xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopFlatten.cpp (revision 5ca8c28cd8c725b81781201cfdb5f9969396f934)
1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //
14 //   for (int i = 0; i < N; ++i)
15 //     for (int j = 0; j < M; ++j)
16 //       f(A[i*M+j]);
17 //
18 // into one loop:
19 //
20 //   for (int i = 0; i < (N*M); ++i)
21 //     f(A[i]);
22 //
23 // It can also flatten loops where the induction variables are not used in the
24 // loop. This is only worth doing if the induction variables are only used in an
25 // expression like i*M+j. If they had any other uses, we would have to insert a
26 // div/mod to reconstruct the original values, so this wouldn't be profitable.
27 //
28 // We also need to prove that N*M will not overflow. The preferred solution is
29 // to widen the IV, which avoids overflow checks, so that is tried first. If
30 // the IV cannot be widened, then we try to determine that this new tripcount
31 // expression won't overflow.
32 //
33 // Q: Does LoopFlatten use SCEV?
34 // Short answer: Yes and no.
35 //
36 // Long answer:
37 // For this transformation to be valid, we require all uses of the induction
38 // variables to be linear expressions of the form i*M+j. The different Loop
39 // APIs are used to get some loop components like the induction variable,
40 // compare statement, etc. In addition, we do some pattern matching to find the
41 // linear expressions and other loop components like the loop increment. The
42 // latter are examples of expressions that do use the induction variable, but
43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep
44 // track of all of this in bookkeeping struct FlattenInfo.
45 // We assume the loops to be canonical, i.e. starting at 0 and increment with
46 // 1. This makes RHS of the compare the loop tripcount (with the right
47 // predicate). We use SCEV to then sanity check that this tripcount matches
48 // with the tripcount as computed by SCEV.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Transforms/Scalar/LoopFlatten.h"
53 
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AssumptionCache.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopNestAnalysis.h"
58 #include "llvm/Analysis/MemorySSAUpdater.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Scalar/LoopPassManager.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/LoopUtils.h"
73 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
74 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
75 #include <optional>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 #define DEBUG_TYPE "loop-flatten"
81 
82 STATISTIC(NumFlattened, "Number of loops flattened");
83 
84 static cl::opt<unsigned> RepeatedInstructionThreshold(
85     "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
86     cl::desc("Limit on the cost of instructions that can be repeated due to "
87              "loop flattening"));
88 
89 static cl::opt<bool>
90     AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
91                      cl::init(false),
92                      cl::desc("Assume that the product of the two iteration "
93                               "trip counts will never overflow"));
94 
95 static cl::opt<bool>
96     WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true),
97             cl::desc("Widen the loop induction variables, if possible, so "
98                      "overflow checks won't reject flattening"));
99 
100 namespace {
101 // We require all uses of both induction variables to match this pattern:
102 //
103 //   (OuterPHI * InnerTripCount) + InnerPHI
104 //
105 // I.e., it needs to be a linear expression of the induction variables and the
106 // inner loop trip count. We keep track of all different expressions on which
107 // checks will be performed in this bookkeeping struct.
108 //
109 struct FlattenInfo {
110   Loop *OuterLoop = nullptr;  // The loop pair to be flattened.
111   Loop *InnerLoop = nullptr;
112 
113   PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop
114   PHINode *OuterInductionPHI = nullptr; // induction variables, which are
115                                         // expected to start at zero and
116                                         // increment by one on each loop.
117 
118   Value *InnerTripCount = nullptr; // The product of these two tripcounts
119   Value *OuterTripCount = nullptr; // will be the new flattened loop
120                                    // tripcount. Also used to recognise a
121                                    // linear expression that will be replaced.
122 
123   SmallPtrSet<Value *, 4> LinearIVUses;  // Contains the linear expressions
124                                          // of the form i*M+j that will be
125                                          // replaced.
126 
127   BinaryOperator *InnerIncrement = nullptr;  // Uses of induction variables in
128   BinaryOperator *OuterIncrement = nullptr;  // loop control statements that
129   BranchInst *InnerBranch = nullptr;         // are safe to ignore.
130 
131   BranchInst *OuterBranch = nullptr; // The instruction that needs to be
132                                      // updated with new tripcount.
