loop that write to memory 147 SmallVector<Instruction *, 16> MemWrites; 148 /// Are all of the members of this fusion candidate still valid 149 bool Valid; 150 /// Guard branch of the loop, if it exists 151 BranchInst *GuardBranch; 152 153 /// Dominator and PostDominator trees are needed for the 154 /// FusionCandidateCompare function, required by FusionCandidateSet to 155 /// determine where the FusionCandidate should be inserted into the set. These 156 /// are used to establish ordering of the FusionCandidates based on dominance. 157 const DominatorTree *DT; 158 const PostDominatorTree *PDT; 159 160 OptimizationRemarkEmitter &ORE; 161 162 FusionCandidate(Loop *L, const DominatorTree *DT, 163 const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE) 164 : Preheader(L->getLoopPreheader()), Header(L->getHeader()), 165 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), 166 Latch(L->getLoopLatch()), L(L), Valid(true), GuardBranch(nullptr), 167 DT(DT), PDT(PDT), ORE(ORE) { 168 169 // TODO: This is temporary while we fuse both rotated and non-rotated 170 // loops. Once we switch to only fusing rotated loops, the initialization of 171 // GuardBranch can be moved into the initialization list above. 172 if (isRotated()) 173 GuardBranch = L->getLoopGuardBranch(); 174 175 // Walk over all blocks in the loop and check for conditions that may 176 // prevent fusion. For each block, walk over all instructions and collect 177 // the memory reads and writes If any instructions that prevent fusion are 178 // found, invalidate this object and return. 179 for (BasicBlock *BB : L->blocks()) { 180 if (BB->hasAddressTaken()) { 181 invalidate(); 182 reportInvalidCandidate(AddressTakenBB); 183 return; 184 } 185 186 for (Instruction &I : *BB) { 187 if (I.mayThrow()) { 188 invalidate(); 189 reportInvalidCandidate(MayThrowException); 190 return; 191 } 192 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 193 if (SI->isVolatile()) { 194 invalidate(); 195 reportInvalidCandidate(ContainsVolatileAccess); 196 return; 197 } 198 } 199 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 200 if (LI->isVolatile()) { 201 invalidate(); 202 reportInvalidCandidate(ContainsVolatileAccess); 203 return; 204 } 205 } 206 if (I.mayWriteToMemory()) 207 MemWrites.push_back(&I); 208 if (I.mayReadFromMemory()) 209 MemReads.push_back(&I); 210 } 211 } 212 } 213 214 /// Check if all members of the class are valid. 215 bool isValid() const { 216 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && 217 !L->isInvalid() && Valid; 218 } 219 220 /// Verify that all members are in sync with the Loop object. 221 void verify() const { 222 assert(isValid() && "Candidate is not valid!!"); 223 assert(!L->isInvalid() && "Loop is invalid!"); 224 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); 225 assert(Header == L->getHeader() && "Header is out of sync"); 226 assert(ExitingBlock == L->getExitingBlock() && 227 "Exiting Blocks is out of sync"); 228 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); 229 assert(Latch == L->getLoopLatch() && "Latch is out of sync"); 230 } 231 232 /// Get the entry block for this fusion candidate. 233 /// 234 /// If this fusion candidate represents a guarded loop, the entry block is the 235 /// loop guard block. If it represents an unguarded loop, the entry block is 236 /// the preheader of the loop. 237 BasicBlock *getEntryBlock() const { 238 if (GuardBranch) 239 return GuardBranch->getParent(); 240 else 241 return Preheader; 242 } 243 244 /// Given a guarded loop, get the successor of the guard that is not in the 245 /// loop. 246 /// 247 /// This method returns the successor of the loop guard that is not located 248 /// within the loop (i.e., the successor of the guard that is not the 249 /// preheader). 250 /// This method is only valid for guarded loops. 251 BasicBlock *getNonLoopBlock() const { 252 assert(GuardBranch && "Only valid on guarded loops."); 253 assert(GuardBranch->isConditional() && 254 "Expecting guard to be a conditional branch."); 255 return (GuardBranch->getSuccessor(0) == Preheader) 256 ? GuardBranch->getSuccessor(1) 257 : GuardBranch->getSuccessor(0); 258 } 259 260 bool isRotated() const { 261 assert(L && "Expecting loop to be valid."); 262 assert(Latch && "Expecting latch to be valid."); 263 return L->isLoopExiting(Latch); 264 } 265 266 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 267 LLVM_DUMP_METHOD void dump() const { 268 dbgs() << "\tGuardBranch: " 269 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n" 270 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") 271 << "\n" 272 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" 273 << "\tExitingBB: " 274 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" 275 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") 276 << "\n" 277 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n" 278 << "\tEntryBlock: " 279 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr") 280 << "\n"; 281 } 282 #endif 283 284 /// Determine if a fusion candidate (representing a loop) is eligible for 285 /// fusion. Note that this only checks whether a single loop can be fused - it 286 /// does not check whether it is *legal* to fuse two loops together. 287 bool isEligibleForFusion(ScalarEvolution &SE) const { 288 if (!isValid()) { 289 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n"); 290 if (!Preheader) 291 ++InvalidPreheader; 292 if (!Header) 293 ++InvalidHeader; 294 if (!ExitingBlock) 295 ++InvalidExitingBlock; 296 if (!ExitBlock) 297 ++InvalidExitBlock; 298 if (!Latch) 299 ++InvalidLatch; 300 if (L->isInvalid()) 301 ++InvalidLoop; 302 303 return false; 304 } 305 306 // Require ScalarEvolution to be able to determine a trip count. 307 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 308 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 309 << " trip count not computable!\n"); 310 return reportInvalidCandidate(UnknownTripCount); 311 } 312 313 if (!L->isLoopSimplifyForm()) { 314 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 315 << " is not in simplified form!\n"); 316 return reportInvalidCandidate(NotSimplifiedForm); 317 } 318 319 return true; 320 } 321 322 private: 323 // This is only used internally for now, to clear the MemWrites and MemReads 324 // list and setting Valid to false. I can't envision other uses of this right 325 // now, since once FusionCandidates are put into the FusionCandidateSet they 326 // are immutable. Thus, any time we need to change/update a FusionCandidate, 327 // we must create a new one and insert it into the FusionCandidateSet to 328 // ensure the FusionCandidateSet remains ordered correctly. 329 void invalidate() { 330 MemWrites.clear(); 331 MemReads.clear(); 332 Valid = false; 333 } 334 335 bool reportInvalidCandidate(llvm::Statistic &Stat) const { 336 using namespace ore; 337 assert(L && Preheader && "Fusion candidate not initialized properly!"); 338 ++Stat; 339 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(), 340 L->getStartLoc(), Preheader) 341 << "[" << Preheader->getParent()->getName() << "]: " 342 << "Loop is not a candidate for fusion: " << Stat.getDesc()); 343 return false; 344 } 345 }; 346 347 struct FusionCandidateCompare { 348 /// Comparison functor to sort two Control Flow Equivalent fusion candidates 349 /// into dominance order. 