1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // 14 // for (int i = 0; i < N; ++i) 15 // for (int j = 0; j < M; ++j) 16 // f(A[i*M+j]); 17 // 18 // into one loop: 19 // 20 // for (int i = 0; i < (N*M); ++i) 21 // f(A[i]); 22 // 23 // It can also flatten loops where the induction variables are not used in the 24 // loop. This is only worth doing if the induction variables are only used in an 25 // expression like i*M+j. If they had any other uses, we would have to insert a 26 // div/mod to reconstruct the original values, so this wouldn't be profitable. 27 // 28 // We also need to prove that N*M will not overflow. The preferred solution is 29 // to widen the IV, which avoids overflow checks, so that is tried first. If 30 // the IV cannot be widened, then we try to determine that this new tripcount 31 // expression won't overflow. 32 // 33 // Q: Does LoopFlatten use SCEV? 34 // Short answer: Yes and no. 35 // 36 // Long answer: 37 // For this transformation to be valid, we require all uses of the induction 38 // variables to be linear expressions of the form i*M+j. The different Loop 39 // APIs are used to get some loop components like the induction variable, 40 // compare statement, etc. In addition, we do some pattern matching to find the 41 // linear expressions and other loop components like the loop increment. The 42 // latter are examples of expressions that do use the induction variable, but 43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep 44 // track of all of this in bookkeeping struct FlattenInfo. 45 // We assume the loops to be canonical, i.e. starting at 0 and increment with 46 // 1. This makes RHS of the compare the loop tripcount (with the right 47 // predicate). We use SCEV to then sanity check that this tripcount matches 48 // with the tripcount as computed by SCEV. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/LoopFlatten.h" 53 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/AssumptionCache.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/LoopNestAnalysis.h" 58 #include "llvm/Analysis/MemorySSAUpdater.h" 59 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/Scalar/LoopPassManager.h" 71 #include "llvm/Transforms/Utils/Local.h" 72 #include "llvm/Transforms/Utils/LoopUtils.h" 73 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 74 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 75 #include <optional> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 #define DEBUG_TYPE "loop-flatten" 81 82 STATISTIC(NumFlattened, "Number of loops flattened"); 83 84 static cl::opt<unsigned> RepeatedInstructionThreshold( 85 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 86 cl::desc("Limit on the cost of instructions that can be repeated due to " 87 "loop flattening")); 88 89 static cl::opt<bool> 90 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 91 cl::init(false), 92 cl::desc("Assume that the product of the two iteration " 93 "trip counts will never overflow")); 94 95 static cl::opt<bool> 96 WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), 97 cl::desc("Widen the loop induction variables, if possible, so " 98 "overflow checks won't reject flattening")); 99 100 namespace { 101 // We require all uses of both induction variables to match this pattern: 102 // 103 // (OuterPHI * InnerTripCount) + InnerPHI 104 // 105 // I.e., it needs to be a linear expression of the induction variables and the 106 // inner loop trip count. We keep track of all different expressions on which 107 // checks will be performed in this bookkeeping struct. 108 // 109 struct FlattenInfo { 110 Loop *OuterLoop = nullptr; // The loop pair to be flattened. 111 Loop *InnerLoop = nullptr; 112 113 PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop 114 PHINode *OuterInductionPHI = nullptr; // induction variables, which are 115 // expected to start at zero and 116 // increment by one on each loop. 117 118 Value *InnerTripCount = nullptr; // The product of these two tripcounts 119 Value *OuterTripCount = nullptr; // will be the new flattened loop 120 // tripcount. Also used to recognise a 121 // linear expression that will be replaced. 122 123 SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions 124 // of the form i*M+j that will be 125 // replaced. 126 127 BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in 128 BinaryOperator *OuterIncrement = nullptr; // loop control statements that 129 BranchInst *InnerBranch = nullptr; // are safe to ignore. 130 131 BranchInst *OuterBranch = nullptr; // The instruction that needs to be 132 // updated with new tripcount. 133 134 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 135 136 bool Widened = false; // Whether this holds the flatten info before or after 137 // widening. 