133 
134   SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
135 
136   bool Widened = false; // Whether this holds the flatten info before or after
137                         // widening.
138 
139   PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction
140   PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV
141                                               // has been applied. Used to skip
142                                               // checks on phi nodes.
143 
144   FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){};
145 
146   bool isNarrowInductionPhi(PHINode *Phi) {
147     // This can't be the narrow phi if we haven't widened the IV first.
148     if (!Widened)
149       return false;
150     return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
151   }
152   bool isInnerLoopIncrement(User *U) {
153     return InnerIncrement == U;
154   }
155   bool isOuterLoopIncrement(User *U) {
156     return OuterIncrement == U;
157   }
158   bool isInnerLoopTest(User *U) {
159     return InnerBranch->getCondition() == U;
160   }
161 
162   bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
163     for (User *U : OuterInductionPHI->users()) {
164       if (isOuterLoopIncrement(U))
165         continue;
166 
167       auto IsValidOuterPHIUses = [&] (User *U) -> bool {
168         LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
169         if (!ValidOuterPHIUses.count(U)) {
170           LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
171           return false;
172         }
173         LLVM_DEBUG(dbgs() << "Use is optimisable\n");
174         return true;
175       };
176 
177       if (auto *V = dyn_cast<TruncInst>(U)) {
178         for (auto *K : V->users()) {
179           if (!IsValidOuterPHIUses(K))
180             return false;
181         }
182         continue;
183       }
184 
185       if (!IsValidOuterPHIUses(U))
186         return false;
187     }
188     return true;
189   }
190 
191   bool matchLinearIVUser(User *U, Value *InnerTripCount,
192                          SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
193     LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump());
194     Value *MatchedMul = nullptr;
195     Value *MatchedItCount = nullptr;
196 
197     bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI),
198                                   m_Value(MatchedMul))) &&
199                  match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
200                                            m_Value(MatchedItCount)));
201 
202     // Matches the same pattern as above, except it also looks for truncs
203     // on the phi, which can be the result of widening the induction variables.
204     bool IsAddTrunc =
205         match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)),
206                          m_Value(MatchedMul))) &&
207         match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)),
208                                   m_Value(MatchedItCount)));
209 
210     // Matches the pattern ptr+i*M+j, with the two additions being done via GEP.
211     bool IsGEP = match(U, m_GEP(m_GEP(m_Value(), m_Value(MatchedMul)),
212                                 m_Specific(InnerInductionPHI))) &&
213                  match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
214                                            m_Value(MatchedItCount)));
215 
216     if (!MatchedItCount)
217       return false;
218 
219     LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump());
220     LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump());
221 
222     // The mul should not have any other uses. Widening may leave trivially dead
223     // uses, which can be ignored.
224     if (count_if(MatchedMul->users(), [](User *U) {
225           return !isInstructionTriviallyDead(cast<Instruction>(U));
226         }) > 1) {
227       LLVM_DEBUG(dbgs() << "Multiply has more than one use\n");
228       return false;
229     }
230 
231     // Look through extends if the IV has been widened. Don't look through
232     // extends if we already looked through a trunc.
233     if (Widened && (IsAdd || IsGEP) &&
234         (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
235       assert(MatchedItCount->getType() == InnerInductionPHI->getType() &&
236              "Unexpected type mismatch in types after widening");
237       MatchedItCount = isa<SExtInst>(MatchedItCount)
238                            ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
239                            : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
240     }
241 
242     LLVM_DEBUG(dbgs() << "Looking for inner trip count: ";
243                InnerTripCount->dump());
244 
245     if ((IsAdd || IsAddTrunc || IsGEP) && MatchedItCount == InnerTripCount) {
246       LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n");
247       ValidOuterPHIUses.insert(MatchedMul);
248       LinearIVUses.insert(U);
249       return true;
250     }
251 
252     LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
253     return false;
254   }
255 
256   bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
257     Value *SExtInnerTripCount = InnerTripCount;
258     if (Widened &&
259         (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
260       SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
261 
262     for (User *U : InnerInductionPHI->users()) {
263       LLVM_DEBUG(dbgs() << "Checking User: "; U->dump());
264       if (isInnerLoopIncrement(U)) {
265         LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n");
266         continue;
267       }
268 
269       // After widening the IVs, a trunc instruction might have been introduced,
270       // so look through truncs.