350 /// If LHS dominates RHS and RHS post-dominates LHS, return true; 351 /// IF RHS dominates LHS and LHS post-dominates RHS, return false; 352 bool operator()(const FusionCandidate &LHS, 353 const FusionCandidate &RHS) const { 354 const DominatorTree *DT = LHS.DT; 355 356 BasicBlock *LHSEntryBlock = LHS.getEntryBlock(); 357 BasicBlock *RHSEntryBlock = RHS.getEntryBlock(); 358 359 // Do not save PDT to local variable as it is only used in asserts and thus 360 // will trigger an unused variable warning if building without asserts. 361 assert(DT && LHS.PDT && "Expecting valid dominator tree"); 362 363 // Do this compare first so if LHS == RHS, function returns false. 364 if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) { 365 // RHS dominates LHS 366 // Verify LHS post-dominates RHS 367 assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock)); 368 return false; 369 } 370 371 if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) { 372 // Verify RHS Postdominates LHS 373 assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock)); 374 return true; 375 } 376 377 // If LHS does not dominate RHS and RHS does not dominate LHS then there is 378 // no dominance relationship between the two FusionCandidates. Thus, they 379 // should not be in the same set together. 380 llvm_unreachable( 381 "No dominance relationship between these fusion candidates!"); 382 } 383 }; 384 385 using LoopVector = SmallVector<Loop *, 4>; 386 387 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance 388 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 389 // dominates FC1 and FC1 post-dominates FC0. 390 // std::set was chosen because we want a sorted data structure with stable 391 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent 392 // loops by moving intervening code around. When this intervening code contains 393 // loops, those loops will be moved also. The corresponding FusionCandidates 394 // will also need to be moved accordingly. As this is done, having stable 395 // iterators will simplify the logic. Similarly, having an efficient insert that 396 // keeps the FusionCandidateSet sorted will also simplify the implementation. 397 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>; 398 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>; 399 400 #if !defined(NDEBUG) 401 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 402 const FusionCandidate &FC) { 403 if (FC.isValid()) 404 OS << FC.Preheader->getName(); 405 else 406 OS << "<Invalid>"; 407 408 return OS; 409 } 410 411 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 412 const FusionCandidateSet &CandSet) { 413 for (const FusionCandidate &FC : CandSet) 414 OS << FC << '\n'; 415 416 return OS; 417 } 418 419 static void 420 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { 421 dbgs() << "Fusion Candidates: \n"; 422 for (const auto &CandidateSet : FusionCandidates) { 423 dbgs() << "*** Fusion Candidate Set ***\n"; 424 dbgs() << CandidateSet; 425 dbgs() << "****************************\n"; 426 } 427 } 428 #endif 429 430 /// Collect all loops in function at the same nest level, starting at the 431 /// outermost level. 432 /// 433 /// This data structure collects all loops at the same nest level for a 434 /// given function (specified by the LoopInfo object). It starts at the 435 /// outermost level. 436 struct LoopDepthTree { 437 using LoopsOnLevelTy = SmallVector<LoopVector, 4>; 438 using iterator = LoopsOnLevelTy::iterator; 439 using const_iterator = LoopsOnLevelTy::const_iterator; 440 441 LoopDepthTree(LoopInfo &LI) : Depth(1) { 442 if (!LI.empty()) 443 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); 444 } 445 446 /// Test whether a given loop has been removed from the function, and thus is 447 /// no longer valid. 448 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } 449 450 /// Record that a given loop has been removed from the function and is no 451 /// longer valid. 452 void removeLoop(const Loop *L) { RemovedLoops.insert(L); } 453 454 /// Descend the tree to the next (inner) nesting level 455 void descend() { 456 LoopsOnLevelTy LoopsOnNextLevel; 457 458 for (const LoopVector &LV : *this) 459 for (Loop *L : LV) 460 if (!isRemovedLoop(L) && L->begin() != L->end()) 461 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); 462 463 LoopsOnLevel = LoopsOnNextLevel; 464 RemovedLoops.clear(); 465 Depth++; 466 } 467 468 bool empty() const { return size() == 0; } 469 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } 470 unsigned getDepth() const { return Depth; } 471 472 iterator begin() { return LoopsOnLevel.begin(); } 473 iterator end() { return LoopsOnLevel.end(); } 474 const_iterator begin() const { return LoopsOnLevel.begin(); } 475 const_iterator end() const { return LoopsOnLevel.end(); } 476 477 private: 478 /// Set of loops that have been removed from the function and are no longer 479 /// valid. 480 SmallPtrSet<const Loop *, 8> RemovedLoops; 481 482 /// Depth of the current level, starting at 1 (outermost loops). 483 unsigned Depth; 484 485 /// Vector of loops at the current depth level that have the same parent loop 486 LoopsOnLevelTy LoopsOnLevel; 487 }; 488 489 #ifndef NDEBUG 490 static void printLoopVector(const LoopVector &LV) { 491 dbgs() << "****************************\n"; 492 for (auto L : LV) 493 printLoop(*L, dbgs()); 494 dbgs() << "****************************\n"; 495 } 496 #endif 497 498 struct LoopFuser { 499 private: 500 // Sets of control flow equivalent fusion candidates for a given nest level. 501 FusionCandidateCollection FusionCandidates; 502 503 LoopDepthTree LDT; 504 DomTreeUpdater DTU; 505 506 LoopInfo &LI; 507 DominatorTree &DT; 508 DependenceInfo &DI; 509 ScalarEvolution &SE; 510 PostDominatorTree &PDT; 511 OptimizationRemarkEmitter &ORE; 512 513 public: 514 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, 515 ScalarEvolution &SE, PostDominatorTree &PDT, 516 OptimizationRemarkEmitter &ORE, const DataLayout &DL) 517 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), 518 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {} 519 520 /// This is the main entry point for loop fusion. It will traverse the 521 /// specified function and collect candidate loops to fuse, starting at the 522 /// outermost nesting level and working inwards. 523 bool fuseLoops(Function &F) { 524 #ifndef NDEBUG 525 if (VerboseFusionDebugging) { 526 LI.print(dbgs()); 527 } 528 #endif 529 530 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() 531 << "\n"); 532 bool Changed = false; 533 534 while (!LDT.empty()) { 535 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " 536 << LDT.getDepth() << "\n";); 537 538 for (const LoopVector &LV : LDT) { 539 assert(LV.size() > 0 && "Empty loop set was build!"); 540 541 // Skip singleton loop sets as they do not offer fusion opportunities on 542 // this level. 543 if (LV.size() == 1) 544 continue; 545 #ifndef NDEBUG 546 if (VerboseFusionDebugging) { 547 LLVM_DEBUG({ 548 dbgs() << " Visit loop set (#" << LV.size() << "):\n"; 549 printLoopVector(LV); 550 }); 551 } 552 #endif 553 554 collectFusionCandidates(LV); 555 Changed |= fuseCandidates(); 556 } 557 558 // Finished analyzing candidates at this level. 