1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // 14 // for (int i = 0; i < N; ++i) 15 // for (int j = 0; j < M; ++j) 16 // f(A[i*M+j]); 17 // 18 // into one loop: 19 // 20 // for (int i = 0; i < (N*M); ++i) 21 // f(A[i]); 22 // 23 // It can also flatten loops where the induction variables are not used in the 24 // loop. This is only worth doing if the induction variables are only used in an 25 // expression like i*M+j. If they had any other uses, we would have to insert a 26 // div/mod to reconstruct the original values, so this wouldn't be profitable. 27 // 28 // We also need to prove that N*M will not overflow. The preferred solution is 29 // to widen the IV, which avoids overflow checks, so that is tried first. If 30 // the IV cannot be widened, then we try to determine that this new tripcount 31 // expression won't overflow. 32 // 33 // Q: Does LoopFlatten use SCEV? 34 // Short answer: Yes and no. 35 // 36 // Long answer: 37 // For this transformation to be valid, we require all uses of the induction 38 // variables to be linear expressions of the form i*M+j. The different Loop 39 // APIs are used to get some loop components like the induction variable, 40 // compare statement, etc. In addition, we do some pattern matching to find the 41 // linear expressions and other loop components like the loop increment. The 42 // latter are examples of expressions that do use the induction variable, but 43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep 44 // track of all of this in bookkeeping struct FlattenInfo. 45 // We assume the loops to be canonical, i.e. starting at 0 and increment with 46 // 1. This makes RHS of the compare the loop tripcount (with the right 47 // predicate). We use SCEV to then sanity check that this tripcount matches 48 // with the tripcount as computed by SCEV. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/LoopFlatten.h" 53 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/AssumptionCache.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/LoopNestAnalysis.h" 58 #include "llvm/Analysis/MemorySSAUpdater.h" 59 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Transforms/Scalar.h" 73 #include "llvm/Transforms/Scalar/LoopPassManager.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include "llvm/Transforms/Utils/LoopUtils.h" 76 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 77 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 78 #include <optional> 79 80 using namespace llvm; 81 using namespace llvm::PatternMatch; 82 83 #define DEBUG_TYPE "loop-flatten" 84 85 STATISTIC(NumFlattened, "Number of loops flattened"); 86 87 static cl::opt<unsigned> RepeatedInstructionThreshold( 88 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 89 cl::desc("Limit on the cost of instructions that can be repeated due to " 90 "loop flattening")); 91 92 static cl::opt<bool> 93 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 94 cl::init(false), 95 cl::desc("Assume that the product of the two iteration " 96 "trip counts will never overflow")); 97 98 static cl::opt<bool> 99 WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), 100 cl::desc("Widen the loop induction variables, if possible, so " 101 "overflow checks won't reject flattening")); 102 103 namespace { 104 // We require all uses of both induction variables to match this pattern: 105 // 106 // (OuterPHI * InnerTripCount) + InnerPHI 107 // 108 // I.e., it needs to be a linear expression of the induction variables and the 109 // inner loop trip count. We keep track of all different expressions on which 110 // checks will be performed in this bookkeeping struct. 111 // 112 struct FlattenInfo { 113 Loop *OuterLoop = nullptr; // The loop pair to be flattened. 114 Loop *InnerLoop = nullptr; 115 116 PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop 117 PHINode *OuterInductionPHI = nullptr; // induction variables, which are 118 // expected to start at zero and 119 // increment by one on each loop. 120 121 Value *InnerTripCount = nullptr; // The product of these two tripcounts 122 Value *OuterTripCount = nullptr; // will be the new flattened loop 123 // tripcount. Also used to recognise a 124 // linear expression that will be replaced. 125 126 SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions 127 // of the form i*M+j that will be 128 // replaced. 129 130 BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in 131 BinaryOperator *OuterIncrement = nullptr; // loop control statements that 132 BranchInst *InnerBranch = nullptr; // are safe to ignore. 133 134 BranchInst *OuterBranch = nullptr; // The instruction that needs to be 135 // updated with new tripcount. 136 137 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 138 139 bool Widened = false; // Whether this holds the flatten info before or after 140 // widening. 