xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFuse.cpp (revision 51015e6d0f570239b0c2088dc6cf2b018928375d)
1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 ///       Code Transformations to Augment the Scope of Loop Fusion in a
14 ///         Production Compiler
15 ///       Christopher Mark Barton
16 ///       MSc Thesis
17 ///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 ///    1. The loops must be adjacent (there cannot be any statements between
23 ///       the two loops).
24 ///    2. The loops must be conforming (they must execute the same number of
25 ///       iterations).
26 ///    3. The loops must be control flow equivalent (if one loop executes, the
27 ///       other is guaranteed to execute).
28 ///    4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/DependenceAnalysis.h"
51 #include "llvm/Analysis/DomTreeUpdater.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/PostDominators.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
57 #include "llvm/Analysis/TargetTransformInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/Verifier.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
69 #include "llvm/Transforms/Utils/LoopPeel.h"
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-fusion"
74 
75 STATISTIC(FuseCounter, "Loops fused");
76 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
77 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
78 STATISTIC(InvalidHeader, "Loop has invalid header");
79 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
80 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
81 STATISTIC(InvalidLatch, "Loop has invalid latch");
82 STATISTIC(InvalidLoop, "Loop is invalid");
83 STATISTIC(AddressTakenBB, "Basic block has address taken");
84 STATISTIC(MayThrowException, "Loop may throw an exception");
85 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
86 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
87 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
88 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
89 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
90 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
91 STATISTIC(NonAdjacent, "Loops are not adjacent");
92 STATISTIC(
93     NonEmptyPreheader,
94     "Loop has a non-empty preheader with instructions that cannot be moved");
95 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
96 STATISTIC(NonIdenticalGuards, "Candidates have different guards");
97 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
98                              "instructions that cannot be moved");
99 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
100                               "instructions that cannot be moved");
101 STATISTIC(NotRotated, "Candidate is not rotated");
102 STATISTIC(OnlySecondCandidateIsGuarded,
103           "The second candidate is guarded while the first one is not");
104 
105 enum FusionDependenceAnalysisChoice {
106   FUSION_DEPENDENCE_ANALYSIS_SCEV,
107   FUSION_DEPENDENCE_ANALYSIS_DA,
108   FUSION_DEPENDENCE_ANALYSIS_ALL,
109 };
110 
111 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
112     "loop-fusion-dependence-analysis",
113     cl::desc("Which dependence analysis should loop fusion use?"),
114     cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
115                           "Use the scalar evolution interface"),
116                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
117                           "Use the dependence analysis interface"),
118                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
119                           "Use all available analyses")),
120     cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL));
121 
122 static cl::opt<unsigned> FusionPeelMaxCount(
123     "loop-fusion-peel-max-count", cl::init(0), cl::Hidden,
124     cl::desc("Max number of iterations to be peeled from a loop, such that "
125              "fusion can take place"));
126 
127 #ifndef NDEBUG
128 static cl::opt<bool>
129     VerboseFusionDebugging("loop-fusion-verbose-debug",
130                            cl::desc("Enable verbose debugging for Loop Fusion"),
131                            cl::Hidden, cl::init(false));
132 #endif
133 
134 namespace {
135 /// This class is used to represent a candidate for loop fusion. When it is
136 /// constructed, it checks the conditions for loop fusion to ensure that it
137 /// represents a valid candidate. It caches several parts of a loop that are
138 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
139 /// of continually querying the underlying Loop to retrieve these values. It is
140 /// assumed these will not change throughout loop fusion.
141 ///
142 /// The invalidate method should be used to indicate that the FusionCandidate is
143 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
144 /// be used to ensure that the FusionCandidate is still valid for fusion.
145 struct FusionCandidate {
146   /// Cache of parts of the loop used throughout loop fusion. These should not
147   /// need to change throughout the analysis and transformation.
148   /// These parts are cached to avoid repeatedly looking up in the Loop class.
149 
150   /// Preheader of the loop this candidate represents
151   BasicBlock *Preheader;
152   /// Header of the loop this candidate represents
153   BasicBlock *Header;
154   /// Blocks in the loop that exit the loop
155   BasicBlock *ExitingBlock;
156   /// The successor block of this loop (where the exiting blocks go to)
157   BasicBlock *ExitBlock;
158   /// Latch of the loop
159   BasicBlock *Latch;
160   /// The loop that this fusion candidate represents
161   Loop *L;
162   /// Vector of instructions in this loop that read from memory
163   SmallVector<Instruction *, 16> MemReads;
164   /// Vector of instructions in this loop that write to memory
165   SmallVector<Instruction *, 16> MemWrites;
166   /// Are all of the members of this fusion candidate still valid
167   bool Valid;
168   /// Guard branch of the loop, if it exists
169   BranchInst *GuardBranch;
170   /// Peeling Paramaters of the Loop.
171   TTI::PeelingPreferences PP;
172   /// Can you Peel this Loop?
173   bool AbleToPeel;
174   /// Has this loop been Peeled
175   bool Peeled;
176 
177   /// Dominator and PostDominator trees are needed for the
178   /// FusionCandidateCompare function, required by FusionCandidateSet to
179   /// determine where the FusionCandidate should be inserted into the set. These
180   /// are used to establish ordering of the FusionCandidates based on dominance.
181   DominatorTree &DT;
182   const PostDominatorTree *PDT;
183 
184   OptimizationRemarkEmitter &ORE;
185 
186   FusionCandidate(Loop *L, DominatorTree &DT,
187                   const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE,
188                   TTI::PeelingPreferences PP)
189       : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
190         ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
191         Latch(L->getLoopLatch()), L(L), Valid(true),
192         GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)),
193         Peeled(false), DT(DT), PDT(PDT), ORE(ORE) {
194 
195     // Walk over all blocks in the loop and check for conditions that may
196     // prevent fusion. For each block, walk over all instructions and collect
197     // the memory reads and writes If any instructions that prevent fusion are
198     // found, invalidate this object and return.
199     for (BasicBlock *BB : L->blocks()) {
200       if (BB->hasAddressTaken()) {
201         invalidate();
202         reportInvalidCandidate(AddressTakenBB);
203         return;
204       }
205 
206       for (Instruction &I : *BB) {
207         if (I.mayThrow()) {
208           invalidate();
209           reportInvalidCandidate(MayThrowException);
210           return;
211         }
212         if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
213           if (SI->isVolatile()) {
214             invalidate();
215             reportInvalidCandidate(ContainsVolatileAccess);
216             return;
217           }
218         }
219         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
220           if (LI->isVolatile()) {
221             invalidate();
222             reportInvalidCandidate(ContainsVolatileAccess);
223             return;
224           }
225         }
226         if (I.mayWriteToMemory())
227           MemWrites.push_back(&I);
228         if (I.mayReadFromMemory())
229           MemReads.push_back(&I);
230       }
231     }
232   }
233 
234   /// Check if all members of the class are valid.
235   bool isValid() const {
236     return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
237            !L->isInvalid() && Valid;
238   }
239 
240   /// Verify that all members are in sync with the Loop object.
241   void verify() const {
242     assert(isValid() && "Candidate is not valid!!");
243     assert(!L->isInvalid() && "Loop is invalid!");
244     assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
245     assert(Header == L->getHeader() && "Header is out of sync");
246     assert(ExitingBlock == L->getExitingBlock() &&
247            "Exiting Blocks is out of sync");
248     assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
249     assert(Latch == L->getLoopLatch() && "Latch is out of sync");
250   }
251 
252   /// Get the entry block for this fusion candidate.
253   ///
254   /// If this fusion candidate represents a guarded loop, the entry block is the
255   /// loop guard block. If it represents an unguarded loop, the entry block is
256   /// the preheader of the loop.
257   BasicBlock *getEntryBlock() const {
258     if (GuardBranch)
259       return GuardBranch->getParent();
260     else
261       return Preheader;
262   }
263 
264   /// After Peeling the loop is modified quite a bit, hence all of the Blocks
265   /// need to be updated accordingly.