138 139 PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction 140 PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV 141 // has been applied. Used to skip 142 // checks on phi nodes. 143 144 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){}; 145 146 bool isNarrowInductionPhi(PHINode *Phi) { 147 // This can't be the narrow phi if we haven't widened the IV first. 148 if (!Widened) 149 return false; 150 return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi; 151 } 152 bool isInnerLoopIncrement(User *U) { 153 return InnerIncrement == U; 154 } 155 bool isOuterLoopIncrement(User *U) { 156 return OuterIncrement == U; 157 } 158 bool isInnerLoopTest(User *U) { 159 return InnerBranch->getCondition() == U; 160 } 161 162 bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 163 for (User *U : OuterInductionPHI->users()) { 164 if (isOuterLoopIncrement(U)) 165 continue; 166 167 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 168 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 169 if (!ValidOuterPHIUses.count(U)) { 170 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 171 return false; 172 } 173 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 174 return true; 175 }; 176 177 if (auto *V = dyn_cast<TruncInst>(U)) { 178 for (auto *K : V->users()) { 179 if (!IsValidOuterPHIUses(K)) 180 return false; 181 } 182 continue; 183 } 184 185 if (!IsValidOuterPHIUses(U)) 186 return false; 187 } 188 return true; 189 } 190 191 bool matchLinearIVUser(User *U, Value *InnerTripCount, 192 SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 193 LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump()); 194 Value *MatchedMul = nullptr; 195 Value *MatchedItCount = nullptr; 196 197 bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI), 198 m_Value(MatchedMul))) && 199 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 200 m_Value(MatchedItCount))); 201 202 // Matches the same pattern as above, except it also looks for truncs 203 // on the phi, which can be the result of widening the induction variables. 204 bool IsAddTrunc = 205 match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)), 206 m_Value(MatchedMul))) && 207 match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)), 208 m_Value(MatchedItCount))); 209 210 // Matches the pattern ptr+i*M+j, with the two additions being done via GEP. 211 bool IsGEP = match(U, m_GEP(m_GEP(m_Value(), m_Value(MatchedMul)), 212 m_Specific(InnerInductionPHI))) && 213 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 214 m_Value(MatchedItCount))); 215 216 if (!MatchedItCount) 217 return false; 218 219 LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump()); 220 LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump()); 221 222 // The mul should not have any other uses. Widening may leave trivially dead 223 // uses, which can be ignored. 224 if (count_if(MatchedMul->users(), [](User *U) { 225 return !isInstructionTriviallyDead(cast<Instruction>(U)); 226 }) > 1) { 227 LLVM_DEBUG(dbgs() << "Multiply has more than one use\n"); 228 return false; 229 } 230 231 // Look through extends if the IV has been widened. Don't look through 232 // extends if we already looked through a trunc. 233 if (Widened && (IsAdd || IsGEP) && 234 (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) { 235 assert(MatchedItCount->getType() == InnerInductionPHI->getType() && 236 "Unexpected type mismatch in types after widening"); 237 MatchedItCount = isa<SExtInst>(MatchedItCount) 238 ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0) 239 : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0); 240 } 241 242 LLVM_DEBUG(dbgs() << "Looking for inner trip count: "; 243 InnerTripCount->dump()); 244 245 if ((IsAdd || IsAddTrunc || IsGEP) && MatchedItCount == InnerTripCount) { 246 LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n"); 247 ValidOuterPHIUses.insert(MatchedMul); 248 LinearIVUses.insert(U); 249 return true; 250 } 251 252 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 253 return false; 254 } 255 256 bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 257 Value *SExtInnerTripCount = InnerTripCount; 258 if (Widened && 259 (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 260 SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 261 262 for (User *U : InnerInductionPHI->users()) { 263 LLVM_DEBUG(dbgs() << "Checking User: "; U->dump()); 264 if (isInnerLoopIncrement(U)) { 265 LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n"); 266 continue; 267 } 268 269 // After widening the IVs, a trunc instruction might have been introduced, 270 // so look through truncs. 