141 142 PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction 143 PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV 144 // has been applied. Used to skip 145 // checks on phi nodes. 146 147 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){}; 148 149 bool isNarrowInductionPhi(PHINode *Phi) { 150 // This can't be the narrow phi if we haven't widened the IV first. 151 if (!Widened) 152 return false; 153 return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi; 154 } 155 bool isInnerLoopIncrement(User *U) { 156 return InnerIncrement == U; 157 } 158 bool isOuterLoopIncrement(User *U) { 159 return OuterIncrement == U; 160 } 161 bool isInnerLoopTest(User *U) { 162 return InnerBranch->getCondition() == U; 163 } 164 165 bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 166 for (User *U : OuterInductionPHI->users()) { 167 if (isOuterLoopIncrement(U)) 168 continue; 169 170 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 171 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 172 if (!ValidOuterPHIUses.count(U)) { 173 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 174 return false; 175 } 176 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 177 return true; 178 }; 179 180 if (auto *V = dyn_cast<TruncInst>(U)) { 181 for (auto *K : V->users()) { 182 if (!IsValidOuterPHIUses(K)) 183 return false; 184 } 185 continue; 186 } 187 188 if (!IsValidOuterPHIUses(U)) 189 return false; 190 } 191 return true; 192 } 193 194 bool matchLinearIVUser(User *U, Value *InnerTripCount, 195 SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 196 LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump()); 197 Value *MatchedMul = nullptr; 198 Value *MatchedItCount = nullptr; 199 200 bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI), 201 m_Value(MatchedMul))) && 202 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 203 m_Value(MatchedItCount))); 204 205 // Matches the same pattern as above, except it also looks for truncs 206 // on the phi, which can be the result of widening the induction variables. 207 bool IsAddTrunc = 208 match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)), 209 m_Value(MatchedMul))) && 210 match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)), 211 m_Value(MatchedItCount))); 212 213 if (!MatchedItCount) 214 return false; 215 216 LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump()); 217 LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump()); 218 219 // The mul should not have any other uses. Widening may leave trivially dead 220 // uses, which can be ignored. 221 if (count_if(MatchedMul->users(), [](User *U) { 222 return !isInstructionTriviallyDead(cast<Instruction>(U)); 223 }) > 1) { 224 LLVM_DEBUG(dbgs() << "Multiply has more than one use\n"); 225 return false; 226 } 227 228 // Look through extends if the IV has been widened. Don't look through 229 // extends if we already looked through a trunc. 230 if (Widened && IsAdd && 231 (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) { 232 assert(MatchedItCount->getType() == InnerInductionPHI->getType() && 233 "Unexpected type mismatch in types after widening"); 234 MatchedItCount = isa<SExtInst>(MatchedItCount) 235 ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0) 236 : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0); 237 } 238 239 LLVM_DEBUG(dbgs() << "Looking for inner trip count: "; 240 InnerTripCount->dump()); 241 242 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) { 243 LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n"); 244 ValidOuterPHIUses.insert(MatchedMul); 245 LinearIVUses.insert(U); 246 return true; 247 } 248 249 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 250 return false; 251 } 252 253 bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 254 Value *SExtInnerTripCount = InnerTripCount; 255 if (Widened && 256 (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 257 SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 258 259 for (User *U : InnerInductionPHI->users()) { 260 LLVM_DEBUG(dbgs() << "Checking User: "; U->dump()); 261 if (isInnerLoopIncrement(U)) { 262 LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n"); 263 continue; 264 } 265 266 // After widening the IVs, a trunc instruction might have been introduced, 267 // so look through truncs. 268 if (isa<TruncInst>(U)) { 269 if (!U->hasOneUse()) 270 return false; 271 U = *U->user_begin(); 272 } 273 274 // If the use is in the compare (which is also the condition of the inner 275 // branch) then the compare has been altered by another transformation e.g 276 // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is 277 // a constant. Ignore this use as the compare gets removed later anyway. 