1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the loop fusion pass. 11 /// The implementation is largely based on the following document: 12 /// 13 /// Code Transformations to Augment the Scope of Loop Fusion in a 14 /// Production Compiler 15 /// Christopher Mark Barton 16 /// MSc Thesis 17 /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf 18 /// 19 /// The general approach taken is to collect sets of control flow equivalent 20 /// loops and test whether they can be fused. The necessary conditions for 21 /// fusion are: 22 /// 1. The loops must be adjacent (there cannot be any statements between 23 /// the two loops). 24 /// 2. The loops must be conforming (they must execute the same number of 25 /// iterations). 26 /// 3. The loops must be control flow equivalent (if one loop executes, the 27 /// other is guaranteed to execute). 28 /// 4. There cannot be any negative distance dependencies between the loops. 29 /// If all of these conditions are satisfied, it is safe to fuse the loops. 30 /// 31 /// This implementation creates FusionCandidates that represent the loop and the 32 /// necessary information needed by fusion. It then operates on the fusion 33 /// candidates, first confirming that the candidate is eligible for fusion. The 34 /// candidates are then collected into control flow equivalent sets, sorted in 35 /// dominance order. Each set of control flow equivalent candidates is then 36 /// traversed, attempting to fuse pairs of candidates in the set. If all 37 /// requirements for fusion are met, the two candidates are fused, creating a 38 /// new (fused) candidate which is then added back into the set to consider for 39 /// additional fusion. 40 /// 41 /// This implementation currently does not make any modifications to remove 42 /// conditions for fusion. Code transformations to make loops conform to each of 43 /// the conditions for fusion are discussed in more detail in the document 44 /// above. These can be added to the current implementation in the future. 45 //===----------------------------------------------------------------------===// 46 47 #include "llvm/Transforms/Scalar/LoopFuse.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/Analysis/AssumptionCache.h" 50 #include "llvm/Analysis/DependenceAnalysis.h" 51 #include "llvm/Analysis/DomTreeUpdater.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 54 #include "llvm/Analysis/PostDominators.h" 55 #include "llvm/Analysis/ScalarEvolution.h" 56 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 57 #include "llvm/Analysis/TargetTransformInfo.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/Verifier.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/CodeMoverUtils.h" 69 #include "llvm/Transforms/Utils/LoopPeel.h" 70 71 using namespace llvm; 72 73 #define DEBUG_TYPE "loop-fusion" 74 75 STATISTIC(FuseCounter, "Loops fused"); 76 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion"); 77 STATISTIC(InvalidPreheader, "Loop has invalid preheader"); 78 STATISTIC(InvalidHeader, "Loop has invalid header"); 79 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks"); 80 STATISTIC(InvalidExitBlock, "Loop has invalid exit block"); 81 STATISTIC(InvalidLatch, "Loop has invalid latch"); 82 STATISTIC(InvalidLoop, "Loop is invalid"); 83 STATISTIC(AddressTakenBB, "Basic block has address taken"); 84 STATISTIC(MayThrowException, "Loop may throw an exception"); 85 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access"); 86 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form"); 87 STATISTIC(InvalidDependencies, "Dependencies prevent fusion"); 88 STATISTIC(UnknownTripCount, "Loop has unknown trip count"); 89 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop"); 90 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same"); 91 STATISTIC(NonAdjacent, "Loops are not adjacent"); 92 STATISTIC( 93 NonEmptyPreheader, 94 "Loop has a non-empty preheader with instructions that cannot be moved"); 95 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial"); 96 STATISTIC(NonIdenticalGuards, "Candidates have different guards"); 97 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with " 98 "instructions that cannot be moved"); 99 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with " 100 "instructions that cannot be moved"); 101 STATISTIC(NotRotated, "Candidate is not rotated"); 102 STATISTIC(OnlySecondCandidateIsGuarded, 103 "The second candidate is guarded while the first one is not"); 104 105 enum FusionDependenceAnalysisChoice { 106 FUSION_DEPENDENCE_ANALYSIS_SCEV, 107 FUSION_DEPENDENCE_ANALYSIS_DA, 108 FUSION_DEPENDENCE_ANALYSIS_ALL, 109 }; 110 111 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis( 112 "loop-fusion-dependence-analysis", 113 cl::desc("Which dependence analysis should loop fusion use?"), 114 cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev", 115 "Use the scalar evolution interface"), 116 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da", 117 "Use the dependence analysis interface"), 118 clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all", 119 "Use all available analyses")), 120 cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore); 121 122 static cl::opt<unsigned> FusionPeelMaxCount( 123 "loop-fusion-peel-max-count", cl::init(0), cl::Hidden, 124 cl::desc("Max number of iterations to be peeled from a loop, such that " 125 "fusion can take place")); 126 127 #ifndef NDEBUG 128 static cl::opt<bool> 129 VerboseFusionDebugging("loop-fusion-verbose-debug", 130 cl::desc("Enable verbose debugging for Loop Fusion"), 131 cl::Hidden, cl::init(false), cl::ZeroOrMore); 132 #endif 133 134 namespace { 135 /// This class is used to represent a candidate for loop fusion. When it is 136 /// constructed, it checks the conditions for loop fusion to ensure that it 137 /// represents a valid candidate. It caches several parts of a loop that are 138 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead 139 /// of continually querying the underlying Loop to retrieve these values. It is 140 /// assumed these will not change throughout loop fusion. 141 /// 142 /// The invalidate method should be used to indicate that the FusionCandidate is 143 /// no longer a valid candidate for fusion. Similarly, the isValid() method can 144 /// be used to ensure that the FusionCandidate is still valid for fusion. 145 struct FusionCandidate { 146 /// Cache of parts of the loop used throughout loop fusion. These should not 147 /// need to change throughout the analysis and transformation. 148 /// These parts are cached to avoid repeatedly looking up in the Loop class. 149 150 /// Preheader of the loop this candidate represents 151 BasicBlock *Preheader; 152 /// Header of the loop this candidate represents 153 BasicBlock *Header; 154 /// Blocks in the loop that exit the loop 155 BasicBlock *ExitingBlock; 156 /// The successor block of this loop (where the exiting blocks go to) 157 BasicBlock *ExitBlock; 158 /// Latch of the loop 159 BasicBlock *Latch; 160 /// The loop that this fusion candidate represents 161 Loop *L; 162 /// Vector of instructions in this loop that read from memory 163 SmallVector<Instruction *, 16> MemReads; 164 /// Vector of instructions in this loop that write to memory 165 SmallVector<Instruction *, 16> MemWrites; 166 /// Are all of the members of this fusion candidate still valid 167 bool Valid; 168 /// Guard branch of the loop, if it exists 169 BranchInst *GuardBranch; 170 /// Peeling Paramaters of the Loop. 171 TTI::PeelingPreferences PP; 172 /// Can you Peel this Loop? 173 bool AbleToPeel; 174 /// Has this loop been Peeled 175 bool Peeled; 176 177 /// Dominator and PostDominator trees are needed for the 178 /// FusionCandidateCompare function, required by FusionCandidateSet to 179 /// determine where the FusionCandidate should be inserted into the set. These 180 /// are used to establish ordering of the FusionCandidates based on dominance. 181 const DominatorTree *DT; 182 const PostDominatorTree *PDT; 183 184 OptimizationRemarkEmitter &ORE; 185 186 FusionCandidate(Loop *L, const DominatorTree *DT, 187 const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE, 188 TTI::PeelingPreferences PP) 189 : Preheader(L->getLoopPreheader()), Header(L->getHeader()), 190 ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()), 191 Latch(L->getLoopLatch()), L(L), Valid(true), 192 GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)), 193 Peeled(false), DT(DT), PDT(PDT), ORE(ORE) { 194 195 // Walk over all blocks in the loop and check for conditions that may 196 // prevent fusion. For each block, walk over all instructions and collect 197 // the memory reads and writes If any instructions that prevent fusion are 198 // found, invalidate this object and return. 199 for (BasicBlock *BB : L->blocks()) { 200 if (BB->hasAddressTaken()) { 201 invalidate(); 202 reportInvalidCandidate(AddressTakenBB); 203 return; 204 } 205 206 for (Instruction &I : *BB) { 207 if (I.mayThrow()) { 208 invalidate(); 209 reportInvalidCandidate(MayThrowException); 210 return; 211 } 212 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 213 if (SI->isVolatile()) { 214 invalidate(); 215 reportInvalidCandidate(ContainsVolatileAccess); 216 return; 217 } 218 } 219 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 220 if (LI->isVolatile()) { 221 invalidate(); 222 reportInvalidCandidate(ContainsVolatileAccess); 223 return; 224 } 225 } 226 if (I.mayWriteToMemory()) 227 MemWrites.push_back(&I); 228 if (I.mayReadFromMemory()) 229 MemReads.push_back(&I); 230 } 231 } 232 } 233 234 /// Check if all members of the class are valid. 