xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFuse.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the loop fusion pass.
11 /// The implementation is largely based on the following document:
12 ///
13 ///       Code Transformations to Augment the Scope of Loop Fusion in a
14 ///         Production Compiler
15 ///       Christopher Mark Barton
16 ///       MSc Thesis
17 ///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18 ///
19 /// The general approach taken is to collect sets of control flow equivalent
20 /// loops and test whether they can be fused. The necessary conditions for
21 /// fusion are:
22 ///    1. The loops must be adjacent (there cannot be any statements between
23 ///       the two loops).
24 ///    2. The loops must be conforming (they must execute the same number of
25 ///       iterations).
26 ///    3. The loops must be control flow equivalent (if one loop executes, the
27 ///       other is guaranteed to execute).
28 ///    4. There cannot be any negative distance dependencies between the loops.
29 /// If all of these conditions are satisfied, it is safe to fuse the loops.
30 ///
31 /// This implementation creates FusionCandidates that represent the loop and the
32 /// necessary information needed by fusion. It then operates on the fusion
33 /// candidates, first confirming that the candidate is eligible for fusion. The
34 /// candidates are then collected into control flow equivalent sets, sorted in
35 /// dominance order. Each set of control flow equivalent candidates is then
36 /// traversed, attempting to fuse pairs of candidates in the set. If all
37 /// requirements for fusion are met, the two candidates are fused, creating a
38 /// new (fused) candidate which is then added back into the set to consider for
39 /// additional fusion.
40 ///
41 /// This implementation currently does not make any modifications to remove
42 /// conditions for fusion. Code transformations to make loops conform to each of
43 /// the conditions for fusion are discussed in more detail in the document
44 /// above. These can be added to the current implementation in the future.
45 //===----------------------------------------------------------------------===//
46 
47 #include "llvm/Transforms/Scalar/LoopFuse.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/AssumptionCache.h"
50 #include "llvm/Analysis/DependenceAnalysis.h"
51 #include "llvm/Analysis/DomTreeUpdater.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/PostDominators.h"
55 #include "llvm/Analysis/ScalarEvolution.h"
56 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
57 #include "llvm/Analysis/TargetTransformInfo.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/Verifier.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/CodeMoverUtils.h"
69 #include "llvm/Transforms/Utils/LoopPeel.h"
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "loop-fusion"
74 
75 STATISTIC(FuseCounter, "Loops fused");
76 STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
77 STATISTIC(InvalidPreheader, "Loop has invalid preheader");
78 STATISTIC(InvalidHeader, "Loop has invalid header");
79 STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
80 STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
81 STATISTIC(InvalidLatch, "Loop has invalid latch");
82 STATISTIC(InvalidLoop, "Loop is invalid");
83 STATISTIC(AddressTakenBB, "Basic block has address taken");
84 STATISTIC(MayThrowException, "Loop may throw an exception");
85 STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
86 STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
87 STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
88 STATISTIC(UnknownTripCount, "Loop has unknown trip count");
89 STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
90 STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
91 STATISTIC(NonAdjacent, "Loops are not adjacent");
92 STATISTIC(
93     NonEmptyPreheader,
94     "Loop has a non-empty preheader with instructions that cannot be moved");
95 STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
96 STATISTIC(NonIdenticalGuards, "Candidates have different guards");
97 STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
98                              "instructions that cannot be moved");
99 STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
100                               "instructions that cannot be moved");
101 STATISTIC(NotRotated, "Candidate is not rotated");
102 
103 enum FusionDependenceAnalysisChoice {
104   FUSION_DEPENDENCE_ANALYSIS_SCEV,
105   FUSION_DEPENDENCE_ANALYSIS_DA,
106   FUSION_DEPENDENCE_ANALYSIS_ALL,
107 };
108 
109 static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
110     "loop-fusion-dependence-analysis",
111     cl::desc("Which dependence analysis should loop fusion use?"),
112     cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
113                           "Use the scalar evolution interface"),
114                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
115                           "Use the dependence analysis interface"),
116                clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
117                           "Use all available analyses")),
118     cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
119 
120 static cl::opt<unsigned> FusionPeelMaxCount(
121     "loop-fusion-peel-max-count", cl::init(0), cl::Hidden,
122     cl::desc("Max number of iterations to be peeled from a loop, such that "
123              "fusion can take place"));
124 
125 #ifndef NDEBUG
126 static cl::opt<bool>
127     VerboseFusionDebugging("loop-fusion-verbose-debug",
128                            cl::desc("Enable verbose debugging for Loop Fusion"),
129                            cl::Hidden, cl::init(false), cl::ZeroOrMore);
130 #endif
131 
132 namespace {
133 /// This class is used to represent a candidate for loop fusion. When it is
134 /// constructed, it checks the conditions for loop fusion to ensure that it
135 /// represents a valid candidate. It caches several parts of a loop that are
136 /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
137 /// of continually querying the underlying Loop to retrieve these values. It is
138 /// assumed these will not change throughout loop fusion.
139 ///
140 /// The invalidate method should be used to indicate that the FusionCandidate is
141 /// no longer a valid candidate for fusion. Similarly, the isValid() method can
142 /// be used to ensure that the FusionCandidate is still valid for fusion.
143 struct FusionCandidate {
144   /// Cache of parts of the loop used throughout loop fusion. These should not
145   /// need to change throughout the analysis and transformation.
146   /// These parts are cached to avoid repeatedly looking up in the Loop class.
147 
148   /// Preheader of the loop this candidate represents
149   BasicBlock *Preheader;
150   /// Header of the loop this candidate represents
151   BasicBlock *Header;
152   /// Blocks in the loop that exit the loop
153   BasicBlock *ExitingBlock;
154   /// The successor block of this loop (where the exiting blocks go to)
155   BasicBlock *ExitBlock;
156   /// Latch of the loop
157   BasicBlock *Latch;
158   /// The loop that this fusion candidate represents
159   Loop *L;
160   /// Vector of instructions in this loop that read from memory
161   SmallVector<Instruction *, 16> MemReads;
162   /// Vector of instructions in this loop that write to memory
163   SmallVector<Instruction *, 16> MemWrites;
164   /// Are all of the members of this fusion candidate still valid
165   bool Valid;
166   /// Guard branch of the loop, if it exists
167   BranchInst *GuardBranch;
168   /// Peeling Paramaters of the Loop.
169   TTI::PeelingPreferences PP;
170   /// Can you Peel this Loop?
171   bool AbleToPeel;
172   /// Has this loop been Peeled
173   bool Peeled;
174 
175   /// Dominator and PostDominator trees are needed for the
176   /// FusionCandidateCompare function, required by FusionCandidateSet to
177   /// determine where the FusionCandidate should be inserted into the set. These
178   /// are used to establish ordering of the FusionCandidates based on dominance.
179   const DominatorTree *DT;
180   const PostDominatorTree *PDT;
181 
182   OptimizationRemarkEmitter &ORE;
183 
184   FusionCandidate(Loop *L, const DominatorTree *DT,
185                   const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE,
186                   TTI::PeelingPreferences PP)
187       : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
188         ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
189         Latch(L->getLoopLatch()), L(L), Valid(true),
190         GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)),
191         Peeled(false), DT(DT), PDT(PDT), ORE(ORE) {
192 
193     // Walk over all blocks in the loop and check for conditions that may
194     // prevent fusion. For each block, walk over all instructions and collect
195     // the memory reads and writes If any instructions that prevent fusion are
196     // found, invalidate this object and return.
197     for (BasicBlock *BB : L->blocks()) {
198       if (BB->hasAddressTaken()) {
199         invalidate();
200         reportInvalidCandidate(AddressTakenBB);
201         return;
202       }
203 
204       for (Instruction &I : *BB) {
205         if (I.mayThrow()) {
206           invalidate();
207           reportInvalidCandidate(MayThrowException);
208           return;
209         }
210         if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
211           if (SI->isVolatile()) {
212             invalidate();
213             reportInvalidCandidate(ContainsVolatileAccess);
214             return;
215           }
216         }
217         if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
218           if (LI->isVolatile()) {
219             invalidate();
220             reportInvalidCandidate(ContainsVolatileAccess);
221             return;
222           }
223         }
224         if (I.mayWriteToMemory())
225           MemWrites.push_back(&I);
226         if (I.mayReadFromMemory())
227           MemReads.push_back(&I);
228       }
229     }
230   }
231 
232   /// Check if all members of the class are valid.
