xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFuse.cpp (revision 8bcb0991864975618c09697b1aca10683346d9f0)
1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 ///       Code Transformations to Augment the Scope of Loop Fusion in a
14 ///         Production Compiler
15 ///       Christopher Mark Barton
16 ///       MSc Thesis
17 ///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 ///    1. The loops must be adjacent (there cannot be any statements between
23 ///       the two loops).
24 ///    2. The loops must be conforming (they must execute the same number of
25 ///       iterations).
26 ///    3. The loops must be control flow equivalent (if one loop executes, the
27 ///       other is guaranteed to execute).
28 ///    4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/DependenceAnalysis.h"
50 #include "llvm/Analysis/DomTreeUpdater.h"
51 #include "llvm/Analysis/LoopInfo.h"
52 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
53 #include "llvm/Analysis/PostDominators.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/Verifier.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils.h"
63 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "loop-fusion"
68 
69 STATISTIC(FuseCounter, "Loops fused");
70 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
71 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
72 STATISTIC(InvalidHeader, "Loop has invalid header");
73 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
74 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
75 STATISTIC(InvalidLatch, "Loop has invalid latch");
76 STATISTIC(InvalidLoop, "Loop is invalid");
77 STATISTIC(AddressTakenBB, "Basic block has address taken");
78 STATISTIC(MayThrowException, "Loop may throw an exception");
79 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
80 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
81 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
82 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
83 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
84 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
85 STATISTIC(NonAdjacent, "Loops are not adjacent");
86 STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader");
87 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
88 STATISTIC(NonIdenticalGuards, "Candidates have different guards");
89 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block");
90 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block");
91 
92 enum FusionDependenceAnalysisChoice {
93   FUSION_DEPENDENCE_ANALYSIS_SCEV,
94   FUSION_DEPENDENCE_ANALYSIS_DA,
95   FUSION_DEPENDENCE_ANALYSIS_ALL,
96 };
97 
98 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
99     "loop-fusion-dependence-analysis",
100     cl::desc("Which dependence analysis should loop fusion use?"),
101     cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
102                           "Use the scalar evolution interface"),
103                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
104                           "Use the dependence analysis interface"),
105                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
106                           "Use all available analyses")),
107     cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
108 
109 #ifndef NDEBUG
110 static cl::opt<bool>
111     VerboseFusionDebugging("loop-fusion-verbose-debug",
112                            cl::desc("Enable verbose debugging for Loop Fusion"),
113                            cl::Hidden, cl::init(false), cl::ZeroOrMore);
114 #endif
115 
116 namespace {
117 /// This class is used to represent a candidate for loop fusion. When it is
118 /// constructed, it checks the conditions for loop fusion to ensure that it
119 /// represents a valid candidate. It caches several parts of a loop that are
120 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
121 /// of continually querying the underlying Loop to retrieve these values. It is
122 /// assumed these will not change throughout loop fusion.
123 ///
124 /// The invalidate method should be used to indicate that the FusionCandidate is
125 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
126 /// be used to ensure that the FusionCandidate is still valid for fusion.
127 struct FusionCandidate {
128   /// Cache of parts of the loop used throughout loop fusion. These should not
129   /// need to change throughout the analysis and transformation.
130   /// These parts are cached to avoid repeatedly looking up in the Loop class.
131 
132   /// Preheader of the loop this candidate represents
133   BasicBlock *Preheader;
134   /// Header of the loop this candidate represents
135   BasicBlock *Header;
136   /// Blocks in the loop that exit the loop
137   BasicBlock *ExitingBlock;
138   /// The successor block of this loop (where the exiting blocks go to)
139   BasicBlock *ExitBlock;
140   /// Latch of the loop
141   BasicBlock *Latch;
142   /// The loop that this fusion candidate represents
143   Loop *L;
144   /// Vector of instructions in this loop that read from memory
145   SmallVector<Instruction *, 16> MemReads;
146   /// Vector of instructions in this loop that write to memory
147   SmallVector<Instruction *, 16> MemWrites;
148   /// Are all of the members of this fusion candidate still valid
149   bool Valid;
150   /// Guard branch of the loop, if it exists
151   BranchInst *GuardBranch;
152 
153   /// Dominator and PostDominator trees are needed for the
154   /// FusionCandidateCompare function, required by FusionCandidateSet to
155   /// determine where the FusionCandidate should be inserted into the set. These
156   /// are used to establish ordering of the FusionCandidates based on dominance.
157   const DominatorTree *DT;
158   const PostDominatorTree *PDT;
159 
160   OptimizationRemarkEmitter &ORE;
161 
162   FusionCandidate(Loop *L, const DominatorTree *DT,
163                   const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
164       : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
165         ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
166         Latch(L->getLoopLatch()), L(L), Valid(true), GuardBranch(nullptr),
167         DT(DT), PDT(PDT), ORE(ORE) {
168 
169     // TODO: This is temporary while we fuse both rotated and non-rotated
170     // loops. Once we switch to only fusing rotated loops, the initialization of
171     // GuardBranch can be moved into the initialization list above.
172     if (isRotated())
173       GuardBranch = L->getLoopGuardBranch();
174 
175     // Walk over all blocks in the loop and check for conditions that may
176     // prevent fusion. For each block, walk over all instructions and collect
177     // the memory reads and writes If any instructions that prevent fusion are
178     // found, invalidate this object and return.
179     for (BasicBlock *BB : L->blocks()) {
180       if (BB->hasAddressTaken()) {
181         invalidate();
182         reportInvalidCandidate(AddressTakenBB);
183         return;
184       }
185 
186       for (Instruction &I : *BB) {
187         if (I.mayThrow()) {
188           invalidate();
189           reportInvalidCandidate(MayThrowException);
190           return;
191         }
192         if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
193           if (SI->isVolatile()) {
194             invalidate();
195             reportInvalidCandidate(ContainsVolatileAccess);
196             return;
197           }
198         }
199         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
200           if (LI->isVolatile()) {
201             invalidate();
202             reportInvalidCandidate(ContainsVolatileAccess);
203             return;
204           }
205         }
206         if (I.mayWriteToMemory())
207           MemWrites.push_back(&I);
208         if (I.mayReadFromMemory())
209           MemReads.push_back(&I);
210       }
211     }
212   }
213 
214   /// Check if all members of the class are valid.
215   bool isValid() const {
216     return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
217            !L->isInvalid() && Valid;
218   }
219 
220   /// Verify that all members are in sync with the Loop object.
221   void verify() const {
222     assert(isValid() && "Candidate is not valid!!");
223     assert(!L->isInvalid() && "Loop is invalid!");
224     assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
225     assert(Header == L->getHeader() && "Header is out of sync");
226     assert(ExitingBlock == L->getExitingBlock() &&
227            "Exiting Blocks is out of sync");
228     assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
229     assert(Latch == L->getLoopLatch() && "Latch is out of sync");
230   }
231 
232   /// Get the entry block for this fusion candidate.