235 bool isValid() const { 236 return Preheader && Header && ExitingBlock && ExitBlock && Latch && L && 237 !L->isInvalid() && Valid; 238 } 239 240 /// Verify that all members are in sync with the Loop object. 241 void verify() const { 242 assert(isValid() && "Candidate is not valid!!"); 243 assert(!L->isInvalid() && "Loop is invalid!"); 244 assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync"); 245 assert(Header == L->getHeader() && "Header is out of sync"); 246 assert(ExitingBlock == L->getExitingBlock() && 247 "Exiting Blocks is out of sync"); 248 assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync"); 249 assert(Latch == L->getLoopLatch() && "Latch is out of sync"); 250 } 251 252 /// Get the entry block for this fusion candidate. 253 /// 254 /// If this fusion candidate represents a guarded loop, the entry block is the 255 /// loop guard block. If it represents an unguarded loop, the entry block is 256 /// the preheader of the loop. 257 BasicBlock *getEntryBlock() const { 258 if (GuardBranch) 259 return GuardBranch->getParent(); 260 else 261 return Preheader; 262 } 263 264 /// After Peeling the loop is modified quite a bit, hence all of the Blocks 265 /// need to be updated accordingly. 266 void updateAfterPeeling() { 267 Preheader = L->getLoopPreheader(); 268 Header = L->getHeader(); 269 ExitingBlock = L->getExitingBlock(); 270 ExitBlock = L->getExitBlock(); 271 Latch = L->getLoopLatch(); 272 verify(); 273 } 274 275 /// Given a guarded loop, get the successor of the guard that is not in the 276 /// loop. 277 /// 278 /// This method returns the successor of the loop guard that is not located 279 /// within the loop (i.e., the successor of the guard that is not the 280 /// preheader). 281 /// This method is only valid for guarded loops. 282 BasicBlock *getNonLoopBlock() const { 283 assert(GuardBranch && "Only valid on guarded loops."); 284 assert(GuardBranch->isConditional() && 285 "Expecting guard to be a conditional branch."); 286 if (Peeled) 287 return GuardBranch->getSuccessor(1); 288 return (GuardBranch->getSuccessor(0) == Preheader) 289 ? GuardBranch->getSuccessor(1) 290 : GuardBranch->getSuccessor(0); 291 } 292 293 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 294 LLVM_DUMP_METHOD void dump() const { 295 dbgs() << "\tGuardBranch: "; 296 if (GuardBranch) 297 dbgs() << *GuardBranch; 298 else 299 dbgs() << "nullptr"; 300 dbgs() << "\n" 301 << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n" 302 << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr") 303 << "\n" 304 << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n" 305 << "\tExitingBB: " 306 << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n" 307 << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr") 308 << "\n" 309 << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n" 310 << "\tEntryBlock: " 311 << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr") 312 << "\n"; 313 } 314 #endif 315 316 /// Determine if a fusion candidate (representing a loop) is eligible for 317 /// fusion. Note that this only checks whether a single loop can be fused - it 318 /// does not check whether it is *legal* to fuse two loops together. 319 bool isEligibleForFusion(ScalarEvolution &SE) const { 320 if (!isValid()) { 321 LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n"); 322 if (!Preheader) 323 ++InvalidPreheader; 324 if (!Header) 325 ++InvalidHeader; 326 if (!ExitingBlock) 327 ++InvalidExitingBlock; 328 if (!ExitBlock) 329 ++InvalidExitBlock; 330 if (!Latch) 331 ++InvalidLatch; 332 if (L->isInvalid()) 333 ++InvalidLoop; 334 335 return false; 336 } 337 338 // Require ScalarEvolution to be able to determine a trip count. 339 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) { 340 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 341 << " trip count not computable!\n"); 342 return reportInvalidCandidate(UnknownTripCount); 343 } 344 345 if (!L->isLoopSimplifyForm()) { 346 LLVM_DEBUG(dbgs() << "Loop " << L->getName() 347 << " is not in simplified form!\n"); 348 return reportInvalidCandidate(NotSimplifiedForm); 349 } 350 351 if (!L->isRotatedForm()) { 352 LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n"); 353 return reportInvalidCandidate(NotRotated); 354 } 355 356 return true; 357 } 358 359 private: 360 // This is only used internally for now, to clear the MemWrites and MemReads 361 // list and setting Valid to false. I can't envision other uses of this right 362 // now, since once FusionCandidates are put into the FusionCandidateSet they 363 // are immutable. Thus, any time we need to change/update a FusionCandidate, 364 // we must create a new one and insert it into the FusionCandidateSet to 365 // ensure the FusionCandidateSet remains ordered correctly. 366 void invalidate() { 367 MemWrites.clear(); 368 MemReads.clear(); 369 Valid = false; 370 } 371 372 bool reportInvalidCandidate(llvm::Statistic &Stat) const { 373 using namespace ore; 374 assert(L && Preheader && "Fusion candidate not initialized properly!"); 375 #if LLVM_ENABLE_STATS 376 ++Stat; 377 ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(), 378 L->getStartLoc(), Preheader) 379 << "[" << Preheader->getParent()->getName() << "]: " 380 << "Loop is not a candidate for fusion: " << Stat.getDesc()); 381 #endif 382 return false; 383 } 384 }; 385 386 struct FusionCandidateCompare { 387 /// Comparison functor to sort two Control Flow Equivalent fusion candidates 388 /// into dominance order. 389 /// If LHS dominates RHS and RHS post-dominates LHS, return true; 390 /// IF RHS dominates LHS and LHS post-dominates RHS, return false; 391 bool operator()(const FusionCandidate &LHS, 392 const FusionCandidate &RHS) const { 393 const DominatorTree *DT = LHS.DT; 394 395 BasicBlock *LHSEntryBlock = LHS.getEntryBlock(); 396 BasicBlock *RHSEntryBlock = RHS.getEntryBlock(); 397 398 // Do not save PDT to local variable as it is only used in asserts and thus 399 // will trigger an unused variable warning if building without asserts. 400 assert(DT && LHS.PDT && "Expecting valid dominator tree"); 401 402 // Do this compare first so if LHS == RHS, function returns false. 403 if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) { 404 // RHS dominates LHS 405 // Verify LHS post-dominates RHS 406 assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock)); 407 return false; 408 } 409 410 if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) { 411 // Verify RHS Postdominates LHS 412 assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock)); 413 return true; 414 } 415 416 // If LHS does not dominate RHS and RHS does not dominate LHS then there is 417 // no dominance relationship between the two FusionCandidates. Thus, they 418 // should not be in the same set together. 419 llvm_unreachable( 420 "No dominance relationship between these fusion candidates!"); 421 } 422 }; 423 424 using LoopVector = SmallVector<Loop *, 4>; 425 426 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance 427 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0 428 // dominates FC1 and FC1 post-dominates FC0. 429 // std::set was chosen because we want a sorted data structure with stable 430 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent 431 // loops by moving intervening code around. When this intervening code contains 432 // loops, those loops will be moved also. The corresponding FusionCandidates 433 // will also need to be moved accordingly. As this is done, having stable 434 // iterators will simplify the logic. Similarly, having an efficient insert that 435 // keeps the FusionCandidateSet sorted will also simplify the implementation. 436 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>; 437 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>; 438 439 #if !defined(NDEBUG) 440 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 441 const FusionCandidate &FC) { 442 if (FC.isValid()) 443 OS << FC.Preheader->getName(); 444 else 445 OS << "<Invalid>"; 446 447 return OS; 448 } 449 450 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, 451 const FusionCandidateSet &CandSet) { 452 for (const FusionCandidate &FC : CandSet) 453 OS << FC << '\n'; 454 455 return OS; 456 } 457 458 static void 459 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) { 460 dbgs() << "Fusion Candidates: \n"; 461 for (const auto &CandidateSet : FusionCandidates) { 462 dbgs() << "*** Fusion Candidate Set ***\n"; 463 dbgs() << CandidateSet; 464 dbgs() << "****************************\n"; 465 } 466 } 467 #endif 468 469 /// Collect all loops in function at the same nest level, starting at the 470 /// outermost level. 471 /// 472 /// This data structure collects all loops at the same nest level for a 473 /// given function (specified by the LoopInfo object). It starts at the 474 /// outermost level. 475 struct LoopDepthTree { 476 using LoopsOnLevelTy = SmallVector<LoopVector, 4>; 477 using iterator = LoopsOnLevelTy::iterator; 478 using const_iterator = LoopsOnLevelTy::const_iterator; 479 480 LoopDepthTree(LoopInfo &LI) : Depth(1) { 481 if (!LI.empty()) 482 LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend())); 483 } 484 485 /// Test whether a given loop has been removed from the function, and thus is 486 /// no longer valid. 