233   bool isValid() const {
234     return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
235            !L->isInvalid() && Valid;
236   }
237 
238   /// Verify that all members are in sync with the Loop object.
239   void verify() const {
240     assert(isValid() && "Candidate is not valid!!");
241     assert(!L->isInvalid() && "Loop is invalid!");
242     assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
243     assert(Header == L->getHeader() && "Header is out of sync");
244     assert(ExitingBlock == L->getExitingBlock() &&
245            "Exiting Blocks is out of sync");
246     assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
247     assert(Latch == L->getLoopLatch() && "Latch is out of sync");
248   }
249 
250   /// Get the entry block for this fusion candidate.
251   ///
252   /// If this fusion candidate represents a guarded loop, the entry block is the
253   /// loop guard block. If it represents an unguarded loop, the entry block is
254   /// the preheader of the loop.
255   BasicBlock *getEntryBlock() const {
256     if (GuardBranch)
257       return GuardBranch->getParent();
258     else
259       return Preheader;
260   }
261 
262   /// After Peeling the loop is modified quite a bit, hence all of the Blocks
263   /// need to be updated accordingly.
264   void updateAfterPeeling() {
265     Preheader = L->getLoopPreheader();
266     Header = L->getHeader();
267     ExitingBlock = L->getExitingBlock();
268     ExitBlock = L->getExitBlock();
269     Latch = L->getLoopLatch();
270     verify();
271   }
272 
273   /// Given a guarded loop, get the successor of the guard that is not in the
274   /// loop.
275   ///
276   /// This method returns the successor of the loop guard that is not located
277   /// within the loop (i.e., the successor of the guard that is not the
278   /// preheader).
279   /// This method is only valid for guarded loops.
280   BasicBlock *getNonLoopBlock() const {
281     assert(GuardBranch && "Only valid on guarded loops.");
282     assert(GuardBranch->isConditional() &&
283            "Expecting guard to be a conditional branch.");
284     if (Peeled)
285       return GuardBranch->getSuccessor(1);
286     return (GuardBranch->getSuccessor(0) == Preheader)
287                ? GuardBranch->getSuccessor(1)
288                : GuardBranch->getSuccessor(0);
289   }
290 
291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
292   LLVM_DUMP_METHOD void dump() const {
293     dbgs() << "\tGuardBranch: ";
294     if (GuardBranch)
295       dbgs() << *GuardBranch;
296     else
297       dbgs() << "nullptr";
298     dbgs() << "\n"
299            << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
300            << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
301            << "\n"
302            << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
303            << "\tExitingBB: "
304            << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
305            << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
306            << "\n"
307            << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
308            << "\tEntryBlock: "
309            << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
310            << "\n";
311   }
312 #endif
313 
314   /// Determine if a fusion candidate (representing a loop) is eligible for
315   /// fusion. Note that this only checks whether a single loop can be fused - it
316   /// does not check whether it is *legal* to fuse two loops together.
317   bool isEligibleForFusion(ScalarEvolution &SE) const {
318     if (!isValid()) {
319       LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
320       if (!Preheader)
321         ++InvalidPreheader;
322       if (!Header)
323         ++InvalidHeader;
324       if (!ExitingBlock)
325         ++InvalidExitingBlock;
326       if (!ExitBlock)
327         ++InvalidExitBlock;
328       if (!Latch)
329         ++InvalidLatch;
330       if (L->isInvalid())
331         ++InvalidLoop;
332 
333       return false;
334     }
335 
336     // Require ScalarEvolution to be able to determine a trip count.
337     if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
338       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
339                         << " trip count not computable!\n");
340       return reportInvalidCandidate(UnknownTripCount);
341     }
342 
343     if (!L->isLoopSimplifyForm()) {
344       LLVM_DEBUG(dbgs() << "Loop " << L->getName()
345                         << " is not in simplified form!\n");
346       return reportInvalidCandidate(NotSimplifiedForm);
347     }
348 
349     if (!L->isRotatedForm()) {
350       LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
351       return reportInvalidCandidate(NotRotated);
352     }
353 
354     return true;
355   }
356 
357 private:
358   // This is only used internally for now, to clear the MemWrites and MemReads
359   // list and setting Valid to false. I can't envision other uses of this right
360   // now, since once FusionCandidates are put into the FusionCandidateSet they
361   // are immutable. Thus, any time we need to change/update a FusionCandidate,
362   // we must create a new one and insert it into the FusionCandidateSet to
363   // ensure the FusionCandidateSet remains ordered correctly.
364   void invalidate() {
365     MemWrites.clear();
366     MemReads.clear();
367     Valid = false;
368   }
369 
370   bool reportInvalidCandidate(llvm::Statistic &Stat) const {
371     using namespace ore;
372     assert(L && Preheader && "Fusion candidate not initialized properly!");
373     ++Stat;
374     ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
375                                         L->getStartLoc(), Preheader)
376              << "[" << Preheader->getParent()->getName() << "]: "
377              << "Loop is not a candidate for fusion: " << Stat.getDesc());
378     return false;
379   }
380 };
381 
382 struct FusionCandidateCompare {
383   /// Comparison functor to sort two Control Flow Equivalent fusion candidates
384   /// into dominance order.
385   /// If LHS dominates RHS and RHS post-dominates LHS, return true;
386   /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
387   bool operator()(const FusionCandidate &LHS,
388                   const FusionCandidate &RHS) const {
389     const DominatorTree *DT = LHS.DT;
390 
391     BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
392     BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
393 
394     // Do not save PDT to local variable as it is only used in asserts and thus
395     // will trigger an unused variable warning if building without asserts.
396     assert(DT && LHS.PDT && "Expecting valid dominator tree");
397 
398     // Do this compare first so if LHS == RHS, function returns false.
399     if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
400       // RHS dominates LHS
401       // Verify LHS post-dominates RHS
402       assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
403       return false;
404     }
405 
406     if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
407       // Verify RHS Postdominates LHS
408       assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
409       return true;
410     }
411 
412     // If LHS does not dominate RHS and RHS does not dominate LHS then there is
413     // no dominance relationship between the two FusionCandidates. Thus, they
414     // should not be in the same set together.
415     llvm_unreachable(
416         "No dominance relationship between these fusion candidates!");
417   }
418 };
419 
420 using LoopVector = SmallVector<Loop *, 4>;
421 
422 // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
423 // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
424 // dominates FC1 and FC1 post-dominates FC0.
425 // std::set was chosen because we want a sorted data structure with stable
426 // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
427 // loops by moving intervening code around. When this intervening code contains
428 // loops, those loops will be moved also. The corresponding FusionCandidates
429 // will also need to be moved accordingly. As this is done, having stable
430 // iterators will simplify the logic. Similarly, having an efficient insert that
431 // keeps the FusionCandidateSet sorted will also simplify the implementation.
432 using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
433 using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
434 
435 #if !defined(NDEBUG)
436 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
437                                      const FusionCandidate &FC) {
438   if (FC.isValid())
439     OS << FC.Preheader->getName();
440   else
441     OS << "<Invalid>";
442 
443   return OS;
444 }
445 
446 static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
447                                      const FusionCandidateSet &CandSet) {
448   for (const FusionCandidate &FC : CandSet)
449     OS << FC << '\n';
450 
451   return OS;
452 }
453 
454 static void
455 printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
456   dbgs() << "Fusion Candidates: \n";
457   for (const auto &CandidateSet : FusionCandidates) {
458     dbgs() << "*** Fusion Candidate Set ***\n";
459     dbgs() << CandidateSet;
460     dbgs() << "****************************\n";
461   }
462 }
463 #endif
464 
465 /// Collect all loops in function at the same nest level, starting at the
466 /// outermost level.
467 ///
468 /// This data structure collects all loops at the same nest level for a
469 /// given function (specified by the LoopInfo object). It starts at the
470 /// outermost level.
