xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //   for (int i = 0; i < N; ++i)
14 //     for (int j = 0; j < M; ++j)
15 //       f(A[i*M+j]);
16 // into one loop:
17 //   for (int i = 0; i < (N*M); ++i)
18 //     f(A[i]);
19 //
20 // It can also flatten loops where the induction variables are not used in the
21 // loop. This is only worth doing if the induction variables are only used in an
22 // expression like i*M+j. If they had any other uses, we would have to insert a
23 // div/mod to reconstruct the original values, so this wouldn't be profitable.
24 //
25 // We also need to prove that N*M will not overflow.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/Transforms/Scalar/LoopFlatten.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/ScalarEvolution.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Verifier.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
50 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
51 
52 #define DEBUG_TYPE "loop-flatten"
53 
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
56 
57 static cl::opt<unsigned> RepeatedInstructionThreshold(
58     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
59     cl::desc("Limit on the cost of instructions that can be repeated due to "
60              "loop flattening"));
61 
62 static cl::opt<bool>
63     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
64                      cl::init(false),
65                      cl::desc("Assume that the product of the two iteration "
66                               "limits will never overflow"));
67 
68 static cl::opt<bool>
69     WidenIV("loop-flatten-widen-iv", cl::Hidden,
70             cl::init(true),
71             cl::desc("Widen the loop induction variables, if possible, so "
72                      "overflow checks won't reject flattening"));
73 
74 struct FlattenInfo {
75   Loop *OuterLoop = nullptr;
76   Loop *InnerLoop = nullptr;
77   PHINode *InnerInductionPHI = nullptr;
78   PHINode *OuterInductionPHI = nullptr;
79   Value *InnerLimit = nullptr;
80   Value *OuterLimit = nullptr;
81   BinaryOperator *InnerIncrement = nullptr;
82   BinaryOperator *OuterIncrement = nullptr;
83   BranchInst *InnerBranch = nullptr;
84   BranchInst *OuterBranch = nullptr;
85   SmallPtrSet<Value *, 4> LinearIVUses;
86   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
87 
88   // Whether this holds the flatten info before or after widening.
89   bool Widened = false;
90 
91   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
92 };
93 
94 // Finds the induction variable, increment and limit for a simple loop that we
95 // can flatten.
96 static bool findLoopComponents(
97     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
98     PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment,
99     BranchInst *&BackBranch, ScalarEvolution *SE) {
100   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
101 
102   if (!L->isLoopSimplifyForm()) {
103     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
104     return false;
105   }
106 
107   // There must be exactly one exiting block, and it must be the same at the
108   // latch.
109   BasicBlock *Latch = L->getLoopLatch();
110   if (L->getExitingBlock() != Latch) {
111     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
112     return false;
113   }
114   // Latch block must end in a conditional branch.
115   BackBranch = dyn_cast<BranchInst>(Latch->getTerminator());
116   if (!BackBranch || !BackBranch->isConditional()) {
117     LLVM_DEBUG(dbgs() << "Could not find back-branch\n");
118     return false;
119   }
120   IterationInstructions.insert(BackBranch);
121   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
122   bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0));
123 
124   // Find the induction PHI. If there is no induction PHI, we can't do the
125   // transformation. TODO: could other variables trigger this? Do we have to
126   // search for the best one?
127   InductionPHI = nullptr;
128   for (PHINode &PHI : L->getHeader()->phis()) {
129     InductionDescriptor ID;
130     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) {
131       InductionPHI = &PHI;
132       LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
133       break;
134     }
135   }
136   if (!InductionPHI) {
137     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
138     return false;
139   }
140 
141   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
142     if (ContinueOnTrue)
143       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
144     else
145       return Pred == CmpInst::ICMP_EQ;
146   };
147 
148   // Find Compare and make sure it is valid
149   ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition());
150   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
151       Compare->hasNUsesOrMore(2)) {
152     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
153     return false;
154   }
155   IterationInstructions.insert(Compare);
156   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
157 
158   // Find increment and limit from the compare
159   Increment = nullptr;
160   if (match(Compare->getOperand(0),
161             m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
162     Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0));
163     Limit = Compare->getOperand(1);
164   } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE &&
165              match(Compare->getOperand(1),
166                    m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
167     Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1));
168     Limit = Compare->getOperand(0);
169   }
170   if (!Increment || Increment->hasNUsesOrMore(3)) {
171     LLVM_DEBUG(dbgs() << "Cound not find valid increment\n");
172     return false;
173   }
174   IterationInstructions.insert(Increment);
175   LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
176   LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump());
177 
178   assert(InductionPHI->getNumIncomingValues() == 2);
179   assert(InductionPHI->getIncomingValueForBlock(Latch) == Increment &&
180          "PHI value is not increment inst");
181 
182   auto *CI = dyn_cast<ConstantInt>(
183       InductionPHI->getIncomingValueForBlock(L->getLoopPreheader()));
184   if (!CI || !CI->isZero()) {
185     LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump());
186     return false;
187   }
188 
189   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
190   return true;
191 }
192 
193 static bool checkPHIs(struct FlattenInfo &FI,
194                       const TargetTransformInfo *TTI) {
195   // All PHIs in the inner and outer headers must either be:
196   // - The induction PHI, which we are going to rewrite as one induction in
197   //   the new loop. This is already checked by findLoopComponents.