559 // Descend to the next level and clear all of the candidates currently 560 // collected. Note that it will not be possible to fuse any of the 561 // existing candidates with new candidates because the new candidates will 562 // be at a different nest level and thus not be control flow equivalent 563 // with all of the candidates collected so far. 564 LLVM_DEBUG(dbgs() << "Descend one level!\n"); 565 LDT.descend(); 566 FusionCandidates.clear(); 567 } 568 569 if (Changed) 570 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); 571 572 #ifndef NDEBUG 573 assert(DT.verify()); 574 assert(PDT.verify()); 575 LI.verify(DT); 576 SE.verify(); 577 #endif 578 579 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); 580 return Changed; 581 } 582 583 private: 584 /// Determine if two fusion candidates are control flow equivalent. 585 /// 586 /// Two fusion candidates are control flow equivalent if when one executes, 587 /// the other is guaranteed to execute. This is determined using dominators 588 /// and post-dominators: if A dominates B and B post-dominates A then A and B 589 /// are control-flow equivalent. 590 bool isControlFlowEquivalent(const FusionCandidate &FC0, 591 const FusionCandidate &FC1) const { 592 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); 593 594 BasicBlock *FC0EntryBlock = FC0.getEntryBlock(); 595 BasicBlock *FC1EntryBlock = FC1.getEntryBlock(); 596 597 if (DT.dominates(FC0EntryBlock, FC1EntryBlock)) 598 return PDT.dominates(FC1EntryBlock, FC0EntryBlock); 599 600 if (DT.dominates(FC1EntryBlock, FC0EntryBlock)) 601 return PDT.dominates(FC0EntryBlock, FC1EntryBlock); 602 603 return false; 604 } 605 606 /// Iterate over all loops in the given loop set and identify the loops that 607 /// are eligible for fusion. Place all eligible fusion candidates into Control 608 /// Flow Equivalent sets, sorted by dominance. 609 void collectFusionCandidates(const LoopVector &LV) { 610 for (Loop *L : LV) { 611 FusionCandidate CurrCand(L, &DT, &PDT, ORE); 612 if (!CurrCand.isEligibleForFusion(SE)) 613 continue; 614 615 // Go through each list in FusionCandidates and determine if L is control 616 // flow equivalent with the first loop in that list. If it is, append LV. 617 // If not, go to the next list. 618 // If no suitable list is found, start another list and add it to 619 // FusionCandidates. 620 bool FoundSet = false; 621 622 for (auto &CurrCandSet : FusionCandidates) { 623 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { 624 CurrCandSet.insert(CurrCand); 625 FoundSet = true; 626 #ifndef NDEBUG 627 if (VerboseFusionDebugging) 628 LLVM_DEBUG(dbgs() << "Adding " << CurrCand 629 << " to existing candidate set\n"); 630 #endif 631 break; 632 } 633 } 634 if (!FoundSet) { 635 // No set was found. Create a new set and add to FusionCandidates 636 #ifndef NDEBUG 637 if (VerboseFusionDebugging) 638 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); 639 #endif 640 FusionCandidateSet NewCandSet; 641 NewCandSet.insert(CurrCand); 642 FusionCandidates.push_back(NewCandSet); 643 } 644 NumFusionCandidates++; 645 } 646 } 647 648 /// Determine if it is beneficial to fuse two loops. 649 /// 650 /// For now, this method simply returns true because we want to fuse as much 651 /// as possible (primarily to test the pass). This method will evolve, over 652 /// time, to add heuristics for profitability of fusion. 653 bool isBeneficialFusion(const FusionCandidate &FC0, 654 const FusionCandidate &FC1) { 655 return true; 656 } 657 658 /// Determine if two fusion candidates have the same trip count (i.e., they 659 /// execute the same number of iterations). 660 /// 661 /// Note that for now this method simply returns a boolean value because there 662 /// are no mechanisms in loop fusion to handle different trip counts. In the 663 /// future, this behaviour can be extended to adjust one of the loops to make 664 /// the trip counts equal (e.g., loop peeling). When this is added, this 665 /// interface may need to change to return more information than just a 666 /// boolean value. 667 bool identicalTripCounts(const FusionCandidate &FC0, 668 const FusionCandidate &FC1) const { 669 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); 670 if (isa<SCEVCouldNotCompute>(TripCount0)) { 671 UncomputableTripCount++; 672 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); 673 return false; 674 } 675 676 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); 677 if (isa<SCEVCouldNotCompute>(TripCount1)) { 678 UncomputableTripCount++; 679 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); 680 return false; 681 } 682 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " 683 << *TripCount1 << " are " 684 << (TripCount0 == TripCount1 ? "identical" : "different") 685 << "\n"); 686 687 return (TripCount0 == TripCount1); 688 } 689 690 /// Walk each set of control flow equivalent fusion candidates and attempt to 691 /// fuse them. This does a single linear traversal of all candidates in the 692 /// set. The conditions for legal fusion are checked at this point. If a pair 693 /// of fusion candidates passes all legality checks, they are fused together 694 /// and a new fusion candidate is created and added to the FusionCandidateSet. 695 /// The original fusion candidates are then removed, as they are no longer 696 /// valid. 697 bool fuseCandidates() { 698 bool Fused = false; 699 LLVM_DEBUG(printFusionCandidates(FusionCandidates)); 700 for (auto &CandidateSet : FusionCandidates) { 701 if (CandidateSet.size() < 2) 702 continue; 703 704 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" 705 << CandidateSet << "\n"); 706 707 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { 708 assert(!LDT.isRemovedLoop(FC0->L) && 709 "Should not have removed loops in CandidateSet!"); 710 auto FC1 = FC0; 711 for (++FC1; FC1 != CandidateSet.end(); ++FC1) { 712 assert(!LDT.isRemovedLoop(FC1->L) && 713 "Should not have removed loops in CandidateSet!"); 714 715 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); 716 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); 717 718 FC0->verify(); 719 FC1->verify(); 720 721 if (!identicalTripCounts(*FC0, *FC1)) { 722 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " 723 "counts. Not fusing.\n"); 724 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 725 NonEqualTripCount); 726 continue; 727 } 728 729 if (!isAdjacent(*FC0, *FC1)) { 730 LLVM_DEBUG(dbgs() 731 << "Fusion candidates are not adjacent. Not fusing.\n"); 732 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent); 733 continue; 734 } 735 736 // Ensure that FC0 and FC1 have identical guards. 737 // If one (or both) are not guarded, this check is not necessary. 738 if (FC0->GuardBranch && FC1->GuardBranch && 739 !haveIdenticalGuards(*FC0, *FC1)) { 740 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical " 741 "guards. Not Fusing.\n"); 742 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 743 NonIdenticalGuards); 744 continue; 745 } 746 747 // The following three checks look for empty blocks in FC0 and FC1. If 748 // any of these blocks are non-empty, we do not fuse. This is done 749 // because we currently do not have the safety checks to determine if 750 // it is safe to move the blocks past other blocks in the loop. Once 751 // these checks are added, these conditions can be relaxed. 