266   void updateAfterPeeling() {
267     Preheader = L->getLoopPreheader();
268     Header = L->getHeader();
269     ExitingBlock = L->getExitingBlock();
270     ExitBlock = L->getExitBlock();
271     Latch = L->getLoopLatch();
272     verify();
273   }
274 
275   /// Given a guarded loop, get the successor of the guard that is not in the
276   /// loop.
277   ///
278   /// This method returns the successor of the loop guard that is not located
279   /// within the loop (i.e., the successor of the guard that is not the
280   /// preheader).
281   /// This method is only valid for guarded loops.
282   BasicBlock *getNonLoopBlock() const {
283     assert(GuardBranch && "Only valid on guarded loops.");
284     assert(GuardBranch->isConditional() &&
285            "Expecting guard to be a conditional branch.");
286     if (Peeled)
287       return GuardBranch->getSuccessor(1);
288     return (GuardBranch->getSuccessor(0) == Preheader)
289                ? GuardBranch->getSuccessor(1)
290                : GuardBranch->getSuccessor(0);
291   }
292 
293 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
294   LLVM_DUMP_METHOD void dump() const {
295     dbgs() << "\tGuardBranch: ";
296     if (GuardBranch)
297       dbgs() << *GuardBranch;
298     else
299       dbgs() << "nullptr";
300     dbgs() << "\n"
301            << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
302            << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
303            << "\n"
304            << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
305            << "\tExitingBB: "
306            << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
307            << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
308            << "\n"
309            << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
310            << "\tEntryBlock: "
311            << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
312            << "\n";
313   }
314 #endif
315 
316   /// Determine if a fusion candidate (representing a loop) is eligible for
317   /// fusion. Note that this only checks whether a single loop can be fused - it
318   /// does not check whether it is *legal* to fuse two loops together.
319   bool isEligibleForFusion(ScalarEvolution &SE) const {
320     if (!isValid()) {
321       LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
322       if (!Preheader)
323         ++InvalidPreheader;
324       if (!Header)
325         ++InvalidHeader;
326       if (!ExitingBlock)
327         ++InvalidExitingBlock;
328       if (!ExitBlock)
329         ++InvalidExitBlock;
330       if (!Latch)
331         ++InvalidLatch;
332       if (L->isInvalid())
333         ++InvalidLoop;
334 
335       return false;
336     }
337 
338     // Require ScalarEvolution to be able to determine a trip count.
339     if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
340       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
341                         << " trip count not computable!\n");
342       return reportInvalidCandidate(UnknownTripCount);
343     }
344 
345     if (!L->isLoopSimplifyForm()) {
346       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
347                         << " is not in simplified form!\n");
348       return reportInvalidCandidate(NotSimplifiedForm);
349     }
350 
351     if (!L->isRotatedForm()) {
352       LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
353       return reportInvalidCandidate(NotRotated);
354     }
355 
356     return true;
357   }
358 
359 private:
360   // This is only used internally for now, to clear the MemWrites and MemReads
361   // list and setting Valid to false. I can't envision other uses of this right
362   // now, since once FusionCandidates are put into the FusionCandidateSet they
363   // are immutable. Thus, any time we need to change/update a FusionCandidate,
364   // we must create a new one and insert it into the FusionCandidateSet to
365   // ensure the FusionCandidateSet remains ordered correctly.
366   void invalidate() {
367     MemWrites.clear();
368     MemReads.clear();
369     Valid = false;
370   }
371 
372   bool reportInvalidCandidate(llvm::Statistic &Stat) const {
373     using namespace ore;
374     assert(L && Preheader && "Fusion candidate not initialized properly!");
375 #if LLVM_ENABLE_STATS
376     ++Stat;
377     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
378                                         L->getStartLoc(), Preheader)
379              << "[" << Preheader->getParent()->getName() << "]: "
380              << "Loop is not a candidate for fusion: " << Stat.getDesc());
381 #endif
382     return false;
383   }
384 };
385 
386 struct FusionCandidateCompare {
387   /// Comparison functor to sort two Control Flow Equivalent fusion candidates
388   /// into dominance order.
389   /// If LHS dominates RHS and RHS post-dominates LHS, return true;
390   /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
391   bool operator()(const FusionCandidate &LHS,
392                   const FusionCandidate &RHS) const {
393     const DominatorTree *DT = &(LHS.DT);
394 
395     BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
396     BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
397 
398     // Do not save PDT to local variable as it is only used in asserts and thus
399     // will trigger an unused variable warning if building without asserts.
400     assert(DT && LHS.PDT && "Expecting valid dominator tree");
401 
402     // Do this compare first so if LHS == RHS, function returns false.
403     if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
404       // RHS dominates LHS
405       // Verify LHS post-dominates RHS
406       assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
407       return false;
408     }
409 
410     if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
411       // Verify RHS Postdominates LHS
412       assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
413       return true;
414     }
415 
416     // If LHS does not dominate RHS and RHS does not dominate LHS then there is
417     // no dominance relationship between the two FusionCandidates. Thus, they
418     // should not be in the same set together.
419     llvm_unreachable(
420         "No dominance relationship between these fusion candidates!");
421   }
422 };
423 
424 using LoopVector = SmallVector<Loop *, 4>;
425 
426 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
427 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
428 // dominates FC1 and FC1 post-dominates FC0.
429 // std::set was chosen because we want a sorted data structure with stable
430 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
431 // loops by moving intervening code around. When this intervening code contains
432 // loops, those loops will be moved also. The corresponding FusionCandidates
433 // will also need to be moved accordingly. As this is done, having stable
434 // iterators will simplify the logic. Similarly, having an efficient insert that
435 // keeps the FusionCandidateSet sorted will also simplify the implementation.
436 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
437 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
438 
439 #if !defined(NDEBUG)
440 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
441                                      const FusionCandidate &FC) {
442   if (FC.isValid())
443     OS << FC.Preheader->getName();
444   else
445     OS << "<Invalid>";
446 
447   return OS;
448 }
449 
450 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
451                                      const FusionCandidateSet &CandSet) {
452   for (const FusionCandidate &FC : CandSet)
453     OS << FC << '\n';
454 
455   return OS;
456 }
457 
458 static void
459 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
460   dbgs() << "Fusion Candidates: \n";
461   for (const auto &CandidateSet : FusionCandidates) {
462     dbgs() << "*** Fusion Candidate Set ***\n";
463     dbgs() << CandidateSet;
464     dbgs() << "****************************\n";
465   }
466 }
467 #endif
468 
469 /// Collect all loops in function at the same nest level, starting at the
470 /// outermost level.
471 ///
472 /// This data structure collects all loops at the same nest level for a
473 /// given function (specified by the LoopInfo object). It starts at the
474 /// outermost level.
475 struct LoopDepthTree {
476   using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
477   using iterator = LoopsOnLevelTy::iterator;
478   using const_iterator = LoopsOnLevelTy::const_iterator;
479 
480   LoopDepthTree(LoopInfo &LI) : Depth(1) {
481     if (!LI.empty())
482       LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
483   }
484 
485   /// Test whether a given loop has been removed from the function, and thus is
486   /// no longer valid.
487   bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
488 
489   /// Record that a given loop has been removed from the function and is no
490   /// longer valid.
491   void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
492 
493   /// Descend the tree to the next (inner) nesting level
494   void descend() {
495     LoopsOnLevelTy LoopsOnNextLevel;
496 
497     for (const LoopVector &LV : *this)
498       for (Loop *L : LV)
499         if (!isRemovedLoop(L) && L->begin() != L->end())
500           LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
501 
502     LoopsOnLevel = LoopsOnNextLevel;
503     RemovedLoops.clear();
504     Depth++;
505   }
506 
507   bool empty() const { return size() == 0; }
508   size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
509   unsigned getDepth() const { return Depth; }
510 
511   iterator begin() { return LoopsOnLevel.begin(); }
512   iterator end() { return LoopsOnLevel.end(); }
513   const_iterator begin() const { return LoopsOnLevel.begin(); }
514   const_iterator end() const { return LoopsOnLevel.end(); }
515 
516 private:
517   /// Set of loops that have been removed from the function and are no longer
518   /// valid.