198   // - An outer header PHI with all incoming values from outside the loop.
199   //   LoopSimplify guarantees we have a pre-header, so we don't need to
200   //   worry about that here.
201   // - Pairs of PHIs in the inner and outer headers, which implement a
202   //   loop-carried dependency that will still be valid in the new loop. To
203   //   be valid, this variable must be modified only in the inner loop.
204 
205   // The set of PHI nodes in the outer loop header that we know will still be
206   // valid after the transformation. These will not need to be modified (with
207   // the exception of the induction variable), but we do need to check that
208   // there are no unsafe PHI nodes.
209   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
210   SafeOuterPHIs.insert(FI.OuterInductionPHI);
211 
212   // Check that all PHI nodes in the inner loop header match one of the valid
213   // patterns.
214   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
215     // The induction PHIs break these rules, and that's OK because we treat
216     // them specially when doing the transformation.
217     if (&InnerPHI == FI.InnerInductionPHI)
218       continue;
219 
220     // Each inner loop PHI node must have two incoming values/blocks - one
221     // from the pre-header, and one from the latch.
222     assert(InnerPHI.getNumIncomingValues() == 2);
223     Value *PreHeaderValue =
224         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
225     Value *LatchValue =
226         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
227 
228     // The incoming value from the outer loop must be the PHI node in the
229     // outer loop header, with no modifications made in the top of the outer
230     // loop.
231     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
232     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
233       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
234       return false;
235     }
236 
237     // The other incoming value must come from the inner loop, without any
238     // modifications in the tail end of the outer loop. We are in LCSSA form,
239     // so this will actually be a PHI in the inner loop's exit block, which
240     // only uses values from inside the inner loop.
241     PHINode *LCSSAPHI = dyn_cast<PHINode>(
242         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
243     if (!LCSSAPHI) {
244       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
245       return false;
246     }
247 
248     // The value used by the LCSSA PHI must be the same one that the inner
249     // loop's PHI uses.
250     if (LCSSAPHI->hasConstantValue() != LatchValue) {
251       LLVM_DEBUG(
252           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
253       return false;
254     }
255 
256     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
257     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
258     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
259     SafeOuterPHIs.insert(OuterPHI);
260     FI.InnerPHIsToTransform.insert(&InnerPHI);
261   }
262 
263   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
264     if (!SafeOuterPHIs.count(&OuterPHI)) {
265       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
266       return false;
267     }
268   }
269 
270   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
271   return true;
272 }
273 
274 static bool
275 checkOuterLoopInsts(struct FlattenInfo &FI,
276                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
277                     const TargetTransformInfo *TTI) {
278   // Check for instructions in the outer but not inner loop. If any of these
279   // have side-effects then this transformation is not legal, and if there is
280   // a significant amount of code here which can't be optimised out that it's
281   // not profitable (as these instructions would get executed for each
282   // iteration of the inner loop).
283   unsigned RepeatedInstrCost = 0;
284   for (auto *B : FI.OuterLoop->getBlocks()) {
285     if (FI.InnerLoop->contains(B))
286       continue;
287 
288     for (auto &I : *B) {
289       if (!isa<PHINode>(&I) && !I.isTerminator() &&
290           !isSafeToSpeculativelyExecute(&I)) {
291         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
292                              "side effects: ";
293                    I.dump());
294         return false;
295       }
296       // The execution count of the outer loop's iteration instructions
297       // (increment, compare and branch) will be increased, but the
298       // equivalent instructions will be removed from the inner loop, so
299       // they make a net difference of zero.
300       if (IterationInstructions.count(&I))
301         continue;
302       // The uncoditional branch to the inner loop's header will turn into
303       // a fall-through, so adds no cost.