233   ///
234   /// If this fusion candidate represents a guarded loop, the entry block is the
235   /// loop guard block. If it represents an unguarded loop, the entry block is
236   /// the preheader of the loop.
237   BasicBlock *getEntryBlock() const {
238     if (GuardBranch)
239       return GuardBranch->getParent();
240     else
241       return Preheader;
242   }
243 
244   /// Given a guarded loop, get the successor of the guard that is not in the
245   /// loop.
246   ///
247   /// This method returns the successor of the loop guard that is not located
248   /// within the loop (i.e., the successor of the guard that is not the
249   /// preheader).
250   /// This method is only valid for guarded loops.
251   BasicBlock *getNonLoopBlock() const {
252     assert(GuardBranch && "Only valid on guarded loops.");
253     assert(GuardBranch->isConditional() &&
254            "Expecting guard to be a conditional branch.");
255     return (GuardBranch->getSuccessor(0) == Preheader)
256                ? GuardBranch->getSuccessor(1)
257                : GuardBranch->getSuccessor(0);
258   }
259 
260   bool isRotated() const {
261     assert(L && "Expecting loop to be valid.");
262     assert(Latch && "Expecting latch to be valid.");
263     return L->isLoopExiting(Latch);
264   }
265 
266 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
267   LLVM_DUMP_METHOD void dump() const {
268     dbgs() << "\tGuardBranch: "
269            << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
270            << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
271            << "\n"
272            << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
273            << "\tExitingBB: "
274            << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
275            << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
276            << "\n"
277            << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
278            << "\tEntryBlock: "
279            << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
280            << "\n";
281   }
282 #endif
283 
284   /// Determine if a fusion candidate (representing a loop) is eligible for
285   /// fusion. Note that this only checks whether a single loop can be fused - it
286   /// does not check whether it is *legal* to fuse two loops together.
287   bool isEligibleForFusion(ScalarEvolution &SE) const {
288     if (!isValid()) {
289       LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
290       if (!Preheader)
291         ++InvalidPreheader;
292       if (!Header)
293         ++InvalidHeader;
294       if (!ExitingBlock)
295         ++InvalidExitingBlock;
296       if (!ExitBlock)
297         ++InvalidExitBlock;
298       if (!Latch)
299         ++InvalidLatch;
300       if (L->isInvalid())
301         ++InvalidLoop;
302 
303       return false;
304     }
305 
306     // Require ScalarEvolution to be able to determine a trip count.
307     if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
308       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
309                         << " trip count not computable!\n");
310       return reportInvalidCandidate(UnknownTripCount);
311     }
312 
313     if (!L->isLoopSimplifyForm()) {
314       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
315                         << " is not in simplified form!\n");
316       return reportInvalidCandidate(NotSimplifiedForm);
317     }
318 
319     return true;
320   }
321 
322 private:
323   // This is only used internally for now, to clear the MemWrites and MemReads
324   // list and setting Valid to false. I can't envision other uses of this right
325   // now, since once FusionCandidates are put into the FusionCandidateSet they
326   // are immutable. Thus, any time we need to change/update a FusionCandidate,
327   // we must create a new one and insert it into the FusionCandidateSet to
328   // ensure the FusionCandidateSet remains ordered correctly.
329   void invalidate() {
330     MemWrites.clear();
331     MemReads.clear();
332     Valid = false;
333   }
334 
335   bool reportInvalidCandidate(llvm::Statistic &Stat) const {
336     using namespace ore;
337     assert(L && Preheader && "Fusion candidate not initialized properly!");
338     ++Stat;
339     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
340                                         L->getStartLoc(), Preheader)
341              << "[" << Preheader->getParent()->getName() << "]: "
342              << "Loop is not a candidate for fusion: " << Stat.getDesc());
343     return false;
344   }
345 };
346 
347 struct FusionCandidateCompare {
348   /// Comparison functor to sort two Control Flow Equivalent fusion candidates
349   /// into dominance order.
350   /// If LHS dominates RHS and RHS post-dominates LHS, return true;
351   /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
352   bool operator()(const FusionCandidate &LHS,
353                   const FusionCandidate &RHS) const {
354     const DominatorTree *DT = LHS.DT;
355 
356     BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
357     BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
358 
359     // Do not save PDT to local variable as it is only used in asserts and thus
360     // will trigger an unused variable warning if building without asserts.
361     assert(DT && LHS.PDT && "Expecting valid dominator tree");
362 
363     // Do this compare first so if LHS == RHS, function returns false.
364     if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
365       // RHS dominates LHS
366       // Verify LHS post-dominates RHS
367       assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
368       return false;
369     }
370 
371     if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
372       // Verify RHS Postdominates LHS
373       assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
374       return true;
375     }
376 
377     // If LHS does not dominate RHS and RHS does not dominate LHS then there is
378     // no dominance relationship between the two FusionCandidates. Thus, they
379     // should not be in the same set together.
380     llvm_unreachable(
381         "No dominance relationship between these fusion candidates!");
382   }
383 };
384 
385 using LoopVector = SmallVector<Loop *, 4>;
386 
387 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
388 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
389 // dominates FC1 and FC1 post-dominates FC0.
390 // std::set was chosen because we want a sorted data structure with stable
391 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
392 // loops by moving intervening code around. When this intervening code contains
393 // loops, those loops will be moved also. The corresponding FusionCandidates
394 // will also need to be moved accordingly. As this is done, having stable
395 // iterators will simplify the logic. Similarly, having an efficient insert that
396 // keeps the FusionCandidateSet sorted will also simplify the implementation.
397 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
398 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
399 
400 #if !defined(NDEBUG)
401 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
402                                      const FusionCandidate &FC) {
403   if (FC.isValid())
404     OS << FC.Preheader->getName();
405   else
406     OS << "<Invalid>";
407 
408   return OS;
409 }
410 
411 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
412                                      const FusionCandidateSet &CandSet) {
413   for (const FusionCandidate &FC : CandSet)
414     OS << FC << '\n';
415 
416   return OS;
417 }
418 
419 static void
420 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
421   dbgs() << "Fusion Candidates: \n";
422   for (const auto &CandidateSet : FusionCandidates) {
423     dbgs() << "*** Fusion Candidate Set ***\n";
424     dbgs() << CandidateSet;
425     dbgs() << "****************************\n";
426   }
427 }
428 #endif
429 
430 /// Collect all loops in function at the same nest level, starting at the
431 /// outermost level.
432 ///
433 /// This data structure collects all loops at the same nest level for a
434 /// given function (specified by the LoopInfo object). It starts at the
435 /// outermost level.