271 if (isa<TruncInst>(U)) { 272 if (!U->hasOneUse()) 273 return false; 274 U = *U->user_begin(); 275 } 276 277 // If the use is in the compare (which is also the condition of the inner 278 // branch) then the compare has been altered by another transformation e.g 279 // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is 280 // a constant. Ignore this use as the compare gets removed later anyway. 281 if (isInnerLoopTest(U)) { 282 LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n"); 283 continue; 284 } 285 286 if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) { 287 LLVM_DEBUG(dbgs() << "Not a linear IV user\n"); 288 return false; 289 } 290 LLVM_DEBUG(dbgs() << "Linear IV users found!\n"); 291 } 292 return true; 293 } 294 }; 295 } // namespace 296 297 static bool 298 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment, 299 SmallPtrSetImpl<Instruction *> &IterationInstructions) { 300 TripCount = TC; 301 IterationInstructions.insert(Increment); 302 LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump()); 303 LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 304 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 305 return true; 306 } 307 308 // Given the RHS of the loop latch compare instruction, verify with SCEV 309 // that this is indeed the loop tripcount. 310 // TODO: This used to be a straightforward check but has grown to be quite 311 // complicated now. It is therefore worth revisiting what the additional 312 // benefits are of this (compared to relying on canonical loops and pattern 313 // matching). 314 static bool verifyTripCount(Value *RHS, Loop *L, 315 SmallPtrSetImpl<Instruction *> &IterationInstructions, 316 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 317 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 318 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 319 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 320 LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n"); 321 return false; 322 } 323 324 // Evaluating in the trip count's type can not overflow here as the overflow 325 // checks are performed in checkOverflow, but are first tried to avoid by 326 // widening the IV. 327 const SCEV *SCEVTripCount = 328 SE->getTripCountFromExitCount(BackedgeTakenCount, 329 BackedgeTakenCount->getType(), L); 330 331 const SCEV *SCEVRHS = SE->getSCEV(RHS); 332 if (SCEVRHS == SCEVTripCount) 333 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 334 ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS); 335 if (ConstantRHS) { 336 const SCEV *BackedgeTCExt = nullptr; 337 if (IsWidened) { 338 const SCEV *SCEVTripCountExt; 339 // Find the extended backedge taken count and extended trip count using 340 // SCEV. One of these should now match the RHS of the compare. 341 BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType()); 342 SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, 343 RHS->getType(), L); 344 if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) { 345 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 346 return false; 347 } 348 } 349 // If the RHS of the compare is equal to the backedge taken count we need 350 // to add one to get the trip count. 351 if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) { 352 Value *NewRHS = ConstantInt::get(ConstantRHS->getContext(), 353 ConstantRHS->getValue() + 1); 354 return setLoopComponents(NewRHS, TripCount, Increment, 355 IterationInstructions); 356 } 357 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 358 } 359 // If the RHS isn't a constant then check that the reason it doesn't match 360 // the SCEV trip count is because the RHS is a ZExt or SExt instruction 361 // (and take the trip count to be the RHS). 362 if (!IsWidened) { 363 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 364 return false; 365 } 366 auto *TripCountInst = dyn_cast<Instruction>(RHS); 367 if (!TripCountInst) { 368 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 369 return false; 370 } 371 if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 372 SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 373 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 374 return false; 375 } 376 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 377 } 378 379 // Finds the induction variable, increment and trip count for a simple loop that 380 // we can flatten. 