304       BranchInst *Br = dyn_cast<BranchInst>(&I);
305       if (Br && Br->isUnconditional() &&
306           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
307         continue;
308       // Multiplies of the outer iteration variable and inner iteration
309       // count will be optimised out.
310       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
311                             m_Specific(FI.InnerLimit))))
312         continue;
313       int Cost = TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
314       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
315       RepeatedInstrCost += Cost;
316     }
317   }
318 
319   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
320                     << RepeatedInstrCost << "\n");
321   // Bail out if flattening the loops would cause instructions in the outer
322   // loop but not in the inner loop to be executed extra times.
323   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
324     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
325     return false;
326   }
327 
328   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
329   return true;
330 }
331 
332 static bool checkIVUsers(struct FlattenInfo &FI) {
333   // We require all uses of both induction variables to match this pattern:
334   //
335   //   (OuterPHI * InnerLimit) + InnerPHI
336   //
337   // Any uses of the induction variables not matching that pattern would
338   // require a div/mod to reconstruct in the flattened loop, so the
339   // transformation wouldn't be profitable.
340 
341   Value *InnerLimit = FI.InnerLimit;
342   if (FI.Widened &&
343       (isa<SExtInst>(InnerLimit) || isa<ZExtInst>(InnerLimit)))
344     InnerLimit = cast<Instruction>(InnerLimit)->getOperand(0);
345 
346   // Check that all uses of the inner loop's induction variable match the
347   // expected pattern, recording the uses of the outer IV.
348   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
349   for (User *U : FI.InnerInductionPHI->users()) {
350     if (U == FI.InnerIncrement)
351       continue;
352 
353     // After widening the IVs, a trunc instruction might have been introduced, so
354     // look through truncs.
355     if (isa<TruncInst>(U)) {
356       if (!U->hasOneUse())
357         return false;
358       U = *U->user_begin();
359     }
360 
361     LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
362 
363     Value *MatchedMul;
364     Value *MatchedItCount;
365     bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
366                                   m_Value(MatchedMul))) &&
367                  match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
368                                            m_Value(MatchedItCount)));
369 
370     // Matches the same pattern as above, except it also looks for truncs
371     // on the phi, which can be the result of widening the induction variables.
372     bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
373                                        m_Value(MatchedMul))) &&
374                       match(MatchedMul,
375                             m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
376                             m_Value(MatchedItCount)));
377 
378     if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) {
379       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
380       ValidOuterPHIUses.insert(MatchedMul);
381       FI.LinearIVUses.insert(U);
382     } else {
383       LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
384       return false;
385     }
386   }
387 
388   // Check that there are no uses of the outer IV other than the ones found
389   // as part of the pattern above.
390   for (User *U : FI.OuterInductionPHI->users()) {
391     if (U == FI.OuterIncrement)
392       continue;
393 
394     auto IsValidOuterPHIUses = [&] (User *U) -> bool {
395       LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
396       if (!ValidOuterPHIUses.count(U)) {
397         LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
398         return false;
399       }
400       LLVM_DEBUG(dbgs() << "Use is optimisable\n");
401       return true;
402     };
403 
404     if (auto *V = dyn_cast<TruncInst>(U)) {
405       for (auto *K : V->users()) {
406         if (!IsValidOuterPHIUses(K))
407           return false;
408       }
409       continue;
410     }
411 
412     if (!IsValidOuterPHIUses(U))
413       return false;
414   }
415 
416   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
417              dbgs() << "Found " << FI.LinearIVUses.size()
418                     << " value(s) that can be replaced:\n";
419              for (Value *V : FI.LinearIVUses) {
420                dbgs() << "  ";
421                V->dump();
422              });
423   return true;
424 }
425 
426 // Return an OverflowResult dependant on if overflow of the multiplication of
427 // InnerLimit and OuterLimit can be assumed not to happen.
428 static OverflowResult checkOverflow(struct FlattenInfo &FI,
429                                     DominatorTree *DT, AssumptionCache *AC) {
430   Function *F = FI.OuterLoop->getHeader()->getParent();
431   const DataLayout &DL = F->getParent()->getDataLayout();
432 
433   // For debugging/testing.
434   if (AssumeNoOverflow)
435     return OverflowResult::NeverOverflows;
436 
437   // Check if the multiply could not overflow due to known ranges of the
438   // input values.