436 struct LoopDepthTree {
437   using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
438   using iterator = LoopsOnLevelTy::iterator;
439   using const_iterator = LoopsOnLevelTy::const_iterator;
440 
441   LoopDepthTree(LoopInfo &LI) : Depth(1) {
442     if (!LI.empty())
443       LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
444   }
445 
446   /// Test whether a given loop has been removed from the function, and thus is
447   /// no longer valid.
448   bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
449 
450   /// Record that a given loop has been removed from the function and is no
451   /// longer valid.
452   void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
453 
454   /// Descend the tree to the next (inner) nesting level
455   void descend() {
456     LoopsOnLevelTy LoopsOnNextLevel;
457 
458     for (const LoopVector &LV : *this)
459       for (Loop *L : LV)
460         if (!isRemovedLoop(L) && L->begin() != L->end())
461           LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
462 
463     LoopsOnLevel = LoopsOnNextLevel;
464     RemovedLoops.clear();
465     Depth++;
466   }
467 
468   bool empty() const { return size() == 0; }
469   size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
470   unsigned getDepth() const { return Depth; }
471 
472   iterator begin() { return LoopsOnLevel.begin(); }
473   iterator end() { return LoopsOnLevel.end(); }
474   const_iterator begin() const { return LoopsOnLevel.begin(); }
475   const_iterator end() const { return LoopsOnLevel.end(); }
476 
477 private:
478   /// Set of loops that have been removed from the function and are no longer
479   /// valid.
480   SmallPtrSet<const Loop *, 8> RemovedLoops;
481 
482   /// Depth of the current level, starting at 1 (outermost loops).
483   unsigned Depth;
484 
485   /// Vector of loops at the current depth level that have the same parent loop
486   LoopsOnLevelTy LoopsOnLevel;
487 };
488 
489 #ifndef NDEBUG
490 static void printLoopVector(const LoopVector &LV) {
491   dbgs() << "****************************\n";
492   for (auto L : LV)
493     printLoop(*L, dbgs());
494   dbgs() << "****************************\n";
495 }
496 #endif
497 
498 struct LoopFuser {
499 private:
500   // Sets of control flow equivalent fusion candidates for a given nest level.
501   FusionCandidateCollection FusionCandidates;
502 
503   LoopDepthTree LDT;
504   DomTreeUpdater DTU;
505 
506   LoopInfo &LI;
507   DominatorTree &DT;
508   DependenceInfo &DI;
509   ScalarEvolution &SE;
510   PostDominatorTree &PDT;
511   OptimizationRemarkEmitter &ORE;
512 
513 public:
514   LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
515             ScalarEvolution &SE, PostDominatorTree &PDT,
516             OptimizationRemarkEmitter &ORE, const DataLayout &DL)
517       : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
518         DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
519 
520   /// This is the main entry point for loop fusion. It will traverse the
521   /// specified function and collect candidate loops to fuse, starting at the
522   /// outermost nesting level and working inwards.
523   bool fuseLoops(Function &F) {
524 #ifndef NDEBUG
525     if (VerboseFusionDebugging) {
526       LI.print(dbgs());
527     }
528 #endif
529 
530     LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
531                       << "\n");
532     bool Changed = false;
533 
534     while (!LDT.empty()) {
535       LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
536                         << LDT.getDepth() << "\n";);
537 
538       for (const LoopVector &LV : LDT) {
539         assert(LV.size() > 0 && "Empty loop set was build!");
540 
541         // Skip singleton loop sets as they do not offer fusion opportunities on
542         // this level.
543         if (LV.size() == 1)
544           continue;
545 #ifndef NDEBUG
546         if (VerboseFusionDebugging) {
547           LLVM_DEBUG({
548             dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
549             printLoopVector(LV);
550           });
551         }
552 #endif
553 
554         collectFusionCandidates(LV);
555         Changed |= fuseCandidates();
556       }
557 
558       // Finished analyzing candidates at this level.
559       // Descend to the next level and clear all of the candidates currently
560       // collected. Note that it will not be possible to fuse any of the
561       // existing candidates with new candidates because the new candidates will
562       // be at a different nest level and thus not be control flow equivalent
563       // with all of the candidates collected so far.
564       LLVM_DEBUG(dbgs() << "Descend one level!\n");
565       LDT.descend();
566       FusionCandidates.clear();
567     }
568 
569     if (Changed)
570       LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
571 
572 #ifndef NDEBUG
573     assert(DT.verify());
574     assert(PDT.verify());
575     LI.verify(DT);
576     SE.verify();
577 #endif
578 
579     LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
580     return Changed;
581   }
582 
583 private:
584   /// Determine if two fusion candidates are control flow equivalent.
585   ///
586   /// Two fusion candidates are control flow equivalent if when one executes,
587   /// the other is guaranteed to execute. This is determined using dominators
588   /// and post-dominators: if A dominates B and B post-dominates A then A and B
589   /// are control-flow equivalent.
590   bool isControlFlowEquivalent(const FusionCandidate &FC0,
591                                const FusionCandidate &FC1) const {
592     assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
593 
594     BasicBlock *FC0EntryBlock = FC0.getEntryBlock();
595     BasicBlock *FC1EntryBlock = FC1.getEntryBlock();
596 
597     if (DT.dominates(FC0EntryBlock, FC1EntryBlock))
598       return PDT.dominates(FC1EntryBlock, FC0EntryBlock);
599 
600     if (DT.dominates(FC1EntryBlock, FC0EntryBlock))
601       return PDT.dominates(FC0EntryBlock, FC1EntryBlock);
602 
603     return false;
604   }
605 
606   /// Iterate over all loops in the given loop set and identify the loops that
607   /// are eligible for fusion. Place all eligible fusion candidates into Control
608   /// Flow Equivalent sets, sorted by dominance.
609   void collectFusionCandidates(const LoopVector &LV) {
610     for (Loop *L : LV) {
611       FusionCandidate CurrCand(L, &DT, &PDT, ORE);
612       if (!CurrCand.isEligibleForFusion(SE))
613         continue;
614 
615       // Go through each list in FusionCandidates and determine if L is control
616       // flow equivalent with the first loop in that list. If it is, append LV.
617       // If not, go to the next list.
618       // If no suitable list is found, start another list and add it to
619       // FusionCandidates.
620       bool FoundSet = false;
621 
622       for (auto &CurrCandSet : FusionCandidates) {
623         if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
624           CurrCandSet.insert(CurrCand);
625           FoundSet = true;
626 #ifndef NDEBUG
627           if (VerboseFusionDebugging)
628             LLVM_DEBUG(dbgs() << "Adding " << CurrCand
629                               << " to existing candidate set\n");
630 #endif
631           break;
632         }
633       }
634       if (!FoundSet) {
635         // No set was found. Create a new set and add to FusionCandidates
636 #ifndef NDEBUG
637         if (VerboseFusionDebugging)
638           LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
639 #endif
640         FusionCandidateSet NewCandSet;
641         NewCandSet.insert(CurrCand);
642         FusionCandidates.push_back(NewCandSet);
643       }
644       NumFusionCandidates++;
645     }
646   }
647 
648   /// Determine if it is beneficial to fuse two loops.
