1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // 14 // for (int i = 0; i < N; ++i) 15 // for (int j = 0; j < M; ++j) 16 // f(A[i*M+j]); 17 // 18 // into one loop: 19 // 20 // for (int i = 0; i < (N*M); ++i) 21 // f(A[i]); 22 // 23 // It can also flatten loops where the induction variables are not used in the 24 // loop. This is only worth doing if the induction variables are only used in an 25 // expression like i*M+j. If they had any other uses, we would have to insert a 26 // div/mod to reconstruct the original values, so this wouldn't be profitable. 27 // 28 // We also need to prove that N*M will not overflow. The preferred solution is 29 // to widen the IV, which avoids overflow checks, so that is tried first. If 30 // the IV cannot be widened, then we try to determine that this new tripcount 31 // expression won't overflow. 32 // 33 // Q: Does LoopFlatten use SCEV? 34 // Short answer: Yes and no. 35 // 36 // Long answer: 37 // For this transformation to be valid, we require all uses of the induction 38 // variables to be linear expressions of the form i*M+j. The different Loop 39 // APIs are used to get some loop components like the induction variable, 40 // compare statement, etc. In addition, we do some pattern matching to find the 41 // linear expressions and other loop components like the loop increment. The 42 // latter are examples of expressions that do use the induction variable, but 43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep 44 // track of all of this in bookkeeping struct FlattenInfo. 45 // We assume the loops to be canonical, i.e. starting at 0 and increment with 46 // 1. This makes RHS of the compare the loop tripcount (with the right 47 // predicate). We use SCEV to then sanity check that this tripcount matches 48 // with the tripcount as computed by SCEV. 49 // 50 //===----------------------------------------------------------------------===// 51 52 #include "llvm/Transforms/Scalar/LoopFlatten.h" 53 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/Analysis/AssumptionCache.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/LoopNestAnalysis.h" 58 #include "llvm/Analysis/MemorySSAUpdater.h" 59 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/Scalar/LoopPassManager.h" 71 #include "llvm/Transforms/Utils/Local.h" 72 #include "llvm/Transforms/Utils/LoopUtils.h" 73 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 74 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 75 #include <optional> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 #define DEBUG_TYPE "loop-flatten" 81 82 STATISTIC(NumFlattened, "Number of loops flattened"); 83 84 static cl::opt<unsigned> RepeatedInstructionThreshold( 85 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 86 cl::desc("Limit on the cost of instructions that can be repeated due to " 87 "loop flattening")); 88 89 static cl::opt<bool> 90 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 91 cl::init(false), 92 cl::desc("Assume that the product of the two iteration " 93 "trip counts will never overflow")); 94 95 static cl::opt<bool> 96 WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true), 97 cl::desc("Widen the loop induction variables, if possible, so " 98 "overflow checks won't reject flattening")); 99 100 namespace { 101 // We require all uses of both induction variables to match this pattern: 102 // 103 // (OuterPHI * InnerTripCount) + InnerPHI 104 // 105 // I.e., it needs to be a linear expression of the induction variables and the 106 // inner loop trip count. We keep track of all different expressions on which 107 // checks will be performed in this bookkeeping struct. 108 // 109 struct FlattenInfo { 110 Loop *OuterLoop = nullptr; // The loop pair to be flattened. 111 Loop *InnerLoop = nullptr; 112 113 PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop 114 PHINode *OuterInductionPHI = nullptr; // induction variables, which are 115 // expected to start at zero and 116 // increment by one on each loop. 117 118 Value *InnerTripCount = nullptr; // The product of these two tripcounts 119 Value *OuterTripCount = nullptr; // will be the new flattened loop 120 // tripcount. Also used to recognise a 121 // linear expression that will be replaced. 122 123 SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions 124 // of the form i*M+j that will be 125 // replaced. 126 127 BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in 128 BinaryOperator *OuterIncrement = nullptr; // loop control statements that 129 BranchInst *InnerBranch = nullptr; // are safe to ignore. 130 131 BranchInst *OuterBranch = nullptr; // The instruction that needs to be 132 // updated with new tripcount. 133 134 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 135 136 bool Widened = false; // Whether this holds the flatten info before or after 137 // widening. 138 139 PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction 140 PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV 141 // has been applied. Used to skip 142 // checks on phi nodes. 143 144 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){}; 145 146 bool isNarrowInductionPhi(PHINode *Phi) { 147 // This can't be the narrow phi if we haven't widened the IV first. 