439   OverflowResult OR = computeOverflowForUnsignedMul(
440       FI.InnerLimit, FI.OuterLimit, DL, AC,
441       FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
442   if (OR != OverflowResult::MayOverflow)
443     return OR;
444 
445   for (Value *V : FI.LinearIVUses) {
446     for (Value *U : V->users()) {
447       if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
448         // The IV is used as the operand of a GEP, and the IV is at least as
449         // wide as the address space of the GEP. In this case, the GEP would
450         // wrap around the address space before the IV increment wraps, which
451         // would be UB.
452         if (GEP->isInBounds() &&
453             V->getType()->getIntegerBitWidth() >=
454                 DL.getPointerTypeSizeInBits(GEP->getType())) {
455           LLVM_DEBUG(
456               dbgs() << "use of linear IV would be UB if overflow occurred: ";
457               GEP->dump());
458           return OverflowResult::NeverOverflows;
459         }
460       }
461     }
462   }
463 
464   return OverflowResult::MayOverflow;
465 }
466 
467 static bool CanFlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT,
468                                LoopInfo *LI, ScalarEvolution *SE,
469                                AssumptionCache *AC, const TargetTransformInfo *TTI) {
470   SmallPtrSet<Instruction *, 8> IterationInstructions;
471   if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI,
472                           FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE))
473     return false;
474   if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI,
475                           FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE))
476     return false;
477 
478   // Both of the loop limit values must be invariant in the outer loop
479   // (non-instructions are all inherently invariant).
480   if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) {
481     LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n");
482     return false;
483   }
484   if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) {
485     LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n");
486     return false;
487   }
488 
489   if (!checkPHIs(FI, TTI))
490     return false;
491 
492   // FIXME: it should be possible to handle different types correctly.
493   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
494     return false;
495 
496   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
497     return false;
498 
499   // Find the values in the loop that can be replaced with the linearized
500   // induction variable, and check that there are no other uses of the inner
501   // or outer induction variable. If there were, we could still do this
502   // transformation, but we'd have to insert a div/mod to calculate the
503   // original IVs, so it wouldn't be profitable.
504   if (!checkIVUsers(FI))
505     return false;
506 
507   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
508   return true;
509 }
510 
511 static bool DoFlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT,
512                               LoopInfo *LI, ScalarEvolution *SE,
513                               AssumptionCache *AC,
514                               const TargetTransformInfo *TTI) {
515   Function *F = FI.OuterLoop->getHeader()->getParent();
516   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
517   {
518     using namespace ore;
519     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
520                               FI.InnerLoop->getHeader());
521     OptimizationRemarkEmitter ORE(F);
522     Remark << "Flattened into outer loop";
523     ORE.emit(Remark);
524   }
525 
526   Value *NewTripCount =
527       BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount",
528                                 FI.OuterLoop->getLoopPreheader()->getTerminator());
529   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
530              NewTripCount->dump());
531 
532   // Fix up PHI nodes that take values from the inner loop back-edge, which
533   // we are about to remove.
534   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
535 
536   // The old Phi will be optimised away later, but for now we can't leave
537   // leave it in an invalid state, so are updating them too.
538   for (PHINode *PHI : FI.InnerPHIsToTransform)
539     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
540 
541   // Modify the trip count of the outer loop to be the product of the two
542   // trip counts.
543   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
544 
545   // Replace the inner loop backedge with an unconditional branch to the exit.
546   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
547   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
548   InnerExitingBlock->getTerminator()->eraseFromParent();
549   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
550   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
551 
552   // Replace all uses of the polynomial calculated from the two induction
553   // variables with the one new one.
554   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
555   for (Value *V : FI.LinearIVUses) {
556     Value *OuterValue = FI.OuterInductionPHI;
557     if (FI.Widened)
558       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
559                                        "flatten.trunciv");
560 
561     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
562                dbgs() << "with:      "; OuterValue->dump());
563     V->replaceAllUsesWith(OuterValue);
564   }
565 
566   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
567   // deleted, and any information that have about the outer loop invalidated.
568   SE->forgetLoop(FI.OuterLoop);
569   SE->forgetLoop(FI.InnerLoop);
570   LI->erase(FI.InnerLoop);
571   return true;
572 }
573 
574 static bool CanWidenIV(struct FlattenInfo &FI, DominatorTree *DT,
575                        LoopInfo *LI, ScalarEvolution *SE,
576                        AssumptionCache *AC, const TargetTransformInfo *TTI) {
577   if (!WidenIV) {
578     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
579     return false;
580   }
581 
582   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
583   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
584   auto &DL = M->getDataLayout();
585   auto *InnerType = FI.InnerInductionPHI->getType();
586   auto *OuterType = FI.OuterInductionPHI->getType();
587   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
588   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
589 
590   // If both induction types are less than the maximum legal integer width,
591   // promote both to the widest type available so we know calculating
592   // (OuterLimit * InnerLimit) as the new trip count is safe.