519   SmallPtrSet<const Loop *, 8> RemovedLoops;
520 
521   /// Depth of the current level, starting at 1 (outermost loops).
522   unsigned Depth;
523 
524   /// Vector of loops at the current depth level that have the same parent loop
525   LoopsOnLevelTy LoopsOnLevel;
526 };
527 
528 #ifndef NDEBUG
529 static void printLoopVector(const LoopVector &LV) {
530   dbgs() << "****************************\n";
531   for (auto L : LV)
532     printLoop(*L, dbgs());
533   dbgs() << "****************************\n";
534 }
535 #endif
536 
537 struct LoopFuser {
538 private:
539   // Sets of control flow equivalent fusion candidates for a given nest level.
540   FusionCandidateCollection FusionCandidates;
541 
542   LoopDepthTree LDT;
543   DomTreeUpdater DTU;
544 
545   LoopInfo &LI;
546   DominatorTree &DT;
547   DependenceInfo &DI;
548   ScalarEvolution &SE;
549   PostDominatorTree &PDT;
550   OptimizationRemarkEmitter &ORE;
551   AssumptionCache &AC;
552 
553   const TargetTransformInfo &TTI;
554 
555 public:
556   LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
557             ScalarEvolution &SE, PostDominatorTree &PDT,
558             OptimizationRemarkEmitter &ORE, const DataLayout &DL,
559             AssumptionCache &AC, const TargetTransformInfo &TTI)
560       : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
561         DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}
562 
563   /// This is the main entry point for loop fusion. It will traverse the
564   /// specified function and collect candidate loops to fuse, starting at the
565   /// outermost nesting level and working inwards.
566   bool fuseLoops(Function &F) {
567 #ifndef NDEBUG
568     if (VerboseFusionDebugging) {
569       LI.print(dbgs());
570     }
571 #endif
572 
573     LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
574                       << "\n");
575     bool Changed = false;
576 
577     while (!LDT.empty()) {
578       LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
579                         << LDT.getDepth() << "\n";);
580 
581       for (const LoopVector &LV : LDT) {
582         assert(LV.size() > 0 && "Empty loop set was build!");
583 
584         // Skip singleton loop sets as they do not offer fusion opportunities on
585         // this level.
586         if (LV.size() == 1)
587           continue;
588 #ifndef NDEBUG
589         if (VerboseFusionDebugging) {
590           LLVM_DEBUG({
591             dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
592             printLoopVector(LV);
593           });
594         }
595 #endif
596 
597         collectFusionCandidates(LV);
598         Changed |= fuseCandidates();
599       }
600 
601       // Finished analyzing candidates at this level.
602       // Descend to the next level and clear all of the candidates currently
603       // collected. Note that it will not be possible to fuse any of the
604       // existing candidates with new candidates because the new candidates will
605       // be at a different nest level and thus not be control flow equivalent
606       // with all of the candidates collected so far.
607       LLVM_DEBUG(dbgs() << "Descend one level!\n");
608       LDT.descend();
609       FusionCandidates.clear();
610     }
611 
612     if (Changed)
613       LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
614 
615 #ifndef NDEBUG
616     assert(DT.verify());
617     assert(PDT.verify());
618     LI.verify(DT);
619     SE.verify();
620 #endif
621 
622     LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
623     return Changed;
624   }
625 
626 private:
627   /// Determine if two fusion candidates are control flow equivalent.
628   ///
629   /// Two fusion candidates are control flow equivalent if when one executes,
630   /// the other is guaranteed to execute. This is determined using dominators
631   /// and post-dominators: if A dominates B and B post-dominates A then A and B
632   /// are control-flow equivalent.
633   bool isControlFlowEquivalent(const FusionCandidate &FC0,
634                                const FusionCandidate &FC1) const {
635     assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
636 
637     return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
638                                      DT, PDT);
639   }
640 
641   /// Iterate over all loops in the given loop set and identify the loops that
642   /// are eligible for fusion. Place all eligible fusion candidates into Control
643   /// Flow Equivalent sets, sorted by dominance.
644   void collectFusionCandidates(const LoopVector &LV) {
645     for (Loop *L : LV) {
646       TTI::PeelingPreferences PP =
647           gatherPeelingPreferences(L, SE, TTI, None, None);
648       FusionCandidate CurrCand(L, DT, &PDT, ORE, PP);
649       if (!CurrCand.isEligibleForFusion(SE))
650         continue;
651 
652       // Go through each list in FusionCandidates and determine if L is control
653       // flow equivalent with the first loop in that list. If it is, append LV.
654       // If not, go to the next list.
655       // If no suitable list is found, start another list and add it to
656       // FusionCandidates.
657       bool FoundSet = false;
658 
659       for (auto &CurrCandSet : FusionCandidates) {
660         if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
661           CurrCandSet.insert(CurrCand);
662           FoundSet = true;
663 #ifndef NDEBUG
664           if (VerboseFusionDebugging)
665             LLVM_DEBUG(dbgs() << "Adding " << CurrCand
666                               << " to existing candidate set\n");
667 #endif
668           break;
669         }
670       }
671       if (!FoundSet) {
672         // No set was found. Create a new set and add to FusionCandidates
673 #ifndef NDEBUG
674         if (VerboseFusionDebugging)
675           LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
676 #endif
677         FusionCandidateSet NewCandSet;
678         NewCandSet.insert(CurrCand);
679         FusionCandidates.push_back(NewCandSet);
680       }
681       NumFusionCandidates++;
682     }
683   }
684 
685   /// Determine if it is beneficial to fuse two loops.
686   ///
687   /// For now, this method simply returns true because we want to fuse as much
688   /// as possible (primarily to test the pass). This method will evolve, over
689   /// time, to add heuristics for profitability of fusion.
690   bool isBeneficialFusion(const FusionCandidate &FC0,
691                           const FusionCandidate &FC1) {
692     return true;
693   }
694 
695   /// Determine if two fusion candidates have the same trip count (i.e., they
696   /// execute the same number of iterations).
697   ///
698   /// This function will return a pair of values. The first is a boolean,
699   /// stating whether or not the two candidates are known at compile time to
700   /// have the same TripCount. The second is the difference in the two
701   /// TripCounts. This information can be used later to determine whether or not
702   /// peeling can be performed on either one of the candiates.
703   std::pair<bool, Optional<unsigned>>
704   haveIdenticalTripCounts(const FusionCandidate &FC0,
705                           const FusionCandidate &FC1) const {
706 
707     const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
708     if (isa<SCEVCouldNotCompute>(TripCount0)) {
709       UncomputableTripCount++;
710       LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
711       return {false, None};
712     }
713 
714     const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
715     if (isa<SCEVCouldNotCompute>(TripCount1)) {
716       UncomputableTripCount++;
717       LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
718       return {false, None};
719     }
720 
721     LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
722                       << *TripCount1 << " are "
723                       << (TripCount0 == TripCount1 ? "identical" : "different")
724                       << "\n");
725 
726     if (TripCount0 == TripCount1)
727       return {true, 0};
728 
729     LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, "
730                          "determining the difference between trip counts\n");
731 
732     // Currently only considering loops with a single exit point
733     // and a non-constant trip count.
734     const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
735     const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);
736 
737     // If any of the tripcounts are zero that means that loop(s) do not have
738     // a single exit or a constant tripcount.