148 if (!Widened) 149 return false; 150 return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi; 151 } 152 bool isInnerLoopIncrement(User *U) { 153 return InnerIncrement == U; 154 } 155 bool isOuterLoopIncrement(User *U) { 156 return OuterIncrement == U; 157 } 158 bool isInnerLoopTest(User *U) { 159 return InnerBranch->getCondition() == U; 160 } 161 162 bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 163 for (User *U : OuterInductionPHI->users()) { 164 if (isOuterLoopIncrement(U)) 165 continue; 166 167 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 168 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 169 if (!ValidOuterPHIUses.count(U)) { 170 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 171 return false; 172 } 173 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 174 return true; 175 }; 176 177 if (auto *V = dyn_cast<TruncInst>(U)) { 178 for (auto *K : V->users()) { 179 if (!IsValidOuterPHIUses(K)) 180 return false; 181 } 182 continue; 183 } 184 185 if (!IsValidOuterPHIUses(U)) 186 return false; 187 } 188 return true; 189 } 190 191 bool matchLinearIVUser(User *U, Value *InnerTripCount, 192 SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 193 LLVM_DEBUG(dbgs() << "Checking linear i*M+j expression for: "; U->dump()); 194 Value *MatchedMul = nullptr; 195 Value *MatchedItCount = nullptr; 196 197 bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI), 198 m_Value(MatchedMul))) && 199 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI), 200 m_Value(MatchedItCount))); 201 202 // Matches the same pattern as above, except it also looks for truncs 203 // on the phi, which can be the result of widening the induction variables. 204 bool IsAddTrunc = 205 match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)), 206 m_Value(MatchedMul))) && 207 match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)), 208 m_Value(MatchedItCount))); 209 210 if (!MatchedItCount) 211 return false; 212 213 LLVM_DEBUG(dbgs() << "Matched multiplication: "; MatchedMul->dump()); 214 LLVM_DEBUG(dbgs() << "Matched iteration count: "; MatchedItCount->dump()); 215 216 // The mul should not have any other uses. Widening may leave trivially dead 217 // uses, which can be ignored. 218 if (count_if(MatchedMul->users(), [](User *U) { 219 return !isInstructionTriviallyDead(cast<Instruction>(U)); 220 }) > 1) { 221 LLVM_DEBUG(dbgs() << "Multiply has more than one use\n"); 222 return false; 223 } 224 225 // Look through extends if the IV has been widened. Don't look through 226 // extends if we already looked through a trunc. 227 if (Widened && IsAdd && 228 (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) { 229 assert(MatchedItCount->getType() == InnerInductionPHI->getType() && 230 "Unexpected type mismatch in types after widening"); 231 MatchedItCount = isa<SExtInst>(MatchedItCount) 232 ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0) 233 : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0); 234 } 235 236 LLVM_DEBUG(dbgs() << "Looking for inner trip count: "; 237 InnerTripCount->dump()); 238 239 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) { 240 LLVM_DEBUG(dbgs() << "Found. This sse is optimisable\n"); 241 ValidOuterPHIUses.insert(MatchedMul); 242 LinearIVUses.insert(U); 243 return true; 244 } 245 246 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 247 return false; 248 } 249 250 bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) { 251 Value *SExtInnerTripCount = InnerTripCount; 252 if (Widened && 253 (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 254 SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 255 256 for (User *U : InnerInductionPHI->users()) { 257 LLVM_DEBUG(dbgs() << "Checking User: "; U->dump()); 258 if (isInnerLoopIncrement(U)) { 259 LLVM_DEBUG(dbgs() << "Use is inner loop increment, continuing\n"); 260 continue; 261 } 262 263 // After widening the IVs, a trunc instruction might have been introduced, 264 // so look through truncs. 265 if (isa<TruncInst>(U)) { 266 if (!U->hasOneUse()) 267 return false; 268 U = *U->user_begin(); 269 } 270 271 // If the use is in the compare (which is also the condition of the inner 272 // branch) then the compare has been altered by another transformation e.g 273 // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is 274 // a constant. Ignore this use as the compare gets removed later anyway. 275 if (isInnerLoopTest(U)) { 276 LLVM_DEBUG(dbgs() << "Use is the inner loop test, continuing\n"); 277 continue; 278 } 279 280 if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses)) { 281 LLVM_DEBUG(dbgs() << "Not a linear IV user\n"); 282 return false; 283 } 284 LLVM_DEBUG(dbgs() << "Linear IV users found!\n"); 285 } 286 return true; 287 } 288 }; 289 } // namespace 290 291 static bool 292 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment, 293 SmallPtrSetImpl<Instruction *> &IterationInstructions) { 294 TripCount = TC; 295 IterationInstructions.insert(Increment); 296 LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump()); 297 LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 298 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 299 return true; 300 } 301 302 // Given the RHS of the loop latch compare instruction, verify with SCEV 303 // that this is indeed the loop tripcount. 