593   if (InnerType != OuterType ||
594       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
595       MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
596     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
597     return false;
598   }
599 
600   SCEVExpander Rewriter(*SE, DL, "loopflatten");
601   SmallVector<WideIVInfo, 2> WideIVs;
602   SmallVector<WeakTrackingVH, 4> DeadInsts;
603   WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false });
604   WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false });
605   unsigned ElimExt;
606   unsigned Widened;
607 
608   for (unsigned i = 0; i < WideIVs.size(); i++) {
609     PHINode *WidePhi = createWideIV(WideIVs[i], LI, SE, Rewriter, DT, DeadInsts,
610                                     ElimExt, Widened, true /* HasGuards */,
611                                     true /* UsePostIncrementRanges */);
612     if (!WidePhi)
613       return false;
614     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
615     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIVs[i].NarrowIV->dump());
616     RecursivelyDeleteDeadPHINode(WideIVs[i].NarrowIV);
617   }
618   // After widening, rediscover all the loop components.
619   assert(Widened && "Widenend IV expected");
620   FI.Widened = true;
621   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
622 }
623 
624 static bool FlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT,
625                             LoopInfo *LI, ScalarEvolution *SE,
626                             AssumptionCache *AC,
627                             const TargetTransformInfo *TTI) {
628   LLVM_DEBUG(
629       dbgs() << "Loop flattening running on outer loop "
630              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
631              << FI.InnerLoop->getHeader()->getName() << " in "
632              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
633 
634   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
635     return false;
636 
637   // Check if we can widen the induction variables to avoid overflow checks.
638   if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
639     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
640 
641   // Check if the new iteration variable might overflow. In this case, we
642   // need to version the loop, and select the original version at runtime if
643   // the iteration space is too large.
644   // TODO: We currently don't version the loop.
645   OverflowResult OR = checkOverflow(FI, DT, AC);
646   if (OR == OverflowResult::AlwaysOverflowsHigh ||
647       OR == OverflowResult::AlwaysOverflowsLow) {
648     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
649     return false;
650   } else if (OR == OverflowResult::MayOverflow) {
651     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
652     return false;
653   }
654 
655   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
656   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
657 }
658 
659 bool Flatten(DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
660              AssumptionCache *AC, TargetTransformInfo *TTI) {
661   bool Changed = false;
662   for (auto *InnerLoop : LI->getLoopsInPreorder()) {
663     auto *OuterLoop = InnerLoop->getParentLoop();
664     if (!OuterLoop)
665       continue;
666     struct FlattenInfo FI(OuterLoop, InnerLoop);
667     Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
668   }
669   return Changed;
670 }
671 
672 PreservedAnalyses LoopFlattenPass::run(Function &F,
673                                        FunctionAnalysisManager &AM) {
674   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
675   auto *LI = &AM.getResult<LoopAnalysis>(F);
676   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
677   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
678   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
679 
680   if (!Flatten(DT, LI, SE, AC, TTI))
681     return PreservedAnalyses::all();
682 
683   PreservedAnalyses PA;
684   PA.preserveSet<CFGAnalyses>();
685   return PA;
686 }
687 
688 namespace {
689 class LoopFlattenLegacyPass : public FunctionPass {
690 public:
691   static char ID; // Pass ID, replacement for typeid
692   LoopFlattenLegacyPass() : FunctionPass(ID) {
693     initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
694   }
695 
696   // Possibly flatten loop L into its child.
697   bool runOnFunction(Function &F) override;
698 
699   void getAnalysisUsage(AnalysisUsage &AU) const override {
700     getLoopAnalysisUsage(AU);
701     AU.addRequired<TargetTransformInfoWrapperPass>();
702     AU.addPreserved<TargetTransformInfoWrapperPass>();
703     AU.addRequired<AssumptionCacheTracker>();
704     AU.addPreserved<AssumptionCacheTracker>();
705   }
706 };
707 } // namespace
708 
709 char LoopFlattenLegacyPass::ID = 0;
710 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
711                       false, false)
712 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
713 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
714 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
715                     false, false)
716 
717 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
718 
719 bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
720   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
721   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
722   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
723   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
724   auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
725   auto *TTI = &TTIP.getTTI(F);
726   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
727   return Flatten(DT, LI, SE, AC, TTI);
728 }
729