739     if (TC0 == 0 || TC1 == 0) {
740       LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not "
741                            "have a constant number of iterations. Peeling "
742                            "is not benefical\n");
743       return {false, None};
744     }
745 
746     Optional<unsigned> Difference = None;
747     int Diff = TC0 - TC1;
748 
749     if (Diff > 0)
750       Difference = Diff;
751     else {
752       LLVM_DEBUG(
753           dbgs() << "Difference is less than 0. FC1 (second loop) has more "
754                     "iterations than the first one. Currently not supported\n");
755     }
756 
757     LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference
758                       << "\n");
759 
760     return {false, Difference};
761   }
762 
763   void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1,
764                            unsigned PeelCount) {
765     assert(FC0.AbleToPeel && "Should be able to peel loop");
766 
767     LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount
768                       << " iterations of the first loop. \n");
769 
770     FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, DT, &AC, true);
771     if (FC0.Peeled) {
772       LLVM_DEBUG(dbgs() << "Done Peeling\n");
773 
774 #ifndef NDEBUG
775       auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);
776 
777       assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
778              "Loops should have identical trip counts after peeling");
779 #endif
780 
781       FC0.PP.PeelCount += PeelCount;
782 
783       // Peeling does not update the PDT
784       PDT.recalculate(*FC0.Preheader->getParent());
785 
786       FC0.updateAfterPeeling();
787 
788       // In this case the iterations of the loop are constant, so the first
789       // loop will execute completely (will not jump from one of
790       // the peeled blocks to the second loop). Here we are updating the
791       // branch conditions of each of the peeled blocks, such that it will
792       // branch to its successor which is not the preheader of the second loop
793       // in the case of unguarded loops, or the succesors of the exit block of
794       // the first loop otherwise. Doing this update will ensure that the entry
795       // block of the first loop dominates the entry block of the second loop.
796       BasicBlock *BB =
797           FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader;
798       if (BB) {
799         SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
800         SmallVector<Instruction *, 8> WorkList;
801         for (BasicBlock *Pred : predecessors(BB)) {
802           if (Pred != FC0.ExitBlock) {
803             WorkList.emplace_back(Pred->getTerminator());
804             TreeUpdates.emplace_back(
805                 DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
806           }
807         }
808         // Cannot modify the predecessors inside the above loop as it will cause
809         // the iterators to be nullptrs, causing memory errors.
810         for (Instruction *CurrentBranch: WorkList) {
811           BasicBlock *Succ = CurrentBranch->getSuccessor(0);
812           if (Succ == BB)
813             Succ = CurrentBranch->getSuccessor(1);
814           ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ));
815         }
816 
817         DTU.applyUpdates(TreeUpdates);
818         DTU.flush();
819       }
820       LLVM_DEBUG(
821           dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount
822                  << " iterations from the first loop.\n"
823                     "Both Loops have the same number of iterations now.\n");
824     }
825   }
826 
827   /// Walk each set of control flow equivalent fusion candidates and attempt to
828   /// fuse them. This does a single linear traversal of all candidates in the
829   /// set. The conditions for legal fusion are checked at this point. If a pair
830   /// of fusion candidates passes all legality checks, they are fused together
831   /// and a new fusion candidate is created and added to the FusionCandidateSet.
832   /// The original fusion candidates are then removed, as they are no longer
833   /// valid.
834   bool fuseCandidates() {
835     bool Fused = false;
836     LLVM_DEBUG(printFusionCandidates(FusionCandidates));
837     for (auto &CandidateSet : FusionCandidates) {
838       if (CandidateSet.size() < 2)
839         continue;
840 
841       LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
842                         << CandidateSet << "\n");
843 
844       for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
845         assert(!LDT.isRemovedLoop(FC0->L) &&
846                "Should not have removed loops in CandidateSet!");
847         auto FC1 = FC0;
848         for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
849           assert(!LDT.isRemovedLoop(FC1->L) &&
850                  "Should not have removed loops in CandidateSet!");
851 
852           LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
853                      dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
854 
855           FC0->verify();
856           FC1->verify();
857 
858           // Check if the candidates have identical tripcounts (first value of
859           // pair), and if not check the difference in the tripcounts between
860           // the loops (second value of pair). The difference is not equal to
861           // None iff the loops iterate a constant number of times, and have a
862           // single exit.
863           std::pair<bool, Optional<unsigned>> IdenticalTripCountRes =
864               haveIdenticalTripCounts(*FC0, *FC1);
865           bool SameTripCount = IdenticalTripCountRes.first;
866           Optional<unsigned> TCDifference = IdenticalTripCountRes.second;
867 
868           // Here we are checking that FC0 (the first loop) can be peeled, and
869           // both loops have different tripcounts.
870           if (FC0->AbleToPeel && !SameTripCount && TCDifference) {
871             if (*TCDifference > FusionPeelMaxCount) {
872               LLVM_DEBUG(dbgs()
873                          << "Difference in loop trip counts: " << *TCDifference
874                          << " is greater than maximum peel count specificed: "
875                          << FusionPeelMaxCount << "\n");
876             } else {
877               // Dependent on peeling being performed on the first loop, and
878               // assuming all other conditions for fusion return true.
879               SameTripCount = true;
880             }
881           }
882 
883           if (!SameTripCount) {
884             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
885                                  "counts. Not fusing.\n");
886             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
887                                                        NonEqualTripCount);
888             continue;
889           }
890 
891           if (!isAdjacent(*FC0, *FC1)) {
892             LLVM_DEBUG(dbgs()
893                        << "Fusion candidates are not adjacent. Not fusing.\n");
894             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
895             continue;
896           }
897 
898           if (!FC0->GuardBranch && FC1->GuardBranch) {
899             LLVM_DEBUG(dbgs() << "The second candidate is guarded while the "
900                                  "first one is not. Not fusing.\n");
901             reportLoopFusion<OptimizationRemarkMissed>(
902                 *FC0, *FC1, OnlySecondCandidateIsGuarded);
903             continue;
904           }
905 
906           // Ensure that FC0 and FC1 have identical guards.
907           // If one (or both) are not guarded, this check is not necessary.
908           if (FC0->GuardBranch && FC1->GuardBranch &&
909               !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) {
910             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
911                                  "guards. Not Fusing.\n");
912             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
913                                                        NonIdenticalGuards);
914             continue;
915           }
916 
917           if (!isSafeToMoveBefore(*FC1->Preheader,
918                                   *FC0->Preheader->getTerminator(), DT, &PDT,
919                                   &DI)) {
920             LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
921                                  "instructions in preheader. Not fusing.\n");
922             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
923                                                        NonEmptyPreheader);
924             continue;
925           }
926 
927           if (FC0->GuardBranch) {
928             assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");
929 
930             if (!isSafeToMoveBefore(*FC0->ExitBlock,
931                                     *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
932                                     &PDT, &DI)) {
933               LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
934                                    "instructions in exit block. Not fusing.\n");
935               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
936                                                          NonEmptyExitBlock);
937               continue;
938             }
939 
940             if (!isSafeToMoveBefore(
941                     *FC1->GuardBranch->getParent(),
942                     *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
943                     &DI)) {
944               LLVM_DEBUG(dbgs()
945                          << "Fusion candidate contains unsafe "
946                             "instructions in guard block. Not fusing.\n");
947               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
948                                                          NonEmptyGuardBlock);
949               continue;
950             }
951           }
952 
953           // Check the dependencies across the loops and do not fuse if it would
954           // violate them.
955           if (!dependencesAllowFusion(*FC0, *FC1)) {
956             LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
957             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
958                                                        InvalidDependencies);
959             continue;
960           }
961 
962           bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
963           LLVM_DEBUG(dbgs()
964                      << "\tFusion appears to be "
965                      << (BeneficialToFuse ? "" : "un") << "profitable!\n");
966           if (!BeneficialToFuse) {
967             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
968                                                        FusionNotBeneficial);
969             continue;
970           }
971           // All analysis has completed and has determined that fusion is legal
972           // and profitable. At this point, start transforming the code and
973           // perform fusion.
974 
975           LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
976                             << *FC1 << "\n");
977 
978           FusionCandidate FC0Copy = *FC0;
979           // Peel the loop after determining that fusion is legal. The Loops
980           // will still be safe to fuse after the peeling is performed.