304 // TODO: This used to be a straightforward check but has grown to be quite 305 // complicated now. It is therefore worth revisiting what the additional 306 // benefits are of this (compared to relying on canonical loops and pattern 307 // matching). 308 static bool verifyTripCount(Value *RHS, Loop *L, 309 SmallPtrSetImpl<Instruction *> &IterationInstructions, 310 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 311 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 312 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 313 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 314 LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n"); 315 return false; 316 } 317 318 // Evaluating in the trip count's type can not overflow here as the overflow 319 // checks are performed in checkOverflow, but are first tried to avoid by 320 // widening the IV. 321 const SCEV *SCEVTripCount = 322 SE->getTripCountFromExitCount(BackedgeTakenCount, 323 BackedgeTakenCount->getType(), L); 324 325 const SCEV *SCEVRHS = SE->getSCEV(RHS); 326 if (SCEVRHS == SCEVTripCount) 327 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 328 ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS); 329 if (ConstantRHS) { 330 const SCEV *BackedgeTCExt = nullptr; 331 if (IsWidened) { 332 const SCEV *SCEVTripCountExt; 333 // Find the extended backedge taken count and extended trip count using 334 // SCEV. One of these should now match the RHS of the compare. 335 BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType()); 336 SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, 337 RHS->getType(), L); 338 if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) { 339 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 340 return false; 341 } 342 } 343 // If the RHS of the compare is equal to the backedge taken count we need 344 // to add one to get the trip count. 345 if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) { 346 Value *NewRHS = ConstantInt::get(ConstantRHS->getContext(), 347 ConstantRHS->getValue() + 1); 348 return setLoopComponents(NewRHS, TripCount, Increment, 349 IterationInstructions); 350 } 351 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 352 } 353 // If the RHS isn't a constant then check that the reason it doesn't match 354 // the SCEV trip count is because the RHS is a ZExt or SExt instruction 355 // (and take the trip count to be the RHS). 356 if (!IsWidened) { 357 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 358 return false; 359 } 360 auto *TripCountInst = dyn_cast<Instruction>(RHS); 361 if (!TripCountInst) { 362 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 363 return false; 364 } 365 if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 366 SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 367 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 368 return false; 369 } 370 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions); 371 } 372 373 // Finds the induction variable, increment and trip count for a simple loop that 374 // we can flatten. 375 static bool findLoopComponents( 376 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 377 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 378 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 379 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 380 381 if (!L->isLoopSimplifyForm()) { 382 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 383 return false; 384 } 385 386 // Currently, to simplify the implementation, the Loop induction variable must 387 // start at zero and increment with a step size of one. 388 if (!L->isCanonical(*SE)) { 389 LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 390 return false; 391 } 392 393 // There must be exactly one exiting block, and it must be the same at the 394 // latch. 395 BasicBlock *Latch = L->getLoopLatch(); 396 if (L->getExitingBlock() != Latch) { 397 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 398 return false; 399 } 400 401 // Find the induction PHI. If there is no induction PHI, we can't do the 402 // transformation. TODO: could other variables trigger this? Do we have to 403 // search for the best one? 404 InductionPHI = L->getInductionVariable(*SE); 405 if (!InductionPHI) { 406 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 407 return false; 408 } 409 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 410 411 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 412 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 413 if (ContinueOnTrue) 414 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 415 else 416 return Pred == CmpInst::ICMP_EQ; 417 }; 418 419 // Find Compare and make sure it is valid. getLatchCmpInst checks that the 420 // back branch of the latch is conditional. 