xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LICM.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible.  It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe.  This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
14 //
15 // Hoisting operations out of loops is a canonicalization transform.  It
16 // enables and simplifies subsequent optimizations in the middle-end.
17 // Rematerialization of hoisted instructions to reduce register pressure is the
18 // responsibility of the back-end, which has more accurate information about
19 // register pressure and also handles other optimizations than LICM that
20 // increase live-ranges.
21 //
22 // This pass uses alias analysis for two purposes:
23 //
24 //  1. Moving loop invariant loads and calls out of loops.  If we can determine
25 //     that a load or call inside of a loop never aliases anything stored to,
26 //     we can hoist it or sink it like any other instruction.
27 //  2. Scalar Promotion of Memory - If there is a store instruction inside of
28 //     the loop, we try to move the store to happen AFTER the loop instead of
29 //     inside of the loop.  This can only happen if a few conditions are true:
30 //       A. The pointer stored through is loop invariant
31 //       B. There are no stores or loads in the loop which _may_ alias the
32 //          pointer.  There are no calls in the loop which mod/ref the pointer.
33 //     If these conditions are true, we can promote the loads and stores in the
34 //     loop of the pointer to use a temporary alloca'd variable.  We then use
35 //     the SSAUpdater to construct the appropriate SSA form for the value.
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LICM.h"
40 #include "llvm/ADT/PriorityWorklist.h"
41 #include "llvm/ADT/SetOperations.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/AliasSetTracker.h"
45 #include "llvm/Analysis/AssumptionCache.h"
46 #include "llvm/Analysis/CaptureTracking.h"
47 #include "llvm/Analysis/GuardUtils.h"
48 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
49 #include "llvm/Analysis/Loads.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/LoopIterator.h"
52 #include "llvm/Analysis/LoopNestAnalysis.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemorySSA.h"
55 #include "llvm/Analysis/MemorySSAUpdater.h"
56 #include "llvm/Analysis/MustExecute.h"
57 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/TargetLibraryInfo.h"
60 #include "llvm/Analysis/TargetTransformInfo.h"
61 #include "llvm/Analysis/ValueTracking.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfoMetadata.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/LLVMContext.h"
72 #include "llvm/IR/Metadata.h"
73 #include "llvm/IR/PatternMatch.h"
74 #include "llvm/IR/PredIteratorCache.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Target/TargetOptions.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/LoopUtils.h"
85 #include "llvm/Transforms/Utils/SSAUpdater.h"
86 #include <algorithm>
87 #include <utility>
88 using namespace llvm;
89 
90 namespace llvm {
91 class LPMUpdater;
92 } // namespace llvm
93 
94 #define DEBUG_TYPE "licm"
95 
96 STATISTIC(NumCreatedBlocks, "Number of blocks created");
97 STATISTIC(NumClonedBranches, "Number of branches cloned");
98 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
99 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
100 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
101 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
102 STATISTIC(NumPromotionCandidates, "Number of promotion candidates");
103 STATISTIC(NumLoadPromoted, "Number of load-only promotions");
104 STATISTIC(NumLoadStorePromoted, "Number of load and store promotions");
105 STATISTIC(NumMinMaxHoisted,
106           "Number of min/max expressions hoisted out of the loop");
107 STATISTIC(NumGEPsHoisted,
108           "Number of geps reassociated and hoisted out of the loop");
109 STATISTIC(NumAddSubHoisted, "Number of add/subtract expressions reassociated "
110                             "and hoisted out of the loop");
111 STATISTIC(NumFPAssociationsHoisted, "Number of invariant FP expressions "
112                                     "reassociated and hoisted out of the loop");
113 STATISTIC(NumIntAssociationsHoisted,
114           "Number of invariant int expressions "
115           "reassociated and hoisted out of the loop");
116 
117 /// Memory promotion is enabled by default.
118 static cl::opt<bool>
119     DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
120                      cl::desc("Disable memory promotion in LICM pass"));
121 
122 static cl::opt<bool> ControlFlowHoisting(
123     "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
124     cl::desc("Enable control flow (and PHI) hoisting in LICM"));
125 
126 static cl::opt<bool>
127     SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false),
128                  cl::desc("Force thread model single in LICM pass"));
129 
130 static cl::opt<uint32_t> MaxNumUsesTraversed(
131     "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
132     cl::desc("Max num uses visited for identifying load "
133              "invariance in loop using invariant start (default = 8)"));
134 
135 static cl::opt<unsigned> FPAssociationUpperLimit(
136     "licm-max-num-fp-reassociations", cl::init(5U), cl::Hidden,
137     cl::desc(
138         "Set upper limit for the number of transformations performed "
139         "during a single round of hoisting the reassociated expressions."));
140 
141 cl::opt<unsigned> IntAssociationUpperLimit(
142     "licm-max-num-int-reassociations", cl::init(5U), cl::Hidden,
143     cl::desc(
144         "Set upper limit for the number of transformations performed "
145         "during a single round of hoisting the reassociated expressions."));
146 
147 // Experimental option to allow imprecision in LICM in pathological cases, in
148 // exchange for faster compile. This is to be removed if MemorySSA starts to
149 // address the same issue. LICM calls MemorySSAWalker's
150 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
151 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
152 // which may not be precise, since optimizeUses is capped. The result is
153 // correct, but we may not get as "far up" as possible to get which access is
154 // clobbering the one queried.