981           bool Peel = TCDifference && *TCDifference > 0;
982           if (Peel)
983             peelFusionCandidate(FC0Copy, *FC1, *TCDifference);
984 
985           // Report fusion to the Optimization Remarks.
986           // Note this needs to be done *before* performFusion because
987           // performFusion will change the original loops, making it not
988           // possible to identify them after fusion is complete.
989           reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1,
990                                                FuseCounter);
991 
992           FusionCandidate FusedCand(
993               performFusion((Peel ? FC0Copy : *FC0), *FC1), DT, &PDT, ORE,
994               FC0Copy.PP);
995           FusedCand.verify();
996           assert(FusedCand.isEligibleForFusion(SE) &&
997                  "Fused candidate should be eligible for fusion!");
998 
999           // Notify the loop-depth-tree that these loops are not valid objects
1000           LDT.removeLoop(FC1->L);
1001 
1002           CandidateSet.erase(FC0);
1003           CandidateSet.erase(FC1);
1004 
1005           auto InsertPos = CandidateSet.insert(FusedCand);
1006 
1007           assert(InsertPos.second &&
1008                  "Unable to insert TargetCandidate in CandidateSet!");
1009 
1010           // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
1011           // of the FC1 loop will attempt to fuse the new (fused) loop with the
1012           // remaining candidates in the current candidate set.
1013           FC0 = FC1 = InsertPos.first;
1014 
1015           LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
1016                             << "\n");
1017 
1018           Fused = true;
1019         }
1020       }
1021     }
1022     return Fused;
1023   }
1024 
1025   /// Rewrite all additive recurrences in a SCEV to use a new loop.
1026   class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
1027   public:
1028     AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
1029                        bool UseMax = true)
1030         : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
1031           NewL(NewL) {}
1032 
1033     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
1034       const Loop *ExprL = Expr->getLoop();
1035       SmallVector<const SCEV *, 2> Operands;
1036       if (ExprL == &OldL) {
1037         Operands.append(Expr->op_begin(), Expr->op_end());
1038         return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
1039       }
1040 
1041       if (OldL.contains(ExprL)) {
1042         bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
1043         if (!UseMax || !Pos || !Expr->isAffine()) {
1044           Valid = false;
1045           return Expr;
1046         }
1047         return visit(Expr->getStart());
1048       }
1049 
1050       for (const SCEV *Op : Expr->operands())
1051         Operands.push_back(visit(Op));
1052       return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
1053     }
1054 
1055     bool wasValidSCEV() const { return Valid; }
1056 
1057   private:
1058     bool Valid, UseMax;
1059     const Loop &OldL, &NewL;
1060   };
1061 
1062   /// Return false if the access functions of \p I0 and \p I1 could cause
1063   /// a negative dependence.
1064   bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
1065                             Instruction &I1, bool EqualIsInvalid) {
1066     Value *Ptr0 = getLoadStorePointerOperand(&I0);
1067     Value *Ptr1 = getLoadStorePointerOperand(&I1);
1068     if (!Ptr0 || !Ptr1)
1069       return false;
1070 
1071     const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
1072     const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
1073 #ifndef NDEBUG
1074     if (VerboseFusionDebugging)
1075       LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
1076                         << *SCEVPtr1 << "\n");
1077 #endif
1078     AddRecLoopReplacer Rewriter(SE, L0, L1);
1079     SCEVPtr0 = Rewriter.visit(SCEVPtr0);
1080 #ifndef NDEBUG
1081     if (VerboseFusionDebugging)
1082       LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
1083                         << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
1084 #endif
1085     if (!Rewriter.wasValidSCEV())
1086       return false;
1087 
1088     // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
1089     //       L0) and the other is not. We could check if it is monotone and test
1090     //       the beginning and end value instead.
1091 
1092     BasicBlock *L0Header = L0.getHeader();
1093     auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
1094       const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
1095       if (!AddRec)
1096         return false;
1097       return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
1098              !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
1099     };
1100     if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
1101       return false;
1102 
1103     ICmpInst::Predicate Pred =
1104         EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
1105     bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
1106 #ifndef NDEBUG
1107     if (VerboseFusionDebugging)
1108       LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
1109                         << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
1110                         << "\n");
1111 #endif
1112     return IsAlwaysGE;
1113   }
1114 
1115   /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
1116   /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
1117   /// specified by @p DepChoice are used to determine this.
1118   bool dependencesAllowFusion(const FusionCandidate &FC0,
1119                               const FusionCandidate &FC1, Instruction &I0,
1120                               Instruction &I1, bool AnyDep,
1121                               FusionDependenceAnalysisChoice DepChoice) {
1122 #ifndef NDEBUG
1123     if (VerboseFusionDebugging) {
1124       LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
1125                         << DepChoice << "\n");
1126     }
1127 #endif
1128     switch (DepChoice) {
1129     case FUSION_DEPENDENCE_ANALYSIS_SCEV:
1130       return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
1131     case FUSION_DEPENDENCE_ANALYSIS_DA: {
1132       auto DepResult = DI.depends(&I0, &I1, true);
1133       if (!DepResult)
1134         return true;
1135 #ifndef NDEBUG
1136       if (VerboseFusionDebugging) {
1137         LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
1138                    dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
1139                           << (DepResult->isOrdered() ? "true" : "false")
1140                           << "]\n");
1141         LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
1142                           << "\n");
1143       }
1144 #endif
1145 
1146       if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
1147         LLVM_DEBUG(
1148             dbgs() << "TODO: Implement pred/succ dependence handling!\n");
1149 
1150       // TODO: Can we actually use the dependence info analysis here?
1151       return false;
1152     }
1153 
1154     case FUSION_DEPENDENCE_ANALYSIS_ALL:
1155       return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1156                                     FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
1157              dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1158                                     FUSION_DEPENDENCE_ANALYSIS_DA);
1159     }
1160 
1161     llvm_unreachable("Unknown fusion dependence analysis choice!");
1162   }
1163 
1164   /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
1165   bool dependencesAllowFusion(const FusionCandidate &FC0,
1166                               const FusionCandidate &FC1) {
1167     LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
1168                       << "\n");
1169     assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
1170     assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
1171 
1172     for (Instruction *WriteL0 : FC0.MemWrites) {
1173       for (Instruction *WriteL1 : FC1.MemWrites)
1174         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1175                                     /* AnyDep */ false,
1176                                     FusionDependenceAnalysis)) {
1177           InvalidDependencies++;
1178           return false;
1179         }
1180       for (Instruction *ReadL1 : FC1.MemReads)
1181         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
1182                                     /* AnyDep */ false,
1183                                     FusionDependenceAnalysis)) {
1184           InvalidDependencies++;
1185           return false;
1186         }
1187     }
1188 
1189     for (Instruction *WriteL1 : FC1.MemWrites) {
1190       for (Instruction *WriteL0 : FC0.MemWrites)
1191         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1192                                     /* AnyDep */ false,
1193                                     FusionDependenceAnalysis)) {
1194           InvalidDependencies++;
1195           return false;
1196         }
1197       for (Instruction *ReadL0 : FC0.MemReads)
1198         if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1199                                     /* AnyDep */ false,
1200                                     FusionDependenceAnalysis)) {
1201           InvalidDependencies++;
1202           return false;
1203         }
1204     }
1205 
1206     // Walk through all uses in FC1. For each use, find the reaching def. If the
1207     // def is located in FC0 then it is is not safe to fuse.
1208     for (BasicBlock *BB : FC1.L->blocks())
1209       for (Instruction &I : *BB)
1210         for (auto &Op : I.operands())
1211           if (Instruction *Def = dyn_cast<Instruction>(Op))
1212             if (FC0.L->contains(Def->getParent())) {
1213               InvalidDependencies++;
1214               return false;
1215             }
1216 
1217     return true;
1218   }
1219 
1220   /// Determine if two fusion candidates are adjacent in the CFG.
1221   ///
1222   /// This method will determine if there are additional basic blocks in the CFG
1223   /// between the exit of \p FC0 and the entry of \p FC1.