278 if (isInnerLoopTest(U)) { 279 LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n"); 280 continue; 281 } 282 283 if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) { 284 LLVM_DEBUG(dbgs() << "Not a linear IV user\n"); 285 return false; 286 } 287 LLVM_DEBUG(dbgs() << "Linear IV users found!\n"); 288 } 289 return true; 290 } 291 }; 292 } // namespace 293 294 static bool 295 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment, 296 SmallPtrSetImpl<Instruction *> &IterationInstructions) { 297 TripCount = TC; 298 IterationInstructions.insert(Increment); 299 LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump()); 300 LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 301 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 302 return true; 303 } 304 305 // Given the RHS of the loop latch compare instruction, verify with SCEV 306 // that this is indeed the loop tripcount. 307 // TODO: This used to be a straightforward check but has grown to be quite 308 // complicated now. It is therefore worth revisiting what the additional 309 // benefits are of this (compared to relying on canonical loops and pattern 310 // matching). 311 static bool verifyTripCount(Value *RHS, Loop *L, 312 SmallPtrSetImpl<Instruction *> &IterationInstructions, 313 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 314 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 315 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 316 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 317 LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n"); 318 return false; 319 } 320 321 // The Extend=false flag is used for getTripCountFromExitCount as we want 322 // to verify and match it with the pattern matched tripcount. Please note 323 // that overflow checks are performed in checkOverflow, but are first tried 324 // to avoid by widening the IV. 325 const SCEV *SCEVTripCount = 326 SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false); 327 328 const SCEV *SCEVRHS = SE->getSCEV(RHS); 329 if (SCEVRHS == SCEVTripCount) 330 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 331 ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS); 332 if (ConstantRHS) { 333 const SCEV *BackedgeTCExt = nullptr; 334 if (IsWidened) { 335 const SCEV *SCEVTripCountExt; 336 // Find the extended backedge taken count and extended trip count using 337 // SCEV. One of these should now match the RHS of the compare. 338 BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType()); 339 SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false); 340 if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) { 341 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 342 return false; 343 } 344 } 345 // If the RHS of the compare is equal to the backedge taken count we need 346 // to add one to get the trip count. 347 if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) { 348 ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1); 349 Value *NewRHS = ConstantInt::get( 350 ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue()); 351 return setLoopComponents(NewRHS, TripCount, Increment, 352 IterationInstructions); 353 } 354 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 355 } 356 // If the RHS isn't a constant then check that the reason it doesn't match 357 // the SCEV trip count is because the RHS is a ZExt or SExt instruction 358 // (and take the trip count to be the RHS). 359 if (!IsWidened) { 360 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 361 return false; 362 } 363 auto *TripCountInst = dyn_cast<Instruction>(RHS); 364 if (!TripCountInst) { 365 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 366 return false; 367 } 368 if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 369 SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 370 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 371 return false; 372 } 373 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 374 } 375 376 // Finds the induction variable, increment and trip count for a simple loop that 377 // we can flatten. 378 static bool findLoopComponents( 379 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 380 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 381 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 382 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 383 384 if (!L->isLoopSimplifyForm()) { 385 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 386 return false; 387 } 388 389 // Currently, to simplify the implementation, the Loop induction variable must 390 // start at zero and increment with a step size of one. 391 if (!L->isCanonical(*SE)) { 392 LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 393 return false; 394 } 395 396 // There must be exactly one exiting block, and it must be the same at the 397 // latch. 