155 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
156     "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
157     cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
158              "for faster compile. Caps the MemorySSA clobbering calls."));
159 
160 // Experimentally, memory promotion carries less importance than sinking and
161 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
162 // compile time.
163 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
164     "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
165     cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
166              "effect. When MSSA in LICM is enabled, then this is the maximum "
167              "number of accesses allowed to be present in a loop in order to "
168              "enable memory promotion."));
169 
170 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
171 static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop,
172                                       const LoopSafetyInfo *SafetyInfo,
173                                       TargetTransformInfo *TTI,
174                                       bool &FoldableInLoop, bool LoopNestMode);
175 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
176                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
177                   MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
178                   OptimizationRemarkEmitter *ORE);
179 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
180                  const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
181                  MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE);
182 static bool isSafeToExecuteUnconditionally(
183     Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
184     const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
185     OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
186     AssumptionCache *AC, bool AllowSpeculation);
187 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU,
188                                      Loop *CurLoop, Instruction &I,
189                                      SinkAndHoistLICMFlags &Flags,
190                                      bool InvariantGroup);
191 static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA,
192                                       MemoryUse &MU);
193 /// Aggregates various functions for hoisting computations out of loop.
194 static bool hoistArithmetics(Instruction &I, Loop &L,
195                              ICFLoopSafetyInfo &SafetyInfo,
196                              MemorySSAUpdater &MSSAU, AssumptionCache *AC,
197                              DominatorTree *DT);
198 static Instruction *cloneInstructionInExitBlock(
199     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
200     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU);
201 
202 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
203                              MemorySSAUpdater &MSSAU);
204 
205 static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest,
206                                   ICFLoopSafetyInfo &SafetyInfo,
207                                   MemorySSAUpdater &MSSAU, ScalarEvolution *SE);
208 
209 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
210                                 function_ref<void(Instruction *)> Fn);
211 using PointersAndHasReadsOutsideSet =
212     std::pair<SmallSetVector<Value *, 8>, bool>;
213 static SmallVector<PointersAndHasReadsOutsideSet, 0>
214 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
215 
216 namespace {
217 struct LoopInvariantCodeMotion {
218   bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
219                  AssumptionCache *AC, TargetLibraryInfo *TLI,
220                  TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
221                  OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
222 
223   LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
224                           unsigned LicmMssaNoAccForPromotionCap,
225                           bool LicmAllowSpeculation)
226       : LicmMssaOptCap(LicmMssaOptCap),
227         LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
228         LicmAllowSpeculation(LicmAllowSpeculation) {}
229 
230 private:
231   unsigned LicmMssaOptCap;
232   unsigned LicmMssaNoAccForPromotionCap;
233   bool LicmAllowSpeculation;
234 };
235 
236 struct LegacyLICMPass : public LoopPass {
237   static char ID; // Pass identification, replacement for typeid
238   LegacyLICMPass(
239       unsigned LicmMssaOptCap = SetLicmMssaOptCap,
240       unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap,
241       bool LicmAllowSpeculation = true)
242       : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
243                            LicmAllowSpeculation) {
244     initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
245   }
246 
247   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
248     if (skipLoop(L))
249       return false;
250 
251     LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
252                       << L->getHeader()->getNameOrAsOperand() << "\n");
253 
254     Function *F = L->getHeader()->getParent();
255 
256     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
257     MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
258     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
259     // pass. Function analyses need to be preserved across loop transformations
260     // but ORE cannot be preserved (see comment before the pass definition).
261     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
262     return LICM.runOnLoop(
263         L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
264         &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
265         &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
266         &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F),
267         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*F),
268         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*F),
269         SE ? &SE->getSE() : nullptr, MSSA, &ORE);
270   }
271 
272   /// This transformation requires natural loop information & requires that
273   /// loop preheaders be inserted into the CFG...
274   ///
275   void getAnalysisUsage(AnalysisUsage &AU) const override {
276     AU.addPreserved<DominatorTreeWrapperPass>();
277     AU.addPreserved<LoopInfoWrapperPass>();
278     AU.addRequired<TargetLibraryInfoWrapperPass>();
279     AU.addRequired<MemorySSAWrapperPass>();
280     AU.addPreserved<MemorySSAWrapperPass>();
281     AU.addRequired<TargetTransformInfoWrapperPass>();
282     AU.addRequired<AssumptionCacheTracker>();
283     getLoopAnalysisUsage(AU);
284     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
285     AU.addPreserved<LazyBlockFrequencyInfoPass>();
286     AU.addPreserved<LazyBranchProbabilityInfoPass>();
287   }
288 
289 private:
290   LoopInvariantCodeMotion LICM;
291 };
292 } // namespace
293 
294 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
295                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
296   if (!AR.MSSA)
297     report_fatal_error("LICM requires MemorySSA (loop-mssa)",
298                        /*GenCrashDiag*/false);
299 
300   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
301   // pass.  Function analyses need to be preserved across loop transformations
302   // but ORE cannot be preserved (see comment before the pass definition).