421 ICmpInst *Compare = L->getLatchCmpInst(); 422 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 423 Compare->hasNUsesOrMore(2)) { 424 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 425 return false; 426 } 427 BackBranch = cast<BranchInst>(Latch->getTerminator()); 428 IterationInstructions.insert(BackBranch); 429 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 430 IterationInstructions.insert(Compare); 431 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 432 433 // Find increment and trip count. 434 // There are exactly 2 incoming values to the induction phi; one from the 435 // pre-header and one from the latch. The incoming latch value is the 436 // increment variable. 437 Increment = 438 cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 439 if ((Compare->getOperand(0) != Increment || !Increment->hasNUses(2)) && 440 !Increment->hasNUses(1)) { 441 LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 442 return false; 443 } 444 // The trip count is the RHS of the compare. If this doesn't match the trip 445 // count computed by SCEV then this is because the trip count variable 446 // has been widened so the types don't match, or because it is a constant and 447 // another transformation has changed the compare (e.g. icmp ult %inc, 448 // tripcount -> icmp ult %j, tripcount-1), or both. 449 Value *RHS = Compare->getOperand(1); 450 451 return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount, 452 Increment, BackBranch, SE, IsWidened); 453 } 454 455 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 456 // All PHIs in the inner and outer headers must either be: 457 // - The induction PHI, which we are going to rewrite as one induction in 458 // the new loop. This is already checked by findLoopComponents. 459 // - An outer header PHI with all incoming values from outside the loop. 460 // LoopSimplify guarantees we have a pre-header, so we don't need to 461 // worry about that here. 462 // - Pairs of PHIs in the inner and outer headers, which implement a 463 // loop-carried dependency that will still be valid in the new loop. To 464 // be valid, this variable must be modified only in the inner loop. 465 466 // The set of PHI nodes in the outer loop header that we know will still be 467 // valid after the transformation. These will not need to be modified (with 468 // the exception of the induction variable), but we do need to check that 469 // there are no unsafe PHI nodes. 470 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 471 SafeOuterPHIs.insert(FI.OuterInductionPHI); 472 473 // Check that all PHI nodes in the inner loop header match one of the valid 474 // patterns. 475 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 476 // The induction PHIs break these rules, and that's OK because we treat 477 // them specially when doing the transformation. 478 if (&InnerPHI == FI.InnerInductionPHI) 479 continue; 480 if (FI.isNarrowInductionPhi(&InnerPHI)) 481 continue; 482 483 // Each inner loop PHI node must have two incoming values/blocks - one 484 // from the pre-header, and one from the latch. 485 assert(InnerPHI.getNumIncomingValues() == 2); 486 Value *PreHeaderValue = 487 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 488 Value *LatchValue = 489 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 490 491 // The incoming value from the outer loop must be the PHI node in the 492 // outer loop header, with no modifications made in the top of the outer 493 // loop. 494 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 495 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 496 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 497 return false; 498 } 499 500 // The other incoming value must come from the inner loop, without any 501 // modifications in the tail end of the outer loop. We are in LCSSA form, 502 // so this will actually be a PHI in the inner loop's exit block, which 503 // only uses values from inside the inner loop. 504 PHINode *LCSSAPHI = dyn_cast<PHINode>( 505 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 506 if (!LCSSAPHI) { 507 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 508 return false; 509 } 510 511 // The value used by the LCSSA PHI must be the same one that the inner 512 // loop's PHI uses. 513 if (LCSSAPHI->hasConstantValue() != LatchValue) { 514 LLVM_DEBUG( 515 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 516 return false; 517 } 518 519 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 520 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 521 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 522 SafeOuterPHIs.insert(OuterPHI); 523 FI.InnerPHIsToTransform.insert(&InnerPHI); 524 } 525 526 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 527 if (FI.isNarrowInductionPhi(&OuterPHI)) 528 continue; 529 if (!SafeOuterPHIs.count(&OuterPHI)) { 530 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 531 return false; 532 } 533 } 534 535 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 536 return true; 537 } 538 539 static bool 540 checkOuterLoopInsts(FlattenInfo &FI, 541 SmallPtrSetImpl<Instruction *> &IterationInstructions, 542 const TargetTransformInfo *TTI) { 543 // Check for instructions in the outer but not inner loop. If any of these 544 // have side-effects then this transformation is not legal, and if there is 545 // a significant amount of code here which can't be optimised out that it's 546 // not profitable (as these instructions would get executed for each 547 // iteration of the inner loop). 