271       if (isa<TruncInst>(U)) {
272         if (!U->hasOneUse())
273           return false;
274         U = *U->user_begin();
275       }
276 
277       // If the use is in the compare (which is also the condition of the inner
278       // branch) then the compare has been altered by another transformation e.g
279       // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
280       // a constant. Ignore this use as the compare gets removed later anyway.
281       if (isInnerLoopTest(U)) {
282         LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n");
283         continue;
284       }
285 
286       if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) {
287         LLVM_DEBUG(dbgs() << "Not a linear IV user\n");
288         return false;
289       }
290       LLVM_DEBUG(dbgs() << "Linear IV users found!\n");
291     }
292     return true;
293   }
294 };
295 } // namespace
296 
297 static bool
298 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
299                   SmallPtrSetImpl<Instruction *> &IterationInstructions) {
300   TripCount = TC;
301   IterationInstructions.insert(Increment);
302   LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
303   LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
304   LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
305   return true;
306 }
307 
308 // Given the RHS of the loop latch compare instruction, verify with SCEV
309 // that this is indeed the loop tripcount.
310 // TODO: This used to be a straightforward check but has grown to be quite
311 // complicated now. It is therefore worth revisiting what the additional
312 // benefits are of this (compared to relying on canonical loops and pattern
313 // matching).
314 static bool verifyTripCount(Value *RHS, Loop *L,
315      SmallPtrSetImpl<Instruction *> &IterationInstructions,
316     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
317     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
318   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
319   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
320     LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
321     return false;
322   }
323 
324   // Evaluating in the trip count's type can not overflow here as the overflow
325   // checks are performed in checkOverflow, but are first tried to avoid by
326   // widening the IV.
327   const SCEV *SCEVTripCount =
328     SE->getTripCountFromExitCount(BackedgeTakenCount,
329                                   BackedgeTakenCount->getType(), L);
330 
331   const SCEV *SCEVRHS = SE->getSCEV(RHS);
332   if (SCEVRHS == SCEVTripCount)
333     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
334   ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
335   if (ConstantRHS) {
336     const SCEV *BackedgeTCExt = nullptr;
337     if (IsWidened) {
338       const SCEV *SCEVTripCountExt;
339       // Find the extended backedge taken count and extended trip count using
340       // SCEV. One of these should now match the RHS of the compare.
341       BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
342       SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt,
343                                                        RHS->getType(), L);
344       if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
345         LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
346         return false;
347       }
348     }
349     // If the RHS of the compare is equal to the backedge taken count we need
350     // to add one to get the trip count.
351     if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
352       Value *NewRHS = ConstantInt::get(ConstantRHS->getContext(),
353                                        ConstantRHS->getValue() + 1);
354       return setLoopComponents(NewRHS, TripCount, Increment,
355                                IterationInstructions);
356     }
357     return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
358   }
359   // If the RHS isn't a constant then check that the reason it doesn't match
360   // the SCEV trip count is because the RHS is a ZExt or SExt instruction
361   // (and take the trip count to be the RHS).
362   if (!IsWidened) {
363     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
364     return false;
365   }
366   auto *TripCountInst = dyn_cast<Instruction>(RHS);
367   if (!TripCountInst) {
368     LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
369     return false;
370   }
371   if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
372       SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
373     LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
374     return false;
375   }
376   return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
377 }
378 
379 // Finds the induction variable, increment and trip count for a simple loop that
380 // we can flatten.
381 static bool findLoopComponents(
382     Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
383     PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
384     BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
385   LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
386 
387   if (!L->isLoopSimplifyForm()) {
388     LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
389     return false;
390   }
391 
392   // Currently, to simplify the implementation, the Loop induction variable must
393   // start at zero and increment with a step size of one.