381 static bool findLoopComponents( 382 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 383 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 384 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 385 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 386 387 if (!L->isLoopSimplifyForm()) { 388 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 389 return false; 390 } 391 392 // Currently, to simplify the implementation, the Loop induction variable must 393 // start at zero and increment with a step size of one. 394 if (!L->isCanonical(*SE)) { 395 LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 396 return false; 397 } 398 399 // There must be exactly one exiting block, and it must be the same at the 400 // latch. 401 BasicBlock *Latch = L->getLoopLatch(); 402 if (L->getExitingBlock() != Latch) { 403 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 404 return false; 405 } 406 407 // Find the induction PHI. If there is no induction PHI, we can't do the 408 // transformation. TODO: could other variables trigger this? Do we have to 409 // search for the best one? 410 InductionPHI = L->getInductionVariable(*SE); 411 if (!InductionPHI) { 412 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 413 return false; 414 } 415 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 416 417 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 418 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 419 if (ContinueOnTrue) 420 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 421 else 422 return Pred == CmpInst::ICMP_EQ; 423 }; 424 425 // Find Compare and make sure it is valid. getLatchCmpInst checks that the 426 // back branch of the latch is conditional. 427 ICmpInst *Compare = L->getLatchCmpInst(); 428 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 429 Compare->hasNUsesOrMore(2)) { 430 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 431 return false; 432 } 433 BackBranch = cast<BranchInst>(Latch->getTerminator()); 434 IterationInstructions.insert(BackBranch); 435 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 436 IterationInstructions.insert(Compare); 437 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 438 439 // Find increment and trip count. 440 // There are exactly 2 incoming values to the induction phi; one from the 441 // pre-header and one from the latch. The incoming latch value is the 442 // increment variable. 443 Increment = 444 cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 445 if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) && 446 !Increment->hasNUses(1)) { 447 LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 448 return false; 449 } 450 // The trip count is the RHS of the compare. If this doesn't match the trip 451 // count computed by SCEV then this is because the trip count variable 452 // has been widened so the types don't match, or because it is a constant and 453 // another transformation has changed the compare (e.g. icmp ult %inc, 454 // tripcount -> icmp ult %j, tripcount-1), or both. 455 Value *RHS = Compare->getOperand(1); 456 457 return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount, 458 Increment, BackBranch, SE, IsWidened); 459 } 460 461 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 462 // All PHIs in the inner and outer headers must either be: 463 // - The induction PHI, which we are going to rewrite as one induction in 464 // the new loop. This is already checked by findLoopComponents. 465 // - An outer header PHI with all incoming values from outside the loop. 466 // LoopSimplify guarantees we have a pre-header, so we don't need to 467 // worry about that here. 468 // - Pairs of PHIs in the inner and outer headers, which implement a 469 // loop-carried dependency that will still be valid in the new loop. To 470 // be valid, this variable must be modified only in the inner loop. 471 472 // The set of PHI nodes in the outer loop header that we know will still be 473 // valid after the transformation. These will not need to be modified (with 474 // the exception of the induction variable), but we do need to check that 475 // there are no unsafe PHI nodes. 476 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 477 SafeOuterPHIs.insert(FI.OuterInductionPHI); 478 479 // Check that all PHI nodes in the inner loop header match one of the valid 480 // patterns. 481 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 482 // The induction PHIs break these rules, and that's OK because we treat 483 // them specially when doing the transformation. 484 if (&InnerPHI == FI.InnerInductionPHI) 485 continue; 486 if (FI.isNarrowInductionPhi(&InnerPHI)) 487 continue; 488 489 // Each inner loop PHI node must have two incoming values/blocks - one 490 // from the pre-header, and one from the latch. 