487 bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); } 488 489 /// Record that a given loop has been removed from the function and is no 490 /// longer valid. 491 void removeLoop(const Loop *L) { RemovedLoops.insert(L); } 492 493 /// Descend the tree to the next (inner) nesting level 494 void descend() { 495 LoopsOnLevelTy LoopsOnNextLevel; 496 497 for (const LoopVector &LV : *this) 498 for (Loop *L : LV) 499 if (!isRemovedLoop(L) && L->begin() != L->end()) 500 LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end())); 501 502 LoopsOnLevel = LoopsOnNextLevel; 503 RemovedLoops.clear(); 504 Depth++; 505 } 506 507 bool empty() const { return size() == 0; } 508 size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); } 509 unsigned getDepth() const { return Depth; } 510 511 iterator begin() { return LoopsOnLevel.begin(); } 512 iterator end() { return LoopsOnLevel.end(); } 513 const_iterator begin() const { return LoopsOnLevel.begin(); } 514 const_iterator end() const { return LoopsOnLevel.end(); } 515 516 private: 517 /// Set of loops that have been removed from the function and are no longer 518 /// valid. 519 SmallPtrSet<const Loop *, 8> RemovedLoops; 520 521 /// Depth of the current level, starting at 1 (outermost loops). 522 unsigned Depth; 523 524 /// Vector of loops at the current depth level that have the same parent loop 525 LoopsOnLevelTy LoopsOnLevel; 526 }; 527 528 #ifndef NDEBUG 529 static void printLoopVector(const LoopVector &LV) { 530 dbgs() << "****************************\n"; 531 for (auto L : LV) 532 printLoop(*L, dbgs()); 533 dbgs() << "****************************\n"; 534 } 535 #endif 536 537 struct LoopFuser { 538 private: 539 // Sets of control flow equivalent fusion candidates for a given nest level. 540 FusionCandidateCollection FusionCandidates; 541 542 LoopDepthTree LDT; 543 DomTreeUpdater DTU; 544 545 LoopInfo &LI; 546 DominatorTree &DT; 547 DependenceInfo &DI; 548 ScalarEvolution &SE; 549 PostDominatorTree &PDT; 550 OptimizationRemarkEmitter &ORE; 551 AssumptionCache &AC; 552 553 const TargetTransformInfo &TTI; 554 555 public: 556 LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI, 557 ScalarEvolution &SE, PostDominatorTree &PDT, 558 OptimizationRemarkEmitter &ORE, const DataLayout &DL, 559 AssumptionCache &AC, const TargetTransformInfo &TTI) 560 : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI), 561 DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {} 562 563 /// This is the main entry point for loop fusion. It will traverse the 564 /// specified function and collect candidate loops to fuse, starting at the 565 /// outermost nesting level and working inwards. 566 bool fuseLoops(Function &F) { 567 #ifndef NDEBUG 568 if (VerboseFusionDebugging) { 569 LI.print(dbgs()); 570 } 571 #endif 572 573 LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName() 574 << "\n"); 575 bool Changed = false; 576 577 while (!LDT.empty()) { 578 LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth " 579 << LDT.getDepth() << "\n";); 580 581 for (const LoopVector &LV : LDT) { 582 assert(LV.size() > 0 && "Empty loop set was build!"); 583 584 // Skip singleton loop sets as they do not offer fusion opportunities on 585 // this level. 586 if (LV.size() == 1) 587 continue; 588 #ifndef NDEBUG 589 if (VerboseFusionDebugging) { 590 LLVM_DEBUG({ 591 dbgs() << " Visit loop set (#" << LV.size() << "):\n"; 592 printLoopVector(LV); 593 }); 594 } 595 #endif 596 597 collectFusionCandidates(LV); 598 Changed |= fuseCandidates(); 599 } 600 601 // Finished analyzing candidates at this level. 602 // Descend to the next level and clear all of the candidates currently 603 // collected. Note that it will not be possible to fuse any of the 604 // existing candidates with new candidates because the new candidates will 605 // be at a different nest level and thus not be control flow equivalent 606 // with all of the candidates collected so far. 607 LLVM_DEBUG(dbgs() << "Descend one level!\n"); 608 LDT.descend(); 609 FusionCandidates.clear(); 610 } 611 612 if (Changed) 613 LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump();); 614 615 #ifndef NDEBUG 616 assert(DT.verify()); 617 assert(PDT.verify()); 618 LI.verify(DT); 619 SE.verify(); 620 #endif 621 622 LLVM_DEBUG(dbgs() << "Loop Fusion complete\n"); 623 return Changed; 624 } 625 626 private: 627 /// Determine if two fusion candidates are control flow equivalent. 628 /// 629 /// Two fusion candidates are control flow equivalent if when one executes, 630 /// the other is guaranteed to execute. This is determined using dominators 631 /// and post-dominators: if A dominates B and B post-dominates A then A and B 632 /// are control-flow equivalent. 633 bool isControlFlowEquivalent(const FusionCandidate &FC0, 634 const FusionCandidate &FC1) const { 635 assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders"); 636 637 return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(), 638 DT, PDT); 639 } 640 641 /// Iterate over all loops in the given loop set and identify the loops that 642 /// are eligible for fusion. Place all eligible fusion candidates into Control 643 /// Flow Equivalent sets, sorted by dominance. 644 void collectFusionCandidates(const LoopVector &LV) { 645 for (Loop *L : LV) { 646 TTI::PeelingPreferences PP = 647 gatherPeelingPreferences(L, SE, TTI, None, None); 648 FusionCandidate CurrCand(L, &DT, &PDT, ORE, PP); 649 if (!CurrCand.isEligibleForFusion(SE)) 650 continue; 651 652 // Go through each list in FusionCandidates and determine if L is control 653 // flow equivalent with the first loop in that list. If it is, append LV. 654 // If not, go to the next list. 655 // If no suitable list is found, start another list and add it to 656 // FusionCandidates. 657 bool FoundSet = false; 658 659 for (auto &CurrCandSet : FusionCandidates) { 660 if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) { 661 CurrCandSet.insert(CurrCand); 662 FoundSet = true; 663 #ifndef NDEBUG 664 if (VerboseFusionDebugging) 665 LLVM_DEBUG(dbgs() << "Adding " << CurrCand 666 << " to existing candidate set\n"); 667 #endif 668 break; 669 } 670 } 671 if (!FoundSet) { 672 // No set was found. Create a new set and add to FusionCandidates 673 #ifndef NDEBUG 674 if (VerboseFusionDebugging) 675 LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n"); 676 #endif 677 FusionCandidateSet NewCandSet; 678 NewCandSet.insert(CurrCand); 679 FusionCandidates.push_back(NewCandSet); 680 } 681 NumFusionCandidates++; 682 } 683 } 684 685 /// Determine if it is beneficial to fuse two loops. 686 /// 687 /// For now, this method simply returns true because we want to fuse as much 688 /// as possible (primarily to test the pass). This method will evolve, over 689 /// time, to add heuristics for profitability of fusion. 690 bool isBeneficialFusion(const FusionCandidate &FC0, 691 const FusionCandidate &FC1) { 692 return true; 693 } 694 695 /// Determine if two fusion candidates have the same trip count (i.e., they 696 /// execute the same number of iterations). 697 /// 698 /// This function will return a pair of values. The first is a boolean, 699 /// stating whether or not the two candidates are known at compile time to 700 /// have the same TripCount. The second is the difference in the two 701 /// TripCounts. This information can be used later to determine whether or not 702 /// peeling can be performed on either one of the candiates. 703 std::pair<bool, Optional<unsigned>> 704 haveIdenticalTripCounts(const FusionCandidate &FC0, 705 const FusionCandidate &FC1) const { 706 707 const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L); 708 if (isa<SCEVCouldNotCompute>(TripCount0)) { 709 UncomputableTripCount++; 710 LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!"); 711 return {false, None}; 712 } 713 714 const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L); 715 if (isa<SCEVCouldNotCompute>(TripCount1)) { 716 UncomputableTripCount++; 717 LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!"); 718 return {false, None}; 719 } 720 721 LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & " 722 << *TripCount1 << " are " 723 << (TripCount0 == TripCount1 ? "identical" : "different") 724 << "\n"); 725 726 if (TripCount0 == TripCount1) 727 return {true, 0}; 728 729 LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, " 730 "determining the difference between trip counts\n"); 731 732 // Currently only considering loops with a single exit point 733 // and a non-constant trip count. 734 const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L); 735 const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L); 736 737 // If any of the tripcounts are zero that means that loop(s) do not have 738 // a single exit or a constant tripcount. 