394   if (!L->isCanonical(*SE)) {
395     LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
396     return false;
397   }
398 
399   // There must be exactly one exiting block, and it must be the same at the
400   // latch.
401   BasicBlock *Latch = L->getLoopLatch();
402   if (L->getExitingBlock() != Latch) {
403     LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
404     return false;
405   }
406 
407   // Find the induction PHI. If there is no induction PHI, we can't do the
408   // transformation. TODO: could other variables trigger this? Do we have to
409   // search for the best one?
410   InductionPHI = L->getInductionVariable(*SE);
411   if (!InductionPHI) {
412     LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
413     return false;
414   }
415   LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
416 
417   bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
418   auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
419     if (ContinueOnTrue)
420       return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
421     else
422       return Pred == CmpInst::ICMP_EQ;
423   };
424 
425   // Find Compare and make sure it is valid. getLatchCmpInst checks that the
426   // back branch of the latch is conditional.
427   ICmpInst *Compare = L->getLatchCmpInst();
428   if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
429       Compare->hasNUsesOrMore(2)) {
430     LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
431     return false;
432   }
433   BackBranch = cast<BranchInst>(Latch->getTerminator());
434   IterationInstructions.insert(BackBranch);
435   LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
436   IterationInstructions.insert(Compare);
437   LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
438 
439   // Find increment and trip count.
440   // There are exactly 2 incoming values to the induction phi; one from the
441   // pre-header and one from the latch. The incoming latch value is the
442   // increment variable.
443   Increment =
444       cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
445   if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) &&
446       !Increment->hasNUses(1)) {
447     LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
448     return false;
449   }
450   // The trip count is the RHS of the compare. If this doesn't match the trip
451   // count computed by SCEV then this is because the trip count variable
452   // has been widened so the types don't match, or because it is a constant and
453   // another transformation has changed the compare (e.g. icmp ult %inc,
454   // tripcount -> icmp ult %j, tripcount-1), or both.
455   Value *RHS = Compare->getOperand(1);
456 
457   return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount,
458                          Increment, BackBranch, SE, IsWidened);
459 }
460 
461 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
462   // All PHIs in the inner and outer headers must either be:
463   // - The induction PHI, which we are going to rewrite as one induction in
464   //   the new loop. This is already checked by findLoopComponents.
465   // - An outer header PHI with all incoming values from outside the loop.
466   //   LoopSimplify guarantees we have a pre-header, so we don't need to
467   //   worry about that here.
468   // - Pairs of PHIs in the inner and outer headers, which implement a
469   //   loop-carried dependency that will still be valid in the new loop. To
470   //   be valid, this variable must be modified only in the inner loop.
471 
472   // The set of PHI nodes in the outer loop header that we know will still be
473   // valid after the transformation. These will not need to be modified (with
474   // the exception of the induction variable), but we do need to check that
475   // there are no unsafe PHI nodes.
476   SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
477   SafeOuterPHIs.insert(FI.OuterInductionPHI);
478 
479   // Check that all PHI nodes in the inner loop header match one of the valid
480   // patterns.
481   for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
482     // The induction PHIs break these rules, and that's OK because we treat
483     // them specially when doing the transformation.
484     if (&InnerPHI == FI.InnerInductionPHI)
485       continue;
486     if (FI.isNarrowInductionPhi(&InnerPHI))
487       continue;
488 
489     // Each inner loop PHI node must have two incoming values/blocks - one
490     // from the pre-header, and one from the latch.
491     assert(InnerPHI.getNumIncomingValues() == 2);
492     Value *PreHeaderValue =
493         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
494     Value *LatchValue =
495         InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
496 
497     // The incoming value from the outer loop must be the PHI node in the
498     // outer loop header, with no modifications made in the top of the outer
499     // loop.
500     PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
501     if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
502       LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
503       return false;
504     }
505 
506     // The other incoming value must come from the inner loop, without any
507     // modifications in the tail end of the outer loop. We are in LCSSA form,
508     // so this will actually be a PHI in the inner loop's exit block, which
509     // only uses values from inside the inner loop.