1224   /// If the two candidates are guarded loops, then it checks whether the
1225   /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1226   /// FC1. If not, then the loops are not adjacent. If the two candidates are
1227   /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1228   /// preheader of \p FC1.
1229   bool isAdjacent(const FusionCandidate &FC0,
1230                   const FusionCandidate &FC1) const {
1231     // If the successor of the guard branch is FC1, then the loops are adjacent
1232     if (FC0.GuardBranch)
1233       return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1234     else
1235       return FC0.ExitBlock == FC1.getEntryBlock();
1236   }
1237 
1238   /// Determine if two fusion candidates have identical guards
1239   ///
1240   /// This method will determine if two fusion candidates have the same guards.
1241   /// The guards are considered the same if:
1242   ///   1. The instructions to compute the condition used in the compare are
1243   ///      identical.
1244   ///   2. The successors of the guard have the same flow into/around the loop.
1245   /// If the compare instructions are identical, then the first successor of the
1246   /// guard must go to the same place (either the preheader of the loop or the
1247   /// NonLoopBlock). In other words, the the first successor of both loops must
1248   /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1249   /// the NonLoopBlock). The same must be true for the second successor.
1250   bool haveIdenticalGuards(const FusionCandidate &FC0,
1251                            const FusionCandidate &FC1) const {
1252     assert(FC0.GuardBranch && FC1.GuardBranch &&
1253            "Expecting FC0 and FC1 to be guarded loops.");
1254 
1255     if (auto FC0CmpInst =
1256             dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1257       if (auto FC1CmpInst =
1258               dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1259         if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1260           return false;
1261 
1262     // The compare instructions are identical.
1263     // Now make sure the successor of the guards have the same flow into/around
1264     // the loop
1265     if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1266       return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1267     else
1268       return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1269   }
1270 
1271   /// Modify the latch branch of FC to be unconditional since successors of the
1272   /// branch are the same.
1273   void simplifyLatchBranch(const FusionCandidate &FC) const {
1274     BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1275     if (FCLatchBranch) {
1276       assert(FCLatchBranch->isConditional() &&
1277              FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1278              "Expecting the two successors of FCLatchBranch to be the same");
1279       BranchInst *NewBranch =
1280           BranchInst::Create(FCLatchBranch->getSuccessor(0));
1281       ReplaceInstWithInst(FCLatchBranch, NewBranch);
1282     }
1283   }
1284 
1285   /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1286   /// successor, then merge FC0.Latch with its unique successor.
1287   void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1288     moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1289     if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1290       MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1291       DTU.flush();
1292     }
1293   }
1294 
1295   /// Fuse two fusion candidates, creating a new fused loop.
1296   ///
1297   /// This method contains the mechanics of fusing two loops, represented by \p
1298   /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1299   /// postdominates \p FC0 (making them control flow equivalent). It also
1300   /// assumes that the other conditions for fusion have been met: adjacent,
1301   /// identical trip counts, and no negative distance dependencies exist that
1302   /// would prevent fusion. Thus, there is no checking for these conditions in
1303   /// this method.
1304   ///
1305   /// Fusion is performed by rewiring the CFG to update successor blocks of the
1306   /// components of tho loop. Specifically, the following changes are done:
1307   ///
1308   ///   1. The preheader of \p FC1 is removed as it is no longer necessary
1309   ///   (because it is currently only a single statement block).
1310   ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1311   ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1312   ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1313   ///
1314   /// All of these modifications are done with dominator tree updates, thus
1315   /// keeping the dominator (and post dominator) information up-to-date.
1316   ///
1317   /// This can be improved in the future by actually merging blocks during
1318   /// fusion. For example, the preheader of \p FC1 can be merged with the
1319   /// preheader of \p FC0. This would allow loops with more than a single
1320   /// statement in the preheader to be fused. Similarly, the latch blocks of the
1321   /// two loops could also be fused into a single block. This will require
1322   /// analysis to prove it is safe to move the contents of the block past
1323   /// existing code, which currently has not been implemented.
1324   Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1325     assert(FC0.isValid() && FC1.isValid() &&
1326            "Expecting valid fusion candidates");
1327 
1328     LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1329                dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1330 
1331     // Move instructions from the preheader of FC1 to the end of the preheader
1332     // of FC0.
1333     moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
1334 
1335     // Fusing guarded loops is handled slightly differently than non-guarded
1336     // loops and has been broken out into a separate method instead of trying to
1337     // intersperse the logic within a single method.
1338     if (FC0.GuardBranch)
1339       return fuseGuardedLoops(FC0, FC1);
1340 
1341     assert(FC1.Preheader ==
1342            (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock));
1343     assert(FC1.Preheader->size() == 1 &&
1344            FC1.Preheader->getSingleSuccessor() == FC1.Header);
1345 
1346     // Remember the phi nodes originally in the header of FC0 in order to rewire
1347     // them later. However, this is only necessary if the new loop carried
1348     // values might not dominate the exiting branch. While we do not generally
1349     // test if this is the case but simply insert intermediate phi nodes, we
1350     // need to make sure these intermediate phi nodes have different
1351     // predecessors. To this end, we filter the special case where the exiting
1352     // block is the latch block of the first loop. Nothing needs to be done
1353     // anyway as all loop carried values dominate the latch and thereby also the
1354     // exiting branch.
1355     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1356     if (FC0.ExitingBlock != FC0.Latch)
1357       for (PHINode &PHI : FC0.Header->phis())
1358         OriginalFC0PHIs.push_back(&PHI);
1359 
1360     // Replace incoming blocks for header PHIs first.
1361     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1362     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1363 
1364     // Then modify the control flow and update DT and PDT.
1365     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1366 
1367     // The old exiting block of the first loop (FC0) has to jump to the header
1368     // of the second as we need to execute the code in the second header block
1369     // regardless of the trip count. That is, if the trip count is 0, so the
1370     // back edge is never taken, we still have to execute both loop headers,
1371     // especially (but not only!) if the second is a do-while style loop.
1372     // However, doing so might invalidate the phi nodes of the first loop as
1373     // the new values do only need to dominate their latch and not the exiting
1374     // predicate. To remedy this potential problem we always introduce phi
1375     // nodes in the header of the second loop later that select the loop carried
1376     // value, if the second header was reached through an old latch of the
1377     // first, or undef otherwise. This is sound as exiting the first implies the
1378     // second will exit too, __without__ taking the back-edge. [Their
1379     // trip-counts are equal after all.
1380     // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1381     // to FC1.Header? I think this is basically what the three sequences are
1382     // trying to accomplish; however, doing this directly in the CFG may mean
1383     // the DT/PDT becomes invalid
1384     if (!FC0.Peeled) {
1385       FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1386                                                            FC1.Header);
1387       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1388           DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1389       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1390           DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1391     } else {
1392       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1393           DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));
1394 
1395       // Remove the ExitBlock of the first Loop (also not needed)
1396       FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1397                                                            FC1.Header);
1398       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1399           DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1400       FC0.ExitBlock->getTerminator()->eraseFromParent();
1401       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1402           DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1403       new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1404     }
1405 
1406     // The pre-header of L1 is not necessary anymore.
1407     assert(pred_empty(FC1.Preheader));
1408     FC1.Preheader->getTerminator()->eraseFromParent();
1409     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1410     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1411         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1412 
1413     // Moves the phi nodes from the second to the first loops header block.
1414     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1415       if (SE.isSCEVable(PHI->getType()))
1416         SE.forgetValue(PHI);
1417       if (PHI->hasNUsesOrMore(1))
1418         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1419       else
1420         PHI->eraseFromParent();
1421     }
1422 
1423     // Introduce new phi nodes in the second loop header to ensure
1424     // exiting the first and jumping to the header of the second does not break
1425     // the SSA property of the phis originally in the first loop. See also the
1426     // comment above.