303   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
304 
305   LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
306                                Opts.AllowSpeculation);
307   if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI,
308                       &AR.SE, AR.MSSA, &ORE))
309     return PreservedAnalyses::all();
310 
311   auto PA = getLoopPassPreservedAnalyses();
312   PA.preserve<MemorySSAAnalysis>();
313 
314   return PA;
315 }
316 
317 void LICMPass::printPipeline(
318     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
319   static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline(
320       OS, MapClassName2PassName);
321 
322   OS << '<';
323   OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation";
324   OS << '>';
325 }
326 
327 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
328                                  LoopStandardAnalysisResults &AR,
329                                  LPMUpdater &) {
330   if (!AR.MSSA)
331     report_fatal_error("LNICM requires MemorySSA (loop-mssa)",
332                        /*GenCrashDiag*/false);
333 
334   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
335   // pass.  Function analyses need to be preserved across loop transformations
336   // but ORE cannot be preserved (see comment before the pass definition).
337   OptimizationRemarkEmitter ORE(LN.getParent());
338 
339   LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
340                                Opts.AllowSpeculation);
341 
342   Loop &OutermostLoop = LN.getOutermostLoop();
343   bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, &AR.AC,
344                                 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
345 
346   if (!Changed)
347     return PreservedAnalyses::all();
348 
349   auto PA = getLoopPassPreservedAnalyses();
350 
351   PA.preserve<DominatorTreeAnalysis>();
352   PA.preserve<LoopAnalysis>();
353   PA.preserve<MemorySSAAnalysis>();
354 
355   return PA;
356 }
357 
358 void LNICMPass::printPipeline(
359     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
360   static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline(
361       OS, MapClassName2PassName);
362 
363   OS << '<';
364   OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation";
365   OS << '>';
366 }
367 
368 char LegacyLICMPass::ID = 0;
369 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
370                       false, false)
371 INITIALIZE_PASS_DEPENDENCY(LoopPass)
372 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
373 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
374 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
375 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
376 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
377                     false)
378 
379 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
380 
381 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop &L,
382                                                    MemorySSA &MSSA)
383     : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
384                             IsSink, L, MSSA) {}
385 
386 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
387     unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
388     Loop &L, MemorySSA &MSSA)
389     : LicmMssaOptCap(LicmMssaOptCap),
390       LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
391       IsSink(IsSink) {
392   unsigned AccessCapCount = 0;
393   for (auto *BB : L.getBlocks())
394     if (const auto *Accesses = MSSA.getBlockAccesses(BB))
395       for (const auto &MA : *Accesses) {
396         (void)MA;
397         ++AccessCapCount;
398         if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
399           NoOfMemAccTooLarge = true;
400           return;
401         }
402       }
403 }
404 
405 /// Hoist expressions out of the specified loop. Note, alias info for inner
406 /// loop is not preserved so it is not a good idea to run LICM multiple
407 /// times on one loop.
408 bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI,
409                                         DominatorTree *DT, AssumptionCache *AC,
410                                         TargetLibraryInfo *TLI,
411                                         TargetTransformInfo *TTI,
412                                         ScalarEvolution *SE, MemorySSA *MSSA,
413                                         OptimizationRemarkEmitter *ORE,
414                                         bool LoopNestMode) {
415   bool Changed = false;
416 
417   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
418 
419   // If this loop has metadata indicating that LICM is not to be performed then
420   // just exit.
421   if (hasDisableLICMTransformsHint(L)) {
422     return false;
423   }
424 
425   // Don't sink stores from loops with coroutine suspend instructions.
426   // LICM would sink instructions into the default destination of
427   // the coroutine switch. The default destination of the switch is to
428   // handle the case where the coroutine is suspended, by which point the
429   // coroutine frame may have been destroyed. No instruction can be sunk there.
430   // FIXME: This would unfortunately hurt the performance of coroutines, however
431   // there is currently no general solution for this. Similar issues could also
432   // potentially happen in other passes where instructions are being moved
433   // across that edge.
434   bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
435     return llvm::any_of(*BB, [](Instruction &I) {
436       IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
437       return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
438     });
439   });
440 
441   MemorySSAUpdater MSSAU(MSSA);
442   SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
443                               /*IsSink=*/true, *L, *MSSA);
444 
445   // Get the preheader block to move instructions into...
446   BasicBlock *Preheader = L->getLoopPreheader();
447 
448   // Compute loop safety information.
449   ICFLoopSafetyInfo SafetyInfo;
450   SafetyInfo.computeLoopSafetyInfo(L);
451 
452   // We want to visit all of the instructions in this loop... that are not parts
453   // of our subloops (they have already had their invariants hoisted out of
454   // their loop, into this loop, so there is no need to process the BODIES of
455   // the subloops).
456   //
457   // Traverse the body of the loop in depth first order on the dominator tree so
458   // that we are guaranteed to see definitions before we see uses.  This allows
459   // us to sink instructions in one pass, without iteration.  After sinking
460   // instructions, we perform another pass to hoist them out of the loop.