510     PHINode *LCSSAPHI = dyn_cast<PHINode>(
511         OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
512     if (!LCSSAPHI) {
513       LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
514       return false;
515     }
516 
517     // The value used by the LCSSA PHI must be the same one that the inner
518     // loop's PHI uses.
519     if (LCSSAPHI->hasConstantValue() != LatchValue) {
520       LLVM_DEBUG(
521           dbgs() << "LCSSA PHI incoming value does not match latch value\n");
522       return false;
523     }
524 
525     LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
526     LLVM_DEBUG(dbgs() << "  Inner: "; InnerPHI.dump());
527     LLVM_DEBUG(dbgs() << "  Outer: "; OuterPHI->dump());
528     SafeOuterPHIs.insert(OuterPHI);
529     FI.InnerPHIsToTransform.insert(&InnerPHI);
530   }
531 
532   for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
533     if (FI.isNarrowInductionPhi(&OuterPHI))
534       continue;
535     if (!SafeOuterPHIs.count(&OuterPHI)) {
536       LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
537       return false;
538     }
539   }
540 
541   LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
542   return true;
543 }
544 
545 static bool
546 checkOuterLoopInsts(FlattenInfo &FI,
547                     SmallPtrSetImpl<Instruction *> &IterationInstructions,
548                     const TargetTransformInfo *TTI) {
549   // Check for instructions in the outer but not inner loop. If any of these
550   // have side-effects then this transformation is not legal, and if there is
551   // a significant amount of code here which can't be optimised out that it's
552   // not profitable (as these instructions would get executed for each
553   // iteration of the inner loop).
554   InstructionCost RepeatedInstrCost = 0;
555   for (auto *B : FI.OuterLoop->getBlocks()) {
556     if (FI.InnerLoop->contains(B))
557       continue;
558 
559     for (auto &I : *B) {
560       if (!isa<PHINode>(&I) && !I.isTerminator() &&
561           !isSafeToSpeculativelyExecute(&I)) {
562         LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
563                              "side effects: ";
564                    I.dump());
565         return false;
566       }
567       // The execution count of the outer loop's iteration instructions
568       // (increment, compare and branch) will be increased, but the
569       // equivalent instructions will be removed from the inner loop, so
570       // they make a net difference of zero.
571       if (IterationInstructions.count(&I))
572         continue;
573       // The unconditional branch to the inner loop's header will turn into
574       // a fall-through, so adds no cost.
575       BranchInst *Br = dyn_cast<BranchInst>(&I);
576       if (Br && Br->isUnconditional() &&
577           Br->getSuccessor(0) == FI.InnerLoop->getHeader())
578         continue;
579       // Multiplies of the outer iteration variable and inner iteration
580       // count will be optimised out.
581       if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
582                             m_Specific(FI.InnerTripCount))))
583         continue;
584       InstructionCost Cost =
585           TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
586       LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
587       RepeatedInstrCost += Cost;
588     }
589   }
590 
591   LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
592                     << RepeatedInstrCost << "\n");
593   // Bail out if flattening the loops would cause instructions in the outer
594   // loop but not in the inner loop to be executed extra times.
595   if (RepeatedInstrCost > RepeatedInstructionThreshold) {
596     LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
597     return false;
598   }
599 
600   LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
601   return true;
602 }
603 
604 
605 
606 // We require all uses of both induction variables to match this pattern:
607 //
608 //   (OuterPHI * InnerTripCount) + InnerPHI
609 //
610 // Any uses of the induction variables not matching that pattern would
611 // require a div/mod to reconstruct in the flattened loop, so the
612 // transformation wouldn't be profitable.
613 static bool checkIVUsers(FlattenInfo &FI) {
614   // Check that all uses of the inner loop's induction variable match the
615   // expected pattern, recording the uses of the outer IV.
616   SmallPtrSet<Value *, 4> ValidOuterPHIUses;
617   if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses))
618     return false;
619 
620   // Check that there are no uses of the outer IV other than the ones found
621   // as part of the pattern above.