649   ///
650   /// For now, this method simply returns true because we want to fuse as much
651   /// as possible (primarily to test the pass). This method will evolve, over
652   /// time, to add heuristics for profitability of fusion.
653   bool isBeneficialFusion(const FusionCandidate &FC0,
654                           const FusionCandidate &FC1) {
655     return true;
656   }
657 
658   /// Determine if two fusion candidates have the same trip count (i.e., they
659   /// execute the same number of iterations).
660   ///
661   /// Note that for now this method simply returns a boolean value because there
662   /// are no mechanisms in loop fusion to handle different trip counts. In the
663   /// future, this behaviour can be extended to adjust one of the loops to make
664   /// the trip counts equal (e.g., loop peeling). When this is added, this
665   /// interface may need to change to return more information than just a
666   /// boolean value.
667   bool identicalTripCounts(const FusionCandidate &FC0,
668                            const FusionCandidate &FC1) const {
669     const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
670     if (isa<SCEVCouldNotCompute>(TripCount0)) {
671       UncomputableTripCount++;
672       LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
673       return false;
674     }
675 
676     const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
677     if (isa<SCEVCouldNotCompute>(TripCount1)) {
678       UncomputableTripCount++;
679       LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
680       return false;
681     }
682     LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
683                       << *TripCount1 << " are "
684                       << (TripCount0 == TripCount1 ? "identical" : "different")
685                       << "\n");
686 
687     return (TripCount0 == TripCount1);
688   }
689 
690   /// Walk each set of control flow equivalent fusion candidates and attempt to
691   /// fuse them. This does a single linear traversal of all candidates in the
692   /// set. The conditions for legal fusion are checked at this point. If a pair
693   /// of fusion candidates passes all legality checks, they are fused together
694   /// and a new fusion candidate is created and added to the FusionCandidateSet.
695   /// The original fusion candidates are then removed, as they are no longer
696   /// valid.
697   bool fuseCandidates() {
698     bool Fused = false;
699     LLVM_DEBUG(printFusionCandidates(FusionCandidates));
700     for (auto &CandidateSet : FusionCandidates) {
701       if (CandidateSet.size() < 2)
702         continue;
703 
704       LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
705                         << CandidateSet << "\n");
706 
707       for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
708         assert(!LDT.isRemovedLoop(FC0->L) &&
709                "Should not have removed loops in CandidateSet!");
710         auto FC1 = FC0;
711         for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
712           assert(!LDT.isRemovedLoop(FC1->L) &&
713                  "Should not have removed loops in CandidateSet!");
714 
715           LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
716                      dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
717 
718           FC0->verify();
719           FC1->verify();
720 
721           if (!identicalTripCounts(*FC0, *FC1)) {
722             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
723                                  "counts. Not fusing.\n");
724             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
725                                                        NonEqualTripCount);
726             continue;
727           }
728 
729           if (!isAdjacent(*FC0, *FC1)) {
730             LLVM_DEBUG(dbgs()
731                        << "Fusion candidates are not adjacent. Not fusing.\n");
732             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
733             continue;
734           }
735 
736           // Ensure that FC0 and FC1 have identical guards.
737           // If one (or both) are not guarded, this check is not necessary.
738           if (FC0->GuardBranch && FC1->GuardBranch &&
739               !haveIdenticalGuards(*FC0, *FC1)) {
740             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
741                                  "guards. Not Fusing.\n");
742             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
743                                                        NonIdenticalGuards);
744             continue;
745           }
746 
747           // The following three checks look for empty blocks in FC0 and FC1. If
748           // any of these blocks are non-empty, we do not fuse. This is done
749           // because we currently do not have the safety checks to determine if
750           // it is safe to move the blocks past other blocks in the loop. Once
751           // these checks are added, these conditions can be relaxed.
752           if (!isEmptyPreheader(*FC1)) {
753             LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
754                                  "preheader. Not fusing.\n");
755             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
756                                                        NonEmptyPreheader);
757             continue;
758           }
759 
760           if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) {
761             LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit "
762                                  "block. Not fusing.\n");
763             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
764                                                        NonEmptyExitBlock);
765             continue;
766           }
767 
768           if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) {
769             LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard "
770                                  "block. Not fusing.\n");
771             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
772                                                        NonEmptyGuardBlock);
773             continue;
774           }
775 
776           // Check the dependencies across the loops and do not fuse if it would
777           // violate them.
778           if (!dependencesAllowFusion(*FC0, *FC1)) {
779             LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
780             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
781                                                        InvalidDependencies);
782             continue;
783           }
784 
785           bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
786           LLVM_DEBUG(dbgs()
787                      << "\tFusion appears to be "
788                      << (BeneficialToFuse ? "" : "un") << "profitable!\n");
789           if (!BeneficialToFuse) {
790             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
791                                                        FusionNotBeneficial);
792             continue;
793           }
794           // All analysis has completed and has determined that fusion is legal
795           // and profitable. At this point, start transforming the code and
796           // perform fusion.
797 
798           LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
799                             << *FC1 << "\n");
800 
801           // Report fusion to the Optimization Remarks.
802           // Note this needs to be done *before* performFusion because
803           // performFusion will change the original loops, making it not
804           // possible to identify them after fusion is complete.
805           reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);
806 
807           FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
808           FusedCand.verify();
809           assert(FusedCand.isEligibleForFusion(SE) &&
810                  "Fused candidate should be eligible for fusion!");
811 
812           // Notify the loop-depth-tree that these loops are not valid objects
813           LDT.removeLoop(FC1->L);
814 
815           CandidateSet.erase(FC0);
816           CandidateSet.erase(FC1);
817 
818           auto InsertPos = CandidateSet.insert(FusedCand);
819 
820           assert(InsertPos.second &&
821                  "Unable to insert TargetCandidate in CandidateSet!");
822 
823           // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
824           // of the FC1 loop will attempt to fuse the new (fused) loop with the
825           // remaining candidates in the current candidate set.
826           FC0 = FC1 = InsertPos.first;
827 
828           LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
829                             << "\n");
830 
831           Fused = true;
832         }
833       }
834     }
835     return Fused;
836   }
837 
838   /// Rewrite all additive recurrences in a SCEV to use a new loop.