548 InstructionCost RepeatedInstrCost = 0; 549 for (auto *B : FI.OuterLoop->getBlocks()) { 550 if (FI.InnerLoop->contains(B)) 551 continue; 552 553 for (auto &I : *B) { 554 if (!isa<PHINode>(&I) && !I.isTerminator() && 555 !isSafeToSpeculativelyExecute(&I)) { 556 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 557 "side effects: "; 558 I.dump()); 559 return false; 560 } 561 // The execution count of the outer loop's iteration instructions 562 // (increment, compare and branch) will be increased, but the 563 // equivalent instructions will be removed from the inner loop, so 564 // they make a net difference of zero. 565 if (IterationInstructions.count(&I)) 566 continue; 567 // The unconditional branch to the inner loop's header will turn into 568 // a fall-through, so adds no cost. 569 BranchInst *Br = dyn_cast<BranchInst>(&I); 570 if (Br && Br->isUnconditional() && 571 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 572 continue; 573 // Multiplies of the outer iteration variable and inner iteration 574 // count will be optimised out. 575 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 576 m_Specific(FI.InnerTripCount)))) 577 continue; 578 InstructionCost Cost = 579 TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 580 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 581 RepeatedInstrCost += Cost; 582 } 583 } 584 585 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 586 << RepeatedInstrCost << "\n"); 587 // Bail out if flattening the loops would cause instructions in the outer 588 // loop but not in the inner loop to be executed extra times. 589 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 590 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 591 return false; 592 } 593 594 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 595 return true; 596 } 597 598 599 600 // We require all uses of both induction variables to match this pattern: 601 // 602 // (OuterPHI * InnerTripCount) + InnerPHI 603 // 604 // Any uses of the induction variables not matching that pattern would 605 // require a div/mod to reconstruct in the flattened loop, so the 606 // transformation wouldn't be profitable. 607 static bool checkIVUsers(FlattenInfo &FI) { 608 // Check that all uses of the inner loop's induction variable match the 609 // expected pattern, recording the uses of the outer IV. 610 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 611 if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses)) 612 return false; 613 614 // Check that there are no uses of the outer IV other than the ones found 615 // as part of the pattern above. 616 if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses)) 617 return false; 618 619 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 620 dbgs() << "Found " << FI.LinearIVUses.size() 621 << " value(s) that can be replaced:\n"; 622 for (Value *V : FI.LinearIVUses) { 623 dbgs() << " "; 624 V->dump(); 625 }); 626 return true; 627 } 628 629 // Return an OverflowResult dependant on if overflow of the multiplication of 630 // InnerTripCount and OuterTripCount can be assumed not to happen. 631 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 632 AssumptionCache *AC) { 633 Function *F = FI.OuterLoop->getHeader()->getParent(); 634 const DataLayout &DL = F->getParent()->getDataLayout(); 635 636 // For debugging/testing. 637 if (AssumeNoOverflow) 638 return OverflowResult::NeverOverflows; 639 640 // Check if the multiply could not overflow due to known ranges of the 641 // input values. 642 OverflowResult OR = computeOverflowForUnsignedMul( 643 FI.InnerTripCount, FI.OuterTripCount, 644 SimplifyQuery(DL, DT, AC, 645 FI.OuterLoop->getLoopPreheader()->getTerminator())); 646 if (OR != OverflowResult::MayOverflow) 647 return OR; 648 649 for (Value *V : FI.LinearIVUses) { 650 for (Value *U : V->users()) { 651 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 652 for (Value *GEPUser : U->users()) { 653 auto *GEPUserInst = cast<Instruction>(GEPUser); 654 if (!isa<LoadInst>(GEPUserInst) && 655 !(isa<StoreInst>(GEPUserInst) && 656 GEP == GEPUserInst->getOperand(1))) 657 continue; 658 if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst, 659 FI.InnerLoop)) 660 continue; 661 // The IV is used as the operand of a GEP which dominates the loop 662 // latch, and the IV is at least as wide as the address space of the 663 // GEP. In this case, the GEP would wrap around the address space 664 // before the IV increment wraps, which would be UB. 665 if (GEP->isInBounds() && 666 V->getType()->getIntegerBitWidth() >= 667 DL.getPointerTypeSizeInBits(GEP->getType())) { 668 LLVM_DEBUG( 669 dbgs() << "use of linear IV would be UB if overflow occurred: "; 670 GEP->dump()); 671 return OverflowResult::NeverOverflows; 672 } 673 } 674 } 675 } 676 } 677 678 return OverflowResult::MayOverflow; 679 } 680 681 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 682 ScalarEvolution *SE, AssumptionCache *AC, 683 const TargetTransformInfo *TTI) { 684 SmallPtrSet<Instruction *, 8> IterationInstructions; 685 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 686 FI.InnerInductionPHI, FI.InnerTripCount, 687 FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 688 return false; 689 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 690 FI.OuterInductionPHI, FI.OuterTripCount, 691 FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 692 return false; 693 694 // Both of the loop trip count values must be invariant in the outer loop 695 // (non-instructions are all inherently invariant). 