471 struct LoopDepthTree {
472   using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
473   using iterator = LoopsOnLevelTy::iterator;
474   using const_iterator = LoopsOnLevelTy::const_iterator;
475 
476   LoopDepthTree(LoopInfo &LI) : Depth(1) {
477     if (!LI.empty())
478       LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
479   }
480 
481   /// Test whether a given loop has been removed from the function, and thus is
482   /// no longer valid.
483   bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
484 
485   /// Record that a given loop has been removed from the function and is no
486   /// longer valid.
487   void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
488 
489   /// Descend the tree to the next (inner) nesting level
490   void descend() {
491     LoopsOnLevelTy LoopsOnNextLevel;
492 
493     for (const LoopVector &LV : *this)
494       for (Loop *L : LV)
495         if (!isRemovedLoop(L) && L->begin() != L->end())
496           LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
497 
498     LoopsOnLevel = LoopsOnNextLevel;
499     RemovedLoops.clear();
500     Depth++;
501   }
502 
503   bool empty() const { return size() == 0; }
504   size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
505   unsigned getDepth() const { return Depth; }
506 
507   iterator begin() { return LoopsOnLevel.begin(); }
508   iterator end() { return LoopsOnLevel.end(); }
509   const_iterator begin() const { return LoopsOnLevel.begin(); }
510   const_iterator end() const { return LoopsOnLevel.end(); }
511 
512 private:
513   /// Set of loops that have been removed from the function and are no longer
514   /// valid.
515   SmallPtrSet<const Loop *, 8> RemovedLoops;
516 
517   /// Depth of the current level, starting at 1 (outermost loops).
518   unsigned Depth;
519 
520   /// Vector of loops at the current depth level that have the same parent loop
521   LoopsOnLevelTy LoopsOnLevel;
522 };
523 
524 #ifndef NDEBUG
525 static void printLoopVector(const LoopVector &LV) {
526   dbgs() << "****************************\n";
527   for (auto L : LV)
528     printLoop(*L, dbgs());
529   dbgs() << "****************************\n";
530 }
531 #endif
532 
533 struct LoopFuser {
534 private:
535   // Sets of control flow equivalent fusion candidates for a given nest level.
536   FusionCandidateCollection FusionCandidates;
537 
538   LoopDepthTree LDT;
539   DomTreeUpdater DTU;
540 
541   LoopInfo &LI;
542   DominatorTree &DT;
543   DependenceInfo &DI;
544   ScalarEvolution &SE;
545   PostDominatorTree &PDT;
546   OptimizationRemarkEmitter &ORE;
547   AssumptionCache &AC;
548 
549   const TargetTransformInfo &TTI;
550 
551 public:
552   LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
553             ScalarEvolution &SE, PostDominatorTree &PDT,
554             OptimizationRemarkEmitter &ORE, const DataLayout &DL,
555             AssumptionCache &AC, const TargetTransformInfo &TTI)
556       : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
557         DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}
558 
559   /// This is the main entry point for loop fusion. It will traverse the
560   /// specified function and collect candidate loops to fuse, starting at the
561   /// outermost nesting level and working inwards.
562   bool fuseLoops(Function &F) {
563 #ifndef NDEBUG
564     if (VerboseFusionDebugging) {
565       LI.print(dbgs());
566     }
567 #endif
568 
569     LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
570                       << "\n");
571     bool Changed = false;
572 
573     while (!LDT.empty()) {
574       LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
575                         << LDT.getDepth() << "\n";);
576 
577       for (const LoopVector &LV : LDT) {
578         assert(LV.size() > 0 && "Empty loop set was build!");
579 
580         // Skip singleton loop sets as they do not offer fusion opportunities on
581         // this level.
582         if (LV.size() == 1)
583           continue;
584 #ifndef NDEBUG
585         if (VerboseFusionDebugging) {
586           LLVM_DEBUG({
587             dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
588             printLoopVector(LV);
589           });
590         }
591 #endif
592 
593         collectFusionCandidates(LV);
594         Changed |= fuseCandidates();
595       }
596 
597       // Finished analyzing candidates at this level.
598       // Descend to the next level and clear all of the candidates currently
599       // collected. Note that it will not be possible to fuse any of the
600       // existing candidates with new candidates because the new candidates will
601       // be at a different nest level and thus not be control flow equivalent
602       // with all of the candidates collected so far.
603       LLVM_DEBUG(dbgs() << "Descend one level!\n");
604       LDT.descend();
605       FusionCandidates.clear();
606     }
607 
608     if (Changed)
609       LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
610 
611 #ifndef NDEBUG
612     assert(DT.verify());
613     assert(PDT.verify());
614     LI.verify(DT);
615     SE.verify();
616 #endif
617 
618     LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
619     return Changed;
620   }
621 
622 private:
623   /// Determine if two fusion candidates are control flow equivalent.
624   ///
625   /// Two fusion candidates are control flow equivalent if when one executes,
626   /// the other is guaranteed to execute. This is determined using dominators
627   /// and post-dominators: if A dominates B and B post-dominates A then A and B
628   /// are control-flow equivalent.
629   bool isControlFlowEquivalent(const FusionCandidate &FC0,
630                                const FusionCandidate &FC1) const {
631     assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
632 
633     return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
634                                      DT, PDT);
635   }
636 
637   /// Iterate over all loops in the given loop set and identify the loops that
638   /// are eligible for fusion. Place all eligible fusion candidates into Control
639   /// Flow Equivalent sets, sorted by dominance.
640   void collectFusionCandidates(const LoopVector &LV) {
641     for (Loop *L : LV) {
642       TTI::PeelingPreferences PP =
643           gatherPeelingPreferences(L, SE, TTI, None, None);
644       FusionCandidate CurrCand(L, &DT, &PDT, ORE, PP);
645       if (!CurrCand.isEligibleForFusion(SE))
646         continue;
647 
648       // Go through each list in FusionCandidates and determine if L is control
649       // flow equivalent with the first loop in that list. If it is, append LV.
650       // If not, go to the next list.
651       // If no suitable list is found, start another list and add it to
652       // FusionCandidates.
653       bool FoundSet = false;
654 
655       for (auto &CurrCandSet : FusionCandidates) {
656         if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
657           CurrCandSet.insert(CurrCand);
658           FoundSet = true;
659 #ifndef NDEBUG
660           if (VerboseFusionDebugging)
661             LLVM_DEBUG(dbgs() << "Adding " << CurrCand
662                               << " to existing candidate set\n");
663 #endif
664           break;
665         }
666       }
667       if (!FoundSet) {
668         // No set was found. Create a new set and add to FusionCandidates
669 #ifndef NDEBUG
670         if (VerboseFusionDebugging)
671           LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
672 #endif
673         FusionCandidateSet NewCandSet;
674         NewCandSet.insert(CurrCand);
675         FusionCandidates.push_back(NewCandSet);
676       }
677       NumFusionCandidates++;
678     }
679   }
680 
681   /// Determine if it is beneficial to fuse two loops.
682   ///
683   /// For now, this method simply returns true because we want to fuse as much
684   /// as possible (primarily to test the pass). This method will evolve, over
685   /// time, to add heuristics for profitability of fusion.
686   bool isBeneficialFusion(const FusionCandidate &FC0,
687                           const FusionCandidate &FC1) {
688     return true;
689   }
690 
691   /// Determine if two fusion candidates have the same trip count (i.e., they
692   /// execute the same number of iterations).
693   ///
694   /// This function will return a pair of values. The first is a boolean,
695   /// stating whether or not the two candidates are known at compile time to
696   /// have the same TripCount. The second is the difference in the two
697   /// TripCounts. This information can be used later to determine whether or not
698   /// peeling can be performed on either one of the candiates.