839   class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
840   public:
841     AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
842                        bool UseMax = true)
843         : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
844           NewL(NewL) {}
845 
846     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
847       const Loop *ExprL = Expr->getLoop();
848       SmallVector<const SCEV *, 2> Operands;
849       if (ExprL == &OldL) {
850         Operands.append(Expr->op_begin(), Expr->op_end());
851         return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
852       }
853 
854       if (OldL.contains(ExprL)) {
855         bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
856         if (!UseMax || !Pos || !Expr->isAffine()) {
857           Valid = false;
858           return Expr;
859         }
860         return visit(Expr->getStart());
861       }
862 
863       for (const SCEV *Op : Expr->operands())
864         Operands.push_back(visit(Op));
865       return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
866     }
867 
868     bool wasValidSCEV() const { return Valid; }
869 
870   private:
871     bool Valid, UseMax;
872     const Loop &OldL, &NewL;
873   };
874 
875   /// Return false if the access functions of \p I0 and \p I1 could cause
876   /// a negative dependence.
877   bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
878                             Instruction &I1, bool EqualIsInvalid) {
879     Value *Ptr0 = getLoadStorePointerOperand(&I0);
880     Value *Ptr1 = getLoadStorePointerOperand(&I1);
881     if (!Ptr0 || !Ptr1)
882       return false;
883 
884     const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
885     const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
886 #ifndef NDEBUG
887     if (VerboseFusionDebugging)
888       LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
889                         << *SCEVPtr1 << "\n");
890 #endif
891     AddRecLoopReplacer Rewriter(SE, L0, L1);
892     SCEVPtr0 = Rewriter.visit(SCEVPtr0);
893 #ifndef NDEBUG
894     if (VerboseFusionDebugging)
895       LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
896                         << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
897 #endif
898     if (!Rewriter.wasValidSCEV())
899       return false;
900 
901     // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
902     //       L0) and the other is not. We could check if it is monotone and test
903     //       the beginning and end value instead.
904 
905     BasicBlock *L0Header = L0.getHeader();
906     auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
907       const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
908       if (!AddRec)
909         return false;
910       return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
911              !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
912     };
913     if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
914       return false;
915 
916     ICmpInst::Predicate Pred =
917         EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
918     bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
919 #ifndef NDEBUG
920     if (VerboseFusionDebugging)
921       LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
922                         << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
923                         << "\n");
924 #endif
925     return IsAlwaysGE;
926   }
927 
928   /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
929   /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
930   /// specified by @p DepChoice are used to determine this.
931   bool dependencesAllowFusion(const FusionCandidate &FC0,
932                               const FusionCandidate &FC1, Instruction &I0,
933                               Instruction &I1, bool AnyDep,
934                               FusionDependenceAnalysisChoice DepChoice) {
935 #ifndef NDEBUG
936     if (VerboseFusionDebugging) {
937       LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
938                         << DepChoice << "\n");
939     }
940 #endif
941     switch (DepChoice) {
942     case FUSION_DEPENDENCE_ANALYSIS_SCEV:
943       return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
944     case FUSION_DEPENDENCE_ANALYSIS_DA: {
945       auto DepResult = DI.depends(&I0, &I1, true);
946       if (!DepResult)
947         return true;
948 #ifndef NDEBUG
949       if (VerboseFusionDebugging) {
950         LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
951                    dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
952                           << (DepResult->isOrdered() ? "true" : "false")
953                           << "]\n");
954         LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
955                           << "\n");
956       }
957 #endif
958 
959       if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
960         LLVM_DEBUG(
961             dbgs() << "TODO: Implement pred/succ dependence handling!\n");
962 
963       // TODO: Can we actually use the dependence info analysis here?
964       return false;
965     }
966 
967     case FUSION_DEPENDENCE_ANALYSIS_ALL:
968       return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
969                                     FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
970              dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
971                                     FUSION_DEPENDENCE_ANALYSIS_DA);
972     }
973 
974     llvm_unreachable("Unknown fusion dependence analysis choice!");
975   }
976 
977   /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
978   bool dependencesAllowFusion(const FusionCandidate &FC0,
979                               const FusionCandidate &FC1) {
980     LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
981                       << "\n");
982     assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
983     assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
984 
985     for (Instruction *WriteL0 : FC0.MemWrites) {
986       for (Instruction *WriteL1 : FC1.MemWrites)
987         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
988                                     /* AnyDep */ false,
989                                     FusionDependenceAnalysis)) {
990           InvalidDependencies++;
991           return false;
992         }
993       for (Instruction *ReadL1 : FC1.MemReads)
994         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
995                                     /* AnyDep */ false,
996                                     FusionDependenceAnalysis)) {
997           InvalidDependencies++;
998           return false;
999         }
1000     }
1001 
1002     for (Instruction *WriteL1 : FC1.MemWrites) {
1003       for (Instruction *WriteL0 : FC0.MemWrites)
1004         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1005                                     /* AnyDep */ false,
1006                                     FusionDependenceAnalysis)) {
1007           InvalidDependencies++;
1008           return false;
1009         }
1010       for (Instruction *ReadL0 : FC0.MemReads)
1011         if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1012                                     /* AnyDep */ false,
1013                                     FusionDependenceAnalysis)) {
1014           InvalidDependencies++;
1015           return false;
1016         }
1017     }
1018 
1019     // Walk through all uses in FC1. For each use, find the reaching def. If the
1020     // def is located in FC0 then it is is not safe to fuse.
1021     for (BasicBlock *BB : FC1.L->blocks())
1022       for (Instruction &I : *BB)
1023         for (auto &Op : I.operands())
1024           if (Instruction *Def = dyn_cast<Instruction>(Op))
1025             if (FC0.L->contains(Def->getParent())) {
1026               InvalidDependencies++;
1027               return false;
1028             }
1029 
1030     return true;
1031   }
1032 
1033   /// Determine if two fusion candidates are adjacent in the CFG.
1034   ///
1035   /// This method will determine if there are additional basic blocks in the CFG
1036   /// between the exit of \p FC0 and the entry of \p FC1.
1037   /// If the two candidates are guarded loops, then it checks whether the
1038   /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1039   /// FC1. If not, then the loops are not adjacent. If the two candidates are
1040   /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1041   /// preheader of \p FC1.
1042   bool isAdjacent(const FusionCandidate &FC0,
1043                   const FusionCandidate &FC1) const {
1044     // If the successor of the guard branch is FC1, then the loops are adjacent
1045     if (FC0.GuardBranch)
1046       return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1047     else
1048       return FC0.ExitBlock == FC1.getEntryBlock();
1049   }
1050 
1051   /// Determine if two fusion candidates have identical guards
1052   ///
1053   /// This method will determine if two fusion candidates have the same guards.
1054   /// The guards are considered the same if:
1055   ///   1. The instructions to compute the condition used in the compare are
1056   ///      identical.
1057   ///   2. The successors of the guard have the same flow into/around the loop.