696 if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 697 LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 698 return false; 699 } 700 if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 701 LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 702 return false; 703 } 704 705 if (!checkPHIs(FI, TTI)) 706 return false; 707 708 // FIXME: it should be possible to handle different types correctly. 709 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 710 return false; 711 712 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 713 return false; 714 715 // Find the values in the loop that can be replaced with the linearized 716 // induction variable, and check that there are no other uses of the inner 717 // or outer induction variable. If there were, we could still do this 718 // transformation, but we'd have to insert a div/mod to calculate the 719 // original IVs, so it wouldn't be profitable. 720 if (!checkIVUsers(FI)) 721 return false; 722 723 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 724 return true; 725 } 726 727 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 728 ScalarEvolution *SE, AssumptionCache *AC, 729 const TargetTransformInfo *TTI, LPMUpdater *U, 730 MemorySSAUpdater *MSSAU) { 731 Function *F = FI.OuterLoop->getHeader()->getParent(); 732 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 733 { 734 using namespace ore; 735 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 736 FI.InnerLoop->getHeader()); 737 OptimizationRemarkEmitter ORE(F); 738 Remark << "Flattened into outer loop"; 739 ORE.emit(Remark); 740 } 741 742 Value *NewTripCount = BinaryOperator::CreateMul( 743 FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 744 FI.OuterLoop->getLoopPreheader()->getTerminator()); 745 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 746 NewTripCount->dump()); 747 748 // Fix up PHI nodes that take values from the inner loop back-edge, which 749 // we are about to remove. 750 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 751 752 // The old Phi will be optimised away later, but for now we can't leave 753 // leave it in an invalid state, so are updating them too. 754 for (PHINode *PHI : FI.InnerPHIsToTransform) 755 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 756 757 // Modify the trip count of the outer loop to be the product of the two 758 // trip counts. 759 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 760 761 // Replace the inner loop backedge with an unconditional branch to the exit. 762 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 763 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 764 InnerExitingBlock->getTerminator()->eraseFromParent(); 765 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 766 767 // Update the DomTree and MemorySSA. 768 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 769 if (MSSAU) 770 MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 771 772 // Replace all uses of the polynomial calculated from the two induction 773 // variables with the one new one. 774 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 775 for (Value *V : FI.LinearIVUses) { 776 Value *OuterValue = FI.OuterInductionPHI; 777 if (FI.Widened) 778 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 779 "flatten.trunciv"); 780 781 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: "; 782 OuterValue->dump()); 783 V->replaceAllUsesWith(OuterValue); 784 } 785 786 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 787 // deleted, and invalidate any outer loop information. 788 SE->forgetLoop(FI.OuterLoop); 789 SE->forgetBlockAndLoopDispositions(); 790 if (U) 791 U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName()); 792 LI->erase(FI.InnerLoop); 793 794 // Increment statistic value. 795 NumFlattened++; 796 797 return true; 798 } 799 800 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 801 ScalarEvolution *SE, AssumptionCache *AC, 802 const TargetTransformInfo *TTI) { 803 if (!WidenIV) { 804 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 805 return false; 806 } 807 808 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 809 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 810 auto &DL = M->getDataLayout(); 811 auto *InnerType = FI.InnerInductionPHI->getType(); 812 auto *OuterType = FI.OuterInductionPHI->getType(); 813 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 814 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 815 816 // If both induction types are less than the maximum legal integer width, 817 // promote both to the widest type available so we know calculating 818 // (OuterTripCount * InnerTripCount) as the new trip count is safe. 819 if (InnerType != OuterType || 820 