1427     Instruction *L1HeaderIP = &FC1.Header->front();
1428     for (PHINode *LCPHI : OriginalFC0PHIs) {
1429       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1430       assert(L1LatchBBIdx >= 0 &&
1431              "Expected loop carried value to be rewired at this point!");
1432 
1433       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1434 
1435       PHINode *L1HeaderPHI = PHINode::Create(
1436           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1437       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1438       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1439                                FC0.ExitingBlock);
1440 
1441       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1442     }
1443 
1444     // Replace latch terminator destinations.
1445     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1446     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1447 
1448     // Modify the latch branch of FC0 to be unconditional as both successors of
1449     // the branch are the same.
1450     simplifyLatchBranch(FC0);
1451 
1452     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1453     // performed the updates above.
1454     if (FC0.Latch != FC0.ExitingBlock)
1455       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1456           DominatorTree::Insert, FC0.Latch, FC1.Header));
1457 
1458     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1459                                                        FC0.Latch, FC0.Header));
1460     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1461                                                        FC1.Latch, FC0.Header));
1462     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1463                                                        FC1.Latch, FC1.Header));
1464 
1465     // Update DT/PDT
1466     DTU.applyUpdates(TreeUpdates);
1467 
1468     LI.removeBlock(FC1.Preheader);
1469     DTU.deleteBB(FC1.Preheader);
1470     if (FC0.Peeled) {
1471       LI.removeBlock(FC0.ExitBlock);
1472       DTU.deleteBB(FC0.ExitBlock);
1473     }
1474 
1475     DTU.flush();
1476 
1477     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1478     // and rebuild the information in subsequent passes of fusion?
1479     // Note: Need to forget the loops before merging the loop latches, as
1480     // mergeLatch may remove the only block in FC1.
1481     SE.forgetLoop(FC1.L);
1482     SE.forgetLoop(FC0.L);
1483 
1484     // Move instructions from FC0.Latch to FC1.Latch.
1485     // Note: mergeLatch requires an updated DT.
1486     mergeLatch(FC0, FC1);
1487 
1488     // Merge the loops.
1489     SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
1490     for (BasicBlock *BB : Blocks) {
1491       FC0.L->addBlockEntry(BB);
1492       FC1.L->removeBlockFromLoop(BB);
1493       if (LI.getLoopFor(BB) != FC1.L)
1494         continue;
1495       LI.changeLoopFor(BB, FC0.L);
1496     }
1497     while (!FC1.L->isInnermost()) {
1498       const auto &ChildLoopIt = FC1.L->begin();
1499       Loop *ChildLoop = *ChildLoopIt;
1500       FC1.L->removeChildLoop(ChildLoopIt);
1501       FC0.L->addChildLoop(ChildLoop);
1502     }
1503 
1504     // Delete the now empty loop L1.
1505     LI.erase(FC1.L);
1506 
1507 #ifndef NDEBUG
1508     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1509     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1510     assert(PDT.verify());
1511     LI.verify(DT);
1512     SE.verify();
1513 #endif
1514 
1515     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1516 
1517     return FC0.L;
1518   }
1519 
1520   /// Report details on loop fusion opportunities.
1521   ///
1522   /// This template function can be used to report both successful and missed
1523   /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1524   /// be one of:
1525   ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1526   ///     given two valid fusion candidates.
1527   ///   - OptimizationRemark to report successful fusion of two fusion
1528   ///     candidates.
1529   /// The remarks will be printed using the form:
1530   ///    <path/filename>:<line number>:<column number>: [<function name>]:
1531   ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1532   template <typename RemarkKind>
1533   void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1534                         llvm::Statistic &Stat) {
1535     assert(FC0.Preheader && FC1.Preheader &&
1536            "Expecting valid fusion candidates");
1537     using namespace ore;
1538 #if LLVM_ENABLE_STATS
1539     ++Stat;
1540     ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1541                         FC0.Preheader)
1542              << "[" << FC0.Preheader->getParent()->getName()
1543              << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1544              << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1545              << ": " << Stat.getDesc());
1546 #endif
1547   }
1548 
1549   /// Fuse two guarded fusion candidates, creating a new fused loop.
1550   ///
1551   /// Fusing guarded loops is handled much the same way as fusing non-guarded
1552   /// loops. The rewiring of the CFG is slightly different though, because of
1553   /// the presence of the guards around the loops and the exit blocks after the
1554   /// loop body. As such, the new loop is rewired as follows:
1555   ///    1. Keep the guard branch from FC0 and use the non-loop block target
1556   /// from the FC1 guard branch.
1557   ///    2. Remove the exit block from FC0 (this exit block should be empty
1558   /// right now).
1559   ///    3. Remove the guard branch for FC1
1560   ///    4. Remove the preheader for FC1.
1561   /// The exit block successor for the latch of FC0 is updated to be the header
1562   /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1563   /// be the header of FC0, thus creating the fused loop.
1564   Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1565                          const FusionCandidate &FC1) {
1566     assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1567 
1568     BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1569     BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1570     BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1571     BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1572     BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor();
1573 
1574     // Move instructions from the exit block of FC0 to the beginning of the exit
1575     // block of FC1, in the case that the FC0 loop has not been peeled. In the
1576     // case that FC0 loop is peeled, then move the instructions of the successor
1577     // of the FC0 Exit block to the beginning of the exit block of FC1.
1578     moveInstructionsToTheBeginning(
1579         (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
1580         DT, PDT, DI);
1581 
1582     // Move instructions from the guard block of FC1 to the end of the guard
1583     // block of FC0.
1584     moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
1585 
1586     assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1587 
1588     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1589 
1590     ////////////////////////////////////////////////////////////////////////////
1591     // Update the Loop Guard
1592     ////////////////////////////////////////////////////////////////////////////
1593     // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1594     // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1595     // Thus, one path from the guard goes to the preheader for FC0 (and thus
1596     // executes the new fused loop) and the other path goes to the NonLoopBlock
1597     // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1598     FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
1599     FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1600 
1601     BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
1602     BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header);
1603 
1604     // The guard of FC1 is not necessary anymore.
1605     FC1.GuardBranch->eraseFromParent();
1606     new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1607 
1608     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1609         DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1610     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1611         DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1612     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1613         DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1614     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1615         DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1616 
1617     if (FC0.Peeled) {
1618       // Remove the Block after the ExitBlock of FC0
1619       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1620           DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
1621       FC0ExitBlockSuccessor->getTerminator()->eraseFromParent();
1622       new UnreachableInst(FC0ExitBlockSuccessor->getContext(),
1623                           FC0ExitBlockSuccessor);
1624     }
1625 
1626     assert(pred_empty(FC1GuardBlock) &&
1627            "Expecting guard block to have no predecessors");
1628     assert(succ_empty(FC1GuardBlock) &&
1629            "Expecting guard block to have no successors");
1630 
1631     // Remember the phi nodes originally in the header of FC0 in order to rewire
1632     // them later. However, this is only necessary if the new loop carried
1633     // values might not dominate the exiting branch. While we do not generally
1634     // test if this is the case but simply insert intermediate phi nodes, we
1635     // need to make sure these intermediate phi nodes have different
1636     // predecessors. To this end, we filter the special case where the exiting
1637     // block is the latch block of the first loop. Nothing needs to be done
1638     // anyway as all loop carried values dominate the latch and thereby also the
1639     // exiting branch.
1640     // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1641     // (because the loops are rotated. Thus, nothing will ever be added to
1642     // OriginalFC0PHIs.
1643     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1644     if (FC0.ExitingBlock != FC0.Latch)
1645       for (PHINode &PHI : FC0.Header->phis())
1646         OriginalFC0PHIs.push_back(&PHI);
1647 
1648     assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1649 
1650     // Replace incoming blocks for header PHIs first.
1651     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1652     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1653 
1654     // The old exiting block of the first loop (FC0) has to jump to the header
1655     // of the second as we need to execute the code in the second header block
1656     // regardless of the trip count. That is, if the trip count is 0, so the
1657     // back edge is never taken, we still have to execute both loop headers,
1658     // especially (but not only!) if the second is a do-while style loop.