699   std::pair<bool, Optional<unsigned>>
700   haveIdenticalTripCounts(const FusionCandidate &FC0,
701                           const FusionCandidate &FC1) const {
702 
703     const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
704     if (isa<SCEVCouldNotCompute>(TripCount0)) {
705       UncomputableTripCount++;
706       LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
707       return {false, None};
708     }
709 
710     const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
711     if (isa<SCEVCouldNotCompute>(TripCount1)) {
712       UncomputableTripCount++;
713       LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
714       return {false, None};
715     }
716 
717     LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
718                       << *TripCount1 << " are "
719                       << (TripCount0 == TripCount1 ? "identical" : "different")
720                       << "\n");
721 
722     if (TripCount0 == TripCount1)
723       return {true, 0};
724 
725     LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, "
726                          "determining the difference between trip counts\n");
727 
728     // Currently only considering loops with a single exit point
729     // and a non-constant trip count.
730     const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
731     const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);
732 
733     // If any of the tripcounts are zero that means that loop(s) do not have
734     // a single exit or a constant tripcount.
735     if (TC0 == 0 || TC1 == 0) {
736       LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not "
737                            "have a constant number of iterations. Peeling "
738                            "is not benefical\n");
739       return {false, None};
740     }
741 
742     Optional<unsigned> Difference = None;
743     int Diff = TC0 - TC1;
744 
745     if (Diff > 0)
746       Difference = Diff;
747     else {
748       LLVM_DEBUG(
749           dbgs() << "Difference is less than 0. FC1 (second loop) has more "
750                     "iterations than the first one. Currently not supported\n");
751     }
752 
753     LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference
754                       << "\n");
755 
756     return {false, Difference};
757   }
758 
759   void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1,
760                            unsigned PeelCount) {
761     assert(FC0.AbleToPeel && "Should be able to peel loop");
762 
763     LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount
764                       << " iterations of the first loop. \n");
765 
766     FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, &DT, &AC, true);
767     if (FC0.Peeled) {
768       LLVM_DEBUG(dbgs() << "Done Peeling\n");
769 
770 #ifndef NDEBUG
771       auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);
772 
773       assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
774              "Loops should have identical trip counts after peeling");
775 #endif
776 
777       FC0.PP.PeelCount += PeelCount;
778 
779       // Peeling does not update the PDT
780       PDT.recalculate(*FC0.Preheader->getParent());
781 
782       FC0.updateAfterPeeling();
783 
784       // In this case the iterations of the loop are constant, so the first
785       // loop will execute completely (will not jump from one of
786       // the peeled blocks to the second loop). Here we are updating the
787       // branch conditions of each of the peeled blocks, such that it will
788       // branch to its successor which is not the preheader of the second loop
789       // in the case of unguarded loops, or the succesors of the exit block of
790       // the first loop otherwise. Doing this update will ensure that the entry
791       // block of the first loop dominates the entry block of the second loop.
792       BasicBlock *BB =
793           FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader;
794       if (BB) {
795         SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
796         SmallVector<Instruction *, 8> WorkList;
797         for (BasicBlock *Pred : predecessors(BB)) {
798           if (Pred != FC0.ExitBlock) {
799             WorkList.emplace_back(Pred->getTerminator());
800             TreeUpdates.emplace_back(
801                 DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
802           }
803         }
804         // Cannot modify the predecessors inside the above loop as it will cause
805         // the iterators to be nullptrs, causing memory errors.
806         for (Instruction *CurrentBranch: WorkList) {
807           BasicBlock *Succ = CurrentBranch->getSuccessor(0);
808           if (Succ == BB)
809             Succ = CurrentBranch->getSuccessor(1);
810           ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ));
811         }
812 
813         DTU.applyUpdates(TreeUpdates);
814         DTU.flush();
815       }
816       LLVM_DEBUG(
817           dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount
818                  << " iterations from the first loop.\n"
819                     "Both Loops have the same number of iterations now.\n");
820     }
821   }
822 
823   /// Walk each set of control flow equivalent fusion candidates and attempt to
824   /// fuse them. This does a single linear traversal of all candidates in the
825   /// set. The conditions for legal fusion are checked at this point. If a pair
826   /// of fusion candidates passes all legality checks, they are fused together
827   /// and a new fusion candidate is created and added to the FusionCandidateSet.
828   /// The original fusion candidates are then removed, as they are no longer
829   /// valid.
830   bool fuseCandidates() {
831     bool Fused = false;
832     LLVM_DEBUG(printFusionCandidates(FusionCandidates));
833     for (auto &CandidateSet : FusionCandidates) {
834       if (CandidateSet.size() < 2)
835         continue;
836 
837       LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
838                         << CandidateSet << "\n");
839 
840       for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
841         assert(!LDT.isRemovedLoop(FC0->L) &&
842                "Should not have removed loops in CandidateSet!");
843         auto FC1 = FC0;
844         for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
845           assert(!LDT.isRemovedLoop(FC1->L) &&
846                  "Should not have removed loops in CandidateSet!");
847 
848           LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
849                      dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
850 
851           FC0->verify();
852           FC1->verify();
853 
854           // Check if the candidates have identical tripcounts (first value of
855           // pair), and if not check the difference in the tripcounts between
856           // the loops (second value of pair). The difference is not equal to
857           // None iff the loops iterate a constant number of times, and have a
858           // single exit.
859           std::pair<bool, Optional<unsigned>> IdenticalTripCountRes =
860               haveIdenticalTripCounts(*FC0, *FC1);
861           bool SameTripCount = IdenticalTripCountRes.first;
862           Optional<unsigned> TCDifference = IdenticalTripCountRes.second;
863 
864           // Here we are checking that FC0 (the first loop) can be peeled, and
865           // both loops have different tripcounts.
866           if (FC0->AbleToPeel && !SameTripCount && TCDifference) {
867             if (*TCDifference > FusionPeelMaxCount) {
868               LLVM_DEBUG(dbgs()
869                          << "Difference in loop trip counts: " << *TCDifference
870                          << " is greater than maximum peel count specificed: "
871                          << FusionPeelMaxCount << "\n");
872             } else {
873               // Dependent on peeling being performed on the first loop, and
874               // assuming all other conditions for fusion return true.
875               SameTripCount = true;
876             }
877           }
878 
879           if (!SameTripCount) {
880             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
881                                  "counts. Not fusing.\n");
882             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
883                                                        NonEqualTripCount);
884             continue;
885           }
886 
887           if (!isAdjacent(*FC0, *FC1)) {
888             LLVM_DEBUG(dbgs()
889                        << "Fusion candidates are not adjacent. Not fusing.\n");
890             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
891             continue;
892           }
893 
894           // Ensure that FC0 and FC1 have identical guards.
895           // If one (or both) are not guarded, this check is not necessary.
896           if (FC0->GuardBranch && FC1->GuardBranch &&
897               !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) {
898             LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
899                                  "guards. Not Fusing.\n");
900             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
901                                                        NonIdenticalGuards);
902             continue;
903           }
904 
905           if (!isSafeToMoveBefore(*FC1->Preheader,
906                                   *FC0->Preheader->getTerminator(), DT, &PDT,
907                                   &DI)) {
908             LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
909                                  "instructions in preheader. Not fusing.\n");
910             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
911                                                        NonEmptyPreheader);
912             continue;
913           }
914 
915           if (FC0->GuardBranch) {
916             assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");
917 
918             if (!isSafeToMoveBefore(*FC0->ExitBlock,
919                                     *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
920                                     &PDT, &DI)) {
921               LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
922                                    "instructions in exit block. Not fusing.\n");
923               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
924                                                          NonEmptyExitBlock);
925               continue;
926             }
927 
928             if (!isSafeToMoveBefore(
929                     *FC1->GuardBranch->getParent(),
930                     *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
931                     &DI)) {
932               LLVM_DEBUG(dbgs()
933                          << "Fusion candidate contains unsafe "
934                             "instructions in guard block. Not fusing.\n");
935               reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
936                                                          NonEmptyGuardBlock);
937               continue;
938             }
939           }
940 
941           // Check the dependencies across the loops and do not fuse if it would
942           // violate them.
943           if (!dependencesAllowFusion(*FC0, *FC1)) {
944             LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
945             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
946                                                        InvalidDependencies);
947             continue;
948           }
949 
950           bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
951           LLVM_DEBUG(dbgs()
952                      << "\tFusion appears to be "
953                      << (BeneficialToFuse ? "" : "un") << "profitable!\n");
954           if (!BeneficialToFuse) {
955             reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
956                                                        FusionNotBeneficial);
957             continue;
958           }
959           // All analysis has completed and has determined that fusion is legal
960           // and profitable. At this point, start transforming the code and
961           // perform fusion.