491 assert(InnerPHI.getNumIncomingValues() == 2); 492 Value *PreHeaderValue = 493 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 494 Value *LatchValue = 495 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 496 497 // The incoming value from the outer loop must be the PHI node in the 498 // outer loop header, with no modifications made in the top of the outer 499 // loop. 500 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 501 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 502 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 503 return false; 504 } 505 506 // The other incoming value must come from the inner loop, without any 507 // modifications in the tail end of the outer loop. We are in LCSSA form, 508 // so this will actually be a PHI in the inner loop's exit block, which 509 // only uses values from inside the inner loop. 510 PHINode *LCSSAPHI = dyn_cast<PHINode>( 511 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 512 if (!LCSSAPHI) { 513 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 514 return false; 515 } 516 517 // The value used by the LCSSA PHI must be the same one that the inner 518 // loop's PHI uses. 519 if (LCSSAPHI->hasConstantValue() != LatchValue) { 520 LLVM_DEBUG( 521 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 522 return false; 523 } 524 525 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 526 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 527 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 528 SafeOuterPHIs.insert(OuterPHI); 529 FI.InnerPHIsToTransform.insert(&InnerPHI); 530 } 531 532 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 533 if (FI.isNarrowInductionPhi(&OuterPHI)) 534 continue; 535 if (!SafeOuterPHIs.count(&OuterPHI)) { 536 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 537 return false; 538 } 539 } 540 541 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 542 return true; 543 } 544 545 static bool 546 checkOuterLoopInsts(FlattenInfo &FI, 547 SmallPtrSetImpl<Instruction *> &IterationInstructions, 548 const TargetTransformInfo *TTI) { 549 // Check for instructions in the outer but not inner loop. If any of these 550 // have side-effects then this transformation is not legal, and if there is 551 // a significant amount of code here which can't be optimised out that it's 552 // not profitable (as these instructions would get executed for each 553 // iteration of the inner loop). 554 InstructionCost RepeatedInstrCost = 0; 555 for (auto *B : FI.OuterLoop->getBlocks()) { 556 if (FI.InnerLoop->contains(B)) 557 continue; 558 559 for (auto &I : *B) { 560 if (!isa<PHINode>(&I) && !I.isTerminator() && 561 !isSafeToSpeculativelyExecute(&I)) { 562 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 563 "side effects: "; 564 I.dump()); 565 return false; 566 } 567 // The execution count of the outer loop's iteration instructions 568 // (increment, compare and branch) will be increased, but the 569 // equivalent instructions will be removed from the inner loop, so 570 // they make a net difference of zero. 571 if (IterationInstructions.count(&I)) 572 continue; 573 // The unconditional branch to the inner loop's header will turn into 574 // a fall-through, so adds no cost. 575 BranchInst *Br = dyn_cast<BranchInst>(&I); 576 if (Br && Br->isUnconditional() && 577 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 578 continue; 579 // Multiplies of the outer iteration variable and inner iteration 580 // count will be optimised out. 581 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 582 m_Specific(FI.InnerTripCount)))) 583 continue; 584 InstructionCost Cost = 585 TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 586 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 587 RepeatedInstrCost += Cost; 588 } 589 } 590 591 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 592 << RepeatedInstrCost << "\n"); 593 // Bail out if flattening the loops would cause instructions in the outer 594 // loop but not in the inner loop to be executed extra times. 595 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 596 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 597 return false; 598 } 599 600 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 601 return true; 602 } 603 604 605 606 // We require all uses of both induction variables to match this pattern: 607 // 608 // (OuterPHI * InnerTripCount) + InnerPHI 609 // 610 // Any uses of the induction variables not matching that pattern would 611 // require a div/mod to reconstruct in the flattened loop, so the 612 // transformation wouldn't be profitable. 613 static bool checkIVUsers(FlattenInfo &FI) { 614 // Check that all uses of the inner loop's induction variable match the 615 // expected pattern, recording the uses of the outer IV. 616 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 617 if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses)) 618 return false; 619 620 // Check that there are no uses of the outer IV other than the ones found 621 // as part of the pattern above. 