752 if (!isEmptyPreheader(*FC1)) { 753 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty " 754 "preheader. Not fusing.\n"); 755 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 756 NonEmptyPreheader); 757 continue; 758 } 759 760 if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) { 761 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit " 762 "block. Not fusing.\n"); 763 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 764 NonEmptyExitBlock); 765 continue; 766 } 767 768 if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) { 769 LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard " 770 "block. Not fusing.\n"); 771 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 772 NonEmptyGuardBlock); 773 continue; 774 } 775 776 // Check the dependencies across the loops and do not fuse if it would 777 // violate them. 778 if (!dependencesAllowFusion(*FC0, *FC1)) { 779 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); 780 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 781 InvalidDependencies); 782 continue; 783 } 784 785 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); 786 LLVM_DEBUG(dbgs() 787 << "\tFusion appears to be " 788 << (BeneficialToFuse ? "" : "un") << "profitable!\n"); 789 if (!BeneficialToFuse) { 790 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 791 FusionNotBeneficial); 792 continue; 793 } 794 // All analysis has completed and has determined that fusion is legal 795 // and profitable. At this point, start transforming the code and 796 // perform fusion. 797 798 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " 799 << *FC1 << "\n"); 800 801 // Report fusion to the Optimization Remarks. 802 // Note this needs to be done *before* performFusion because 803 // performFusion will change the original loops, making it not 804 // possible to identify them after fusion is complete. 805 reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter); 806 807 FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE); 808 FusedCand.verify(); 809 assert(FusedCand.isEligibleForFusion(SE) && 810 "Fused candidate should be eligible for fusion!"); 811 812 // Notify the loop-depth-tree that these loops are not valid objects 813 LDT.removeLoop(FC1->L); 814 815 CandidateSet.erase(FC0); 816 CandidateSet.erase(FC1); 817 818 auto InsertPos = CandidateSet.insert(FusedCand); 819 820 assert(InsertPos.second && 821 "Unable to insert TargetCandidate in CandidateSet!"); 822 823 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations 824 // of the FC1 loop will attempt to fuse the new (fused) loop with the 825 // remaining candidates in the current candidate set. 826 FC0 = FC1 = InsertPos.first; 827 828 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet 829 << "\n"); 830 831 Fused = true; 832 } 833 } 834 } 835 return Fused; 836 } 837 838 /// Rewrite all additive recurrences in a SCEV to use a new loop. 839 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> { 840 public: 841 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, 842 bool UseMax = true) 843 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), 844 NewL(NewL) {} 845 846 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 847 const Loop *ExprL = Expr->getLoop(); 848 SmallVector<const SCEV *, 2> Operands; 849 if (ExprL == &OldL) { 850 Operands.append(Expr->op_begin(), Expr->op_end()); 851 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); 852 } 853 854 if (OldL.contains(ExprL)) { 855 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); 856 if (!UseMax || !Pos || !Expr->isAffine()) { 857 Valid = false; 858 return Expr; 859 } 860 return visit(Expr->getStart()); 861 } 862 863 for (const SCEV *Op : Expr->operands()) 864 Operands.push_back(visit(Op)); 865 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); 866 } 867 868 bool wasValidSCEV() const { return Valid; } 869 870 private: 871 bool Valid, UseMax; 872 const Loop &OldL, &NewL; 873 }; 874 875 /// Return false if the access functions of \p I0 and \p I1 could cause 876 /// a negative dependence. 877 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, 878 Instruction &I1, bool EqualIsInvalid) { 879 Value *Ptr0 = getLoadStorePointerOperand(&I0); 880 Value *Ptr1 = getLoadStorePointerOperand(&I1); 881 if (!Ptr0 || !Ptr1) 882 return false; 883 884 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); 885 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); 886 #ifndef NDEBUG 887 if (VerboseFusionDebugging) 888 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs " 889 << *SCEVPtr1 << "\n"); 890 #endif 891 AddRecLoopReplacer Rewriter(SE, L0, L1); 892 SCEVPtr0 = Rewriter.visit(SCEVPtr0); 893 #ifndef NDEBUG 894 if (VerboseFusionDebugging) 895 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0 896 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); 897 #endif 898 if (!Rewriter.wasValidSCEV()) 899 return false; 900 901 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by 902 // L0) and the other is not. We could check if it is monotone and test 903 // the beginning and end value instead. 904 905 BasicBlock *L0Header = L0.getHeader(); 906 auto HasNonLinearDominanceRelation = [&](const SCEV *S) { 907 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S); 908 if (!AddRec) 909 return false; 910 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && 911 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); 912 }; 913 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) 914 return false; 915 916 ICmpInst::Predicate Pred = 917 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; 918 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); 919 #ifndef NDEBUG 920 if (VerboseFusionDebugging) 921 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0 922 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1 923 << "\n"); 924 #endif 925 return IsAlwaysGE; 926 } 927 928 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in 929 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses 930 /// specified by @p DepChoice are used to determine this. 931 bool dependencesAllowFusion(const FusionCandidate &FC0, 932 const FusionCandidate &FC1, Instruction &I0, 933 Instruction &I1, bool AnyDep, 934 FusionDependenceAnalysisChoice DepChoice) { 935 #ifndef NDEBUG 936 if (VerboseFusionDebugging) { 937 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " 938 << DepChoice << "\n"); 939 } 940 #endif 941 switch (DepChoice) { 942 case FUSION_DEPENDENCE_ANALYSIS_SCEV: 943 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); 944 case FUSION_DEPENDENCE_ANALYSIS_DA: { 945 auto DepResult = DI.depends(&I0, &I1, true); 946 if (!DepResult) 947 return true; 948 #ifndef NDEBUG 949 if (VerboseFusionDebugging) { 950 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); 951 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " 952 << (DepResult->isOrdered() ? "true" : "false") 953 << "]\n"); 954 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() 955 << "\n"); 956 } 957 #endif 958 959 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) 960 LLVM_DEBUG( 961 dbgs() << "TODO: Implement pred/succ dependence handling!