461   if (L->hasDedicatedExits())
462     Changed |=
463         LoopNestMode
464             ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, DT,
465                                     TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE)
466             : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
467                          MSSAU, &SafetyInfo, Flags, ORE);
468   Flags.setIsSink(false);
469   if (Preheader)
470     Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, AC, TLI, L,
471                            MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
472                            LicmAllowSpeculation);
473 
474   // Now that all loop invariants have been removed from the loop, promote any
475   // memory references to scalars that we can.
476   // Don't sink stores from loops without dedicated block exits. Exits
477   // containing indirect branches are not transformed by loop simplify,
478   // make sure we catch that. An additional load may be generated in the
479   // preheader for SSA updater, so also avoid sinking when no preheader
480   // is available.
481   if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
482       !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
483     // Figure out the loop exits and their insertion points
484     SmallVector<BasicBlock *, 8> ExitBlocks;
485     L->getUniqueExitBlocks(ExitBlocks);
486 
487     // We can't insert into a catchswitch.
488     bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
489       return isa<CatchSwitchInst>(Exit->getTerminator());
490     });
491 
492     if (!HasCatchSwitch) {
493       SmallVector<BasicBlock::iterator, 8> InsertPts;
494       SmallVector<MemoryAccess *, 8> MSSAInsertPts;
495       InsertPts.reserve(ExitBlocks.size());
496       MSSAInsertPts.reserve(ExitBlocks.size());
497       for (BasicBlock *ExitBlock : ExitBlocks) {
498         InsertPts.push_back(ExitBlock->getFirstInsertionPt());
499         MSSAInsertPts.push_back(nullptr);
500       }
501 
502       PredIteratorCache PIC;
503 
504       // Promoting one set of accesses may make the pointers for another set
505       // loop invariant, so run this in a loop.
506       bool Promoted = false;
507       bool LocalPromoted;
508       do {
509         LocalPromoted = false;
510         for (auto [PointerMustAliases, HasReadsOutsideSet] :
511              collectPromotionCandidates(MSSA, AA, L)) {
512           LocalPromoted |= promoteLoopAccessesToScalars(
513               PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
514               DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE,
515               LicmAllowSpeculation, HasReadsOutsideSet);
516         }
517         Promoted |= LocalPromoted;
518       } while (LocalPromoted);
519 
520       // Once we have promoted values across the loop body we have to
521       // recursively reform LCSSA as any nested loop may now have values defined
522       // within the loop used in the outer loop.
523       // FIXME: This is really heavy handed. It would be a bit better to use an
524       // SSAUpdater strategy during promotion that was LCSSA aware and reformed
525       // it as it went.
526       if (Promoted)
527         formLCSSARecursively(*L, *DT, LI, SE);
528 
529       Changed |= Promoted;
530     }
531   }
532 
533   // Check that neither this loop nor its parent have had LCSSA broken. LICM is
534   // specifically moving instructions across the loop boundary and so it is
535   // especially in need of basic functional correctness checking here.
536   assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
537   assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
538          "Parent loop not left in LCSSA form after LICM!");
539 
540   if (VerifyMemorySSA)
541     MSSA->verifyMemorySSA();
542 
543   if (Changed && SE)
544     SE->forgetLoopDispositions();
545   return Changed;
546 }
547 
548 /// Walk the specified region of the CFG (defined by all blocks dominated by
549 /// the specified block, and that are in the current loop) in reverse depth
550 /// first order w.r.t the DominatorTree.  This allows us to visit uses before
551 /// definitions, allowing us to sink a loop body in one pass without iteration.
552 ///
553 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
554                       DominatorTree *DT, TargetLibraryInfo *TLI,
555                       TargetTransformInfo *TTI, Loop *CurLoop,
556                       MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo,
557                       SinkAndHoistLICMFlags &Flags,
558                       OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
559 
560   // Verify inputs.
561   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
562          CurLoop != nullptr && SafetyInfo != nullptr &&
563          "Unexpected input to sinkRegion.");
564 
565   // We want to visit children before parents. We will enqueue all the parents
566   // before their children in the worklist and process the worklist in reverse
567   // order.
568   SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
569 
570   bool Changed = false;
571   for (DomTreeNode *DTN : reverse(Worklist)) {
572     BasicBlock *BB = DTN->getBlock();
573     // Only need to process the contents of this block if it is not part of a
574     // subloop (which would already have been processed).
575     if (inSubLoop(BB, CurLoop, LI))
576       continue;
577 
578     for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
579       Instruction &I = *--II;
580 
581       // The instruction is not used in the loop if it is dead.  In this case,
582       // we just delete it instead of sinking it.
583       if (isInstructionTriviallyDead(&I, TLI)) {
584         LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
585         salvageKnowledge(&I);
586         salvageDebugInfo(I);
587         ++II;
588         eraseInstruction(I, *SafetyInfo, MSSAU);
589         Changed = true;
590         continue;
591       }
592 
593       // Check to see if we can sink this instruction to the exit blocks
594       // of the loop.  We can do this if the all users of the instruction are
595       // outside of the loop.  In this case, it doesn't even matter if the
596       // operands of the instruction are loop invariant.