962 
963           LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
964                             << *FC1 << "\n");
965 
966           FusionCandidate FC0Copy = *FC0;
967           // Peel the loop after determining that fusion is legal. The Loops
968           // will still be safe to fuse after the peeling is performed.
969           bool Peel = TCDifference && *TCDifference > 0;
970           if (Peel)
971             peelFusionCandidate(FC0Copy, *FC1, *TCDifference);
972 
973           // Report fusion to the Optimization Remarks.
974           // Note this needs to be done *before* performFusion because
975           // performFusion will change the original loops, making it not
976           // possible to identify them after fusion is complete.
977           reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1,
978                                                FuseCounter);
979 
980           FusionCandidate FusedCand(
981               performFusion((Peel ? FC0Copy : *FC0), *FC1), &DT, &PDT, ORE,
982               FC0Copy.PP);
983           FusedCand.verify();
984           assert(FusedCand.isEligibleForFusion(SE) &&
985                  "Fused candidate should be eligible for fusion!");
986 
987           // Notify the loop-depth-tree that these loops are not valid objects
988           LDT.removeLoop(FC1->L);
989 
990           CandidateSet.erase(FC0);
991           CandidateSet.erase(FC1);
992 
993           auto InsertPos = CandidateSet.insert(FusedCand);
994 
995           assert(InsertPos.second &&
996                  "Unable to insert TargetCandidate in CandidateSet!");
997 
998           // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
999           // of the FC1 loop will attempt to fuse the new (fused) loop with the
1000           // remaining candidates in the current candidate set.
1001           FC0 = FC1 = InsertPos.first;
1002 
1003           LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
1004                             << "\n");
1005 
1006           Fused = true;
1007         }
1008       }
1009     }
1010     return Fused;
1011   }
1012 
1013   /// Rewrite all additive recurrences in a SCEV to use a new loop.
1014   class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
1015   public:
1016     AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
1017                        bool UseMax = true)
1018         : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
1019           NewL(NewL) {}
1020 
1021     const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
1022       const Loop *ExprL = Expr->getLoop();
1023       SmallVector<const SCEV *, 2> Operands;
1024       if (ExprL == &OldL) {
1025         Operands.append(Expr->op_begin(), Expr->op_end());
1026         return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
1027       }
1028 
1029       if (OldL.contains(ExprL)) {
1030         bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
1031         if (!UseMax || !Pos || !Expr->isAffine()) {
1032           Valid = false;
1033           return Expr;
1034         }
1035         return visit(Expr->getStart());
1036       }
1037 
1038       for (const SCEV *Op : Expr->operands())
1039         Operands.push_back(visit(Op));
1040       return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
1041     }
1042 
1043     bool wasValidSCEV() const { return Valid; }
1044 
1045   private:
1046     bool Valid, UseMax;
1047     const Loop &OldL, &NewL;
1048   };
1049 
1050   /// Return false if the access functions of \p I0 and \p I1 could cause
1051   /// a negative dependence.
1052   bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
1053                             Instruction &I1, bool EqualIsInvalid) {
1054     Value *Ptr0 = getLoadStorePointerOperand(&I0);
1055     Value *Ptr1 = getLoadStorePointerOperand(&I1);
1056     if (!Ptr0 || !Ptr1)
1057       return false;
1058 
1059     const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
1060     const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
1061 #ifndef NDEBUG
1062     if (VerboseFusionDebugging)
1063       LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
1064                         << *SCEVPtr1 << "\n");
1065 #endif
1066     AddRecLoopReplacer Rewriter(SE, L0, L1);
1067     SCEVPtr0 = Rewriter.visit(SCEVPtr0);
1068 #ifndef NDEBUG
1069     if (VerboseFusionDebugging)
1070       LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
1071                         << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
1072 #endif
1073     if (!Rewriter.wasValidSCEV())
1074       return false;
1075 
1076     // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
1077     //       L0) and the other is not. We could check if it is monotone and test
1078     //       the beginning and end value instead.
1079 
1080     BasicBlock *L0Header = L0.getHeader();
1081     auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
1082       const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
1083       if (!AddRec)
1084         return false;
1085       return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
1086              !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
1087     };
1088     if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
1089       return false;
1090 
1091     ICmpInst::Predicate Pred =
1092         EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
1093     bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
1094 #ifndef NDEBUG
1095     if (VerboseFusionDebugging)
1096       LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
1097                         << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
1098                         << "\n");
1099 #endif
1100     return IsAlwaysGE;
1101   }
1102 
1103   /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
1104   /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
1105   /// specified by @p DepChoice are used to determine this.
1106   bool dependencesAllowFusion(const FusionCandidate &FC0,
1107                               const FusionCandidate &FC1, Instruction &I0,
1108                               Instruction &I1, bool AnyDep,
1109                               FusionDependenceAnalysisChoice DepChoice) {
1110 #ifndef NDEBUG
1111     if (VerboseFusionDebugging) {
1112       LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
1113                         << DepChoice << "\n");
1114     }
1115 #endif
1116     switch (DepChoice) {
1117     case FUSION_DEPENDENCE_ANALYSIS_SCEV:
1118       return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
1119     case FUSION_DEPENDENCE_ANALYSIS_DA: {
1120       auto DepResult = DI.depends(&I0, &I1, true);
1121       if (!DepResult)
1122         return true;
1123 #ifndef NDEBUG
1124       if (VerboseFusionDebugging) {
1125         LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
1126                    dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
1127                           << (DepResult->isOrdered() ? "true" : "false")
1128                           << "]\n");
1129         LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
1130                           << "\n");
1131       }
1132 #endif
1133 
1134       if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
1135         LLVM_DEBUG(
1136             dbgs() << "TODO: Implement pred/succ dependence handling!\n");
1137 
1138       // TODO: Can we actually use the dependence info analysis here?
1139       return false;
1140     }
1141 
1142     case FUSION_DEPENDENCE_ANALYSIS_ALL:
1143       return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1144                                     FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
1145              dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
1146                                     FUSION_DEPENDENCE_ANALYSIS_DA);
1147     }
1148 
1149     llvm_unreachable("Unknown fusion dependence analysis choice!");
1150   }
1151 
1152   /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
1153   bool dependencesAllowFusion(const FusionCandidate &FC0,
1154                               const FusionCandidate &FC1) {
1155     LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
1156                       << "\n");
1157     assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
1158     assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
1159 
1160     for (Instruction *WriteL0 : FC0.MemWrites) {
1161       for (Instruction *WriteL1 : FC1.MemWrites)
1162         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1163                                     /* AnyDep */ false,
1164                                     FusionDependenceAnalysis)) {
1165           InvalidDependencies++;
1166           return false;
1167         }
1168       for (Instruction *ReadL1 : FC1.MemReads)
1169         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
1170                                     /* AnyDep */ false,
1171                                     FusionDependenceAnalysis)) {
1172           InvalidDependencies++;
1173           return false;
1174         }
1175     }
1176 
1177     for (Instruction *WriteL1 : FC1.MemWrites) {
1178       for (Instruction *WriteL0 : FC0.MemWrites)
1179         if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
1180                                     /* AnyDep */ false,
1181                                     FusionDependenceAnalysis)) {
1182           InvalidDependencies++;
1183           return false;
1184         }
1185       for (Instruction *ReadL0 : FC0.MemReads)
1186         if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1187                                     /* AnyDep */ false,
1188                                     FusionDependenceAnalysis)) {
1189           InvalidDependencies++;
1190           return false;
1191         }
1192     }
1193 
1194     // Walk through all uses in FC1. For each use, find the reaching def. If the
1195     // def is located in FC0 then it is is not safe to fuse.
1196     for (BasicBlock *BB : FC1.L->blocks())
1197       for (Instruction &I : *BB)
1198         for (auto &Op : I.operands())
1199           if (Instruction *Def = dyn_cast<Instruction>(Op))
1200             if (FC0.L->contains(Def->getParent())) {
1201               InvalidDependencies++;
1202               return false;
1203             }
1204 
1205     return true;
1206   }
1207 
1208   /// Determine if two fusion candidates are adjacent in the CFG.