398 BasicBlock *Latch = L->getLoopLatch(); 399 if (L->getExitingBlock() != Latch) { 400 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 401 return false; 402 } 403 404 // Find the induction PHI. If there is no induction PHI, we can't do the 405 // transformation. TODO: could other variables trigger this? Do we have to 406 // search for the best one? 407 InductionPHI = L->getInductionVariable(*SE); 408 if (!InductionPHI) { 409 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 410 return false; 411 } 412 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 413 414 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 415 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 416 if (ContinueOnTrue) 417 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 418 else 419 return Pred == CmpInst::ICMP_EQ; 420 }; 421 422 // Find Compare and make sure it is valid. getLatchCmpInst checks that the 423 // back branch of the latch is conditional. 424 ICmpInst *Compare = L->getLatchCmpInst(); 425 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 426 Compare->hasNUsesOrMore(2)) { 427 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 428 return false; 429 } 430 BackBranch = cast<BranchInst>(Latch->getTerminator()); 431 IterationInstructions.insert(BackBranch); 432 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 433 IterationInstructions.insert(Compare); 434 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 435 436 // Find increment and trip count. 437 // There are exactly 2 incoming values to the induction phi; one from the 438 // pre-header and one from the latch. The incoming latch value is the 439 // increment variable. 440 Increment = 441 cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 442 if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) && 443 !Increment->hasNUses(1)) { 444 LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 445 return false; 446 } 447 // The trip count is the RHS of the compare. If this doesn't match the trip 448 // count computed by SCEV then this is because the trip count variable 449 // has been widened so the types don't match, or because it is a constant and 450 // another transformation has changed the compare (e.g. icmp ult %inc, 451 // tripcount -> icmp ult %j, tripcount-1), or both. 452 Value *RHS = Compare->getOperand(1); 453 454 return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount, 455 Increment, BackBranch, SE, IsWidened); 456 } 457 458 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 459 // All PHIs in the inner and outer headers must either be: 460 // - The induction PHI, which we are going to rewrite as one induction in 461 // the new loop. This is already checked by findLoopComponents. 462 // - An outer header PHI with all incoming values from outside the loop. 463 // LoopSimplify guarantees we have a pre-header, so we don't need to 464 // worry about that here. 465 // - Pairs of PHIs in the inner and outer headers, which implement a 466 // loop-carried dependency that will still be valid in the new loop. To 467 // be valid, this variable must be modified only in the inner loop. 468 469 // The set of PHI nodes in the outer loop header that we know will still be 470 // valid after the transformation. These will not need to be modified (with 471 // the exception of the induction variable), but we do need to check that 472 // there are no unsafe PHI nodes. 473 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 474 SafeOuterPHIs.insert(FI.OuterInductionPHI); 475 476 // Check that all PHI nodes in the inner loop header match one of the valid 477 // patterns. 478 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 479 // The induction PHIs break these rules, and that's OK because we treat 480 // them specially when doing the transformation. 481 if (&InnerPHI == FI.InnerInductionPHI) 482 continue; 483 if (FI.isNarrowInductionPhi(&InnerPHI)) 484 continue; 485 486 // Each inner loop PHI node must have two incoming values/blocks - one 487 // from the pre-header, and one from the latch. 488 assert(InnerPHI.getNumIncomingValues() == 2); 489 Value *PreHeaderValue = 490 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 491 Value *LatchValue = 492 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 493 494 // The incoming value from the outer loop must be the PHI node in the 495 // outer loop header, with no modifications made in the top of the outer 496 // loop. 497 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 498 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 499 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 500 return false; 501 } 502 503 // The other incoming value must come from the inner loop, without any 504 // modifications in the tail end of the outer loop. We are in LCSSA form, 505 // so this will actually be a PHI in the inner loop's exit block, which 506 // only uses