\n"); 962 963 // TODO: Can we actually use the dependence info analysis here? 964 return false; 965 } 966 967 case FUSION_DEPENDENCE_ANALYSIS_ALL: 968 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 969 FUSION_DEPENDENCE_ANALYSIS_SCEV) || 970 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 971 FUSION_DEPENDENCE_ANALYSIS_DA); 972 } 973 974 llvm_unreachable("Unknown fusion dependence analysis choice!"); 975 } 976 977 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. 978 bool dependencesAllowFusion(const FusionCandidate &FC0, 979 const FusionCandidate &FC1) { 980 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 981 << "\n"); 982 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); 983 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock())); 984 985 for (Instruction *WriteL0 : FC0.MemWrites) { 986 for (Instruction *WriteL1 : FC1.MemWrites) 987 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 988 /* AnyDep */ false, 989 FusionDependenceAnalysis)) { 990 InvalidDependencies++; 991 return false; 992 } 993 for (Instruction *ReadL1 : FC1.MemReads) 994 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, 995 /* AnyDep */ false, 996 FusionDependenceAnalysis)) { 997 InvalidDependencies++; 998 return false; 999 } 1000 } 1001 1002 for (Instruction *WriteL1 : FC1.MemWrites) { 1003 for (Instruction *WriteL0 : FC0.MemWrites) 1004 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 1005 /* AnyDep */ false, 1006 FusionDependenceAnalysis)) { 1007 InvalidDependencies++; 1008 return false; 1009 } 1010 for (Instruction *ReadL0 : FC0.MemReads) 1011 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, 1012 /* AnyDep */ false, 1013 FusionDependenceAnalysis)) { 1014 InvalidDependencies++; 1015 return false; 1016 } 1017 } 1018 1019 // Walk through all uses in FC1. For each use, find the reaching def. If the 1020 // def is located in FC0 then it is is not safe to fuse. 1021 for (BasicBlock *BB : FC1.L->blocks()) 1022 for (Instruction &I : *BB) 1023 for (auto &Op : I.operands()) 1024 if (Instruction *Def = dyn_cast<Instruction>(Op)) 1025 if (FC0.L->contains(Def->getParent())) { 1026 InvalidDependencies++; 1027 return false; 1028 } 1029 1030 return true; 1031 } 1032 1033 /// Determine if two fusion candidates are adjacent in the CFG. 1034 /// 1035 /// This method will determine if there are additional basic blocks in the CFG 1036 /// between the exit of \p FC0 and the entry of \p FC1. 1037 /// If the two candidates are guarded loops, then it checks whether the 1038 /// non-loop successor of the \p FC0 guard branch is the entry block of \p 1039 /// FC1. If not, then the loops are not adjacent. If the two candidates are 1040 /// not guarded loops, then it checks whether the exit block of \p FC0 is the 1041 /// preheader of \p FC1. 1042 bool isAdjacent(const FusionCandidate &FC0, 1043 const FusionCandidate &FC1) const { 1044 // If the successor of the guard branch is FC1, then the loops are adjacent 1045 if (FC0.GuardBranch) 1046 return FC0.getNonLoopBlock() == FC1.getEntryBlock(); 1047 else 1048 return FC0.ExitBlock == FC1.getEntryBlock(); 1049 } 1050 1051 /// Determine if two fusion candidates have identical guards 1052 /// 1053 /// This method will determine if two fusion candidates have the same guards. 1054 /// The guards are considered the same if: 1055 /// 1. The instructions to compute the condition used in the compare are 1056 /// identical. 1057 /// 2. The successors of the guard have the same flow into/around the loop. 1058 /// If the compare instructions are identical, then the first successor of the 1059 /// guard must go to the same place (either the preheader of the loop or the 1060 /// NonLoopBlock). In other words, the the first successor of both loops must 1061 /// both go into the loop (i.e., the preheader) or go around the loop (i.e., 1062 /// the NonLoopBlock). The same must be true for the second successor. 1063 bool haveIdenticalGuards(const FusionCandidate &FC0, 1064 const FusionCandidate &FC1) const { 1065 assert(FC0.GuardBranch && FC1.GuardBranch && 1066 "Expecting FC0 and FC1 to be guarded loops."); 1067 1068 if (auto FC0CmpInst = 1069 dyn_cast<Instruction>(FC0.GuardBranch->getCondition())) 1070 if (auto FC1CmpInst = 1071 dyn_cast<Instruction>(FC1.GuardBranch->getCondition())) 1072 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst)) 1073 return false; 1074 1075 // The compare instructions are identical. 1076 // Now make sure the successor of the guards have the same flow into/around 1077 // the loop 1078 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader) 1079 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader); 1080 else 1081 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader); 1082 } 1083 1084 /// Check that the guard for \p FC *only* contains the cmp/branch for the 1085 /// guard. 1086 /// Once we are able to handle intervening code, any code in the guard block 1087 /// for FC1 will need to be treated as intervening code and checked whether 1088 /// it can safely move around the loops. 1089 bool isEmptyGuardBlock(const FusionCandidate &FC) const { 1090 assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch."); 1091 if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) { 1092 auto *GuardBlock = FC.GuardBranch->getParent(); 1093 // If the generation of the cmp value is in GuardBlock, then the size of 1094 // the guard block should be 2 (cmp + branch). If the generation of the 1095 // cmp value is in a different block, then the size of the guard block 1096 // should only be 1. 1097 if (CmpInst->getParent() == GuardBlock) 1098 return GuardBlock->size() == 2; 1099 else 1100 return GuardBlock->size() == 1; 1101 } 1102 1103 return false; 1104 } 1105 1106 bool isEmptyPreheader(const FusionCandidate &FC) const { 1107 assert(FC.Preheader && "Expecting a valid preheader"); 1108 return FC.Preheader->size() == 1; 1109 } 1110 1111 bool isEmptyExitBlock(const FusionCandidate &FC) const { 1112 assert(FC.ExitBlock && "Expecting a valid exit block"); 1113 return FC.ExitBlock->size() == 1; 1114 } 1115 1116 /// Fuse two fusion candidates, creating a new fused loop. 1117 /// 1118 /// This method contains the mechanics of fusing two loops, represented by \p 1119 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 1120 /// postdominates \p FC0 (making them control flow equivalent). It also 1121 /// assumes that the other conditions for fusion have been met: adjacent, 1122 /// identical trip counts, and no negative distance dependencies exist that 1123 /// would prevent fusion. Thus, there is no checking for these conditions in 1124 /// this method. 1125 /// 1126 /// Fusion is performed by rewiring the CFG to update successor blocks of the 1127 /// components of tho loop. Specifically, the following changes are done: 1128 /// 1129 /// 1. The preheader of \p FC1 is removed as it is no longer necessary 1130 /// (because it is currently only a single statement block). 1131 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1. 1132 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0. 1133 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0. 