InnerType->getScalarSizeInBits() >= MaxLegalSize || 821 MaxLegalType->getScalarSizeInBits() < 822 InnerType->getScalarSizeInBits() * 2) { 823 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 824 return false; 825 } 826 827 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 828 SmallVector<WeakTrackingVH, 4> DeadInsts; 829 unsigned ElimExt = 0; 830 unsigned Widened = 0; 831 832 auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool { 833 PHINode *WidePhi = 834 createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened, 835 true /* HasGuards */, true /* UsePostIncrementRanges */); 836 if (!WidePhi) 837 return false; 838 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 839 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 840 Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 841 return true; 842 }; 843 844 bool Deleted; 845 if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted)) 846 return false; 847 // Add the narrow phi to list, so that it will be adjusted later when the 848 // the transformation is performed. 849 if (!Deleted) 850 FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI); 851 852 if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted)) 853 return false; 854 855 assert(Widened && "Widened IV expected"); 856 FI.Widened = true; 857 858 // Save the old/narrow induction phis, which we need to ignore in CheckPHIs. 859 FI.NarrowInnerInductionPHI = FI.InnerInductionPHI; 860 FI.NarrowOuterInductionPHI = FI.OuterInductionPHI; 861 862 // After widening, rediscover all the loop components. 863 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 864 } 865 866 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 867 ScalarEvolution *SE, AssumptionCache *AC, 868 const TargetTransformInfo *TTI, LPMUpdater *U, 869 MemorySSAUpdater *MSSAU) { 870 LLVM_DEBUG( 871 dbgs() << "Loop flattening running on outer loop " 872 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 873 << FI.InnerLoop->getHeader()->getName() << " in " 874 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 875 876 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 877 return false; 878 879 // Check if we can widen the induction variables to avoid overflow checks. 880 bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI); 881 882 // It can happen that after widening of the IV, flattening may not be 883 // possible/happening, e.g. when it is deemed unprofitable. So bail here if 884 // that is the case. 885 // TODO: IV widening without performing the actual flattening transformation 886 // is not ideal. While this codegen change should not matter much, it is an 887 // unnecessary change which is better to avoid. It's unlikely this happens 888 // often, because if it's unprofitibale after widening, it should be 889 // unprofitabe before widening as checked in the first round of checks. But 890 // 'RepeatedInstructionThreshold' is set to only 2, which can probably be 891 // relaxed. Because this is making a code change (the IV widening, but not 892 // the flattening), we return true here. 893 if (FI.Widened && !CanFlatten) 894 return true; 895 896 // If we have widened and can perform the transformation, do that here. 897 if (CanFlatten) 898 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 899 900 // Otherwise, if we haven't widened the IV, check if the new iteration 901 // variable might overflow. In this case, we need to version the loop, and 902 // select the original version at runtime if the iteration space is too 903 // large. 904 // TODO: We currently don't version the loop. 905 OverflowResult OR = checkOverflow(FI, DT, AC); 906 if (OR == OverflowResult::AlwaysOverflowsHigh || 907 OR == OverflowResult::AlwaysOverflowsLow) { 908 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 909 return false; 910 } else if (OR == OverflowResult::MayOverflow) { 911 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 912 return false; 913 } 914 915 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 916 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU); 917 } 918 919 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 920 LoopStandardAnalysisResults &AR, 921 LPMUpdater &U) { 922 923 bool Changed = false; 924 925 std::optional<MemorySSAUpdater> MSSAU; 926 if (AR.MSSA) { 927 MSSAU = MemorySSAUpdater(AR.MSSA); 928 if (VerifyMemorySSA) 929 AR.MSSA->verifyMemorySSA(); 930 } 931 932 // The loop flattening pass requires loops to be 933 // in simplified form, and also needs LCSSA. Running 934 // this pass will simplify all loops that contain inner loops, 935 // regardless of whether anything ends up being flattened. 936 for (Loop *InnerLoop : LN.getLoops()) { 937 auto *OuterLoop = InnerLoop->getParentLoop(); 938 if (!OuterLoop) 939 continue; 940 FlattenInfo FI(OuterLoop, InnerLoop); 941 Changed |= FlattenLoopPair(FI, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U, 942 MSSAU ? &*MSSAU : nullptr); 943 } 944 945 if (!Changed) 946 return PreservedAnalyses::all(); 947 948 if (AR.MSSA && VerifyMemorySSA) 949 AR.MSSA->verifyMemorySSA(); 950 951 auto PA = getLoopPassPreservedAnalyses(); 952 if (AR.MSSA) 953 PA.preserve<MemorySSAAnalysis>(); 954 return PA; 955 } 956