1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass flattens pairs nested loops into a single loop. 10 // 11 // The intention is to optimise loop nests like this, which together access an 12 // array linearly: 13 // for (int i = 0; i < N; ++i) 14 // for (int j = 0; j < M; ++j) 15 // f(A[i*M+j]); 16 // into one loop: 17 // for (int i = 0; i < (N*M); ++i) 18 // f(A[i]); 19 // 20 // It can also flatten loops where the induction variables are not used in the 21 // loop. This is only worth doing if the induction variables are only used in an 22 // expression like i*M+j. If they had any other uses, we would have to insert a 23 // div/mod to reconstruct the original values, so this wouldn't be profitable. 24 // 25 // We also need to prove that N*M will not overflow. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/Transforms/Scalar/LoopFlatten.h" 30 #include "llvm/Analysis/AssumptionCache.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ScalarEvolution.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/PatternMatch.h" 41 #include "llvm/IR/Verifier.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/LoopUtils.h" 49 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 50 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 51 52 #define DEBUG_TYPE "loop-flatten" 53 54 using namespace llvm; 55 using namespace llvm::PatternMatch; 56 57 static cl::opt<unsigned> RepeatedInstructionThreshold( 58 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2), 59 cl::desc("Limit on the cost of instructions that can be repeated due to " 60 "loop flattening")); 61 62 static cl::opt<bool> 63 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden, 64 cl::init(false), 65 cl::desc("Assume that the product of the two iteration " 66 "trip counts will never overflow")); 67 68 static cl::opt<bool> 69 WidenIV("loop-flatten-widen-iv", cl::Hidden, 70 cl::init(true), 71 cl::desc("Widen the loop induction variables, if possible, so " 72 "overflow checks won't reject flattening")); 73 74 struct FlattenInfo { 75 Loop *OuterLoop = nullptr; 76 Loop *InnerLoop = nullptr; 77 // These PHINodes correspond to loop induction variables, which are expected 78 // to start at zero and increment by one on each loop. 79 PHINode *InnerInductionPHI = nullptr; 80 PHINode *OuterInductionPHI = nullptr; 81 Value *InnerTripCount = nullptr; 82 Value *OuterTripCount = nullptr; 83 BinaryOperator *InnerIncrement = nullptr; 84 BinaryOperator *OuterIncrement = nullptr; 85 BranchInst *InnerBranch = nullptr; 86 BranchInst *OuterBranch = nullptr; 87 SmallPtrSet<Value *, 4> LinearIVUses; 88 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform; 89 90 // Whether this holds the flatten info before or after widening. 91 bool Widened = false; 92 93 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {}; 94 }; 95 96 // Finds the induction variable, increment and trip count for a simple loop that 97 // we can flatten. 98 static bool findLoopComponents( 99 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions, 100 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment, 101 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) { 102 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n"); 103 104 if (!L->isLoopSimplifyForm()) { 105 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n"); 106 return false; 107 } 108 109 // Currently, to simplify the implementation, the Loop induction variable must 110 // start at zero and increment with a step size of one. 111 if (!L->isCanonical(*SE)) { 112 LLVM_DEBUG(dbgs() << "Loop is not canonical\n"); 113 return false; 114 } 115 116 // There must be exactly one exiting block, and it must be the same at the 117 // latch. 118 BasicBlock *Latch = L->getLoopLatch(); 119 if (L->getExitingBlock() != Latch) { 120 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n"); 121 return false; 122 } 123 124 // Find the induction PHI. If there is no induction PHI, we can't do the 125 // transformation. TODO: could other variables trigger this? Do we have to 126 // search for the best one? 127 InductionPHI = L->getInductionVariable(*SE); 128 if (!InductionPHI) { 129 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n"); 130 return false; 131 } 132 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump()); 133 134 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0)); 135 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) { 136 if (ContinueOnTrue) 137 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT; 138 else 139 return Pred == CmpInst::ICMP_EQ; 140 }; 141 142 // Find Compare and make sure it is valid. getLatchCmpInst checks that the 143 // back branch of the latch is conditional. 