values from inside the inner loop. 507 PHINode *LCSSAPHI = dyn_cast<PHINode>( 508 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 509 if (!LCSSAPHI) { 510 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 511 return false; 512 } 513 514 // The value used by the LCSSA PHI must be the same one that the inner 515 // loop's PHI uses. 516 if (LCSSAPHI->hasConstantValue() != LatchValue) { 517 LLVM_DEBUG( 518 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 519 return false; 520 } 521 522 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 523 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 524 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 525 SafeOuterPHIs.insert(OuterPHI); 526 FI.InnerPHIsToTransform.insert(&InnerPHI); 527 } 528 529 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 530 if (FI.isNarrowInductionPhi(&OuterPHI)) 531 continue; 532 if (!SafeOuterPHIs.count(&OuterPHI)) { 533 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 534 return false; 535 } 536 } 537 538 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 539 return true; 540 } 541 542 static bool 543 checkOuterLoopInsts(FlattenInfo &FI, 544 SmallPtrSetImpl<Instruction *> &IterationInstructions, 545 const TargetTransformInfo *TTI) { 546 // Check for instructions in the outer but not inner loop. If any of these 547 // have side-effects then this transformation is not legal, and if there is 548 // a significant amount of code here which can't be optimised out that it's 549 // not profitable (as these instructions would get executed for each 550 // iteration of the inner loop). 551 InstructionCost RepeatedInstrCost = 0; 552 for (auto *B : FI.OuterLoop->getBlocks()) { 553 if (FI.InnerLoop->contains(B)) 554 continue; 555 556 for (auto &I : *B) { 557 if (!isa<PHINode>(&I) && !I.isTerminator() && 558 !isSafeToSpeculativelyExecute(&I)) { 559 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 560 "side effects: "; 561 I.dump()); 562 return false; 563 } 564 // The execution count of the outer loop's iteration instructions 565 // (increment, compare and branch) will be increased, but the 566 // equivalent instructions will be removed from the inner loop, so 567 // they make a net difference of zero. 568 if (IterationInstructions.count(&I)) 569 continue; 570 // The unconditional branch to the inner loop's header will turn into 571 // a fall-through, so adds no cost. 572 BranchInst *Br = dyn_cast<BranchInst>(&I); 573 if (Br && Br->isUnconditional() && 574 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 575 continue; 576 // Multiplies of the outer iteration variable and inner iteration 577 // count will be optimised out. 578 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 579 m_Specific(FI.InnerTripCount)))) 580 continue; 581 InstructionCost Cost = 582 TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 583 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 584 RepeatedInstrCost += Cost; 585 } 586 } 587 588 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 589 << RepeatedInstrCost << "\n"); 590 // Bail out if flattening the loops would cause instructions in the outer 591 // loop but not in the inner loop to be executed extra times. 592 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 593 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 594 return false; 595 } 596 597 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 598 return true; 599 } 600 601 602 603 // We require all uses of both induction variables to match this pattern: 604 // 605 // (OuterPHI * InnerTripCount) + InnerPHI 606 // 607 // Any uses of the induction variables not matching that pattern would 608 // require a div/mod to reconstruct in the flattened loop, so the 609 // transformation wouldn't be profitable. 610 static bool checkIVUsers(FlattenInfo &FI) { 611 // Check that all uses of the inner loop's induction variable match the 612 // expected pattern, recording the uses of the outer IV. 613 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 614 if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses)) 615 return false; 616 617 // Check that there are no uses of the outer IV other than the ones found 618 // as part of the pattern above. 619 if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses)) 620 return false; 621 622 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 623 dbgs() << "Found " << FI.LinearIVUses.size() 624 << " value(s) that can be replaced:\n"; 625 for (Value *V : FI.LinearIVUses) { 626 dbgs() << " "; 627 V->dump(); 628 }); 629 return true; 630 } 631 632 // Return an OverflowResult dependant on if overflow of the multiplication of 633 // InnerTripCount and OuterTripCount can be assumed not to happen. 