622 if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses)) 623 return false; 624 625 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 626 dbgs() << "Found " << FI.LinearIVUses.size() 627 << " value(s) that can be replaced:\n"; 628 for (Value *V : FI.LinearIVUses) { 629 dbgs() << " "; 630 V->dump(); 631 }); 632 return true; 633 } 634 635 // Return an OverflowResult dependant on if overflow of the multiplication of 636 // InnerTripCount and OuterTripCount can be assumed not to happen. 637 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 638 AssumptionCache *AC) { 639 Function *F = FI.OuterLoop->getHeader()->getParent(); 640 const DataLayout &DL = F->getParent()->getDataLayout(); 641 642 // For debugging/testing. 643 if (AssumeNoOverflow) 644 return OverflowResult::NeverOverflows; 645 646 // Check if the multiply could not overflow due to known ranges of the 647 // input values. 648 OverflowResult OR = computeOverflowForUnsignedMul( 649 FI.InnerTripCount, FI.OuterTripCount, 650 SimplifyQuery(DL, DT, AC, 651 FI.OuterLoop->getLoopPreheader()->getTerminator())); 652 if (OR != OverflowResult::MayOverflow) 653 return OR; 654 655 auto CheckGEP = [&](GetElementPtrInst *GEP, Value *GEPOperand) { 656 for (Value *GEPUser : GEP->users()) { 657 auto *GEPUserInst = cast<Instruction>(GEPUser); 658 if (!isa<LoadInst>(GEPUserInst) && 659 !(isa<StoreInst>(GEPUserInst) && GEP == GEPUserInst->getOperand(1))) 660 continue; 661 if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, FI.InnerLoop)) 662 continue; 663 // The IV is used as the operand of a GEP which dominates the loop 664 // latch, and the IV is at least as wide as the address space of the 665 // GEP. In this case, the GEP would wrap around the address space 666 // before the IV increment wraps, which would be UB. 667 if (GEP->isInBounds() && 668 GEPOperand->getType()->getIntegerBitWidth() >= 669 DL.getPointerTypeSizeInBits(GEP->getType())) { 670 LLVM_DEBUG( 671 dbgs() << "use of linear IV would be UB if overflow occurred: "; 672 GEP->dump()); 673 return true; 674 } 675 } 676 return false; 677 }; 678 679 // Check if any IV user is, or is used by, a GEP that would cause UB if the 680 // multiply overflows. 681 for (Value *V : FI.LinearIVUses) { 682 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) 683 if (GEP->getNumIndices() == 1 && CheckGEP(GEP, GEP->getOperand(1))) 684 return OverflowResult::NeverOverflows; 685 for (Value *U : V->users()) 686 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) 687 if (CheckGEP(GEP, V)) 688 return OverflowResult::NeverOverflows; 689 } 690 691 return OverflowResult::MayOverflow; 692 } 693 694 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 695 ScalarEvolution *SE, AssumptionCache *AC, 696 const TargetTransformInfo *TTI) { 697 SmallPtrSet<Instruction *, 8> IterationInstructions; 698 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 699 FI.InnerInductionPHI, FI.InnerTripCount, 700 FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 701 return false; 702 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 703 FI.OuterInductionPHI, FI.OuterTripCount, 704 FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 705 return false; 706 707 // Both of the loop trip count values must be invariant in the outer loop 708 // (non-instructions are all inherently invariant). 709 if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 710 LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 711 return false; 712 } 713 if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 714 LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 715 return false; 716 } 717 718 if (!checkPHIs(FI, TTI)) 719 return false; 720 721 // FIXME: it should be possible to handle different types correctly. 722 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 723 return false; 724 725 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 726 return false; 727 728 // Find the values in the loop that can be replaced with the linearized 729 // induction variable, and check that there are no other uses of the inner 730 // or outer induction variable. If there were, we could still do this 731 // transformation, but we'd have to insert a div/mod to calculate the 732 // original IVs, so it wouldn't be profitable. 