622   if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses))
623     return false;
624 
625   LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
626              dbgs() << "Found " << FI.LinearIVUses.size()
627                     << " value(s) that can be replaced:\n";
628              for (Value *V : FI.LinearIVUses) {
629                dbgs() << "  ";
630                V->dump();
631              });
632   return true;
633 }
634 
635 // Return an OverflowResult dependant on if overflow of the multiplication of
636 // InnerTripCount and OuterTripCount can be assumed not to happen.
637 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
638                                     AssumptionCache *AC) {
639   Function *F = FI.OuterLoop->getHeader()->getParent();
640   const DataLayout &DL = F->getParent()->getDataLayout();
641 
642   // For debugging/testing.
643   if (AssumeNoOverflow)
644     return OverflowResult::NeverOverflows;
645 
646   // Check if the multiply could not overflow due to known ranges of the
647   // input values.
648   OverflowResult OR = computeOverflowForUnsignedMul(
649       FI.InnerTripCount, FI.OuterTripCount,
650       SimplifyQuery(DL, DT, AC,
651                     FI.OuterLoop->getLoopPreheader()->getTerminator()));
652   if (OR != OverflowResult::MayOverflow)
653     return OR;
654 
655   auto CheckGEP = [&](GetElementPtrInst *GEP, Value *GEPOperand) {
656     for (Value *GEPUser : GEP->users()) {
657       auto *GEPUserInst = cast<Instruction>(GEPUser);
658       if (!isa<LoadInst>(GEPUserInst) &&
659           !(isa<StoreInst>(GEPUserInst) && GEP == GEPUserInst->getOperand(1)))
660         continue;
661       if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, FI.InnerLoop))
662         continue;
663       // The IV is used as the operand of a GEP which dominates the loop
664       // latch, and the IV is at least as wide as the address space of the
665       // GEP. In this case, the GEP would wrap around the address space
666       // before the IV increment wraps, which would be UB.
667       if (GEP->isInBounds() &&
668           GEPOperand->getType()->getIntegerBitWidth() >=
669               DL.getPointerTypeSizeInBits(GEP->getType())) {
670         LLVM_DEBUG(
671             dbgs() << "use of linear IV would be UB if overflow occurred: ";
672             GEP->dump());
673         return true;
674       }
675     }
676     return false;
677   };
678 
679   // Check if any IV user is, or is used by, a GEP that would cause UB if the
680   // multiply overflows.
681   for (Value *V : FI.LinearIVUses) {
682     if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
683       if (GEP->getNumIndices() == 1 && CheckGEP(GEP, GEP->getOperand(1)))
684         return OverflowResult::NeverOverflows;
685     for (Value *U : V->users())
686       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
687         if (CheckGEP(GEP, V))
688           return OverflowResult::NeverOverflows;
689   }
690 
691   return OverflowResult::MayOverflow;
692 }
693 
694 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
695                                ScalarEvolution *SE, AssumptionCache *AC,
696                                const TargetTransformInfo *TTI) {
697   SmallPtrSet<Instruction *, 8> IterationInstructions;
698   if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
699                           FI.InnerInductionPHI, FI.InnerTripCount,
700                           FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
701     return false;
702   if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
703                           FI.OuterInductionPHI, FI.OuterTripCount,
704                           FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
705     return false;
706 
707   // Both of the loop trip count values must be invariant in the outer loop
708   // (non-instructions are all inherently invariant).
709   if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
710     LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
711     return false;
712   }
713   if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
714     LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
715     return false;
716   }
717 
718   if (!checkPHIs(FI, TTI))
719     return false;
720 
721   // FIXME: it should be possible to handle different types correctly.
722   if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
723     return false;
724 
725   if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
726     return false;
727 
728   // Find the values in the loop that can be replaced with the linearized
729   // induction variable, and check that there are no other uses of the inner
730   // or outer induction variable. If there were, we could still do this
731   // transformation, but we'd have to insert a div/mod to calculate the
732   // original IVs, so it wouldn't be profitable.