1134 /// 1135 /// All of these modifications are done with dominator tree updates, thus 1136 /// keeping the dominator (and post dominator) information up-to-date. 1137 /// 1138 /// This can be improved in the future by actually merging blocks during 1139 /// fusion. For example, the preheader of \p FC1 can be merged with the 1140 /// preheader of \p FC0. This would allow loops with more than a single 1141 /// statement in the preheader to be fused. Similarly, the latch blocks of the 1142 /// two loops could also be fused into a single block. This will require 1143 /// analysis to prove it is safe to move the contents of the block past 1144 /// existing code, which currently has not been implemented. 1145 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1146 assert(FC0.isValid() && FC1.isValid() && 1147 "Expecting valid fusion candidates"); 1148 1149 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); 1150 dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); 1151 1152 // Fusing guarded loops is handled slightly differently than non-guarded 1153 // loops and has been broken out into a separate method instead of trying to 1154 // intersperse the logic within a single method. 1155 if (FC0.GuardBranch) 1156 return fuseGuardedLoops(FC0, FC1); 1157 1158 assert(FC1.Preheader == FC0.ExitBlock); 1159 assert(FC1.Preheader->size() == 1 && 1160 FC1.Preheader->getSingleSuccessor() == FC1.Header); 1161 1162 // Remember the phi nodes originally in the header of FC0 in order to rewire 1163 // them later. However, this is only necessary if the new loop carried 1164 // values might not dominate the exiting branch. While we do not generally 1165 // test if this is the case but simply insert intermediate phi nodes, we 1166 // need to make sure these intermediate phi nodes have different 1167 // predecessors. To this end, we filter the special case where the exiting 1168 // block is the latch block of the first loop. Nothing needs to be done 1169 // anyway as all loop carried values dominate the latch and thereby also the 1170 // exiting branch. 1171 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1172 if (FC0.ExitingBlock != FC0.Latch) 1173 for (PHINode &PHI : FC0.Header->phis()) 1174 OriginalFC0PHIs.push_back(&PHI); 1175 1176 // Replace incoming blocks for header PHIs first. 1177 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1178 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1179 1180 // Then modify the control flow and update DT and PDT. 1181 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1182 1183 // The old exiting block of the first loop (FC0) has to jump to the header 1184 // of the second as we need to execute the code in the second header block 1185 // regardless of the trip count. That is, if the trip count is 0, so the 1186 // back edge is never taken, we still have to execute both loop headers, 1187 // especially (but not only!) if the second is a do-while style loop. 1188 // However, doing so might invalidate the phi nodes of the first loop as 1189 // the new values do only need to dominate their latch and not the exiting 1190 // predicate. To remedy this potential problem we always introduce phi 1191 // nodes in the header of the second loop later that select the loop carried 1192 // value, if the second header was reached through an old latch of the 1193 // first, or undef otherwise. This is sound as exiting the first implies the 1194 // second will exit too, __without__ taking the back-edge. [Their 1195 // trip-counts are equal after all. 1196 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go 1197 // to FC1.Header? I think this is basically what the three sequences are 1198 // trying to accomplish; however, doing this directly in the CFG may mean 1199 // the DT/PDT becomes invalid 1200 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, 1201 FC1.Header); 1202 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1203 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); 1204 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1205 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1206 1207 // The pre-header of L1 is not necessary anymore. 1208 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); 1209 FC1.Preheader->getTerminator()->eraseFromParent(); 1210 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1211 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1212 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1213 1214 // Moves the phi nodes from the second to the first loops header block. 1215 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1216 if (SE.isSCEVable(PHI->getType())) 1217 SE.forgetValue(PHI); 1218 if (PHI->hasNUsesOrMore(1)) 1219 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1220 else 1221 PHI->eraseFromParent(); 1222 } 1223 1224 // Introduce new phi nodes in the second loop header to ensure 1225 // exiting the first and jumping to the header of the second does not break 1226 // the SSA property of the phis originally in the first loop. See also the 1227 // comment above. 1228 Instruction *L1HeaderIP = &FC1.Header->front(); 1229 for (PHINode *LCPHI : OriginalFC0PHIs) { 1230 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1231 assert(L1LatchBBIdx >= 0 && 1232 "Expected loop carried value to be rewired at this point!"); 1233 1234 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1235 1236 PHINode *L1HeaderPHI = PHINode::Create( 1237 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1238 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1239 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1240 FC0.ExitingBlock); 1241 1242 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1243 } 1244 1245 // Replace latch terminator destinations. 1246 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1247 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1248 1249 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1250 // performed the updates above. 1251 if (FC0.Latch != FC0.ExitingBlock) 1252 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1253 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1254 1255 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1256 FC0.Latch, FC0.Header)); 1257 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1258 FC1.Latch, FC0.Header)); 1259 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1260 FC1.Latch, FC1.Header)); 1261 1262 // Update DT/PDT 1263 DTU.applyUpdates(TreeUpdates); 1264 1265 LI.removeBlock(FC1.Preheader); 1266 DTU.deleteBB(FC1.Preheader); 1267 DTU.flush(); 1268 1269 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1270 // and rebuild the information in subsequent passes of fusion? 1271 SE.forgetLoop(FC1.L); 1272 SE.forgetLoop(FC0.L); 1273 1274 // Merge the loops. 1275 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), 1276 FC1.L->block_end()); 1277 for (BasicBlock *BB : Blocks) { 1278 FC0.L->addBlockEntry(BB); 1279 FC1.L->removeBlockFromLoop(BB); 1280 if (LI.getLoopFor(BB) != FC1.L) 1281 continue; 1282 LI.changeLoopFor(BB, FC0.L); 1283 } 1284 while (!FC1.L->empty()) { 1285 const auto &ChildLoopIt = FC1.L->begin(); 1286 Loop *ChildLoop = *ChildLoopIt; 1287 FC1.L->removeChildLoop(ChildLoopIt); 1288 FC0.L->addChildLoop(ChildLoop); 1289 } 1290 1291 // Delete the now empty loop L1. 