733 if (!checkIVUsers(FI)) 734 return false; 735 736 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 737 return true; 738 } 739 740 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 741 ScalarEvolution *SE, AssumptionCache *AC, 742 const TargetTransformInfo *TTI, LPMUpdater *U, 743 MemorySSAUpdater *MSSAU) { 744 Function *F = FI.OuterLoop->getHeader()->getParent(); 745 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 746 { 747 using namespace ore; 748 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 749 FI.InnerLoop->getHeader()); 750 OptimizationRemarkEmitter ORE(F); 751 Remark << "Flattened into outer loop"; 752 ORE.emit(Remark); 753 } 754 755 Value *NewTripCount = BinaryOperator::CreateMul( 756 FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 757 FI.OuterLoop->getLoopPreheader()->getTerminator()); 758 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 759 NewTripCount->dump()); 760 761 // Fix up PHI nodes that take values from the inner loop back-edge, which 762 // we are about to remove. 763 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 764 765 // The old Phi will be optimised away later, but for now we can't leave 766 // leave it in an invalid state, so are updating them too. 767 for (PHINode *PHI : FI.InnerPHIsToTransform) 768 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 769 770 // Modify the trip count of the outer loop to be the product of the two 771 // trip counts. 772 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 773 774 // Replace the inner loop backedge with an unconditional branch to the exit. 775 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 776 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 777 InnerExitingBlock->getTerminator()->eraseFromParent(); 778 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 779 780 // Update the DomTree and MemorySSA. 781 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 782 if (MSSAU) 783 MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 784 785 // Replace all uses of the polynomial calculated from the two induction 786 // variables with the one new one. 787 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 788 for (Value *V : FI.LinearIVUses) { 789 Value *OuterValue = FI.OuterInductionPHI; 790 if (FI.Widened) 791 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 792 "flatten.trunciv"); 793 794 if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) { 795 // Replace the GEP with one that uses OuterValue as the offset. 796 auto *InnerGEP = cast<GetElementPtrInst>(GEP->getOperand(0)); 797 Value *Base = InnerGEP->getOperand(0); 798 // When the base of the GEP doesn't dominate the outer induction phi then 799 // we need to insert the new GEP where the old GEP was. 800 if (!DT->dominates(Base, &*Builder.GetInsertPoint())) 801 Builder.SetInsertPoint(cast<Instruction>(V)); 802 OuterValue = Builder.CreateGEP(GEP->getSourceElementType(), Base, 803 OuterValue, "flatten." + V->getName()); 804 } 805 806 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: "; 807 OuterValue->dump()); 808 V->replaceAllUsesWith(OuterValue); 809 } 810 811 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 812 // deleted, and invalidate any outer loop information. 813 SE->forgetLoop(FI.OuterLoop); 814 SE->forgetBlockAndLoopDispositions(); 815 if (U) 816 U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName()); 817 LI->erase(FI.InnerLoop); 818 819 // Increment statistic value. 820 NumFlattened++; 821 822 return true; 823 } 824 825 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 826 ScalarEvolution *SE, AssumptionCache *AC, 827 const TargetTransformInfo *TTI) { 828 if (!WidenIV) { 829 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 830 return false; 831 } 832 833 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 834 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 835 auto &DL = M->getDataLayout(); 836 auto *InnerType = FI.InnerInductionPHI->getType(); 837 auto *OuterType = FI.OuterInductionPHI->getType(); 838 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 839 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 840 841 // If both induction types are less than the maximum legal integer width, 842 // promote both to the widest type available so we know calculating 843 // (OuterTripCount * InnerTripCount) as the new trip count is safe. 844 if (InnerType != OuterType || 845 InnerType->getScalarSizeInBits() >= MaxLegalSize || 846 MaxLegalType->getScalarSizeInBits() < 847 InnerType->getScalarSizeInBits() * 2) { 848 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 849 return false; 850 } 851 852 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 853 SmallVector<WeakTrackingVH, 4> DeadInsts; 854 unsigned ElimExt = 0; 855 unsigned Widened = 0; 856 857 auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool { 858 PHINode *WidePhi = 859 createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened, 860 true /* HasGuards */, true /* UsePostIncrementRanges */); 861 if (!WidePhi) 862 return false; 863 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 864 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 865 Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 866 return true; 867 }; 868 869 bool Deleted; 870 if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted)) 871 return false; 872 // Add the narrow phi to list, so that it will be adjusted later when the 873 // the transformation is performed. 