739 if (TC0 == 0 || TC1 == 0) { 740 LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not " 741 "have a constant number of iterations. Peeling " 742 "is not benefical\n"); 743 return {false, None}; 744 } 745 746 Optional<unsigned> Difference = None; 747 int Diff = TC0 - TC1; 748 749 if (Diff > 0) 750 Difference = Diff; 751 else { 752 LLVM_DEBUG( 753 dbgs() << "Difference is less than 0. FC1 (second loop) has more " 754 "iterations than the first one. Currently not supported\n"); 755 } 756 757 LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference 758 << "\n"); 759 760 return {false, Difference}; 761 } 762 763 void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1, 764 unsigned PeelCount) { 765 assert(FC0.AbleToPeel && "Should be able to peel loop"); 766 767 LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount 768 << " iterations of the first loop. \n"); 769 770 FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, &DT, &AC, true); 771 if (FC0.Peeled) { 772 LLVM_DEBUG(dbgs() << "Done Peeling\n"); 773 774 #ifndef NDEBUG 775 auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1); 776 777 assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 && 778 "Loops should have identical trip counts after peeling"); 779 #endif 780 781 FC0.PP.PeelCount += PeelCount; 782 783 // Peeling does not update the PDT 784 PDT.recalculate(*FC0.Preheader->getParent()); 785 786 FC0.updateAfterPeeling(); 787 788 // In this case the iterations of the loop are constant, so the first 789 // loop will execute completely (will not jump from one of 790 // the peeled blocks to the second loop). Here we are updating the 791 // branch conditions of each of the peeled blocks, such that it will 792 // branch to its successor which is not the preheader of the second loop 793 // in the case of unguarded loops, or the succesors of the exit block of 794 // the first loop otherwise. Doing this update will ensure that the entry 795 // block of the first loop dominates the entry block of the second loop. 796 BasicBlock *BB = 797 FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader; 798 if (BB) { 799 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 800 SmallVector<Instruction *, 8> WorkList; 801 for (BasicBlock *Pred : predecessors(BB)) { 802 if (Pred != FC0.ExitBlock) { 803 WorkList.emplace_back(Pred->getTerminator()); 804 TreeUpdates.emplace_back( 805 DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB)); 806 } 807 } 808 // Cannot modify the predecessors inside the above loop as it will cause 809 // the iterators to be nullptrs, causing memory errors. 810 for (Instruction *CurrentBranch: WorkList) { 811 BasicBlock *Succ = CurrentBranch->getSuccessor(0); 812 if (Succ == BB) 813 Succ = CurrentBranch->getSuccessor(1); 814 ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ)); 815 } 816 817 DTU.applyUpdates(TreeUpdates); 818 DTU.flush(); 819 } 820 LLVM_DEBUG( 821 dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount 822 << " iterations from the first loop.\n" 823 "Both Loops have the same number of iterations now.\n"); 824 } 825 } 826 827 /// Walk each set of control flow equivalent fusion candidates and attempt to 828 /// fuse them. This does a single linear traversal of all candidates in the 829 /// set. The conditions for legal fusion are checked at this point. If a pair 830 /// of fusion candidates passes all legality checks, they are fused together 831 /// and a new fusion candidate is created and added to the FusionCandidateSet. 832 /// The original fusion candidates are then removed, as they are no longer 833 /// valid. 834 bool fuseCandidates() { 835 bool Fused = false; 836 LLVM_DEBUG(printFusionCandidates(FusionCandidates)); 837 for (auto &CandidateSet : FusionCandidates) { 838 if (CandidateSet.size() < 2) 839 continue; 840 841 LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n" 842 << CandidateSet << "\n"); 843 844 for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) { 845 assert(!LDT.isRemovedLoop(FC0->L) && 846 "Should not have removed loops in CandidateSet!"); 847 auto FC1 = FC0; 848 for (++FC1; FC1 != CandidateSet.end(); ++FC1) { 849 assert(!LDT.isRemovedLoop(FC1->L) && 850 "Should not have removed loops in CandidateSet!"); 851 852 LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump(); 853 dbgs() << " with\n"; FC1->dump(); dbgs() << "\n"); 854 855 FC0->verify(); 856 FC1->verify(); 857 858 // Check if the candidates have identical tripcounts (first value of 859 // pair), and if not check the difference in the tripcounts between 860 // the loops (second value of pair). The difference is not equal to 861 // None iff the loops iterate a constant number of times, and have a 862 // single exit. 863 std::pair<bool, Optional<unsigned>> IdenticalTripCountRes = 864 haveIdenticalTripCounts(*FC0, *FC1); 865 bool SameTripCount = IdenticalTripCountRes.first; 866 Optional<unsigned> TCDifference = IdenticalTripCountRes.second; 867 868 // Here we are checking that FC0 (the first loop) can be peeled, and 869 // both loops have different tripcounts. 870 if (FC0->AbleToPeel && !SameTripCount && TCDifference) { 871 if (*TCDifference > FusionPeelMaxCount) { 872 LLVM_DEBUG(dbgs() 873 << "Difference in loop trip counts: " << *TCDifference 874 << " is greater than maximum peel count specificed: " 875 << FusionPeelMaxCount << "\n"); 876 } else { 877 // Dependent on peeling being performed on the first loop, and 878 // assuming all other conditions for fusion return true. 879 SameTripCount = true; 880 } 881 } 882 883 if (!SameTripCount) { 884 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip " 885 "counts. Not fusing.\n"); 886 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 887 NonEqualTripCount); 888 continue; 889 } 890 891 if (!isAdjacent(*FC0, *FC1)) { 892 LLVM_DEBUG(dbgs() 893 << "Fusion candidates are not adjacent. Not fusing.\n"); 894 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent); 895 continue; 896 } 897 898 if (!FC0->GuardBranch && FC1->GuardBranch) { 899 LLVM_DEBUG(dbgs() << "The second candidate is guarded while the " 900 "first one is not. Not fusing.\n"); 901 reportLoopFusion<OptimizationRemarkMissed>( 902 *FC0, *FC1, OnlySecondCandidateIsGuarded); 903 continue; 904 } 905 906 // Ensure that FC0 and FC1 have identical guards. 907 // If one (or both) are not guarded, this check is not necessary. 908 if (FC0->GuardBranch && FC1->GuardBranch && 909 !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) { 910 LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical " 911 "guards. Not Fusing.\n"); 912 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 913 NonIdenticalGuards); 914 continue; 915 } 916 917 if (!isSafeToMoveBefore(*FC1->Preheader, 918 *FC0->Preheader->getTerminator(), DT, &PDT, 919 &DI)) { 920 LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe " 921 "instructions in preheader. Not fusing.\n"); 922 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 923 NonEmptyPreheader); 924 continue; 925 } 926 927 if (FC0->GuardBranch) { 928 assert(FC1->GuardBranch && "Expecting valid FC1 guard branch"); 929 930 if (!isSafeToMoveBefore(*FC0->ExitBlock, 931 *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT, 932 &PDT, &DI)) { 933 LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe " 934 "instructions in exit block. Not fusing.\n"); 935 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 936 NonEmptyExitBlock); 937 continue; 938 } 939 940 if (!isSafeToMoveBefore( 941 *FC1->GuardBranch->getParent(), 942 *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT, 943 &DI)) { 944 LLVM_DEBUG(dbgs() 945 << "Fusion candidate contains unsafe " 946 "instructions in guard block. Not fusing.\n"); 947 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 948 NonEmptyGuardBlock); 949 continue; 950 } 951 } 952 953 // Check the dependencies across the loops and do not fuse if it would 954 // violate them. 955 if (!dependencesAllowFusion(*FC0, *FC1)) { 956 LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n"); 957 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 958 InvalidDependencies); 959 continue; 960 } 961 962 bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1); 963 LLVM_DEBUG(dbgs() 964 << "\tFusion appears to be " 965 << (BeneficialToFuse ? "" : "un") << "profitable!\n"); 966 if (!BeneficialToFuse) { 967 reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, 968 FusionNotBeneficial); 969 continue; 970 } 971 // All analysis has completed and has determined that fusion is legal 972 // and profitable. At this point, start transforming the code and 973 // perform fusion. 974 975 LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and " 976 << *FC1 << "\n"); 977 978 FusionCandidate FC0Copy = *FC0; 979 // Peel the loop after determining that fusion is legal. The Loops 980 // will still be safe to fuse after the peeling is performed. 981 bool Peel = TCDifference && *TCDifference > 0; 982 if (Peel) 983 peelFusionCandidate(FC0Copy, *FC1, *TCDifference); 984 985 // Report fusion to the Optimization Remarks. 986 // Note this needs to be done *before* performFusion because 987 // performFusion will change the original loops, making it not 988 // possible to identify them after fusion is complete. 