144 ICmpInst *Compare = L->getLatchCmpInst(); 145 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) || 146 Compare->hasNUsesOrMore(2)) { 147 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n"); 148 return false; 149 } 150 BackBranch = cast<BranchInst>(Latch->getTerminator()); 151 IterationInstructions.insert(BackBranch); 152 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump()); 153 IterationInstructions.insert(Compare); 154 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump()); 155 156 // Find increment and trip count. 157 // There are exactly 2 incoming values to the induction phi; one from the 158 // pre-header and one from the latch. The incoming latch value is the 159 // increment variable. 160 Increment = 161 dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch)); 162 if (Increment->hasNUsesOrMore(3)) { 163 LLVM_DEBUG(dbgs() << "Could not find valid increment\n"); 164 return false; 165 } 166 // The trip count is the RHS of the compare. If this doesn't match the trip 167 // count computed by SCEV then this is either because the trip count variable 168 // has been widened (then leave the trip count as it is), or because it is a 169 // constant and another transformation has changed the compare, e.g. 170 // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, then we don't flatten 171 // the loop (yet). 172 TripCount = Compare->getOperand(1); 173 const SCEV *SCEVTripCount = 174 SE->getTripCountFromExitCount(SE->getBackedgeTakenCount(L)); 175 if (SE->getSCEV(TripCount) != SCEVTripCount) { 176 if (!IsWidened) { 177 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n"); 178 return false; 179 } 180 auto TripCountInst = dyn_cast<Instruction>(TripCount); 181 if (!TripCountInst) { 182 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 183 return false; 184 } 185 if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) || 186 SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) { 187 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n"); 188 return false; 189 } 190 } 191 IterationInstructions.insert(Increment); 192 LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump()); 193 LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump()); 194 195 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n"); 196 return true; 197 } 198 199 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) { 200 // All PHIs in the inner and outer headers must either be: 201 // - The induction PHI, which we are going to rewrite as one induction in 202 // the new loop. This is already checked by findLoopComponents. 203 // - An outer header PHI with all incoming values from outside the loop. 204 // LoopSimplify guarantees we have a pre-header, so we don't need to 205 // worry about that here. 206 // - Pairs of PHIs in the inner and outer headers, which implement a 207 // loop-carried dependency that will still be valid in the new loop. To 208 // be valid, this variable must be modified only in the inner loop. 209 210 // The set of PHI nodes in the outer loop header that we know will still be 211 // valid after the transformation. These will not need to be modified (with 212 // the exception of the induction variable), but we do need to check that 213 // there are no unsafe PHI nodes. 214 SmallPtrSet<PHINode *, 4> SafeOuterPHIs; 215 SafeOuterPHIs.insert(FI.OuterInductionPHI); 216 217 // Check that all PHI nodes in the inner loop header match one of the valid 218 // patterns. 219 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) { 220 // The induction PHIs break these rules, and that's OK because we treat 221 // them specially when doing the transformation. 222 if (&InnerPHI == FI.InnerInductionPHI) 223 continue; 224 225 // Each inner loop PHI node must have two incoming values/blocks - one 226 // from the pre-header, and one from the latch. 227 assert(InnerPHI.getNumIncomingValues() == 2); 228 Value *PreHeaderValue = 229 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader()); 230 Value *LatchValue = 231 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch()); 232 233 // The incoming value from the outer loop must be the PHI node in the 234 // outer loop header, with no modifications made in the top of the outer 235 // loop. 236 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue); 237 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) { 238 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n"); 239 return false; 240 } 241 242 // The other incoming value must come from the inner loop, without any 243 // modifications in the tail end of the outer loop. We are in LCSSA form, 244 // so this will actually