874 if (!Deleted) 875 FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI); 876 877 if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted)) 878 return false; 879 880 assert(Widened && "Widened IV expected"); 881 FI.Widened = true; 882 883 // Save the old/narrow induction phis, which we need to ignore in CheckPHIs. 884 FI.NarrowInnerInductionPHI = FI.InnerInductionPHI; 885 FI.NarrowOuterInductionPHI = FI.OuterInductionPHI; 886 887 // After widening, rediscover all the loop components. 888 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 889 } 890 891 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 892 ScalarEvolution *SE, AssumptionCache *AC, 893 const TargetTransformInfo *TTI, LPMUpdater *U, 894 MemorySSAUpdater *MSSAU) { 895 LLVM_DEBUG( 896 dbgs() << "Loop flattening running on outer loop " 897 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 898 << FI.InnerLoop->getHeader()->getName() << " in " 899 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 900 901 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 902 return false; 903 904 // Check if we can widen the induction variables to avoid overflow checks. 905 bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI); 906 907 // It can happen that after widening of the IV, flattening may not be 908 // possible/happening, e.g. when it is deemed unprofitable. So bail here if 909 // that is the case. 910 // TODO: IV widening without performing the actual flattening transformation 911 // is not ideal. While this codegen change should not matter much, it is an 912 // unnecessary change which is better to avoid. It's unlikely this happens 913 // often, because if it's unprofitibale after widening, it should be 914 // unprofitabe before widening as checked in the first round of checks. But 915 // 'RepeatedInstructionThreshold' is set to only 2, which can probably be 916 // relaxed. Because this is making a code change (the IV widening, but not 917 // the flattening), we return true here. 918 if (FI.Widened && !CanFlatten) 919 return true; 920 921 // If we have widened and can perform the transformation, do that here. 922 if (CanFlatten) 923 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 924 925 // Otherwise, if we haven't widened the IV, check if the new iteration 926 // variable might overflow. In this case, we need to version the loop, and 927 // select the original version at runtime if the iteration space is too 928 // large. 929 // TODO: We currently don't version the loop. 930 OverflowResult OR = checkOverflow(FI, DT, AC); 931 if (OR == OverflowResult::AlwaysOverflowsHigh || 932 OR == OverflowResult::AlwaysOverflowsLow) { 933 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 934 return false; 935 } else if (OR == OverflowResult::MayOverflow) { 936 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 937 return false; 938 } 939 940 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 941 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 942 } 943 944 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 945 LoopStandardAnalysisResults &AR, 946 LPMUpdater &U) { 947 948 bool Changed = false; 949 950 std::optional<MemorySSAUpdater> MSSAU; 951 if (AR.MSSA) { 952 MSSAU = MemorySSAUpdater(AR.MSSA); 953 if (VerifyMemorySSA) 954 AR.MSSA->verifyMemorySSA(); 955 } 956 957 // The loop flattening pass requires loops to be 958 // in simplified form, and also needs LCSSA. Running 959 // this pass will simplify all loops that contain inner loops, 960 // regardless of whether anything ends up being flattened. 961 for (Loop *InnerLoop : LN.getLoops()) { 962 auto *OuterLoop = InnerLoop->getParentLoop(); 963 if (!OuterLoop) 964 continue; 965 FlattenInfo FI(OuterLoop, InnerLoop); 966 Changed |= FlattenLoopPair(FI, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U, 967 MSSAU ? &*MSSAU : nullptr); 968 } 969 970 if (!Changed) 971 return PreservedAnalyses::all(); 972 973 if (AR.MSSA && VerifyMemorySSA) 974 AR.MSSA->verifyMemorySSA(); 975 976 auto PA = getLoopPassPreservedAnalyses(); 977 if (AR.MSSA) 978 PA.preserve<MemorySSAAnalysis>(); 979 return PA; 980 } 981