597       //
598       bool FoldableInLoop = false;
599       bool LoopNestMode = OutermostLoop != nullptr;
600       if (!I.mayHaveSideEffects() &&
601           isNotUsedOrFoldableInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
602                                     SafetyInfo, TTI, FoldableInLoop,
603                                     LoopNestMode) &&
604           canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) {
605         if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
606           if (!FoldableInLoop) {
607             ++II;
608             salvageDebugInfo(I);
609             eraseInstruction(I, *SafetyInfo, MSSAU);
610           }
611           Changed = true;
612         }
613       }
614     }
615   }
616   if (VerifyMemorySSA)
617     MSSAU.getMemorySSA()->verifyMemorySSA();
618   return Changed;
619 }
620 
621 bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
622                                  DominatorTree *DT, TargetLibraryInfo *TLI,
623                                  TargetTransformInfo *TTI, Loop *CurLoop,
624                                  MemorySSAUpdater &MSSAU,
625                                  ICFLoopSafetyInfo *SafetyInfo,
626                                  SinkAndHoistLICMFlags &Flags,
627                                  OptimizationRemarkEmitter *ORE) {
628 
629   bool Changed = false;
630   SmallPriorityWorklist<Loop *, 4> Worklist;
631   Worklist.insert(CurLoop);
632   appendLoopsToWorklist(*CurLoop, Worklist);
633   while (!Worklist.empty()) {
634     Loop *L = Worklist.pop_back_val();
635     Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
636                           MSSAU, SafetyInfo, Flags, ORE, CurLoop);
637   }
638   return Changed;
639 }
640 
641 namespace {
642 // This is a helper class for hoistRegion to make it able to hoist control flow
643 // in order to be able to hoist phis. The way this works is that we initially
644 // start hoisting to the loop preheader, and when we see a loop invariant branch
645 // we make note of this. When we then come to hoist an instruction that's
646 // conditional on such a branch we duplicate the branch and the relevant control
647 // flow, then hoist the instruction into the block corresponding to its original
648 // block in the duplicated control flow.
649 class ControlFlowHoister {
650 private:
651   // Information about the loop we are hoisting from
652   LoopInfo *LI;
653   DominatorTree *DT;
654   Loop *CurLoop;
655   MemorySSAUpdater &MSSAU;
656 
657   // A map of blocks in the loop to the block their instructions will be hoisted
658   // to.
659   DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
660 
661   // The branches that we can hoist, mapped to the block that marks a
662   // convergence point of their control flow.
663   DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
664 
665 public:
666   ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
667                      MemorySSAUpdater &MSSAU)
668       : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
669 
670   void registerPossiblyHoistableBranch(BranchInst *BI) {
671     // We can only hoist conditional branches with loop invariant operands.
672     if (!ControlFlowHoisting || !BI->isConditional() ||
673         !CurLoop->hasLoopInvariantOperands(BI))
674       return;
675 
676     // The branch destinations need to be in the loop, and we don't gain
677     // anything by duplicating conditional branches with duplicate successors,
678     // as it's essentially the same as an unconditional branch.
679     BasicBlock *TrueDest = BI->getSuccessor(0);
680     BasicBlock *FalseDest = BI->getSuccessor(1);
681     if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
682         TrueDest == FalseDest)
683       return;
684 
685     // We can hoist BI if one branch destination is the successor of the other,
686     // or both have common successor which we check by seeing if the
687     // intersection of their successors is non-empty.
688     // TODO: This could be expanded to allowing branches where both ends
689     // eventually converge to a single block.
690     SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
691     TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
692     FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
693     BasicBlock *CommonSucc = nullptr;
694     if (TrueDestSucc.count(FalseDest)) {
695       CommonSucc = FalseDest;
696     } else if (FalseDestSucc.count(TrueDest)) {
697       CommonSucc = TrueDest;
698     } else {
699       set_intersect(TrueDestSucc, FalseDestSucc);
700       // If there's one common successor use that.
701       if (TrueDestSucc.size() == 1)
702         CommonSucc = *TrueDestSucc.begin();
703       // If there's more than one pick whichever appears first in the block list
704       // (we can't use the value returned by TrueDestSucc.begin() as it's
705       // unpredicatable which element gets returned).
706       else if (!TrueDestSucc.empty()) {
707         Function *F = TrueDest->getParent();
708         auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
709         auto It = llvm::find_if(*F, IsSucc);
710         assert(It != F->end() && "Could not find successor in function");
711         CommonSucc = &*It;
712       }
713     }
714     // The common successor has to be dominated by the branch, as otherwise
715     // there will be some other path to the successor that will not be
716     // controlled by this branch so any phi we hoist would be controlled by the
717     // wrong condition. This also takes care of avoiding hoisting of loop back
718     // edges.
719     // TODO: In some cases this could be relaxed if the successor is dominated
720     // by another block that's been hoisted and we can guarantee that the
721     // control flow has been replicated exactly.
722     if (CommonSucc && DT->dominates(BI, CommonSucc))
723       HoistableBranches[BI] = CommonSucc;
724   }
725 
726   bool canHoistPHI(PHINode *PN) {
727     // The phi must have loop invariant operands.
728     if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
729       return false;
730     // We can hoist phis if the block they are in is the target of hoistable
731     // branches which cover all of the predecessors of the block.