be a PHI in the inner loop's exit block, which 245 // only uses values from inside the inner loop. 246 PHINode *LCSSAPHI = dyn_cast<PHINode>( 247 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch())); 248 if (!LCSSAPHI) { 249 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n"); 250 return false; 251 } 252 253 // The value used by the LCSSA PHI must be the same one that the inner 254 // loop's PHI uses. 255 if (LCSSAPHI->hasConstantValue() != LatchValue) { 256 LLVM_DEBUG( 257 dbgs() << "LCSSA PHI incoming value does not match latch value\n"); 258 return false; 259 } 260 261 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n"); 262 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump()); 263 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump()); 264 SafeOuterPHIs.insert(OuterPHI); 265 FI.InnerPHIsToTransform.insert(&InnerPHI); 266 } 267 268 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) { 269 if (!SafeOuterPHIs.count(&OuterPHI)) { 270 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump()); 271 return false; 272 } 273 } 274 275 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n"); 276 return true; 277 } 278 279 static bool 280 checkOuterLoopInsts(FlattenInfo &FI, 281 SmallPtrSetImpl<Instruction *> &IterationInstructions, 282 const TargetTransformInfo *TTI) { 283 // Check for instructions in the outer but not inner loop. If any of these 284 // have side-effects then this transformation is not legal, and if there is 285 // a significant amount of code here which can't be optimised out that it's 286 // not profitable (as these instructions would get executed for each 287 // iteration of the inner loop). 288 InstructionCost RepeatedInstrCost = 0; 289 for (auto *B : FI.OuterLoop->getBlocks()) { 290 if (FI.InnerLoop->contains(B)) 291 continue; 292 293 for (auto &I : *B) { 294 if (!isa<PHINode>(&I) && !I.isTerminator() && 295 !isSafeToSpeculativelyExecute(&I)) { 296 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have " 297 "side effects: "; 298 I.dump()); 299 return false; 300 } 301 // The execution count of the outer loop's iteration instructions 302 // (increment, compare and branch) will be increased, but the 303 // equivalent instructions will be removed from the inner loop, so 304 // they make a net difference of zero. 305 if (IterationInstructions.count(&I)) 306 continue; 307 // The uncoditional branch to the inner loop's header will turn into 308 // a fall-through, so adds no cost. 309 BranchInst *Br = dyn_cast<BranchInst>(&I); 310 if (Br && Br->isUnconditional() && 311 Br->getSuccessor(0) == FI.InnerLoop->getHeader()) 312 continue; 313 // Multiplies of the outer iteration variable and inner iteration 314 // count will be optimised out. 315 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI), 316 m_Specific(FI.InnerTripCount)))) 317 continue; 318 InstructionCost Cost = 319 TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 320 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump()); 321 RepeatedInstrCost += Cost; 322 } 323 } 324 325 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: " 326 << RepeatedInstrCost << "\n"); 327 // Bail out if flattening the loops would cause instructions in the outer 328 // loop but not in the inner loop to be executed extra times. 329 if (RepeatedInstrCost > RepeatedInstructionThreshold) { 330 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"); 331 return false; 332 } 333 334 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n"); 335 return true; 336 } 337 338 static bool checkIVUsers(FlattenInfo &FI) { 339 // We require all uses of both induction variables to match this pattern: 340 // 341 // (OuterPHI * InnerTripCount) + InnerPHI 342 // 343 // Any uses of the induction variables not matching that pattern would 344 // require a div/mod to reconstruct in the flattened loop, so the 345 // transformation wouldn't be profitable. 346 347 Value *InnerTripCount = FI.InnerTripCount; 348 if (FI.Widened && 349 (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount))) 350 InnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0); 351 352 // Check that all uses of the inner loop's induction variable match the 353 // expected pattern, recording the uses of the outer IV. 354 SmallPtrSet<Value *, 4> ValidOuterPHIUses; 355 for (User *U : FI.InnerInductionPHI->users()) { 356 if (U == FI.InnerIncrement) 357 continue; 358 359 // After widening the IVs, a trunc instruction might have been introduced, so 360 // look through truncs. 