989 reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1, 990 FuseCounter); 991 992 FusionCandidate FusedCand( 993 performFusion((Peel ? FC0Copy : *FC0), *FC1), &DT, &PDT, ORE, 994 FC0Copy.PP); 995 FusedCand.verify(); 996 assert(FusedCand.isEligibleForFusion(SE) && 997 "Fused candidate should be eligible for fusion!"); 998 999 // Notify the loop-depth-tree that these loops are not valid objects 1000 LDT.removeLoop(FC1->L); 1001 1002 CandidateSet.erase(FC0); 1003 CandidateSet.erase(FC1); 1004 1005 auto InsertPos = CandidateSet.insert(FusedCand); 1006 1007 assert(InsertPos.second && 1008 "Unable to insert TargetCandidate in CandidateSet!"); 1009 1010 // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations 1011 // of the FC1 loop will attempt to fuse the new (fused) loop with the 1012 // remaining candidates in the current candidate set. 1013 FC0 = FC1 = InsertPos.first; 1014 1015 LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet 1016 << "\n"); 1017 1018 Fused = true; 1019 } 1020 } 1021 } 1022 return Fused; 1023 } 1024 1025 /// Rewrite all additive recurrences in a SCEV to use a new loop. 1026 class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> { 1027 public: 1028 AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL, 1029 bool UseMax = true) 1030 : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL), 1031 NewL(NewL) {} 1032 1033 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 1034 const Loop *ExprL = Expr->getLoop(); 1035 SmallVector<const SCEV *, 2> Operands; 1036 if (ExprL == &OldL) { 1037 Operands.append(Expr->op_begin(), Expr->op_end()); 1038 return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags()); 1039 } 1040 1041 if (OldL.contains(ExprL)) { 1042 bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE)); 1043 if (!UseMax || !Pos || !Expr->isAffine()) { 1044 Valid = false; 1045 return Expr; 1046 } 1047 return visit(Expr->getStart()); 1048 } 1049 1050 for (const SCEV *Op : Expr->operands()) 1051 Operands.push_back(visit(Op)); 1052 return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags()); 1053 } 1054 1055 bool wasValidSCEV() const { return Valid; } 1056 1057 private: 1058 bool Valid, UseMax; 1059 const Loop &OldL, &NewL; 1060 }; 1061 1062 /// Return false if the access functions of \p I0 and \p I1 could cause 1063 /// a negative dependence. 1064 bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0, 1065 Instruction &I1, bool EqualIsInvalid) { 1066 Value *Ptr0 = getLoadStorePointerOperand(&I0); 1067 Value *Ptr1 = getLoadStorePointerOperand(&I1); 1068 if (!Ptr0 || !Ptr1) 1069 return false; 1070 1071 const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0); 1072 const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1); 1073 #ifndef NDEBUG 1074 if (VerboseFusionDebugging) 1075 LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs " 1076 << *SCEVPtr1 << "\n"); 1077 #endif 1078 AddRecLoopReplacer Rewriter(SE, L0, L1); 1079 SCEVPtr0 = Rewriter.visit(SCEVPtr0); 1080 #ifndef NDEBUG 1081 if (VerboseFusionDebugging) 1082 LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0 1083 << " [Valid: " << Rewriter.wasValidSCEV() << "]\n"); 1084 #endif 1085 if (!Rewriter.wasValidSCEV()) 1086 return false; 1087 1088 // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by 1089 // L0) and the other is not. We could check if it is monotone and test 1090 // the beginning and end value instead. 1091 1092 BasicBlock *L0Header = L0.getHeader(); 1093 auto HasNonLinearDominanceRelation = [&](const SCEV *S) { 1094 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S); 1095 if (!AddRec) 1096 return false; 1097 return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) && 1098 !DT.dominates(AddRec->getLoop()->getHeader(), L0Header); 1099 }; 1100 if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation)) 1101 return false; 1102 1103 ICmpInst::Predicate Pred = 1104 EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE; 1105 bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1); 1106 #ifndef NDEBUG 1107 if (VerboseFusionDebugging) 1108 LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0 1109 << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1 1110 << "\n"); 1111 #endif 1112 return IsAlwaysGE; 1113 } 1114 1115 /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in 1116 /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses 1117 /// specified by @p DepChoice are used to determine this. 1118 bool dependencesAllowFusion(const FusionCandidate &FC0, 1119 const FusionCandidate &FC1, Instruction &I0, 1120 Instruction &I1, bool AnyDep, 1121 FusionDependenceAnalysisChoice DepChoice) { 1122 #ifndef NDEBUG 1123 if (VerboseFusionDebugging) { 1124 LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : " 1125 << DepChoice << "\n"); 1126 } 1127 #endif 1128 switch (DepChoice) { 1129 case FUSION_DEPENDENCE_ANALYSIS_SCEV: 1130 return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep); 1131 case FUSION_DEPENDENCE_ANALYSIS_DA: { 1132 auto DepResult = DI.depends(&I0, &I1, true); 1133 if (!DepResult) 1134 return true; 1135 #ifndef NDEBUG 1136 if (VerboseFusionDebugging) { 1137 LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs()); 1138 dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: " 1139 << (DepResult->isOrdered() ? "true" : "false") 1140 << "]\n"); 1141 LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels() 1142 << "\n"); 1143 } 1144 #endif 1145 1146 if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor()) 1147 LLVM_DEBUG( 1148 dbgs() << "TODO: Implement pred/succ dependence handling!\n"); 1149 1150 // TODO: Can we actually use the dependence info analysis here? 1151 return false; 1152 } 1153 1154 case FUSION_DEPENDENCE_ANALYSIS_ALL: 1155 return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 1156 FUSION_DEPENDENCE_ANALYSIS_SCEV) || 1157 dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep, 1158 FUSION_DEPENDENCE_ANALYSIS_DA); 1159 } 1160 1161 llvm_unreachable("Unknown fusion dependence analysis choice!"); 1162 } 1163 1164 /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused. 1165 bool dependencesAllowFusion(const FusionCandidate &FC0, 1166 const FusionCandidate &FC1) { 1167 LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1 1168 << "\n"); 1169 assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth()); 1170 assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock())); 1171 1172 for (Instruction *WriteL0 : FC0.MemWrites) { 1173 for (Instruction *WriteL1 : FC1.MemWrites) 1174 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 1175 /* AnyDep */ false, 1176 FusionDependenceAnalysis)) { 1177 InvalidDependencies++; 1178 return false; 1179 } 1180 for (Instruction *ReadL1 : FC1.MemReads) 1181 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1, 1182 /* AnyDep */ false, 1183 FusionDependenceAnalysis)) { 1184 InvalidDependencies++; 1185 return false; 1186 } 1187 } 1188 1189 for (Instruction *WriteL1 : FC1.MemWrites) { 1190 for (Instruction *WriteL0 : FC0.MemWrites) 1191 if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1, 1192 /* AnyDep */ false, 1193 FusionDependenceAnalysis)) { 1194 InvalidDependencies++; 1195 return false; 1196 } 1197 for (Instruction *ReadL0 : FC0.MemReads) 1198 if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1, 1199 /* AnyDep */ false, 1200 FusionDependenceAnalysis)) { 1201 InvalidDependencies++; 1202 return false; 1203 } 1204 } 1205 1206 // Walk through all uses in FC1. For each use, find the reaching def. If the 1207 // def is located in FC0 then it is is not safe to fuse. 1208 for (BasicBlock *BB : FC1.L->blocks()) 1209 for (Instruction &I : *BB) 1210 for (auto &Op : I.operands()) 1211 if (Instruction *Def = dyn_cast<Instruction>(Op)) 1212 if (FC0.L->contains(Def->getParent())) { 1213 InvalidDependencies++; 1214 return false; 1215 } 1216 1217 return true; 1218 } 1219 1220 /// Determine if two fusion candidates are adjacent in the CFG. 1221 /// 1222 /// This method will determine if there are additional basic blocks in the CFG 1223 /// between the exit of \p FC0 and the entry of \p FC1. 1224 /// If the two candidates are guarded loops, then it checks whether the 1225 /// non-loop successor of the \p FC0 guard branch is the entry block of \p 1226 /// FC1. If not, then the loops are not adjacent. If the two candidates are 1227 /// not guarded loops, then it checks whether the exit block of \p FC0 is the 1228 /// preheader of \p FC1. 1229 bool isAdjacent(const FusionCandidate &FC0, 1230 const FusionCandidate &FC1) const { 1231 // If the successor of the guard branch is FC1, then the loops are adjacent 1232 if (FC0.GuardBranch) 1233 return FC0.getNonLoopBlock() == FC1.getEntryBlock(); 1234 else 1235 return FC0.ExitBlock == FC1.getEntryBlock(); 1236 } 1237 1238 /// Determine if two fusion candidates have identical guards 1239 /// 1240 /// This method will determine if two fusion candidates have the same guards. 1241 /// The guards are considered the same if: 1242 /// 1. The instructions to compute the condition used in the compare are 1243 /// identical. 1244 /// 2. The successors of the guard have the same flow into/around the loop. 1245 /// If the compare instructions are identical, then the first successor of the 1246 /// guard must go to the same place (either the preheader of the loop or the 1247 /// NonLoopBlock). In other words, the the first successor of both loops must 1248 /// both go into the loop (i.e., the preheader) or go around the loop (i.e., 1249 /// the NonLoopBlock). The same must be true for the second successor. 1250 bool haveIdenticalGuards(const FusionCandidate &FC0, 1251 const FusionCandidate &FC1) const { 1252 assert(FC0.GuardBranch && FC1.GuardBranch && 1253 "Expecting FC0 and FC1 to be guarded loops."); 1254 1255 if (auto FC0CmpInst = 1256 dyn_cast<Instruction>(FC0.GuardBranch->getCondition())) 1257 if (auto FC1CmpInst = 1258 dyn_cast<Instruction>(FC1.GuardBranch->getCondition())) 1259 if (!FC0CmpInst->isIdenticalTo(FC1CmpInst)) 1260 return false; 1261 1262 // The compare instructions are identical. 