1209   ///
1210   /// This method will determine if there are additional basic blocks in the CFG
1211   /// between the exit of \p FC0 and the entry of \p FC1.
1212   /// If the two candidates are guarded loops, then it checks whether the
1213   /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1214   /// FC1. If not, then the loops are not adjacent. If the two candidates are
1215   /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1216   /// preheader of \p FC1.
1217   bool isAdjacent(const FusionCandidate &FC0,
1218                   const FusionCandidate &FC1) const {
1219     // If the successor of the guard branch is FC1, then the loops are adjacent
1220     if (FC0.GuardBranch)
1221       return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1222     else
1223       return FC0.ExitBlock == FC1.getEntryBlock();
1224   }
1225 
1226   /// Determine if two fusion candidates have identical guards
1227   ///
1228   /// This method will determine if two fusion candidates have the same guards.
1229   /// The guards are considered the same if:
1230   ///   1. The instructions to compute the condition used in the compare are
1231   ///      identical.
1232   ///   2. The successors of the guard have the same flow into/around the loop.
1233   /// If the compare instructions are identical, then the first successor of the
1234   /// guard must go to the same place (either the preheader of the loop or the
1235   /// NonLoopBlock). In other words, the the first successor of both loops must
1236   /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1237   /// the NonLoopBlock). The same must be true for the second successor.
1238   bool haveIdenticalGuards(const FusionCandidate &FC0,
1239                            const FusionCandidate &FC1) const {
1240     assert(FC0.GuardBranch && FC1.GuardBranch &&
1241            "Expecting FC0 and FC1 to be guarded loops.");
1242 
1243     if (auto FC0CmpInst =
1244             dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1245       if (auto FC1CmpInst =
1246               dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1247         if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1248           return false;
1249 
1250     // The compare instructions are identical.
1251     // Now make sure the successor of the guards have the same flow into/around
1252     // the loop
1253     if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1254       return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1255     else
1256       return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1257   }
1258 
1259   /// Modify the latch branch of FC to be unconditional since successors of the
1260   /// branch are the same.
1261   void simplifyLatchBranch(const FusionCandidate &FC) const {
1262     BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1263     if (FCLatchBranch) {
1264       assert(FCLatchBranch->isConditional() &&
1265              FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1266              "Expecting the two successors of FCLatchBranch to be the same");
1267       BranchInst *NewBranch =
1268           BranchInst::Create(FCLatchBranch->getSuccessor(0));
1269       ReplaceInstWithInst(FCLatchBranch, NewBranch);
1270     }
1271   }
1272 
1273   /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1274   /// successor, then merge FC0.Latch with its unique successor.
1275   void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1276     moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1277     if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1278       MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1279       DTU.flush();
1280     }
1281   }
1282 
1283   /// Fuse two fusion candidates, creating a new fused loop.
1284   ///
1285   /// This method contains the mechanics of fusing two loops, represented by \p
1286   /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1287   /// postdominates \p FC0 (making them control flow equivalent). It also
1288   /// assumes that the other conditions for fusion have been met: adjacent,
1289   /// identical trip counts, and no negative distance dependencies exist that
1290   /// would prevent fusion. Thus, there is no checking for these conditions in
1291   /// this method.
1292   ///
1293   /// Fusion is performed by rewiring the CFG to update successor blocks of the
1294   /// components of tho loop. Specifically, the following changes are done:
1295   ///
1296   ///   1. The preheader of \p FC1 is removed as it is no longer necessary
1297   ///   (because it is currently only a single statement block).
1298   ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1299   ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1300   ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1301   ///
1302   /// All of these modifications are done with dominator tree updates, thus
1303   /// keeping the dominator (and post dominator) information up-to-date.
1304   ///
1305   /// This can be improved in the future by actually merging blocks during
1306   /// fusion. For example, the preheader of \p FC1 can be merged with the
1307   /// preheader of \p FC0. This would allow loops with more than a single
1308   /// statement in the preheader to be fused. Similarly, the latch blocks of the
1309   /// two loops could also be fused into a single block. This will require
1310   /// analysis to prove it is safe to move the contents of the block past
1311   /// existing code, which currently has not been implemented.
1312   Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1313     assert(FC0.isValid() && FC1.isValid() &&
1314            "Expecting valid fusion candidates");
1315 
1316     LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1317                dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1318 
1319     // Move instructions from the preheader of FC1 to the end of the preheader
1320     // of FC0.
1321     moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
1322 
1323     // Fusing guarded loops is handled slightly differently than non-guarded
1324     // loops and has been broken out into a separate method instead of trying to
1325     // intersperse the logic within a single method.
1326     if (FC0.GuardBranch)
1327       return fuseGuardedLoops(FC0, FC1);
1328 
1329     assert(FC1.Preheader ==
1330            (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock));
1331     assert(FC1.Preheader->size() == 1 &&
1332            FC1.Preheader->getSingleSuccessor() == FC1.Header);
1333 
1334     // Remember the phi nodes originally in the header of FC0 in order to rewire
1335     // them later. However, this is only necessary if the new loop carried
1336     // values might not dominate the exiting branch. While we do not generally
1337     // test if this is the case but simply insert intermediate phi nodes, we
1338     // need to make sure these intermediate phi nodes have different
1339     // predecessors. To this end, we filter the special case where the exiting
1340     // block is the latch block of the first loop. Nothing needs to be done
1341     // anyway as all loop carried values dominate the latch and thereby also the
1342     // exiting branch.
1343     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1344     if (FC0.ExitingBlock != FC0.Latch)
1345       for (PHINode &PHI : FC0.Header->phis())
1346         OriginalFC0PHIs.push_back(&PHI);
1347 
1348     // Replace incoming blocks for header PHIs first.
1349     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1350     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1351 
1352     // Then modify the control flow and update DT and PDT.
1353     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1354 
1355     // The old exiting block of the first loop (FC0) has to jump to the header
1356     // of the second as we need to execute the code in the second header block
1357     // regardless of the trip count. That is, if the trip count is 0, so the
1358     // back edge is never taken, we still have to execute both loop headers,
1359     // especially (but not only!) if the second is a do-while style loop.
1360     // However, doing so might invalidate the phi nodes of the first loop as
1361     // the new values do only need to dominate their latch and not the exiting
1362     // predicate. To remedy this potential problem we always introduce phi
1363     // nodes in the header of the second loop later that select the loop carried
1364     // value, if the second header was reached through an old latch of the
1365     // first, or undef otherwise. This is sound as exiting the first implies the
1366     // second will exit too, __without__ taking the back-edge. [Their
1367     // trip-counts are equal after all.
1368     // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1369     // to FC1.Header? I think this is basically what the three sequences are
1370     // trying to accomplish; however, doing this directly in the CFG may mean
1371     // the DT/PDT becomes invalid
1372     if (!FC0.Peeled) {
1373       FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1374                                                            FC1.Header);
1375       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1376           DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1377       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1378           DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1379     } else {
1380       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1381           DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));
1382 
1383       // Remove the ExitBlock of the first Loop (also not needed)
1384       FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1385                                                            FC1.Header);
1386       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1387           DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1388       FC0.ExitBlock->getTerminator()->eraseFromParent();
1389       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1390           DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1391       new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1392     }
1393 
1394     // The pre-header of L1 is not necessary anymore.
1395     assert(pred_empty(FC1.Preheader));
1396     FC1.Preheader->getTerminator()->eraseFromParent();
1397     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1398     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1399         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1400 
1401     // Moves the phi nodes from the second to the first loops header block.
1402     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1403       if (SE.isSCEVable(PHI->getType()))
1404         SE.forgetValue(PHI);
1405       if (PHI->hasNUsesOrMore(1))
1406         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1407       else
1408         PHI->eraseFromParent();
1409     }
1410 
1411     // Introduce new phi nodes in the second loop header to ensure
1412     // exiting the first and jumping to the header of the second does not break
1413     // the SSA property of the phis originally in the first loop. See also the
1414     // comment above.