361 if (isa<TruncInst>(U)) { 362 if (!U->hasOneUse()) 363 return false; 364 U = *U->user_begin(); 365 } 366 367 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump()); 368 369 Value *MatchedMul; 370 Value *MatchedItCount; 371 bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI), 372 m_Value(MatchedMul))) && 373 match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI), 374 m_Value(MatchedItCount))); 375 376 // Matches the same pattern as above, except it also looks for truncs 377 // on the phi, which can be the result of widening the induction variables. 378 bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)), 379 m_Value(MatchedMul))) && 380 match(MatchedMul, 381 m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)), 382 m_Value(MatchedItCount))); 383 384 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) { 385 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 386 ValidOuterPHIUses.insert(MatchedMul); 387 FI.LinearIVUses.insert(U); 388 } else { 389 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 390 return false; 391 } 392 } 393 394 // Check that there are no uses of the outer IV other than the ones found 395 // as part of the pattern above. 396 for (User *U : FI.OuterInductionPHI->users()) { 397 if (U == FI.OuterIncrement) 398 continue; 399 400 auto IsValidOuterPHIUses = [&] (User *U) -> bool { 401 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump()); 402 if (!ValidOuterPHIUses.count(U)) { 403 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n"); 404 return false; 405 } 406 LLVM_DEBUG(dbgs() << "Use is optimisable\n"); 407 return true; 408 }; 409 410 if (auto *V = dyn_cast<TruncInst>(U)) { 411 for (auto *K : V->users()) { 412 if (!IsValidOuterPHIUses(K)) 413 return false; 414 } 415 continue; 416 } 417 418 if (!IsValidOuterPHIUses(U)) 419 return false; 420 } 421 422 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n"; 423 dbgs() << "Found " << FI.LinearIVUses.size() 424 << " value(s) that can be replaced:\n"; 425 for (Value *V : FI.LinearIVUses) { 426 dbgs() << " "; 427 V->dump(); 428 }); 429 return true; 430 } 431 432 // Return an OverflowResult dependant on if overflow of the multiplication of 433 // InnerTripCount and OuterTripCount can be assumed not to happen. 434 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT, 435 AssumptionCache *AC) { 436 Function *F = FI.OuterLoop->getHeader()->getParent(); 437 const DataLayout &DL = F->getParent()->getDataLayout(); 438 439 // For debugging/testing. 440 if (AssumeNoOverflow) 441 return OverflowResult::NeverOverflows; 442 443 // Check if the multiply could not overflow due to known ranges of the 444 // input values. 445 OverflowResult OR = computeOverflowForUnsignedMul( 446 FI.InnerTripCount, FI.OuterTripCount, DL, AC, 447 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT); 448 if (OR != OverflowResult::MayOverflow) 449 return OR; 450 451 for (Value *V : FI.LinearIVUses) { 452 for (Value *U : V->users()) { 453 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) { 454 // The IV is used as the operand of a GEP, and the IV is at least as 455 // wide as the address space of the GEP. In this case, the GEP would 456 // wrap around the address space before the IV increment wraps, which 457 // would be UB. 458 if (GEP->isInBounds() && 459 V->getType()->getIntegerBitWidth() >= 460 DL.getPointerTypeSizeInBits(GEP->getType())) { 461 LLVM_DEBUG( 462 dbgs() << "use of linear IV would be UB if overflow occurred: "; 463 GEP->dump()); 464 return OverflowResult::NeverOverflows; 465 } 466 } 467 } 468 } 469 470 return OverflowResult::MayOverflow; 471 } 472 473 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 474 ScalarEvolution *SE, AssumptionCache *AC, 475 const TargetTransformInfo *TTI) { 476 SmallPtrSet<Instruction *, 8> IterationInstructions; 477 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, 478 FI.InnerInductionPHI, FI.InnerTripCount, 479 FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened)) 480 return false; 481 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, 482 FI.OuterInductionPHI, FI.OuterTripCount, 483 FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened)) 484 return false; 485 486 // Both of the loop trip count values must be invariant in the outer loop 487 // (non-instructions are all inherently invariant). 488 if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) { 489 LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n"); 490 return false; 491 } 492 if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) { 493 LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n"); 494 return false; 495 } 496 497 if (!checkPHIs(FI, TTI)) 498 return false; 499 500 // FIXME: it should be possible to handle different types correctly. 