732     SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
733     BasicBlock *BB = PN->getParent();
734     for (BasicBlock *PredBB : predecessors(BB))
735       PredecessorBlocks.insert(PredBB);
736     // If we have less predecessor blocks than predecessors then the phi will
737     // have more than one incoming value for the same block which we can't
738     // handle.
739     // TODO: This could be handled be erasing some of the duplicate incoming
740     // values.
741     if (PredecessorBlocks.size() != pred_size(BB))
742       return false;
743     for (auto &Pair : HoistableBranches) {
744       if (Pair.second == BB) {
745         // Which blocks are predecessors via this branch depends on if the
746         // branch is triangle-like or diamond-like.
747         if (Pair.first->getSuccessor(0) == BB) {
748           PredecessorBlocks.erase(Pair.first->getParent());
749           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
750         } else if (Pair.first->getSuccessor(1) == BB) {
751           PredecessorBlocks.erase(Pair.first->getParent());
752           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
753         } else {
754           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
755           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
756         }
757       }
758     }
759     // PredecessorBlocks will now be empty if for every predecessor of BB we
760     // found a hoistable branch source.
761     return PredecessorBlocks.empty();
762   }
763 
764   BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
765     if (!ControlFlowHoisting)
766       return CurLoop->getLoopPreheader();
767     // If BB has already been hoisted, return that
768     if (HoistDestinationMap.count(BB))
769       return HoistDestinationMap[BB];
770 
771     // Check if this block is conditional based on a pending branch
772     auto HasBBAsSuccessor =
773         [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
774           return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
775                                        Pair.first->getSuccessor(1) == BB);
776         };
777     auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
778 
779     // If not involved in a pending branch, hoist to preheader
780     BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
781     if (It == HoistableBranches.end()) {
782       LLVM_DEBUG(dbgs() << "LICM using "
783                         << InitialPreheader->getNameOrAsOperand()
784                         << " as hoist destination for "
785                         << BB->getNameOrAsOperand() << "\n");
786       HoistDestinationMap[BB] = InitialPreheader;
787       return InitialPreheader;
788     }
789     BranchInst *BI = It->first;
790     assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
791                HoistableBranches.end() &&
792            "BB is expected to be the target of at most one branch");
793 
794     LLVMContext &C = BB->getContext();
795     BasicBlock *TrueDest = BI->getSuccessor(0);
796     BasicBlock *FalseDest = BI->getSuccessor(1);
797     BasicBlock *CommonSucc = HoistableBranches[BI];
798     BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
799 
800     // Create hoisted versions of blocks that currently don't have them
801     auto CreateHoistedBlock = [&](BasicBlock *Orig) {
802       if (HoistDestinationMap.count(Orig))
803         return HoistDestinationMap[Orig];
804       BasicBlock *New =
805           BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
806       HoistDestinationMap[Orig] = New;
807       DT->addNewBlock(New, HoistTarget);
808       if (CurLoop->getParentLoop())
809         CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
810       ++NumCreatedBlocks;
811       LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
812                         << " as hoist destination for " << Orig->getName()
813                         << "\n");
814       return New;
815     };
816     BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
817     BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
818     BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
819 
820     // Link up these blocks with branches.
821     if (!HoistCommonSucc->getTerminator()) {
822       // The new common successor we've generated will branch to whatever that
823       // hoist target branched to.
824       BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
825       assert(TargetSucc && "Expected hoist target to have a single successor");
826       HoistCommonSucc->moveBefore(TargetSucc);
827       BranchInst::Create(TargetSucc, HoistCommonSucc);
828     }
829     if (!HoistTrueDest->getTerminator()) {
830       HoistTrueDest->moveBefore(HoistCommonSucc);
831       BranchInst::Create(HoistCommonSucc, HoistTrueDest);
832     }
833     if (!HoistFalseDest->getTerminator()) {
834       HoistFalseDest->moveBefore(HoistCommonSucc);
835       BranchInst::Create(HoistCommonSucc, HoistFalseDest);
836     }
837 
838     // If BI is being cloned to what was originally the preheader then
839     // HoistCommonSucc will now be the new preheader.
840     if (HoistTarget == InitialPreheader) {
841       // Phis in the loop header now need to use the new preheader.
842       InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
843       MSSAU.wireOldPredecessorsToNewImmediatePredecessor(
844           HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
845       // The new preheader dominates the loop header.
846       DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
847       DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
848       DT->changeImmediateDominator(HeaderNode, PreheaderNode);
849       // The preheader hoist destination is now the new preheader, with the
850       // exception of the hoist destination of this branch.
851       for (auto &Pair : HoistDestinationMap)
852         if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
853           Pair.second = HoistCommonSucc;
854     }
855 
856     // Now finally clone BI.
857     ReplaceInstWithInst(
858         HoistTarget->getTerminator(),
859         BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
860     ++NumClonedBranches;
861 
862     assert(CurLoop->getLoopPreheader() &&
863            "Hoisting blocks should not have destroyed preheader");
864     return HoistDestinationMap[BB];
865   }
866 };
867 } // namespace
868 
869 /// Walk the specified region of the CFG (defined by all blocks dominated by
870 /// the specified block, and that are in the current loop) in depth first
871 /// order w.r.t the DominatorTree.  This allows us to visit definitions before
872 /// uses, allowing us to hoist a loop body in one pass without iteration.