1263 // Now make sure the successor of the guards have the same flow into/around 1264 // the loop 1265 if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader) 1266 return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader); 1267 else 1268 return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader); 1269 } 1270 1271 /// Modify the latch branch of FC to be unconditional since successors of the 1272 /// branch are the same. 1273 void simplifyLatchBranch(const FusionCandidate &FC) const { 1274 BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator()); 1275 if (FCLatchBranch) { 1276 assert(FCLatchBranch->isConditional() && 1277 FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) && 1278 "Expecting the two successors of FCLatchBranch to be the same"); 1279 BranchInst *NewBranch = 1280 BranchInst::Create(FCLatchBranch->getSuccessor(0)); 1281 ReplaceInstWithInst(FCLatchBranch, NewBranch); 1282 } 1283 } 1284 1285 /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique 1286 /// successor, then merge FC0.Latch with its unique successor. 1287 void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1288 moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI); 1289 if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) { 1290 MergeBlockIntoPredecessor(Succ, &DTU, &LI); 1291 DTU.flush(); 1292 } 1293 } 1294 1295 /// Fuse two fusion candidates, creating a new fused loop. 1296 /// 1297 /// This method contains the mechanics of fusing two loops, represented by \p 1298 /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1 1299 /// postdominates \p FC0 (making them control flow equivalent). It also 1300 /// assumes that the other conditions for fusion have been met: adjacent, 1301 /// identical trip counts, and no negative distance dependencies exist that 1302 /// would prevent fusion. Thus, there is no checking for these conditions in 1303 /// this method. 1304 /// 1305 /// Fusion is performed by rewiring the CFG to update successor blocks of the 1306 /// components of tho loop. Specifically, the following changes are done: 1307 /// 1308 /// 1. The preheader of \p FC1 is removed as it is no longer necessary 1309 /// (because it is currently only a single statement block). 1310 /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1. 1311 /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0. 1312 /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0. 1313 /// 1314 /// All of these modifications are done with dominator tree updates, thus 1315 /// keeping the dominator (and post dominator) information up-to-date. 1316 /// 1317 /// This can be improved in the future by actually merging blocks during 1318 /// fusion. For example, the preheader of \p FC1 can be merged with the 1319 /// preheader of \p FC0. This would allow loops with more than a single 1320 /// statement in the preheader to be fused. Similarly, the latch blocks of the 1321 /// two loops could also be fused into a single block. This will require 1322 /// analysis to prove it is safe to move the contents of the block past 1323 /// existing code, which currently has not been implemented. 1324 Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) { 1325 assert(FC0.isValid() && FC1.isValid() && 1326 "Expecting valid fusion candidates"); 1327 1328 LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump(); 1329 dbgs() << "Fusion Candidate 1: \n"; FC1.dump();); 1330 1331 // Move instructions from the preheader of FC1 to the end of the preheader 1332 // of FC0. 1333 moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI); 1334 1335 // Fusing guarded loops is handled slightly differently than non-guarded 1336 // loops and has been broken out into a separate method instead of trying to 1337 // intersperse the logic within a single method. 1338 if (FC0.GuardBranch) 1339 return fuseGuardedLoops(FC0, FC1); 1340 1341 assert(FC1.Preheader == 1342 (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock)); 1343 assert(FC1.Preheader->size() == 1 && 1344 FC1.Preheader->getSingleSuccessor() == FC1.Header); 1345 1346 // Remember the phi nodes originally in the header of FC0 in order to rewire 1347 // them later. However, this is only necessary if the new loop carried 1348 // values might not dominate the exiting branch. While we do not generally 1349 // test if this is the case but simply insert intermediate phi nodes, we 1350 // need to make sure these intermediate phi nodes have different 1351 // predecessors. To this end, we filter the special case where the exiting 1352 // block is the latch block of the first loop. Nothing needs to be done 1353 // anyway as all loop carried values dominate the latch and thereby also the 1354 // exiting branch. 1355 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1356 if (FC0.ExitingBlock != FC0.Latch) 1357 for (PHINode &PHI : FC0.Header->phis()) 1358 OriginalFC0PHIs.push_back(&PHI); 1359 1360 // Replace incoming blocks for header PHIs first. 1361 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1362 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1363 1364 // Then modify the control flow and update DT and PDT. 1365 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1366 1367 // The old exiting block of the first loop (FC0) has to jump to the header 1368 // of the second as we need to execute the code in the second header block 1369 // regardless of the trip count. That is, if the trip count is 0, so the 1370 // back edge is never taken, we still have to execute both loop headers, 1371 // especially (but not only!) if the second is a do-while style loop. 1372 // However, doing so might invalidate the phi nodes of the first loop as 1373 // the new values do only need to dominate their latch and not the exiting 1374 // predicate. To remedy this potential problem we always introduce phi 1375 // nodes in the header of the second loop later that select the loop carried 1376 // value, if the second header was reached through an old latch of the 1377 // first, or undef otherwise. This is sound as exiting the first implies the 1378 // second will exit too, __without__ taking the back-edge. [Their 1379 // trip-counts are equal after all. 1380 // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go 1381 // to FC1.Header? I think this is basically what the three sequences are 1382 // trying to accomplish; however, doing this directly in the CFG may mean 1383 // the DT/PDT becomes invalid 1384 if (!FC0.Peeled) { 1385 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader, 1386 FC1.Header); 1387 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1388 DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader)); 1389 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1390 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1391 } else { 1392 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1393 DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader)); 1394 1395 // Remove the ExitBlock of the first Loop (also not needed) 1396 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock, 1397 FC1.Header); 1398 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1399 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock)); 1400 FC0.ExitBlock->getTerminator()->eraseFromParent(); 1401 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1402 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1403 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock); 1404 } 1405 1406 // The pre-header of L1 is not necessary anymore. 1407 assert(pred_empty(FC1.Preheader)); 1408 FC1.Preheader->getTerminator()->eraseFromParent(); 1409 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1410 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1411 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1412 1413 // Moves the phi nodes from the second to the first loops header block. 1414 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1415 if (SE.isSCEVable(PHI->getType())) 1416 SE.forgetValue(PHI); 1417 if (PHI->hasNUsesOrMore(1)) 1418 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1419 else 1420 PHI->eraseFromParent(); 1421 } 1422 1423 // Introduce new phi nodes in the second loop header to ensure 1424 // exiting the first and jumping to the header of the second does not break 1425 // the SSA property of the phis originally in the first loop. See also the 1426 // comment above. 1427 Instruction *L1HeaderIP = &FC1.Header->front(); 1428 for (PHINode *LCPHI : OriginalFC0PHIs) { 1429 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1430 assert(L1LatchBBIdx >= 0 && 1431 "Expected loop carried value to be rewired at this point!"); 1432 1433 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1434 1435 PHINode *L1HeaderPHI = PHINode::Create( 1436 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1437 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1438 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1439 FC0.ExitingBlock); 1440 1441 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1442 } 1443 1444 // Replace latch terminator destinations. 1445 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1446 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1447 1448 // Modify the latch branch of FC0 to be unconditional as both successors of 1449 // the branch are the same. 1450 simplifyLatchBranch(FC0); 1451 1452 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1453 // performed the updates above. 