501 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType()) 502 return false; 503 504 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI)) 505 return false; 506 507 // Find the values in the loop that can be replaced with the linearized 508 // induction variable, and check that there are no other uses of the inner 509 // or outer induction variable. If there were, we could still do this 510 // transformation, but we'd have to insert a div/mod to calculate the 511 // original IVs, so it wouldn't be profitable. 512 if (!checkIVUsers(FI)) 513 return false; 514 515 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n"); 516 return true; 517 } 518 519 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 520 ScalarEvolution *SE, AssumptionCache *AC, 521 const TargetTransformInfo *TTI) { 522 Function *F = FI.OuterLoop->getHeader()->getParent(); 523 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n"); 524 { 525 using namespace ore; 526 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(), 527 FI.InnerLoop->getHeader()); 528 OptimizationRemarkEmitter ORE(F); 529 Remark << "Flattened into outer loop"; 530 ORE.emit(Remark); 531 } 532 533 Value *NewTripCount = BinaryOperator::CreateMul( 534 FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount", 535 FI.OuterLoop->getLoopPreheader()->getTerminator()); 536 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: "; 537 NewTripCount->dump()); 538 539 // Fix up PHI nodes that take values from the inner loop back-edge, which 540 // we are about to remove. 541 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 542 543 // The old Phi will be optimised away later, but for now we can't leave 544 // leave it in an invalid state, so are updating them too. 545 for (PHINode *PHI : FI.InnerPHIsToTransform) 546 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch()); 547 548 // Modify the trip count of the outer loop to be the product of the two 549 // trip counts. 550 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount); 551 552 // Replace the inner loop backedge with an unconditional branch to the exit. 553 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock(); 554 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock(); 555 InnerExitingBlock->getTerminator()->eraseFromParent(); 556 BranchInst::Create(InnerExitBlock, InnerExitingBlock); 557 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader()); 558 559 // Replace all uses of the polynomial calculated from the two induction 560 // variables with the one new one. 561 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator()); 562 for (Value *V : FI.LinearIVUses) { 563 Value *OuterValue = FI.OuterInductionPHI; 564 if (FI.Widened) 565 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(), 566 "flatten.trunciv"); 567 568 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); 569 dbgs() << "with: "; OuterValue->dump()); 570 V->replaceAllUsesWith(OuterValue); 571 } 572 573 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been 574 // deleted, and any information that have about the outer loop invalidated. 575 SE->forgetLoop(FI.OuterLoop); 576 SE->forgetLoop(FI.InnerLoop); 577 LI->erase(FI.InnerLoop); 578 return true; 579 } 580 581 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 582 ScalarEvolution *SE, AssumptionCache *AC, 583 const TargetTransformInfo *TTI) { 584 if (!WidenIV) { 585 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n"); 586 return false; 587 } 588 589 LLVM_DEBUG(dbgs() << "Try widening the IVs\n"); 590 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent(); 591 auto &DL = M->getDataLayout(); 592 auto *InnerType = FI.InnerInductionPHI->getType(); 593 auto *OuterType = FI.OuterInductionPHI->getType(); 594 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits(); 595 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext()); 596 597 // If both induction types are less than the maximum legal integer width, 598 // promote both to the widest type available so we know calculating 599 // (OuterTripCount * InnerTripCount) as the new trip count is safe. 600 if (InnerType != OuterType || 601 InnerType->getScalarSizeInBits() >= MaxLegalSize || 602 MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) { 603 LLVM_DEBUG(dbgs() << "Can't widen the IV\n"); 604 return false; 605 } 606 607 SCEVExpander Rewriter(*SE, DL, "loopflatten"); 608 SmallVector<WideIVInfo, 2> WideIVs; 609 SmallVector<WeakTrackingVH, 4> DeadInsts; 610 WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false }); 611 WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false }); 612 unsigned ElimExt = 0; 613 unsigned Widened = 0; 614 615 for (const auto &WideIV : WideIVs) { 616 PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, 617 ElimExt, Widened, true /* HasGuards */, 618 true /* UsePostIncrementRanges */); 619 if (!WidePhi) 620 return false; 621 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump()); 622 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump()); 623 RecursivelyDeleteDeadPHINode(WideIV.NarrowIV); 624 } 625 // After widening, rediscover all the loop components. 