634 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 635 AssumptionCache *AC) { 636 Function *F = FI.OuterLoop->getHeader()->getParent(); 637 const DataLayout &DL = F->getParent()->getDataLayout(); 638 639 // For debugging/testing. 640 if (AssumeNoOverflow) 641 return OverflowResult::NeverOverflows; 642 643 // Check if the multiply could not overflow due to known ranges of the 644 // input values. 645 OverflowResult OR = computeOverflowForUnsignedMul( 646 FI.InnerTripCount, FI.OuterTripCount, DL, AC, 647 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 648 if (OR != OverflowResult::MayOverflow) 649 return OR; 650 651 for (Value *V : FI.LinearIVUses) { 652 for (Value *U : V->users()) { 653 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 654 for (Value *GEPUser : U->users()) { 655 auto *GEPUserInst = cast<Instruction>(GEPUser); 656 if (!isa<LoadInst>(GEPUserInst) && 657 !(isa<StoreInst>(GEPUserInst) && 658 GEP == GEPUserInst->getOperand(1))) 659 continue; 660 if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, 661 FI.InnerLoop)) 662 continue; 663 // The IV is used as the operand of a GEP which dominates the loop 664 // latch, and the IV is at least as wide as the address space of the 665 // GEP. In this case, the GEP would wrap around the address space 666 // before the IV increment wraps, which would be UB. 667 if (GEP->isInBounds() && 668 V->getType()->getIntegerBitWidth() >= 669 DL.getPointerTypeSizeInBits(GEP->getType())) { 670 LLVM_DEBUG( 671 dbgs() << "use of linear IV would be UB if overflow occurred: "; 672 GEP->dump()); 673 return OverflowResult::NeverOverflows; 674 } 675 } 676 } 677 } 678 } 679 680 return OverflowResult::MayOverflow; 681 } 682 683 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 684 ScalarEvolution *SE, AssumptionCache *AC, 685 const TargetTransformInfo *TTI) { 686 SmallPtrSet<Instruction *, 8> IterationInstructions; 687 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 688 FI.InnerInductionPHI, FI.InnerTripCount, 689 FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 690 return false; 691 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 692 FI.OuterInductionPHI, FI.OuterTripCount, 693 FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 694 return false; 695 696 // Both of the loop trip count values must be invariant in the outer loop 697 // (non-instructions are all inherently invariant). 698 if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 699 LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 700 return false; 701 } 702 if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 703 LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 704 return false; 705 } 706 707 if (!checkPHIs(FI, TTI)) 708 return false; 709 710 // FIXME: it should be possible to handle different types correctly. 711 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 712 return false; 713 714 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 715 return false; 716 717 // Find the values in the loop that can be replaced with the linearized 718 // induction variable, and check that there are no other uses of the inner 719 // or outer induction variable. If there were, we could still do this 720 // transformation, but we'd have to insert a div/mod to calculate the 721 // original IVs, so it wouldn't be profitable. 722 if (!checkIVUsers(FI)) 723 return false; 724 725 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 726 return true; 727 } 728 729 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 730 ScalarEvolution *SE, AssumptionCache *AC, 731 const TargetTransformInfo *TTI, LPMUpdater *U, 732 MemorySSAUpdater *MSSAU) { 733 Function *F = FI.OuterLoop->getHeader()->getParent(); 734 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 735 { 736 using namespace ore; 737 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 738 FI.InnerLoop->getHeader()); 739 OptimizationRemarkEmitter ORE(F); 740 Remark << "Flattened into outer loop"; 741 ORE.emit(Remark); 742 } 743 744 Value *NewTripCount = BinaryOperator::CreateMul( 745 FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 746 FI.OuterLoop->getLoopPreheader()->getTerminator()); 747 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 748 NewTripCount->dump()); 749 750 // Fix up PHI nodes that take values from the inner loop back-edge, which 751 // we are about to remove. 752 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 753 754 // The old Phi will be optimised away later, but for now we can't leave 755 // leave it in an invalid state, so are updating them too. 756 for (PHINode *PHI : FI.InnerPHIsToTransform) 757 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 758 759 // Modify the trip count of the outer loop to be the product of the two 760 // trip counts. 