873 ///
874 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
875                        DominatorTree *DT, AssumptionCache *AC,
876                        TargetLibraryInfo *TLI, Loop *CurLoop,
877                        MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
878                        ICFLoopSafetyInfo *SafetyInfo,
879                        SinkAndHoistLICMFlags &Flags,
880                        OptimizationRemarkEmitter *ORE, bool LoopNestMode,
881                        bool AllowSpeculation) {
882   // Verify inputs.
883   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
884          CurLoop != nullptr && SafetyInfo != nullptr &&
885          "Unexpected input to hoistRegion.");
886 
887   ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
888 
889   // Keep track of instructions that have been hoisted, as they may need to be
890   // re-hoisted if they end up not dominating all of their uses.
891   SmallVector<Instruction *, 16> HoistedInstructions;
892 
893   // For PHI hoisting to work we need to hoist blocks before their successors.
894   // We can do this by iterating through the blocks in the loop in reverse
895   // post-order.
896   LoopBlocksRPO Worklist(CurLoop);
897   Worklist.perform(LI);
898   bool Changed = false;
899   BasicBlock *Preheader = CurLoop->getLoopPreheader();
900   for (BasicBlock *BB : Worklist) {
901     // Only need to process the contents of this block if it is not part of a
902     // subloop (which would already have been processed).
903     if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
904       continue;
905 
906     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
907       // Try hoisting the instruction out to the preheader.  We can only do
908       // this if all of the operands of the instruction are loop invariant and
909       // if it is safe to hoist the instruction. We also check block frequency
910       // to make sure instruction only gets hoisted into colder blocks.
911       // TODO: It may be safe to hoist if we are hoisting to a conditional block
912       // and we have accurately duplicated the control flow from the loop header
913       // to that block.
914       if (CurLoop->hasLoopInvariantOperands(&I) &&
915           canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) &&
916           isSafeToExecuteUnconditionally(
917               I, DT, TLI, CurLoop, SafetyInfo, ORE,
918               Preheader->getTerminator(), AC, AllowSpeculation)) {
919         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
920               MSSAU, SE, ORE);
921         HoistedInstructions.push_back(&I);
922         Changed = true;
923         continue;
924       }
925 
926       // Attempt to remove floating point division out of the loop by
927       // converting it to a reciprocal multiplication.
928       if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
929           CurLoop->isLoopInvariant(I.getOperand(1))) {
930         auto Divisor = I.getOperand(1);
931         auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
932         auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
933         ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
934         SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
935         ReciprocalDivisor->insertBefore(&I);
936         ReciprocalDivisor->setDebugLoc(I.getDebugLoc());
937 
938         auto Product =
939             BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
940         Product->setFastMathFlags(I.getFastMathFlags());
941         SafetyInfo->insertInstructionTo(Product, I.getParent());
942         Product->insertAfter(&I);
943         Product->setDebugLoc(I.getDebugLoc());
944         I.replaceAllUsesWith(Product);
945         eraseInstruction(I, *SafetyInfo, MSSAU);
946 
947         hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
948               SafetyInfo, MSSAU, SE, ORE);
949         HoistedInstructions.push_back(ReciprocalDivisor);
950         Changed = true;
951         continue;
952       }
953 
954       auto IsInvariantStart = [&](Instruction &I) {
955         using namespace PatternMatch;
956         return I.use_empty() &&
957                match(&I, m_Intrinsic<Intrinsic::invariant_start>());
958       };
959       auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
960         return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
961                SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
962       };
963       if ((IsInvariantStart(I) || isGuard(&I)) &&
964           CurLoop->hasLoopInvariantOperands(&I) &&
965           MustExecuteWithoutWritesBefore(I)) {
966         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
967               MSSAU, SE, ORE);
968         HoistedInstructions.push_back(&I);
969         Changed = true;
970         continue;
971       }
972 
973       if (PHINode *PN = dyn_cast<PHINode>(&I)) {
974         if (CFH.canHoistPHI(PN)) {
975           // Redirect incoming blocks first to ensure that we create hoisted
976           // versions of those blocks before we hoist the phi.
977           for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
978             PN->setIncomingBlock(
979                 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
980           hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
981                 MSSAU, SE, ORE);
982           assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
983           Changed = true;
984           continue;
985         }
986       }
987 
988       // Try to reassociate instructions so that part of computations can be
989       // done out of loop.
990       if (hoistArithmetics(I, *CurLoop, *SafetyInfo, MSSAU, AC, DT)) {
991         Changed = true;
992         continue;
993       }
994 
995       // Remember possibly hoistable branches so we can actually hoist them
996       // later if needed.
997       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
998         CFH.registerPossiblyHoistableBranch(BI);
999     }
1000   }
1001 
1002   // If we hoisted instructions to a conditional block they may not dominate
1003   // their uses that weren't hoisted (such as phis where some operands are not
1004   // loop invariant). If so make them unconditional by moving them to their
1005   // immediate dominator. We iterate through the instructions in reverse order
1006   // which ensures that when we rehoist an instruction we rehoist its operands,
1007   // and also keep track of where in the block we are rehoisting to make sure
1008   // that we rehoist instructions before the instructions that use them.