626 assert(Widened && "Widened IV expected"); 627 FI.Widened = true; 628 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 629 } 630 631 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI, 632 ScalarEvolution *SE, AssumptionCache *AC, 633 const TargetTransformInfo *TTI) { 634 LLVM_DEBUG( 635 dbgs() << "Loop flattening running on outer loop " 636 << FI.OuterLoop->getHeader()->getName() << " and inner loop " 637 << FI.InnerLoop->getHeader()->getName() << " in " 638 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n"); 639 640 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI)) 641 return false; 642 643 // Check if we can widen the induction variables to avoid overflow checks. 644 if (CanWidenIV(FI, DT, LI, SE, AC, TTI)) 645 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 646 647 // Check if the new iteration variable might overflow. In this case, we 648 // need to version the loop, and select the original version at runtime if 649 // the iteration space is too large. 650 // TODO: We currently don't version the loop. 651 OverflowResult OR = checkOverflow(FI, DT, AC); 652 if (OR == OverflowResult::AlwaysOverflowsHigh || 653 OR == OverflowResult::AlwaysOverflowsLow) { 654 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n"); 655 return false; 656 } else if (OR == OverflowResult::MayOverflow) { 657 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n"); 658 return false; 659 } 660 661 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n"); 662 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI); 663 } 664 665 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, 666 AssumptionCache *AC, TargetTransformInfo *TTI) { 667 bool Changed = false; 668 for (Loop *InnerLoop : LN.getLoops()) { 669 auto *OuterLoop = InnerLoop->getParentLoop(); 670 if (!OuterLoop) 671 continue; 672 FlattenInfo FI(OuterLoop, InnerLoop); 673 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI); 674 } 675 return Changed; 676 } 677 678 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM, 679 LoopStandardAnalysisResults &AR, 680 LPMUpdater &U) { 681 682 bool Changed = false; 683 684 // The loop flattening pass requires loops to be 685 // in simplified form, and also needs LCSSA. Running 686 // this pass will simplify all loops that contain inner loops, 687 // regardless of whether anything ends up being flattened. 688 Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI); 689 690 if (!Changed) 691 return PreservedAnalyses::all(); 692 693 return PreservedAnalyses::none(); 694 } 695 696 namespace { 697 class LoopFlattenLegacyPass : public FunctionPass { 698 public: 699 static char ID; // Pass ID, replacement for typeid 700 LoopFlattenLegacyPass() : FunctionPass(ID) { 701 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry()); 702 } 703 704 // Possibly flatten loop L into its child. 705 bool runOnFunction(Function &F) override; 706 707 void getAnalysisUsage(AnalysisUsage &AU) const override { 708 getLoopAnalysisUsage(AU); 709 AU.addRequired<TargetTransformInfoWrapperPass>(); 710 AU.addPreserved<TargetTransformInfoWrapperPass>(); 711 AU.addRequired<AssumptionCacheTracker>(); 712 AU.addPreserved<AssumptionCacheTracker>(); 713 } 714 }; 715 } // namespace 716 717 char LoopFlattenLegacyPass::ID = 0; 718 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 719 false, false) 720 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 721 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 722 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops", 723 false, false) 724 725 FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); } 726 727 bool LoopFlattenLegacyPass::runOnFunction(Function &F) { 728 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 729 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 730 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 731 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 732 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>(); 733 auto *TTI = &TTIP.getTTI(F); 734 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 735 bool Changed = false; 736 for (Loop *L : *LI) { 737 auto LN = LoopNest::getLoopNest(*L, *SE); 738 Changed |= Flatten(*LN, DT, LI, SE, AC, TTI); 739 } 740 return Changed; 741 } 742