1415     Instruction *L1HeaderIP = &FC1.Header->front();
1416     for (PHINode *LCPHI : OriginalFC0PHIs) {
1417       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1418       assert(L1LatchBBIdx >= 0 &&
1419              "Expected loop carried value to be rewired at this point!");
1420 
1421       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1422 
1423       PHINode *L1HeaderPHI = PHINode::Create(
1424           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1425       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1426       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1427                                FC0.ExitingBlock);
1428 
1429       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1430     }
1431 
1432     // Replace latch terminator destinations.
1433     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1434     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1435 
1436     // Modify the latch branch of FC0 to be unconditional as both successors of
1437     // the branch are the same.
1438     simplifyLatchBranch(FC0);
1439 
1440     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1441     // performed the updates above.
1442     if (FC0.Latch != FC0.ExitingBlock)
1443       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1444           DominatorTree::Insert, FC0.Latch, FC1.Header));
1445 
1446     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1447                                                        FC0.Latch, FC0.Header));
1448     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1449                                                        FC1.Latch, FC0.Header));
1450     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1451                                                        FC1.Latch, FC1.Header));
1452 
1453     // Update DT/PDT
1454     DTU.applyUpdates(TreeUpdates);
1455 
1456     LI.removeBlock(FC1.Preheader);
1457     DTU.deleteBB(FC1.Preheader);
1458     if (FC0.Peeled) {
1459       LI.removeBlock(FC0.ExitBlock);
1460       DTU.deleteBB(FC0.ExitBlock);
1461     }
1462 
1463     DTU.flush();
1464 
1465     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1466     // and rebuild the information in subsequent passes of fusion?
1467     // Note: Need to forget the loops before merging the loop latches, as
1468     // mergeLatch may remove the only block in FC1.
1469     SE.forgetLoop(FC1.L);
1470     SE.forgetLoop(FC0.L);
1471 
1472     // Move instructions from FC0.Latch to FC1.Latch.
1473     // Note: mergeLatch requires an updated DT.
1474     mergeLatch(FC0, FC1);
1475 
1476     // Merge the loops.
1477     SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
1478     for (BasicBlock *BB : Blocks) {
1479       FC0.L->addBlockEntry(BB);
1480       FC1.L->removeBlockFromLoop(BB);
1481       if (LI.getLoopFor(BB) != FC1.L)
1482         continue;
1483       LI.changeLoopFor(BB, FC0.L);
1484     }
1485     while (!FC1.L->isInnermost()) {
1486       const auto &ChildLoopIt = FC1.L->begin();
1487       Loop *ChildLoop = *ChildLoopIt;
1488       FC1.L->removeChildLoop(ChildLoopIt);
1489       FC0.L->addChildLoop(ChildLoop);
1490     }
1491 
1492     // Delete the now empty loop L1.
1493     LI.erase(FC1.L);
1494 
1495 #ifndef NDEBUG
1496     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1497     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1498     assert(PDT.verify());
1499     LI.verify(DT);
1500     SE.verify();
1501 #endif
1502 
1503     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1504 
1505     return FC0.L;
1506   }
1507 
1508   /// Report details on loop fusion opportunities.
1509   ///
1510   /// This template function can be used to report both successful and missed
1511   /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1512   /// be one of:
1513   ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1514   ///     given two valid fusion candidates.
1515   ///   - OptimizationRemark to report successful fusion of two fusion
1516   ///     candidates.
1517   /// The remarks will be printed using the form:
1518   ///    <path/filename>:<line number>:<column number>: [<function name>]:
1519   ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1520   template <typename RemarkKind>
1521   void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1522                         llvm::Statistic &Stat) {
1523     assert(FC0.Preheader && FC1.Preheader &&
1524            "Expecting valid fusion candidates");
1525     using namespace ore;
1526     ++Stat;
1527     ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1528                         FC0.Preheader)
1529              << "[" << FC0.Preheader->getParent()->getName()
1530              << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1531              << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1532              << ": " << Stat.getDesc());
1533   }
1534 
1535   /// Fuse two guarded fusion candidates, creating a new fused loop.
1536   ///
1537   /// Fusing guarded loops is handled much the same way as fusing non-guarded
1538   /// loops. The rewiring of the CFG is slightly different though, because of
1539   /// the presence of the guards around the loops and the exit blocks after the
1540   /// loop body. As such, the new loop is rewired as follows:
1541   ///    1. Keep the guard branch from FC0 and use the non-loop block target
1542   /// from the FC1 guard branch.
1543   ///    2. Remove the exit block from FC0 (this exit block should be empty
1544   /// right now).
1545   ///    3. Remove the guard branch for FC1
1546   ///    4. Remove the preheader for FC1.
1547   /// The exit block successor for the latch of FC0 is updated to be the header
1548   /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1549   /// be the header of FC0, thus creating the fused loop.
1550   Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1551                          const FusionCandidate &FC1) {
1552     assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1553 
1554     BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1555     BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1556     BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1557     BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1558     BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor();
1559 
1560     // Move instructions from the exit block of FC0 to the beginning of the exit
1561     // block of FC1, in the case that the FC0 loop has not been peeled. In the
1562     // case that FC0 loop is peeled, then move the instructions of the successor
1563     // of the FC0 Exit block to the beginning of the exit block of FC1.
1564     moveInstructionsToTheBeginning(
1565         (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
1566         DT, PDT, DI);
1567 
1568     // Move instructions from the guard block of FC1 to the end of the guard
1569     // block of FC0.
1570     moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
1571 
1572     assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1573 
1574     SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1575 
1576     ////////////////////////////////////////////////////////////////////////////
1577     // Update the Loop Guard
1578     ////////////////////////////////////////////////////////////////////////////
1579     // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1580     // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1581     // Thus, one path from the guard goes to the preheader for FC0 (and thus
1582     // executes the new fused loop) and the other path goes to the NonLoopBlock
1583     // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1584     FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
1585     FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1586 
1587     BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
1588     BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header);
1589 
1590     // The guard of FC1 is not necessary anymore.
1591     FC1.GuardBranch->eraseFromParent();
1592     new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1593 
1594     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1595         DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1596     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1597         DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1598     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1599         DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1600     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1601         DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1602 
1603     if (FC0.Peeled) {
1604       // Remove the Block after the ExitBlock of FC0
1605       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1606           DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
1607       FC0ExitBlockSuccessor->getTerminator()->eraseFromParent();
1608       new UnreachableInst(FC0ExitBlockSuccessor->getContext(),
1609                           FC0ExitBlockSuccessor);
1610     }
1611 
1612     assert(pred_empty(FC1GuardBlock) &&
1613            "Expecting guard block to have no predecessors");
1614     assert(succ_empty(FC1GuardBlock) &&
1615            "Expecting guard block to have no successors");
1616 
1617     // Remember the phi nodes originally in the header of FC0 in order to rewire
1618     // them later. However, this is only necessary if the new loop carried
1619     // values might not dominate the exiting branch. While we do not generally
1620     // test if this is the case but simply insert intermediate phi nodes, we
1621     // need to make sure these intermediate phi nodes have different
1622     // predecessors. To this end, we filter the special case where the exiting
1623     // block is the latch block of the first loop. Nothing needs to be done
1624     // anyway as all loop carried values dominate the latch and thereby also the
1625     // exiting branch.
1626     // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1627     // (because the loops are rotated. Thus, nothing will ever be added to
1628     // OriginalFC0PHIs.
1629     SmallVector<PHINode *, 8> OriginalFC0PHIs;
1630     if (FC0.ExitingBlock != FC0.Latch)
1631       for (PHINode &PHI : FC0.Header->phis())
1632         OriginalFC0PHIs.push_back(&PHI);
1633 
1634     assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1635 
1636     // Replace incoming blocks for header PHIs first.
1637     FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1638     FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1639 
1640     // The old exiting block of the first loop (FC0) has to jump to the header
1641     // of the second as we need to execute the code in the second header block
1642     // regardless of the trip count. That is, if the trip count is 0, so the
1643     // back edge is never taken, we still have to execute both loop headers,
1644     // especially (but not only!) if the second is a do-while style loop.