1454 if (FC0.Latch != FC0.ExitingBlock) 1455 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1456 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1457 1458 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1459 FC0.Latch, FC0.Header)); 1460 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1461 FC1.Latch, FC0.Header)); 1462 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1463 FC1.Latch, FC1.Header)); 1464 1465 // Update DT/PDT 1466 DTU.applyUpdates(TreeUpdates); 1467 1468 LI.removeBlock(FC1.Preheader); 1469 DTU.deleteBB(FC1.Preheader); 1470 if (FC0.Peeled) { 1471 LI.removeBlock(FC0.ExitBlock); 1472 DTU.deleteBB(FC0.ExitBlock); 1473 } 1474 1475 DTU.flush(); 1476 1477 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1478 // and rebuild the information in subsequent passes of fusion? 1479 // Note: Need to forget the loops before merging the loop latches, as 1480 // mergeLatch may remove the only block in FC1. 1481 SE.forgetLoop(FC1.L); 1482 SE.forgetLoop(FC0.L); 1483 1484 // Move instructions from FC0.Latch to FC1.Latch. 1485 // Note: mergeLatch requires an updated DT. 1486 mergeLatch(FC0, FC1); 1487 1488 // Merge the loops. 1489 SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks()); 1490 for (BasicBlock *BB : Blocks) { 1491 FC0.L->addBlockEntry(BB); 1492 FC1.L->removeBlockFromLoop(BB); 1493 if (LI.getLoopFor(BB) != FC1.L) 1494 continue; 1495 LI.changeLoopFor(BB, FC0.L); 1496 } 1497 while (!FC1.L->isInnermost()) { 1498 const auto &ChildLoopIt = FC1.L->begin(); 1499 Loop *ChildLoop = *ChildLoopIt; 1500 FC1.L->removeChildLoop(ChildLoopIt); 1501 FC0.L->addChildLoop(ChildLoop); 1502 } 1503 1504 // Delete the now empty loop L1. 1505 LI.erase(FC1.L); 1506 1507 #ifndef NDEBUG 1508 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1509 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1510 assert(PDT.verify()); 1511 LI.verify(DT); 1512 SE.verify(); 1513 #endif 1514 1515 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1516 1517 return FC0.L; 1518 } 1519 1520 /// Report details on loop fusion opportunities. 1521 /// 1522 /// This template function can be used to report both successful and missed 1523 /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should 1524 /// be one of: 1525 /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful 1526 /// given two valid fusion candidates. 1527 /// - OptimizationRemark to report successful fusion of two fusion 1528 /// candidates. 1529 /// The remarks will be printed using the form: 1530 /// <path/filename>:<line number>:<column number>: [<function name>]: 1531 /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description> 1532 template <typename RemarkKind> 1533 void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1, 1534 llvm::Statistic &Stat) { 1535 assert(FC0.Preheader && FC1.Preheader && 1536 "Expecting valid fusion candidates"); 1537 using namespace ore; 1538 #if LLVM_ENABLE_STATS 1539 ++Stat; 1540 ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(), 1541 FC0.Preheader) 1542 << "[" << FC0.Preheader->getParent()->getName() 1543 << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName())) 1544 << " and " << NV("Cand2", StringRef(FC1.Preheader->getName())) 1545 << ": " << Stat.getDesc()); 1546 #endif 1547 } 1548 1549 /// Fuse two guarded fusion candidates, creating a new fused loop. 1550 /// 1551 /// Fusing guarded loops is handled much the same way as fusing non-guarded 1552 /// loops. The rewiring of the CFG is slightly different though, because of 1553 /// the presence of the guards around the loops and the exit blocks after the 1554 /// loop body. As such, the new loop is rewired as follows: 1555 /// 1. Keep the guard branch from FC0 and use the non-loop block target 1556 /// from the FC1 guard branch. 1557 /// 2. Remove the exit block from FC0 (this exit block should be empty 1558 /// right now). 1559 /// 3. Remove the guard branch for FC1 1560 /// 4. Remove the preheader for FC1. 1561 /// The exit block successor for the latch of FC0 is updated to be the header 1562 /// of FC1 and the non-exit block successor of the latch of FC1 is updated to 1563 /// be the header of FC0, thus creating the fused loop. 1564 Loop *fuseGuardedLoops(const FusionCandidate &FC0, 1565 const FusionCandidate &FC1) { 1566 assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops"); 1567 1568 BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent(); 1569 BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent(); 1570 BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock(); 1571 BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock(); 1572 BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor(); 1573 1574 // Move instructions from the exit block of FC0 to the beginning of the exit 1575 // block of FC1, in the case that the FC0 loop has not been peeled. In the 1576 // case that FC0 loop is peeled, then move the instructions of the successor 1577 // of the FC0 Exit block to the beginning of the exit block of FC1. 1578 moveInstructionsToTheBeginning( 1579 (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock, 1580 DT, PDT, DI); 1581 1582 // Move instructions from the guard block of FC1 to the end of the guard 1583 // block of FC0. 1584 moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI); 1585 1586 assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent"); 1587 1588 SmallVector<DominatorTree::UpdateType, 8> TreeUpdates; 1589 1590 //////////////////////////////////////////////////////////////////////////// 1591 // Update the Loop Guard 1592 //////////////////////////////////////////////////////////////////////////// 1593 // The guard for FC0 is updated to guard both FC0 and FC1. This is done by 1594 // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1. 1595 // Thus, one path from the guard goes to the preheader for FC0 (and thus 1596 // executes the new fused loop) and the other path goes to the NonLoopBlock 1597 // for FC1 (where FC1 guard would have gone if FC1 was not executed). 1598 FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock); 1599 FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock); 1600 1601 BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock; 1602 BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header); 1603 1604 // The guard of FC1 is not necessary anymore. 1605 FC1.GuardBranch->eraseFromParent(); 1606 new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock); 1607 1608 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1609 DominatorTree::Delete, FC1GuardBlock, FC1.Preheader)); 1610 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1611 DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock)); 1612 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1613 DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock)); 1614 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1615 DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock)); 1616 1617 if (FC0.Peeled) { 1618 // Remove the Block after the ExitBlock of FC0 1619 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1620 DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock)); 1621 FC0ExitBlockSuccessor->getTerminator()->eraseFromParent(); 1622 new UnreachableInst(FC0ExitBlockSuccessor->getContext(), 1623 FC0ExitBlockSuccessor); 1624 } 1625 1626 assert(pred_empty(FC1GuardBlock) && 1627 "Expecting guard block to have no predecessors"); 1628 assert(succ_empty(FC1GuardBlock) && 1629 "Expecting guard block to have no successors"); 1630 1631 // Remember the phi nodes originally in the header of FC0 in order to rewire 1632 // them later. However, this is only necessary if the new loop carried 1633 // values might not dominate the exiting branch. While we do not generally 1634 // test if this is the case but simply insert intermediate phi nodes, we 1635 // need to make sure these intermediate phi nodes have different 1636 // predecessors. To this end, we filter the special case where the exiting 1637 // block is the latch block of the first loop. Nothing needs to be done 1638 // anyway as all loop carried values dominate the latch and thereby also the 1639 // exiting branch. 1640 // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch 1641 // (because the loops are rotated. Thus, nothing will ever be added to 1642 // OriginalFC0PHIs. 1643 SmallVector<PHINode *, 8> OriginalFC0PHIs; 1644 if (FC0.ExitingBlock != FC0.Latch) 1645 for (PHINode &PHI : FC0.Header->phis()) 1646 OriginalFC0PHIs.push_back(&PHI); 1647 1648 assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!"); 1649 1650 // Replace incoming blocks for header PHIs first. 1651 FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader); 1652 FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch); 1653 1654 // The old exiting block of the first loop (FC0) has to jump to the header 1655 // of the second as we need to execute the code in the second header block 1656 // regardless of the trip count. That is, if the trip count is 0, so the 1657 // back edge is never taken, we still have to execute both loop headers, 1658 // especially (but not only!) if the second is a do-while style loop. 1659 // However, doing so might invalidate the phi nodes of the first loop as 1660 // the new values do only need to dominate their latch and not the exiting 1661 // predicate. To remedy this potential problem we always introduce phi 1662 // nodes in the header of the second loop later that select the loop carried 1663 // value, if the second header was reached through an old latch of the 1664 // first, or undef otherwise. This is sound as exiting the first implies the 1665 // second will exit too, __without__ taking the back-edge (their 1666 // trip-counts are equal after all). 