1659     // However, doing so might invalidate the phi nodes of the first loop as
1660     // the new values do only need to dominate their latch and not the exiting
1661     // predicate. To remedy this potential problem we always introduce phi
1662     // nodes in the header of the second loop later that select the loop carried
1663     // value, if the second header was reached through an old latch of the
1664     // first, or undef otherwise. This is sound as exiting the first implies the
1665     // second will exit too, __without__ taking the back-edge (their
1666     // trip-counts are equal after all).
1667     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1668                                                          FC1.Header);
1669 
1670     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1671         DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1672     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1673         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1674 
1675     // Remove FC0 Exit Block
1676     // The exit block for FC0 is no longer needed since control will flow
1677     // directly to the header of FC1. Since it is an empty block, it can be
1678     // removed at this point.
1679     // TODO: In the future, we can handle non-empty exit blocks my merging any
1680     // instructions from FC0 exit block into FC1 exit block prior to removing
1681     // the block.
1682     assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty");
1683     FC0.ExitBlock->getTerminator()->eraseFromParent();
1684     new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1685 
1686     // Remove FC1 Preheader
1687     // The pre-header of L1 is not necessary anymore.
1688     assert(pred_empty(FC1.Preheader));
1689     FC1.Preheader->getTerminator()->eraseFromParent();
1690     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1691     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1692         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1693 
1694     // Moves the phi nodes from the second to the first loops header block.
1695     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1696       if (SE.isSCEVable(PHI->getType()))
1697         SE.forgetValue(PHI);
1698       if (PHI->hasNUsesOrMore(1))
1699         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1700       else
1701         PHI->eraseFromParent();
1702     }
1703 
1704     // Introduce new phi nodes in the second loop header to ensure
1705     // exiting the first and jumping to the header of the second does not break
1706     // the SSA property of the phis originally in the first loop. See also the
1707     // comment above.
1708     Instruction *L1HeaderIP = &FC1.Header->front();
1709     for (PHINode *LCPHI : OriginalFC0PHIs) {
1710       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1711       assert(L1LatchBBIdx >= 0 &&
1712              "Expected loop carried value to be rewired at this point!");
1713 
1714       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1715 
1716       PHINode *L1HeaderPHI = PHINode::Create(
1717           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1718       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1719       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1720                                FC0.ExitingBlock);
1721 
1722       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1723     }
1724 
1725     // Update the latches
1726 
1727     // Replace latch terminator destinations.
1728     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1729     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1730 
1731     // Modify the latch branch of FC0 to be unconditional as both successors of
1732     // the branch are the same.
1733     simplifyLatchBranch(FC0);
1734 
1735     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1736     // performed the updates above.
1737     if (FC0.Latch != FC0.ExitingBlock)
1738       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1739           DominatorTree::Insert, FC0.Latch, FC1.Header));
1740 
1741     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1742                                                        FC0.Latch, FC0.Header));
1743     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1744                                                        FC1.Latch, FC0.Header));
1745     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1746                                                        FC1.Latch, FC1.Header));
1747 
1748     // All done
1749     // Apply the updates to the Dominator Tree and cleanup.
1750 
1751     assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!");
1752     assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!");
1753 
1754     // Update DT/PDT
1755     DTU.applyUpdates(TreeUpdates);
1756 
1757     LI.removeBlock(FC1GuardBlock);
1758     LI.removeBlock(FC1.Preheader);
1759     LI.removeBlock(FC0.ExitBlock);
1760     if (FC0.Peeled) {
1761       LI.removeBlock(FC0ExitBlockSuccessor);
1762       DTU.deleteBB(FC0ExitBlockSuccessor);
1763     }
1764     DTU.deleteBB(FC1GuardBlock);
1765     DTU.deleteBB(FC1.Preheader);
1766     DTU.deleteBB(FC0.ExitBlock);
1767     DTU.flush();
1768 
1769     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1770     // and rebuild the information in subsequent passes of fusion?
1771     // Note: Need to forget the loops before merging the loop latches, as
1772     // mergeLatch may remove the only block in FC1.
1773     SE.forgetLoop(FC1.L);
1774     SE.forgetLoop(FC0.L);
1775 
1776     // Move instructions from FC0.Latch to FC1.Latch.
1777     // Note: mergeLatch requires an updated DT.
1778     mergeLatch(FC0, FC1);
1779 
1780     // Merge the loops.
1781     SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
1782     for (BasicBlock *BB : Blocks) {
1783       FC0.L->addBlockEntry(BB);
1784       FC1.L->removeBlockFromLoop(BB);
1785       if (LI.getLoopFor(BB) != FC1.L)
1786         continue;
1787       LI.changeLoopFor(BB, FC0.L);
1788     }
1789     while (!FC1.L->isInnermost()) {
1790       const auto &ChildLoopIt = FC1.L->begin();
1791       Loop *ChildLoop = *ChildLoopIt;
1792       FC1.L->removeChildLoop(ChildLoopIt);
1793       FC0.L->addChildLoop(ChildLoop);
1794     }
1795 
1796     // Delete the now empty loop L1.
1797     LI.erase(FC1.L);
1798 
1799 #ifndef NDEBUG
1800     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1801     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1802     assert(PDT.verify());
1803     LI.verify(DT);
1804     SE.verify();
1805 #endif
1806 
1807     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1808 
1809     return FC0.L;
1810   }
1811 };
1812 
1813 struct LoopFuseLegacy : public FunctionPass {
1814 
1815   static char ID;
1816 
1817   LoopFuseLegacy() : FunctionPass(ID) {
1818     initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1819   }
1820 
1821   void getAnalysisUsage(AnalysisUsage &AU) const override {
1822     AU.addRequiredID(LoopSimplifyID);
1823     AU.addRequired<ScalarEvolutionWrapperPass>();
1824     AU.addRequired<LoopInfoWrapperPass>();
1825     AU.addRequired<DominatorTreeWrapperPass>();
1826     AU.addRequired<PostDominatorTreeWrapperPass>();
1827     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1828     AU.addRequired<DependenceAnalysisWrapperPass>();
1829     AU.addRequired<AssumptionCacheTracker>();
1830     AU.addRequired<TargetTransformInfoWrapperPass>();
1831 
1832     AU.addPreserved<ScalarEvolutionWrapperPass>();
1833     AU.addPreserved<LoopInfoWrapperPass>();
1834     AU.addPreserved<DominatorTreeWrapperPass>();
1835     AU.addPreserved<PostDominatorTreeWrapperPass>();
1836   }
1837 
1838   bool runOnFunction(Function &F) override {
1839     if (skipFunction(F))
1840       return false;
1841     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1842     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1843     auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1844     auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1845     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1846     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1847     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1848     const TargetTransformInfo &TTI =
1849         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1850     const DataLayout &DL = F.getParent()->getDataLayout();
1851 
1852     LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
1853     return LF.fuseLoops(F);
1854   }
1855 };
1856 } // namespace
1857 
1858 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1859   auto &LI = AM.getResult<LoopAnalysis>(F);
1860   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1861   auto &DI = AM.getResult<DependenceAnalysis>(F);
1862   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1863   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1864   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1865   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1866   const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
1867   const DataLayout &DL = F.getParent()->getDataLayout();
1868 
1869   LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
1870   bool Changed = LF.fuseLoops(F);
1871   if (!Changed)
1872     return PreservedAnalyses::all();
1873 
1874   PreservedAnalyses PA;
1875   PA.preserve<DominatorTreeAnalysis>();
1876   PA.preserve<PostDominatorTreeAnalysis>();
1877   PA.preserve<ScalarEvolutionAnalysis>();
1878   PA.preserve<LoopAnalysis>();
1879   return PA;
1880 }
1881 
1882 char LoopFuseLegacy::ID = 0;
1883 
1884 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1885                       false)
1886 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1887 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1888 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1889 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1890 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1891 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1892 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1893 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1894 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1895 
1896 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
1897