1292 LI.erase(FC1.L); 1293 1294 #ifndef NDEBUG 1295 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1296 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1297 assert(PDT.verify()); 1298 LI.verify(DT); 1299 SE.verify(); 1300 #endif 1301 1302 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1303 1304 return FC0.L; 1305 } 1306 1307 /// Report details on loop fusion opportunities. 1308 /// 1309 /// This template function can be used to report both successful and missed 1310 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should 1311 /// be one of: 1312 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful 1313 /// given two valid fusion candidates. 1314 /// - OptimizationRemark to report successful fusion of two fusion 1315 /// candidates. 1316 /// The remarks will be printed using the form: 1317 /// <path/filename>:<line number>:<column number>: [<function name>]: 1318 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description> 1319 template <typename RemarkKind> 1320 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1, 1321 llvm::Statistic &Stat) { 1322 assert(FC0.Preheader && FC1.Preheader && 1323 "Expecting valid fusion candidates"); 1324 using namespace ore; 1325 ++Stat; 1326 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(), 1327 FC0.Preheader) 1328 << "[" << FC0.Preheader->getParent()->getName() 1329 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName())) 1330 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName())) 1331 << ": " << Stat.getDesc()); 1332 } 1333 1334 /// Fuse two guarded fusion candidates, creating a new fused loop. 1335 /// 1336 /// Fusing guarded loops is handled much the same way as fusing non-guarded 1337 /// loops. The rewiring of the CFG is slightly different though, because of 1338 /// the presence of the guards around the loops and the exit blocks after the 1339 /// loop body. As such, the new loop is rewired as follows: 1340 /// 1. Keep the guard branch from FC0 and use the non-loop block target 1341 /// from the FC1 guard branch. 1342 /// 2. Remove the exit block from FC0 (this exit block should be empty 1343 /// right now). 1344 /// 3. Remove the guard branch for FC1 1345 /// 4. Remove the preheader for FC1. 1346 /// The exit block successor for the latch of FC0 is updated to be the header 1347 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to 1348 /// be the header of FC0, thus creating the fused loop. 1349 Loop *fuseGuardedLoops(const FusionCandidate &FC0, 1350 const FusionCandidate &FC1) { 1351 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops"); 1352 1353 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent(); 1354 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent(); 1355 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock(); 1356 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock(); 1357 1358 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent"); 1359 1360 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1361 1362 //////////////////////////////////////////////////////////////////////////// 1363 // Update the Loop Guard 1364 //////////////////////////////////////////////////////////////////////////// 1365 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by 1366 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1. 1367 // Thus, one path from the guard goes to the preheader for FC0 (and thus 1368 // executes the new fused loop) and the other path goes to the NonLoopBlock 1369 // for FC1 (where FC1 guard would have gone if FC1 was not executed). 1370 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock); 1371 FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock, 1372 FC1.Header); 1373 1374 // The guard of FC1 is not necessary anymore. 1375 FC1.GuardBranch->eraseFromParent(); 1376 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock); 1377 1378 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1379 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader)); 1380 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1381 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock)); 1382 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1383 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock)); 1384 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1385 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock)); 1386 1387 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) && 1388 "Expecting guard block to have no predecessors"); 1389 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) && 1390 "Expecting guard block to have no successors"); 1391 1392 // Remember the phi nodes originally in the header of FC0 in order to rewire 1393 // them later. However, this is only necessary if the new loop carried 1394 // values might not dominate the exiting branch. While we do not generally 1395 // test if this is the case but simply insert intermediate phi nodes, we 1396 // need to make sure these intermediate phi nodes have different 1397 // predecessors. To this end, we filter the special case where the exiting 1398 // block is the latch block of the first loop. Nothing needs to be done 1399 // anyway as all loop carried values dominate the latch and thereby also the 1400 // exiting branch. 1401 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch 1402 // (because the loops are rotated. Thus, nothing will ever be added to 1403 // OriginalFC0PHIs. 1404 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1405 if (FC0.ExitingBlock != FC0.Latch) 1406 for (PHINode &PHI : FC0.Header->phis()) 1407 OriginalFC0PHIs.push_back(&PHI); 1408 1409 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!"); 1410 1411 // Replace incoming blocks for header PHIs first. 1412 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1413 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1414 1415 // The old exiting block of the first loop (FC0) has to jump to the header 1416 // of the second as we need to execute the code in the second header block 1417 // regardless of the trip count. That is, if the trip count is 0, so the 1418 // back edge is never taken, we still have to execute both loop headers, 1419 // especially (but not only!) if the second is a do-while style loop. 1420 // However, doing so might invalidate the phi nodes of the first loop as 1421 // the new values do only need to dominate their latch and not the exiting 1422 // predicate. To remedy this potential problem we always introduce phi 1423 // nodes in the header of the second loop later that select the loop carried 1424 // value, if the second header was reached through an old latch of the 1425 // first, or undef otherwise. This is sound as exiting the first implies the 1426 // second will exit too, __without__ taking the back-edge (their 1427 // trip-counts are equal after all). 1428 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock, 1429 FC1.Header); 1430 1431 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1432 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock)); 1433 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1434 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1435 1436 // Remove FC0 Exit Block 1437 // The exit block for FC0 is no longer needed since control will flow 1438 // directly to the header of FC1. Since it is an empty block, it can be 1439 // removed at this point. 