761 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 762 763 // Replace the inner loop backedge with an unconditional branch to the exit. 764 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 765 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 766 InnerExitingBlock->getTerminator()->eraseFromParent(); 767 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 768 769 // Update the DomTree and MemorySSA. 770 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 771 if (MSSAU) 772 MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 773 774 // Replace all uses of the polynomial calculated from the two induction 775 // variables with the one new one. 776 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 777 for (Value *V : FI.LinearIVUses) { 778 Value *OuterValue = FI.OuterInductionPHI; 779 if (FI.Widened) 780 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 781 "flatten.trunciv"); 782 783 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: "; 784 OuterValue->dump()); 785 V->replaceAllUsesWith(OuterValue); 786 } 787 788 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 789 // deleted, and invalidate any outer loop information. 790 SE->forgetLoop(FI.OuterLoop); 791 SE->forgetBlockAndLoopDispositions(); 792 if (U) 793 U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName()); 794 LI->erase(FI.InnerLoop); 795 796 // Increment statistic value. 797 NumFlattened++; 798 799 return true; 800 } 801 802 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 803 ScalarEvolution *SE, AssumptionCache *AC, 804 const TargetTransformInfo *TTI) { 805 if (!WidenIV) { 806 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 807 return false; 808 } 809 810 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 811 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 812 auto &DL = M->getDataLayout(); 813 auto *InnerType = FI.InnerInductionPHI->getType(); 814 auto *OuterType = FI.OuterInductionPHI->getType(); 815 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 816 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 817 818 // If both induction types are less than the maximum legal integer width, 819 // promote both to the widest type available so we know calculating 820 // (OuterTripCount * InnerTripCount) as the new trip count is safe. 821 if (InnerType != OuterType || 822 InnerType->getScalarSizeInBits() >= MaxLegalSize || 823 MaxLegalType->getScalarSizeInBits() < 824 InnerType->getScalarSizeInBits() * 2) { 825 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 826 return false; 827 } 828 829 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 830 SmallVector<WeakTrackingVH, 4> DeadInsts; 831 unsigned ElimExt = 0; 832 unsigned Widened = 0; 833 834 auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool { 835 PHINode *WidePhi = 836 createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened, 837 true /* HasGuards */, true /* UsePostIncrementRanges */); 838 if (!WidePhi) 839 return false; 840 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 841 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 842 Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 843 return true; 844 }; 845 846 bool Deleted; 847 if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted)) 848 return false; 849 // Add the narrow phi to list, so that it will be adjusted later when the 850 // the transformation is performed. 851 if (!Deleted) 852 FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI); 853 854 if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted)) 855 return false; 856 857 assert(Widened && "Widened IV expected"); 858 FI.Widened = true; 859 860 // Save the old/narrow induction phis, which we need to ignore in CheckPHIs. 861 FI.NarrowInnerInductionPHI = FI.InnerInductionPHI; 862 FI.NarrowOuterInductionPHI = FI.OuterInductionPHI; 863 864 // After widening, rediscover all the loop components. 865 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 866 } 867 868 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 869 ScalarEvolution *SE, AssumptionCache *AC, 870 const TargetTransformInfo *TTI, LPMUpdater *U, 871 MemorySSAUpdater *MSSAU) { 872 LLVM_DEBUG( 873 dbgs() << "Loop flattening running on outer loop " 874 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 875 << FI.InnerLoop->getHeader()->getName() << " in " 876 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 877 878 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 879 return false; 880 881 // Check if we can widen the induction variables to avoid overflow checks. 