1667 FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock, 1668 FC1.Header); 1669 1670 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1671 DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock)); 1672 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1673 DominatorTree::Insert, FC0.ExitingBlock, FC1.Header)); 1674 1675 // Remove FC0 Exit Block 1676 // The exit block for FC0 is no longer needed since control will flow 1677 // directly to the header of FC1. Since it is an empty block, it can be 1678 // removed at this point. 1679 // TODO: In the future, we can handle non-empty exit blocks my merging any 1680 // instructions from FC0 exit block into FC1 exit block prior to removing 1681 // the block. 1682 assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty"); 1683 FC0.ExitBlock->getTerminator()->eraseFromParent(); 1684 new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock); 1685 1686 // Remove FC1 Preheader 1687 // The pre-header of L1 is not necessary anymore. 1688 assert(pred_empty(FC1.Preheader)); 1689 FC1.Preheader->getTerminator()->eraseFromParent(); 1690 new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader); 1691 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1692 DominatorTree::Delete, FC1.Preheader, FC1.Header)); 1693 1694 // Moves the phi nodes from the second to the first loops header block. 1695 while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) { 1696 if (SE.isSCEVable(PHI->getType())) 1697 SE.forgetValue(PHI); 1698 if (PHI->hasNUsesOrMore(1)) 1699 PHI->moveBefore(&*FC0.Header->getFirstInsertionPt()); 1700 else 1701 PHI->eraseFromParent(); 1702 } 1703 1704 // Introduce new phi nodes in the second loop header to ensure 1705 // exiting the first and jumping to the header of the second does not break 1706 // the SSA property of the phis originally in the first loop. See also the 1707 // comment above. 1708 Instruction *L1HeaderIP = &FC1.Header->front(); 1709 for (PHINode *LCPHI : OriginalFC0PHIs) { 1710 int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch); 1711 assert(L1LatchBBIdx >= 0 && 1712 "Expected loop carried value to be rewired at this point!"); 1713 1714 Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx); 1715 1716 PHINode *L1HeaderPHI = PHINode::Create( 1717 LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP); 1718 L1HeaderPHI->addIncoming(LCV, FC0.Latch); 1719 L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()), 1720 FC0.ExitingBlock); 1721 1722 LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI); 1723 } 1724 1725 // Update the latches 1726 1727 // Replace latch terminator destinations. 1728 FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header); 1729 FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header); 1730 1731 // Modify the latch branch of FC0 to be unconditional as both successors of 1732 // the branch are the same. 1733 simplifyLatchBranch(FC0); 1734 1735 // If FC0.Latch and FC0.ExitingBlock are the same then we have already 1736 // performed the updates above. 1737 if (FC0.Latch != FC0.ExitingBlock) 1738 TreeUpdates.emplace_back(DominatorTree::UpdateType( 1739 DominatorTree::Insert, FC0.Latch, FC1.Header)); 1740 1741 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1742 FC0.Latch, FC0.Header)); 1743 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert, 1744 FC1.Latch, FC0.Header)); 1745 TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete, 1746 FC1.Latch, FC1.Header)); 1747 1748 // All done 1749 // Apply the updates to the Dominator Tree and cleanup. 1750 1751 assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!"); 1752 assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!"); 1753 1754 // Update DT/PDT 1755 DTU.applyUpdates(TreeUpdates); 1756 1757 LI.removeBlock(FC1GuardBlock); 1758 LI.removeBlock(FC1.Preheader); 1759 LI.removeBlock(FC0.ExitBlock); 1760 if (FC0.Peeled) { 1761 LI.removeBlock(FC0ExitBlockSuccessor); 1762 DTU.deleteBB(FC0ExitBlockSuccessor); 1763 } 1764 DTU.deleteBB(FC1GuardBlock); 1765 DTU.deleteBB(FC1.Preheader); 1766 DTU.deleteBB(FC0.ExitBlock); 1767 DTU.flush(); 1768 1769 // Is there a way to keep SE up-to-date so we don't need to forget the loops 1770 // and rebuild the information in subsequent passes of fusion? 1771 // Note: Need to forget the loops before merging the loop latches, as 1772 // mergeLatch may remove the only block in FC1. 1773 SE.forgetLoop(FC1.L); 1774 SE.forgetLoop(FC0.L); 1775 1776 // Move instructions from FC0.Latch to FC1.Latch. 1777 // Note: mergeLatch requires an updated DT. 1778 mergeLatch(FC0, FC1); 1779 1780 // Merge the loops. 1781 SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks()); 1782 for (BasicBlock *BB : Blocks) { 1783 FC0.L->addBlockEntry(BB); 1784 FC1.L->removeBlockFromLoop(BB); 1785 if (LI.getLoopFor(BB) != FC1.L) 1786 continue; 1787 LI.changeLoopFor(BB, FC0.L); 1788 } 1789 while (!FC1.L->isInnermost()) { 1790 const auto &ChildLoopIt = FC1.L->begin(); 1791 Loop *ChildLoop = *ChildLoopIt; 1792 FC1.L->removeChildLoop(ChildLoopIt); 1793 FC0.L->addChildLoop(ChildLoop); 1794 } 1795 1796 // Delete the now empty loop L1. 1797 LI.erase(FC1.L); 1798 1799 #ifndef NDEBUG 1800 assert(!verifyFunction(*FC0.Header->getParent(), &errs())); 1801 assert(DT.verify(DominatorTree::VerificationLevel::Fast)); 1802 assert(PDT.verify()); 1803 LI.verify(DT); 1804 SE.verify(); 1805 #endif 1806 1807 LLVM_DEBUG(dbgs() << "Fusion done:\n"); 1808 1809 return FC0.L; 1810 } 1811 }; 1812 1813 struct LoopFuseLegacy : public FunctionPass { 1814 1815 static char ID; 1816 1817 LoopFuseLegacy() : FunctionPass(ID) { 1818 initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry()); 1819 } 1820 1821 void getAnalysisUsage(AnalysisUsage &AU) const override { 1822 AU.addRequiredID(LoopSimplifyID); 1823 AU.addRequired<ScalarEvolutionWrapperPass>(); 1824 AU.addRequired<LoopInfoWrapperPass>(); 1825 AU.addRequired<DominatorTreeWrapperPass>(); 1826 AU.addRequired<PostDominatorTreeWrapperPass>(); 1827 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1828 AU.addRequired<DependenceAnalysisWrapperPass>(); 1829 AU.addRequired<AssumptionCacheTracker>(); 1830 AU.addRequired<TargetTransformInfoWrapperPass>(); 1831 1832 AU.addPreserved<ScalarEvolutionWrapperPass>(); 1833 AU.addPreserved<LoopInfoWrapperPass>(); 1834 AU.addPreserved<DominatorTreeWrapperPass>(); 1835 AU.addPreserved<PostDominatorTreeWrapperPass>(); 1836 } 1837 1838 bool runOnFunction(Function &F) override { 1839 if (skipFunction(F)) 1840 return false; 1841 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1842 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1843 auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI(); 1844 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1845 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1846 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1847 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1848 const TargetTransformInfo &TTI = 1849 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1850 const DataLayout &DL = F.getParent()->getDataLayout(); 1851 1852 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI); 1853 return LF.fuseLoops(F); 1854 } 1855 }; 1856 } // namespace 1857 1858 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) { 1859 auto &LI = AM.getResult<LoopAnalysis>(F); 1860 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1861 auto &DI = AM.getResult<DependenceAnalysis>(F); 1862 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 1863 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F); 1864 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1865 auto &AC = AM.getResult<AssumptionAnalysis>(F); 1866 const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 1867 const DataLayout &DL = F.getParent()->getDataLayout(); 1868 1869 LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI); 1870 bool Changed = LF.fuseLoops(F); 1871 if (!Changed) 1872 return PreservedAnalyses::all(); 1873 1874 PreservedAnalyses PA; 1875 PA.preserve<DominatorTreeAnalysis>(); 1876 PA.preserve<PostDominatorTreeAnalysis>(); 1877 PA.preserve<ScalarEvolutionAnalysis>(); 1878 PA.preserve<LoopAnalysis>(); 1879 return PA; 1880 } 1881 1882 char LoopFuseLegacy::ID = 0; 1883 1884 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, 1885 false) 1886 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 1887 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1888 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1889 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) 1890 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 1891 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 1892 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1893 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1894 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false) 1895 1896 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); } 1897