1440 // TODO: In the future, we can handle non-empty exit blocks my merging any 1441 // instructions from FC0 exit block into FC1 exit block prior to removing 1442 // the block. 1443 assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) && 1444 "Expecting exit block to be empty"); 1445 FC0.ExitBlock->getTerminator()->eraseFromParent(); 1446 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock); 1447 1448 // Remove FC1 Preheader 1449 // The pre-header of L1 is not necessary anymore. 1450 assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader)); 1451 FC1.Preheader->getTerminator()->eraseFromParent(); 1452 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1453 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1454 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1455 1456 // Moves the phi nodes from the second to the first loops header block. 1457 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1458 if (SE.isSCEVable(PHI->getType())) 1459 SE.forgetValue(PHI); 1460 if (PHI->hasNUsesOrMore(1)) 1461 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1462 else 1463 PHI->eraseFromParent(); 1464 } 1465 1466 // Introduce new phi nodes in the second loop header to ensure 1467 // exiting the first and jumping to the header of the second does not break 1468 // the SSA property of the phis originally in the first loop. See also the 1469 // comment above. 1470 Instruction *L1HeaderIP = &FC1.Header->front(); 1471 for (PHINode *LCPHI : OriginalFC0PHIs) { 1472 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1473 assert(L1LatchBBIdx >= 0 && 1474 "Expected loop carried value to be rewired at this point!"); 1475 1476 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1477 1478 PHINode *L1HeaderPHI = PHINode::Create( 1479 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1480 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1481 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1482 FC0.ExitingBlock); 1483 1484 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1485 } 1486 1487 // Update the latches 1488 1489 // Replace latch terminator destinations. 1490 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1491 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1492 1493 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1494 // performed the updates above. 1495 if (FC0.Latch != FC0.ExitingBlock) 1496 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1497 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1498 1499 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1500 FC0.Latch, FC0.Header)); 1501 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1502 FC1.Latch, FC0.Header)); 1503 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1504 FC1.Latch, FC1.Header)); 1505 1506 // All done 1507 // Apply the updates to the Dominator Tree and cleanup. 1508 1509 assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) && 1510 "FC1GuardBlock has successors!!"); 1511 assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) && 1512 "FC1GuardBlock has predecessors!!"); 1513 1514 // Update DT/PDT 1515 DTU.applyUpdates(TreeUpdates); 1516 1517 LI.removeBlock(FC1.Preheader); 1518 DTU.deleteBB(FC1.Preheader); 1519 DTU.deleteBB(FC0.ExitBlock); 1520 DTU.flush(); 1521 1522 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1523 // and rebuild the information in subsequent passes of fusion? 1524 SE.forgetLoop(FC1.L); 1525 SE.forgetLoop(FC0.L); 1526 1527 // Merge the loops. 1528 SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(), 1529 FC1.L->block_end()); 1530 for (BasicBlock *BB : Blocks) { 1531 FC0.L->addBlockEntry(BB); 1532 FC1.L->removeBlockFromLoop(BB); 1533 if (LI.getLoopFor(BB) != FC1.L) 1534 continue; 1535 LI.changeLoopFor(BB, FC0.L); 1536 } 1537 while (!FC1.L->empty()) { 1538 const auto &ChildLoopIt = FC1.L->begin(); 1539 Loop *ChildLoop = *ChildLoopIt; 1540 FC1.L->removeChildLoop(ChildLoopIt); 1541 FC0.L->addChildLoop(ChildLoop); 1542 } 1543 1544 // Delete the now empty loop L1. 1545 LI.erase(FC1.L); 1546 1547 #ifndef NDEBUG 1548 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1549 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1550 assert(PDT.verify()); 1551 LI.verify(DT); 1552 SE.verify(); 1553 #endif 1554 1555 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1556 1557 return FC0.L; 1558 } 1559 }; 1560 1561 struct LoopFuseLegacy : public FunctionPass { 1562 1563 static char ID; 1564 1565 LoopFuseLegacy() : FunctionPass(ID) { 1566 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry()); 1567 } 1568 1569 void getAnalysisUsage(AnalysisUsage &AU) const override { 1570 AU.addRequiredID(LoopSimplifyID); 1571 AU.addRequired<ScalarEvolutionWrapperPass>(); 1572 AU.addRequired<LoopInfoWrapperPass>(); 1573 AU.addRequired<DominatorTreeWrapperPass>(); 1574 AU.addRequired<PostDominatorTreeWrapperPass>(); 1575 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1576 AU.addRequired<DependenceAnalysisWrapperPass>(); 1577 1578 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1579 AU.addPreserved<LoopInfoWrapperPass>(); 1580 AU.addPreserved<DominatorTreeWrapperPass>(); 1581 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1582 } 1583 1584 bool runOnFunction(Function &F) override { 1585 if (skipFunction(F)) 1586 return false; 1587 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1588 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1589 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1590 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1591 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1592 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1593 1594 const DataLayout &DL = F.getParent()->getDataLayout(); 1595 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1596 return LF.fuseLoops(F); 1597 } 1598 }; 1599 } // namespace 1600 1601 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { 1602 auto &LI = AM.getResult<LoopAnalysis>(F); 1603 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1604 auto &DI = AM.getResult<DependenceAnalysis>(F); 1605 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1606 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1607 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1608 1609 const DataLayout &DL = F.getParent()->getDataLayout(); 1610 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL); 1611 bool Changed = LF.fuseLoops(F); 1612 if (!Changed) 1613 return PreservedAnalyses::all(); 1614 1615 PreservedAnalyses PA; 1616 PA.preserve<DominatorTreeAnalysis>(); 1617 PA.preserve<PostDominatorTreeAnalysis>(); 1618 PA.preserve<ScalarEvolutionAnalysis>(); 1619 PA.preserve<LoopAnalysis>(); 1620 return PA; 1621 } 1622 1623 char LoopFuseLegacy::ID = 0; 1624 1625 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, 1626 false) 1627 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1628 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1629 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1630 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1631 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1632 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1633 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) 1634 1635 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); } 1636