882 bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI); 883 884 // It can happen that after widening of the IV, flattening may not be 885 // possible/happening, e.g. when it is deemed unprofitable. So bail here if 886 // that is the case. 887 // TODO: IV widening without performing the actual flattening transformation 888 // is not ideal. While this codegen change should not matter much, it is an 889 // unnecessary change which is better to avoid. It's unlikely this happens 890 // often, because if it's unprofitibale after widening, it should be 891 // unprofitabe before widening as checked in the first round of checks. But 892 // 'RepeatedInstructionThreshold' is set to only 2, which can probably be 893 // relaxed. Because this is making a code change (the IV widening, but not 894 // the flattening), we return true here. 895 if (FI.Widened && !CanFlatten) 896 return true; 897 898 // If we have widened and can perform the transformation, do that here. 899 if (CanFlatten) 900 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 901 902 // Otherwise, if we haven't widened the IV, check if the new iteration 903 // variable might overflow. In this case, we need to version the loop, and 904 // select the original version at runtime if the iteration space is too 905 // large. 906 // TODO: We currently don't version the loop. 907 OverflowResult OR = checkOverflow(FI, DT, AC); 908 if (OR == OverflowResult::AlwaysOverflowsHigh || 909 OR == OverflowResult::AlwaysOverflowsLow) { 910 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 911 return false; 912 } else if (OR == OverflowResult::MayOverflow) { 913 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 914 return false; 915 } 916 917 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 918 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 919 } 920 921 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 922 AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U, 923 MemorySSAUpdater *MSSAU) { 924 bool Changed = false; 925 for (Loop *InnerLoop : LN.getLoops()) { 926 auto *OuterLoop = InnerLoop->getParentLoop(); 927 if (!OuterLoop) 928 continue; 929 FlattenInfo FI(OuterLoop, InnerLoop); 930 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 931 } 932 return Changed; 933 } 934 935 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 936 LoopStandardAnalysisResults &AR, 937 LPMUpdater &U) { 938 939 bool Changed = false; 940 941 std::optional<MemorySSAUpdater> MSSAU; 942 if (AR.MSSA) { 943 MSSAU = MemorySSAUpdater(AR.MSSA); 944 if (VerifyMemorySSA) 945 AR.MSSA->verifyMemorySSA(); 946 } 947 948 // The loop flattening pass requires loops to be 949 // in simplified form, and also needs LCSSA. Running 950 // this pass will simplify all loops that contain inner loops, 951 // regardless of whether anything ends up being flattened. 952 Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U, 953 MSSAU ? &*MSSAU : nullptr); 954 955 if (!Changed) 956 return PreservedAnalyses::all(); 957 958 if (AR.MSSA && VerifyMemorySSA) 959 AR.MSSA->verifyMemorySSA(); 960 961 auto PA = getLoopPassPreservedAnalyses(); 962 if (AR.MSSA) 963 PA.preserve<MemorySSAAnalysis>(); 964 return PA; 965 } 966 967 namespace { 968 class LoopFlattenLegacyPass : public FunctionPass { 969 public: 970 static char ID; // Pass ID, replacement for typeid 971 LoopFlattenLegacyPass() : FunctionPass(ID) { 972 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 973 } 974 975 // Possibly flatten loop L into its child. 976 bool runOnFunction(Function &F) override; 977 978 void getAnalysisUsage(AnalysisUsage &AU) const override { 979 getLoopAnalysisUsage(AU); 980 AU.addRequired<TargetTransformInfoWrapperPass>(); 981 AU.addPreserved<TargetTransformInfoWrapperPass>(); 982 AU.addRequired<AssumptionCacheTracker>(); 983 AU.addPreserved<AssumptionCacheTracker>(); 984 AU.addPreserved<MemorySSAWrapperPass>(); 985 } 986 }; 987 } // namespace 988 989 char LoopFlattenLegacyPass::ID = 0; 990 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 991 false, false) 992 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 993 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 994 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 995 false, false) 996 997 FunctionPass *llvm::createLoopFlattenPass() { 998 return new LoopFlattenLegacyPass(); 999 } 1000 1001 bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 1002 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1003 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1004 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1005 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1006 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 1007 auto *TTI = &TTIP.getTTI(F); 1008 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1009 auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 1010 1011 std::optional<MemorySSAUpdater> MSSAU; 1012 if (MSSA) 1013 MSSAU = MemorySSAUpdater(&MSSA->getMSSA()); 1014 1015 bool Changed = false; 1016 for (Loop *L : *LI) { 1017 auto LN = LoopNest::getLoopNest(*L, *SE); 1018 Changed |= 1019 Flatten(*LN, DT, LI, SE, AC, TTI, nullptr, MSSAU ? &*MSSAU : nullptr); 1020 } 1021 return Changed; 1022 } 1023