1645     // However, doing so might invalidate the phi nodes of the first loop as
1646     // the new values do only need to dominate their latch and not the exiting
1647     // predicate. To remedy this potential problem we always introduce phi
1648     // nodes in the header of the second loop later that select the loop carried
1649     // value, if the second header was reached through an old latch of the
1650     // first, or undef otherwise. This is sound as exiting the first implies the
1651     // second will exit too, __without__ taking the back-edge (their
1652     // trip-counts are equal after all).
1653     FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1654                                                          FC1.Header);
1655 
1656     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1657         DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1658     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1659         DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1660 
1661     // Remove FC0 Exit Block
1662     // The exit block for FC0 is no longer needed since control will flow
1663     // directly to the header of FC1. Since it is an empty block, it can be
1664     // removed at this point.
1665     // TODO: In the future, we can handle non-empty exit blocks my merging any
1666     // instructions from FC0 exit block into FC1 exit block prior to removing
1667     // the block.
1668     assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty");
1669     FC0.ExitBlock->getTerminator()->eraseFromParent();
1670     new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1671 
1672     // Remove FC1 Preheader
1673     // The pre-header of L1 is not necessary anymore.
1674     assert(pred_empty(FC1.Preheader));
1675     FC1.Preheader->getTerminator()->eraseFromParent();
1676     new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1677     TreeUpdates.emplace_back(DominatorTree::UpdateType(
1678         DominatorTree::Delete, FC1.Preheader, FC1.Header));
1679 
1680     // Moves the phi nodes from the second to the first loops header block.
1681     while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1682       if (SE.isSCEVable(PHI->getType()))
1683         SE.forgetValue(PHI);
1684       if (PHI->hasNUsesOrMore(1))
1685         PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1686       else
1687         PHI->eraseFromParent();
1688     }
1689 
1690     // Introduce new phi nodes in the second loop header to ensure
1691     // exiting the first and jumping to the header of the second does not break
1692     // the SSA property of the phis originally in the first loop. See also the
1693     // comment above.
1694     Instruction *L1HeaderIP = &FC1.Header->front();
1695     for (PHINode *LCPHI : OriginalFC0PHIs) {
1696       int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1697       assert(L1LatchBBIdx >= 0 &&
1698              "Expected loop carried value to be rewired at this point!");
1699 
1700       Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1701 
1702       PHINode *L1HeaderPHI = PHINode::Create(
1703           LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1704       L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1705       L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1706                                FC0.ExitingBlock);
1707 
1708       LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1709     }
1710 
1711     // Update the latches
1712 
1713     // Replace latch terminator destinations.
1714     FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1715     FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1716 
1717     // Modify the latch branch of FC0 to be unconditional as both successors of
1718     // the branch are the same.
1719     simplifyLatchBranch(FC0);
1720 
1721     // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1722     // performed the updates above.
1723     if (FC0.Latch != FC0.ExitingBlock)
1724       TreeUpdates.emplace_back(DominatorTree::UpdateType(
1725           DominatorTree::Insert, FC0.Latch, FC1.Header));
1726 
1727     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1728                                                        FC0.Latch, FC0.Header));
1729     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1730                                                        FC1.Latch, FC0.Header));
1731     TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1732                                                        FC1.Latch, FC1.Header));
1733 
1734     // All done
1735     // Apply the updates to the Dominator Tree and cleanup.
1736 
1737     assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!");
1738     assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!");
1739 
1740     // Update DT/PDT
1741     DTU.applyUpdates(TreeUpdates);
1742 
1743     LI.removeBlock(FC1GuardBlock);
1744     LI.removeBlock(FC1.Preheader);
1745     LI.removeBlock(FC0.ExitBlock);
1746     if (FC0.Peeled) {
1747       LI.removeBlock(FC0ExitBlockSuccessor);
1748       DTU.deleteBB(FC0ExitBlockSuccessor);
1749     }
1750     DTU.deleteBB(FC1GuardBlock);
1751     DTU.deleteBB(FC1.Preheader);
1752     DTU.deleteBB(FC0.ExitBlock);
1753     DTU.flush();
1754 
1755     // Is there a way to keep SE up-to-date so we don't need to forget the loops
1756     // and rebuild the information in subsequent passes of fusion?
1757     // Note: Need to forget the loops before merging the loop latches, as
1758     // mergeLatch may remove the only block in FC1.
1759     SE.forgetLoop(FC1.L);
1760     SE.forgetLoop(FC0.L);
1761 
1762     // Move instructions from FC0.Latch to FC1.Latch.
1763     // Note: mergeLatch requires an updated DT.
1764     mergeLatch(FC0, FC1);
1765 
1766     // Merge the loops.
1767     SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
1768     for (BasicBlock *BB : Blocks) {
1769       FC0.L->addBlockEntry(BB);
1770       FC1.L->removeBlockFromLoop(BB);
1771       if (LI.getLoopFor(BB) != FC1.L)
1772         continue;
1773       LI.changeLoopFor(BB, FC0.L);
1774     }
1775     while (!FC1.L->isInnermost()) {
1776       const auto &ChildLoopIt = FC1.L->begin();
1777       Loop *ChildLoop = *ChildLoopIt;
1778       FC1.L->removeChildLoop(ChildLoopIt);
1779       FC0.L->addChildLoop(ChildLoop);
1780     }
1781 
1782     // Delete the now empty loop L1.
1783     LI.erase(FC1.L);
1784 
1785 #ifndef NDEBUG
1786     assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1787     assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1788     assert(PDT.verify());
1789     LI.verify(DT);
1790     SE.verify();
1791 #endif
1792 
1793     LLVM_DEBUG(dbgs() << "Fusion done:\n");
1794 
1795     return FC0.L;
1796   }
1797 };
1798 
1799 struct LoopFuseLegacy : public FunctionPass {
1800 
1801   static char ID;
1802 
1803   LoopFuseLegacy() : FunctionPass(ID) {
1804     initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1805   }
1806 
1807   void getAnalysisUsage(AnalysisUsage &AU) const override {
1808     AU.addRequiredID(LoopSimplifyID);
1809     AU.addRequired<ScalarEvolutionWrapperPass>();
1810     AU.addRequired<LoopInfoWrapperPass>();
1811     AU.addRequired<DominatorTreeWrapperPass>();
1812     AU.addRequired<PostDominatorTreeWrapperPass>();
1813     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1814     AU.addRequired<DependenceAnalysisWrapperPass>();
1815     AU.addRequired<AssumptionCacheTracker>();
1816     AU.addRequired<TargetTransformInfoWrapperPass>();
1817 
1818     AU.addPreserved<ScalarEvolutionWrapperPass>();
1819     AU.addPreserved<LoopInfoWrapperPass>();
1820     AU.addPreserved<DominatorTreeWrapperPass>();
1821     AU.addPreserved<PostDominatorTreeWrapperPass>();
1822   }
1823 
1824   bool runOnFunction(Function &F) override {
1825     if (skipFunction(F))
1826       return false;
1827     auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1828     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1829     auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1830     auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1831     auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1832     auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1833     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1834     const TargetTransformInfo &TTI =
1835         getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1836     const DataLayout &DL = F.getParent()->getDataLayout();
1837 
1838     LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
1839     return LF.fuseLoops(F);
1840   }
1841 };
1842 } // namespace
1843 
1844 PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1845   auto &LI = AM.getResult<LoopAnalysis>(F);
1846   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1847   auto &DI = AM.getResult<DependenceAnalysis>(F);
1848   auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1849   auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1850   auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1851   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1852   const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
1853   const DataLayout &DL = F.getParent()->getDataLayout();
1854 
1855   LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
1856   bool Changed = LF.fuseLoops(F);
1857   if (!Changed)
1858     return PreservedAnalyses::all();
1859 
1860   PreservedAnalyses PA;
1861   PA.preserve<DominatorTreeAnalysis>();
1862   PA.preserve<PostDominatorTreeAnalysis>();
1863   PA.preserve<ScalarEvolutionAnalysis>();
1864   PA.preserve<LoopAnalysis>();
1865   return PA;
1866 }
1867 
1868 char LoopFuseLegacy::ID = 0;
1869 
1870 INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1871                       false)
1872 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1873 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1874 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1875 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1876 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1877 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1878 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1879 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1880 INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1881 
1882 FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
1883