1058   /// If the compare instructions are identical, then the first successor of the
1059   /// guard must go to the same place (either the preheader of the loop or the
1060   /// NonLoopBlock). In other words, the the first successor of both loops must
1061   /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1062   /// the NonLoopBlock). The same must be true for the second successor.
1063   bool haveIdenticalGuards(const FusionCandidate &FC0,
1064                            const FusionCandidate &FC1) const {
1065     assert(FC0.GuardBranch && FC1.GuardBranch &&
1066            "Expecting FC0 and FC1 to be guarded loops.");
1067 
1068     if (auto FC0CmpInst =
1069             dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1070       if (auto FC1CmpInst =
1071               dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1072         if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1073           return false;
1074 
1075     // The compare instructions are identical.
1076     // Now make sure the successor of the guards have the same flow into/around
1077     // the loop
1078     if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1079       return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1080     else
1081       return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1082   }
1083 
1084   /// Check that the guard for \p FC *only* contains the cmp/branch for the
1085   /// guard.
1086   /// Once we are able to handle intervening code, any code in the guard block
1087   /// for FC1 will need to be treated as intervening code and checked whether
1088   /// it can safely move around the loops.
1089   bool isEmptyGuardBlock(const FusionCandidate &FC) const {
1090     assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch.");
1091     if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) {
1092       auto *GuardBlock = FC.GuardBranch->getParent();
1093       // If the generation of the cmp value is in GuardBlock, then the size of
1094       // the guard block should be 2 (cmp + branch). If the generation of the
1095       // cmp value is in a different block, then the size of the guard block
1096       // should only be 1.
1097       if (CmpInst->getParent() == GuardBlock)
1098         return GuardBlock->size() == 2;
1099       else
1100         return GuardBlock->size() == 1;
1101     }
1102 
1103     return false;
1104   }
1105 
1106   bool isEmptyPreheader(const FusionCandidate &FC) const {
1107     assert(FC.Preheader && "Expecting a valid preheader");
1108     return FC.Preheader->size() == 1;
1109   }
1110 
1111   bool isEmptyExitBlock(const FusionCandidate &FC) const {
1112     assert(FC.ExitBlock && "Expecting a valid exit block");
1113     return FC.ExitBlock->size() == 1;
1114   }
1115 
1116   /// Fuse two fusion candidates, creating a new fused loop.
1117   ///
1118   /// This method contains the mechanics of fusing two loops, represented by \p
1119   /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1120   /// postdominates \p FC0 (making them control flow equivalent). It also
1121   /// assumes that the other conditions for fusion have been met: adjacent,
1122   /// identical trip counts, and no negative distance dependencies exist that
1123   /// would prevent fusion. Thus, there is no checking for these conditions in
1124   /// this method.
1125   ///
1126   /// Fusion is performed by rewiring the CFG to update successor blocks of the
1127   /// components of tho loop. Specifically, the following changes are done:
1128   ///
1129   ///   1. The preheader of \p FC1 is removed as it is no longer necessary
1130   ///   (because it is currently only a single statement block).
1131   ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1132   ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1133   ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1134   ///
1135   /// All of these modifications are done with dominator tree updates, thus
1136   /// keeping the dominator (and post dominator) information up-to-date.
1137   ///
1138   /// This can be improved in the future by actually merging blocks during
1139   /// fusion. For example, the preheader of \p FC1 can be merged with the
1140   /// preheader of \p FC0. This would allow loops with more than a single
1141   /// statement in the preheader to be fused. Similarly, the latch blocks of the
1142   /// two loops could also be fused into a single block. This will require
1143   /// analysis to prove it is safe to move the contents of the block past
1144   /// existing code, which currently has not been implemented.
1145   Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1146     assert(FC0.isValid() && FC1.isValid() &&
1147            "Expecting valid fusion candidates");
1148 
1149     LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1150                dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1151 
1152     // Fusing guarded loops is handled slightly differently than non-guarded
1153     // loops and has been broken out into a separate method instead of trying to
1154     // intersperse the logic within a single method.
1155     if (FC0.GuardBranch)
1156       return fuseGuardedLoops(FC0, FC1);
1157 
1158     assert(FC1.Preheader == FC0.ExitBlock);
1159     assert(FC1.Preheader->size() == 1 &&
1160            FC1.Preheader->getSingleSuccessor() == FC1.Header);
1161 
1162     // Remember the phi nodes originally in the header of FC0 in order to rewire
1163     // them later. However, this is only necessary if the new loop carried
1164     // values might not dominate the exiting branch. While we do not generally
1165     // test if this is the case but simply insert intermediate phi nodes, we
1166     // need to make sure these intermediate phi nodes have different
1167     // predecessors. To this end, we filter the special case where the exiting
1168     // block is the latch block of the first loop. Nothing needs to be done
1169     // anyway as all loop carried values dominate the latch and thereby also the
1170     // exiting branch.
1171     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1172     if (FC0.ExitingBlock != FC0.Latch)
1173       for (PHINode &PHI : FC0.Header->phis())
1174         OriginalFC0PHIs.push_back(&PHI);
1175 
1176     // Replace incoming blocks for header PHIs first.
1177     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1178     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1179 
1180     // Then modify the control flow and update DT and PDT.
1181     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1182 
1183     // The old exiting block of the first loop (FC0) has to jump to the header
1184     // of the second as we need to execute the code in the second header block
1185     // regardless of the trip count. That is, if the trip count is 0, so the
1186     // back edge is never taken, we still have to execute both loop headers,
1187     // especially (but not only!) if the second is a do-while style loop.
1188     // However, doing so might invalidate the phi nodes of the first loop as
1189     // the new values do only need to dominate their latch and not the exiting
1190     // predicate. To remedy this potential problem we always introduce phi
1191     // nodes in the header of the second loop later that select the loop carried
1192     // value, if the second header was reached through an old latch of the
1193     // first, or undef otherwise. This is sound as exiting the first implies the
1194     // second will exit too, __without__ taking the back-edge. [Their
1195     // trip-counts are equal after all.
1196     // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1197     // to FC1.Header? I think this is basically what the three sequences are
1198     // trying to accomplish; however, doing this directly in the CFG may mean
1199     // the DT/PDT becomes invalid
1200     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1201                                                          FC1.Header);
1202     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1203         DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1204     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1205         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1206 
1207     // The pre-header of L1 is not necessary anymore.
1208     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1209     FC1.Preheader->getTerminator()->eraseFromParent();
1210     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1211     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1212         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1213 
1214     // Moves the phi nodes from the second to the first loops header block.
1215     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1216       if (SE.isSCEVable(PHI->getType()))
1217         SE.forgetValue(PHI);
1218       if (PHI->hasNUsesOrMore(1))
1219         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1220       else
1221         PHI->eraseFromParent();
1222     }
1223 
1224     // Introduce new phi nodes in the second loop header to ensure
1225     // exiting the first and jumping to the header of the second does not break
1226     // the SSA property of the phis originally in the first loop. See also the
1227     // comment above.