733   if (!checkIVUsers(FI))
734     return false;
735 
736   LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
737   return true;
738 }
739 
740 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
741                               ScalarEvolution *SE, AssumptionCache *AC,
742                               const TargetTransformInfo *TTI, LPMUpdater *U,
743                               MemorySSAUpdater *MSSAU) {
744   Function *F = FI.OuterLoop->getHeader()->getParent();
745   LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
746   {
747     using namespace ore;
748     OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
749                               FI.InnerLoop->getHeader());
750     OptimizationRemarkEmitter ORE(F);
751     Remark << "Flattened into outer loop";
752     ORE.emit(Remark);
753   }
754 
755   Value *NewTripCount = BinaryOperator::CreateMul(
756       FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
757       FI.OuterLoop->getLoopPreheader()->getTerminator());
758   LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
759              NewTripCount->dump());
760 
761   // Fix up PHI nodes that take values from the inner loop back-edge, which
762   // we are about to remove.
763   FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
764 
765   // The old Phi will be optimised away later, but for now we can't leave
766   // leave it in an invalid state, so are updating them too.
767   for (PHINode *PHI : FI.InnerPHIsToTransform)
768     PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
769 
770   // Modify the trip count of the outer loop to be the product of the two
771   // trip counts.
772   cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
773 
774   // Replace the inner loop backedge with an unconditional branch to the exit.
775   BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
776   BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
777   InnerExitingBlock->getTerminator()->eraseFromParent();
778   BranchInst::Create(InnerExitBlock, InnerExitingBlock);
779 
780   // Update the DomTree and MemorySSA.
781   DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
782   if (MSSAU)
783     MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
784 
785   // Replace all uses of the polynomial calculated from the two induction
786   // variables with the one new one.
787   IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
788   for (Value *V : FI.LinearIVUses) {
789     Value *OuterValue = FI.OuterInductionPHI;
790     if (FI.Widened)
791       OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
792                                        "flatten.trunciv");
793 
794     if (auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
795       // Replace the GEP with one that uses OuterValue as the offset.
796       auto *InnerGEP = cast<GetElementPtrInst>(GEP->getOperand(0));
797       Value *Base = InnerGEP->getOperand(0);
798       // When the base of the GEP doesn't dominate the outer induction phi then
799       // we need to insert the new GEP where the old GEP was.
800       if (!DT->dominates(Base, &*Builder.GetInsertPoint()))
801         Builder.SetInsertPoint(cast<Instruction>(V));
802       OuterValue = Builder.CreateGEP(GEP->getSourceElementType(), Base,
803                                      OuterValue, "flatten." + V->getName());
804     }
805 
806     LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with:      ";
807                OuterValue->dump());
808     V->replaceAllUsesWith(OuterValue);
809   }
810 
811   // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
812   // deleted, and invalidate any outer loop information.
813   SE->forgetLoop(FI.OuterLoop);
814   SE->forgetBlockAndLoopDispositions();
815   if (U)
816     U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
817   LI->erase(FI.InnerLoop);
818 
819   // Increment statistic value.
820   NumFlattened++;
821 
822   return true;
823 }
824 
825 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
826                        ScalarEvolution *SE, AssumptionCache *AC,
827                        const TargetTransformInfo *TTI) {
828   if (!WidenIV) {
829     LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
830     return false;
831   }
832 
833   LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
834   Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
835   auto &DL = M->getDataLayout();
836   auto *InnerType = FI.InnerInductionPHI->getType();
837   auto *OuterType = FI.OuterInductionPHI->getType();
838   unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
839   auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
840 
841   // If both induction types are less than the maximum legal integer width,
842   // promote both to the widest type available so we know calculating
843   // (OuterTripCount * InnerTripCount) as the new trip count is safe.
844   if (InnerType != OuterType ||
845       InnerType->getScalarSizeInBits() >= MaxLegalSize ||
846       MaxLegalType->getScalarSizeInBits() <
847           InnerType->getScalarSizeInBits() * 2) {
848     LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
849     return false;
850   }
851 
852   SCEVExpander Rewriter(*SE, DL, "loopflatten");
853   SmallVector<WeakTrackingVH, 4> DeadInsts;
854   unsigned ElimExt = 0;
855   unsigned Widened = 0;
856 
857   auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool {
858     PHINode *WidePhi =
859         createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened,
860                      true /* HasGuards */, true /* UsePostIncrementRanges */);
861     if (!WidePhi)
862       return false;
863     LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
864     LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
865     Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
866     return true;
867   };
868 
869   bool Deleted;
870   if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted))
871     return false;
872   // Add the narrow phi to list, so that it will be adjusted later when the
873   // the transformation is performed.
874   if (!Deleted)
875     FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
876 
877   if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted))
878     return false;
879 
880   assert(Widened && "Widened IV expected");
881   FI.Widened = true;
882 
883   // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
884   FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
885   FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
886 
887   // After widening, rediscover all the loop components.
888   return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
889 }
890 
891 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
892                             ScalarEvolution *SE, AssumptionCache *AC,
893                             const TargetTransformInfo *TTI, LPMUpdater *U,
894                             MemorySSAUpdater *MSSAU) {
895   LLVM_DEBUG(
896       dbgs() << "Loop flattening running on outer loop "
897              << FI.OuterLoop->getHeader()->getName() << " and inner loop "
898              << FI.InnerLoop->getHeader()->getName() << " in "
899              << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
900 
901   if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
902     return false;
903 
904   // Check if we can widen the induction variables to avoid overflow checks.
905   bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
906 
907   // It can happen that after widening of the IV, flattening may not be
908   // possible/happening, e.g. when it is deemed unprofitable. So bail here if
909   // that is the case.
910   // TODO: IV widening without performing the actual flattening transformation
911   // is not ideal. While this codegen change should not matter much, it is an
912   // unnecessary change which is better to avoid. It's unlikely this happens
913   // often, because if it's unprofitibale after widening, it should be
914   // unprofitabe before widening as checked in the first round of checks. But
915   // 'RepeatedInstructionThreshold' is set to only 2, which can probably be
916   // relaxed. Because this is making a code change (the IV widening, but not
917   // the flattening), we return true here.
918   if (FI.Widened && !CanFlatten)
919     return true;
920 
921   // If we have widened and can perform the transformation, do that here.
922   if (CanFlatten)
923     return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
924 
925   // Otherwise, if we haven't widened the IV, check if the new iteration
926   // variable might overflow. In this case, we need to version the loop, and
927   // select the original version at runtime if the iteration space is too
928   // large.
929   // TODO: We currently don't version the loop.
930   OverflowResult OR = checkOverflow(FI, DT, AC);
931   if (OR == OverflowResult::AlwaysOverflowsHigh ||
932       OR == OverflowResult::AlwaysOverflowsLow) {
933     LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
934     return false;
935   } else if (OR == OverflowResult::MayOverflow) {
936     LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
937     return false;
938   }
939 
940   LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
941   return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
942 }
943 
944 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
945                                        LoopStandardAnalysisResults &AR,
946                                        LPMUpdater &U) {
947 
948   bool Changed = false;
949 
950   std::optional<MemorySSAUpdater> MSSAU;
951   if (AR.MSSA) {
952     MSSAU = MemorySSAUpdater(AR.MSSA);
953     if (VerifyMemorySSA)
954       AR.MSSA->verifyMemorySSA();
955   }
956 
957   // The loop flattening pass requires loops to be
958   // in simplified form, and also needs LCSSA. Running
959   // this pass will simplify all loops that contain inner loops,
960   // regardless of whether anything ends up being flattened.
961   for (Loop *InnerLoop : LN.getLoops()) {
962     auto *OuterLoop = InnerLoop->getParentLoop();
963     if (!OuterLoop)
964       continue;
965     FlattenInfo FI(OuterLoop, InnerLoop);
966     Changed |= FlattenLoopPair(FI, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U,
967                                MSSAU ? &*MSSAU : nullptr);
968   }
969 
970   if (!Changed)
971     return PreservedAnalyses::all();
972 
973   if (AR.MSSA && VerifyMemorySSA)
974     AR.MSSA->verifyMemorySSA();
975 
976   auto PA = getLoopPassPreservedAnalyses();
977   if (AR.MSSA)
978     PA.preserve<MemorySSAAnalysis>();
979   return PA;
980 }
981