1228     Instruction *L1HeaderIP = &FC1.Header->front();
1229     for (PHINode *LCPHI : OriginalFC0PHIs) {
1230       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1231       assert(L1LatchBBIdx >= 0 &&
1232              "Expected loop carried value to be rewired at this point!");
1233 
1234       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1235 
1236       PHINode *L1HeaderPHI = PHINode::Create(
1237           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1238       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1239       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1240                                FC0.ExitingBlock);
1241 
1242       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1243     }
1244 
1245     // Replace latch terminator destinations.
1246     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1247     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1248 
1249     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1250     // performed the updates above.
1251     if (FC0.Latch != FC0.ExitingBlock)
1252       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1253           DominatorTree::Insert, FC0.Latch, FC1.Header));
1254 
1255     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1256                                                        FC0.Latch, FC0.Header));
1257     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1258                                                        FC1.Latch, FC0.Header));
1259     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1260                                                        FC1.Latch, FC1.Header));
1261 
1262     // Update DT/PDT
1263     DTU.applyUpdates(TreeUpdates);
1264 
1265     LI.removeBlock(FC1.Preheader);
1266     DTU.deleteBB(FC1.Preheader);
1267     DTU.flush();
1268 
1269     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1270     // and rebuild the information in subsequent passes of fusion?
1271     SE.forgetLoop(FC1.L);
1272     SE.forgetLoop(FC0.L);
1273 
1274     // Merge the loops.
1275     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1276                                         FC1.L->block_end());
1277     for (BasicBlock *BB : Blocks) {
1278       FC0.L->addBlockEntry(BB);
1279       FC1.L->removeBlockFromLoop(BB);
1280       if (LI.getLoopFor(BB) != FC1.L)
1281         continue;
1282       LI.changeLoopFor(BB, FC0.L);
1283     }
1284     while (!FC1.L->empty()) {
1285       const auto &ChildLoopIt = FC1.L->begin();
1286       Loop *ChildLoop = *ChildLoopIt;
1287       FC1.L->removeChildLoop(ChildLoopIt);
1288       FC0.L->addChildLoop(ChildLoop);
1289     }
1290 
1291     // Delete the now empty loop L1.
1292     LI.erase(FC1.L);
1293 
1294 #ifndef NDEBUG
1295     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1296     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1297     assert(PDT.verify());
1298     LI.verify(DT);
1299     SE.verify();
1300 #endif
1301 
1302     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1303 
1304     return FC0.L;
1305   }
1306 
1307   /// Report details on loop fusion opportunities.
1308   ///
1309   /// This template function can be used to report both successful and missed
1310   /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1311   /// be one of:
1312   ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1313   ///     given two valid fusion candidates.
1314   ///   - OptimizationRemark to report successful fusion of two fusion
1315   ///     candidates.
1316   /// The remarks will be printed using the form:
1317   ///    <path/filename>:<line number>:<column number>: [<function name>]:
1318   ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1319   template <typename RemarkKind>
1320   void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1321                         llvm::Statistic &Stat) {
1322     assert(FC0.Preheader && FC1.Preheader &&
1323            "Expecting valid fusion candidates");
1324     using namespace ore;
1325     ++Stat;
1326     ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1327                         FC0.Preheader)
1328              << "[" << FC0.Preheader->getParent()->getName()
1329              << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1330              << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1331              << ": " << Stat.getDesc());
1332   }
1333 
1334   /// Fuse two guarded fusion candidates, creating a new fused loop.
1335   ///
1336   /// Fusing guarded loops is handled much the same way as fusing non-guarded
1337   /// loops. The rewiring of the CFG is slightly different though, because of
1338   /// the presence of the guards around the loops and the exit blocks after the
1339   /// loop body. As such, the new loop is rewired as follows:
1340   ///    1. Keep the guard branch from FC0 and use the non-loop block target
1341   /// from the FC1 guard branch.
1342   ///    2. Remove the exit block from FC0 (this exit block should be empty
1343   /// right now).
1344   ///    3. Remove the guard branch for FC1
1345   ///    4. Remove the preheader for FC1.
1346   /// The exit block successor for the latch of FC0 is updated to be the header
1347   /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1348   /// be the header of FC0, thus creating the fused loop.
1349   Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1350                          const FusionCandidate &FC1) {
1351     assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1352 
1353     BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1354     BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1355     BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1356     BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1357 
1358     assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1359 
1360     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1361 
1362     ////////////////////////////////////////////////////////////////////////////
1363     // Update the Loop Guard
1364     ////////////////////////////////////////////////////////////////////////////
1365     // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1366     // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1367     // Thus, one path from the guard goes to the preheader for FC0 (and thus
1368     // executes the new fused loop) and the other path goes to the NonLoopBlock
1369     // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1370     FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1371     FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock,
1372                                                       FC1.Header);
1373 
1374     // The guard of FC1 is not necessary anymore.
1375     FC1.GuardBranch->eraseFromParent();
1376     new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1377 
1378     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1379         DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1380     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1381         DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1382     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1383         DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1384     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1385         DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1386 
1387     assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1388            "Expecting guard block to have no predecessors");
1389     assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1390            "Expecting guard block to have no successors");
1391 
1392     // Remember the phi nodes originally in the header of FC0 in order to rewire
1393     // them later. However, this is only necessary if the new loop carried
1394     // values might not dominate the exiting branch. While we do not generally
1395     // test if this is the case but simply insert intermediate phi nodes, we
1396     // need to make sure these intermediate phi nodes have different
1397     // predecessors. To this end, we filter the special case where the exiting
1398     // block is the latch block of the first loop. Nothing needs to be done
1399     // anyway as all loop carried values dominate the latch and thereby also the
1400     // exiting branch.
1401     // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1402     // (because the loops are rotated. Thus, nothing will ever be added to
1403     // OriginalFC0PHIs.
1404     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1405     if (FC0.ExitingBlock != FC0.Latch)
1406       for (PHINode &PHI : FC0.Header->phis())
1407         OriginalFC0PHIs.push_back(&PHI);
1408 
1409     assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1410 
1411     // Replace incoming blocks for header PHIs first.
1412     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1413     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1414 
1415     // The old exiting block of the first loop (FC0) has to jump to the header
1416     // of the second as we need to execute the code in the second header block
1417     // regardless of the trip count. That is, if the trip count is 0, so the
1418     // back edge is never taken, we still have to execute both loop headers,
1419     // especially (but not only!) if the second is a do-while style loop.
1420     // However, doing so might invalidate the phi nodes of the first loop as
1421     // the new values do only need to dominate their latch and not the exiting
1422     // predicate. To remedy this potential problem we always introduce phi
1423     // nodes in the header of the second loop later that select the loop carried
1424     // value, if the second header was reached through an old latch of the
1425     // first, or undef otherwise. This is sound as exiting the first implies the
1426     // second will exit too, __without__ taking the back-edge (their
1427     // trip-counts are equal after all).
1428     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1429                                                          FC1.Header);
1430 
1431     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1432         DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1433     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1434         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1435 
1436     // Remove FC0 Exit Block
1437     // The exit block for FC0 is no longer needed since control will flow
1438     // directly to the header of FC1. Since it is an empty block, it can be
1439     // removed at this point.
1440     // TODO: In the future, we can handle non-empty exit blocks my merging any
1441     // instructions from FC0 exit block into FC1 exit block prior to removing
1442     // the block.
1443     assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
1444            "Expecting exit block to be empty");
1445     FC0.ExitBlock->getTerminator()->eraseFromParent();
1446     new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1447 
1448     // Remove FC1 Preheader
1449     // The pre-header of L1 is not necessary anymore.
1450     assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1451     FC1.Preheader->getTerminator()->eraseFromParent();
1452     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1453     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1454         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1455 
1456     // Moves the phi nodes from the second to the first loops header block.
1457     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1458       if (SE.isSCEVable(PHI->getType()))
1459         SE.forgetValue(PHI);
1460       if (PHI->hasNUsesOrMore(1))
1461         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1462       else
1463         PHI->eraseFromParent();
1464     }
1465 
1466     // Introduce new phi nodes in the second loop header to ensure
1467     // exiting the first and jumping to the header of the second does not break
1468     // the SSA property of the phis originally in the first loop. See also the
1469     // comment above.
1470     Instruction *L1HeaderIP = &FC1.Header->front();
1471     for (PHINode *LCPHI : OriginalFC0PHIs) {
1472       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1473       assert(L1LatchBBIdx >= 0 &&
1474              "Expected loop carried value to be rewired at this point!");
1475 
1476       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1477 
1478       PHINode *L1HeaderPHI = PHINode::Create(
1479           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1480       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1481       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1482                                FC0.ExitingBlock);
1483 
1484       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1485     }
1486 
1487     // Update the latches
1488 
1489     // Replace latch terminator destinations.
1490     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1491     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1492 
1493     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1494     // performed the updates above.
1495     if (FC0.Latch != FC0.ExitingBlock)
1496       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1497           DominatorTree::Insert, FC0.Latch, FC1.Header));
1498 
1499     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1500                                                        FC0.Latch, FC0.Header));
1501     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1502                                                        FC1.Latch, FC0.Header));
1503     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1504                                                        FC1.Latch, FC1.Header));
1505 
1506     // All done
1507     // Apply the updates to the Dominator Tree and cleanup.
1508 
1509     assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1510            "FC1GuardBlock has successors!!");
1511     assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1512            "FC1GuardBlock has predecessors!!");
1513 
1514     // Update DT/PDT
1515     DTU.applyUpdates(TreeUpdates);
1516 
1517     LI.removeBlock(FC1.Preheader);
1518     DTU.deleteBB(FC1.Preheader);
1519     DTU.deleteBB(FC0.ExitBlock);
1520     DTU.flush();
1521 
1522     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1523     // and rebuild the information in subsequent passes of fusion?
1524     SE.forgetLoop(FC1.L);
1525     SE.forgetLoop(FC0.L);
1526 
1527     // Merge the loops.
1528     SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1529                                         FC1.L->block_end());
1530     for (BasicBlock *BB : Blocks) {
1531       FC0.L->addBlockEntry(BB);
1532       FC1.L->removeBlockFromLoop(BB);
1533       if (LI.getLoopFor(BB) != FC1.L)
1534         continue;
1535       LI.changeLoopFor(BB, FC0.L);
1536     }
1537     while (!FC1.L->empty()) {
1538       const auto &ChildLoopIt = FC1.L->begin();
1539       Loop *ChildLoop = *ChildLoopIt;
1540       FC1.L->removeChildLoop(ChildLoopIt);
1541       FC0.L->addChildLoop(ChildLoop);
1542     }
1543 
1544     // Delete the now empty loop L1.
1545     LI.erase(FC1.L);
1546 
1547 #ifndef NDEBUG
1548     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1549     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1550     assert(PDT.verify());
1551     LI.verify(DT);
1552     SE.verify();
1553 #endif
1554 
1555     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1556 
1557     return FC0.L;
1558   }
1559 };
1560 
1561 struct LoopFuseLegacy : public FunctionPass {
1562 
1563   static char ID;
1564 
1565   LoopFuseLegacy() : FunctionPass(ID) {
1566     initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1567   }
1568 
1569   void getAnalysisUsage(AnalysisUsage &AU) const override {
1570     AU.addRequiredID(LoopSimplifyID);
1571     AU.addRequired<ScalarEvolutionWrapperPass>();
1572     AU.addRequired<LoopInfoWrapperPass>();
1573     AU.addRequired<DominatorTreeWrapperPass>();
1574     AU.addRequired<PostDominatorTreeWrapperPass>();
1575     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1576     AU.addRequired<DependenceAnalysisWrapperPass>();
1577 
1578     AU.addPreserved<ScalarEvolutionWrapperPass>();
1579     AU.addPreserved<LoopInfoWrapperPass>();
1580     AU.addPreserved<DominatorTreeWrapperPass>();
1581     AU.addPreserved<PostDominatorTreeWrapperPass>();
1582   }
1583 
1584   bool runOnFunction(Function &F) override {
1585     if (skipFunction(F))
1586       return false;
1587     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1588     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1589     auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1590     auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1591     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1592     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1593 
1594     const DataLayout &DL = F.getParent()->getDataLayout();
1595     LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1596     return LF.fuseLoops(F);
1597   }
1598 };
1599 } // namespace
1600 
1601 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1602   auto &LI = AM.getResult<LoopAnalysis>(F);
1603   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1604   auto &DI = AM.getResult<DependenceAnalysis>(F);
1605   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1606   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1607   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1608 
1609   const DataLayout &DL = F.getParent()->getDataLayout();
1610   LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1611   bool Changed = LF.fuseLoops(F);
1612   if (!Changed)
1613     return PreservedAnalyses::all();
1614 
1615   PreservedAnalyses PA;
1616   PA.preserve<DominatorTreeAnalysis>();
1617   PA.preserve<PostDominatorTreeAnalysis>();
1618   PA.preserve<ScalarEvolutionAnalysis>();
1619   PA.preserve<LoopAnalysis>();
1620   return PA;
1621 }
1622 
1623 char LoopFuseLegacy::ID = 0;
1624 
1625 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1626                       false)
1627 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1628 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1629 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1630 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1631 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1632 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1633 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1634 
1635 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
1636