1009   Instruction *HoistPoint = nullptr;
1010   if (ControlFlowHoisting) {
1011     for (Instruction *I : reverse(HoistedInstructions)) {
1012       if (!llvm::all_of(I->uses(),
1013                         [&](Use &U) { return DT->dominates(I, U); })) {
1014         BasicBlock *Dominator =
1015             DT->getNode(I->getParent())->getIDom()->getBlock();
1016         if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
1017           if (HoistPoint)
1018             assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
1019                    "New hoist point expected to dominate old hoist point");
1020           HoistPoint = Dominator->getTerminator();
1021         }
1022         LLVM_DEBUG(dbgs() << "LICM rehoisting to "
1023                           << HoistPoint->getParent()->getNameOrAsOperand()
1024                           << ": " << *I << "\n");
1025         moveInstructionBefore(*I, HoistPoint->getIterator(), *SafetyInfo, MSSAU,
1026                               SE);
1027         HoistPoint = I;
1028         Changed = true;
1029       }
1030     }
1031   }
1032   if (VerifyMemorySSA)
1033     MSSAU.getMemorySSA()->verifyMemorySSA();
1034 
1035     // Now that we've finished hoisting make sure that LI and DT are still
1036     // valid.
1037 #ifdef EXPENSIVE_CHECKS
1038   if (Changed) {
1039     assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
1040            "Dominator tree verification failed");
1041     LI->verify(*DT);
1042   }
1043 #endif
1044 
1045   return Changed;
1046 }
1047 
1048 // Return true if LI is invariant within scope of the loop. LI is invariant if
1049 // CurLoop is dominated by an invariant.start representing the same memory
1050 // location and size as the memory location LI loads from, and also the
1051 // invariant.start has no uses.
1052 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1053                                   Loop *CurLoop) {
1054   Value *Addr = LI->getPointerOperand();
1055   const DataLayout &DL = LI->getDataLayout();
1056   const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1057 
1058   // It is not currently possible for clang to generate an invariant.start
1059   // intrinsic with scalable vector types because we don't support thread local
1060   // sizeless types and we don't permit sizeless types in structs or classes.
1061   // Furthermore, even if support is added for this in future the intrinsic
1062   // itself is defined to have a size of -1 for variable sized objects. This
1063   // makes it impossible to verify if the intrinsic envelops our region of
1064   // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1065   // types would have a -1 parameter, but the former is clearly double the size
1066   // of the latter.
1067   if (LocSizeInBits.isScalable())
1068     return false;
1069 
1070   // If we've ended up at a global/constant, bail. We shouldn't be looking at
1071   // uselists for non-local Values in a loop pass.
1072   if (isa<Constant>(Addr))
1073     return false;
1074 
1075   unsigned UsesVisited = 0;
1076   // Traverse all uses of the load operand value, to see if invariant.start is
1077   // one of the uses, and whether it dominates the load instruction.
1078   for (auto *U : Addr->users()) {
1079     // Avoid traversing for Load operand with high number of users.
1080     if (++UsesVisited > MaxNumUsesTraversed)
1081       return false;
1082     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1083     // If there are escaping uses of invariant.start instruction, the load maybe
1084     // non-invariant.
1085     if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1086         !II->use_empty())
1087       continue;
1088     ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1089     // The intrinsic supports having a -1 argument for variable sized objects
1090     // so we should check for that here.
1091     if (InvariantSize->isNegative())
1092       continue;
1093     uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1094     // Confirm the invariant.start location size contains the load operand size
1095     // in bits. Also, the invariant.start should dominate the load, and we
1096     // should not hoist the load out of a loop that contains this dominating
1097     // invariant.start.
1098     if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits &&
1099         DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1100       return true;
1101   }
1102 
1103   return false;
1104 }
1105 
1106 namespace {
1107 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1108 /// sink a given instruction out of a loop.  Does not address legality
1109 /// concerns such as aliasing or speculation safety.
1110 bool isHoistableAndSinkableInst(Instruction &I) {
1111   // Only these instructions are hoistable/sinkable.
1112   return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1113           isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1114           isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1115           isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1116           isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1117           isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1118           isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1119 }
1120 /// Return true if MSSA knows there are no MemoryDefs in the loop.
1121 bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) {
1122   for (auto *BB : L->getBlocks())
1123     if (MSSAU.getMemorySSA()->getBlockDefs(BB))
1124       return false;
1125   return true;
1126 }
1127 
1128 /// Return true if I is the only Instruction with a MemoryAccess in L.
1129 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1130                         const MemorySSAUpdater &MSSAU) {
1131   for (auto *BB : L->getBlocks())
1132     if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) {
1133       int NotAPhi = 0;
1134       for (const auto &Acc : *Accs) {
1135         if (isa<MemoryPhi>(&Acc))
1136           continue;
1137         const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1138         if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1139           return false;
1140       }
1141     }
1142   return true;
1143 }
1144 }
1145 
1146 static MemoryAccess *getClobberingMemoryAccess(MemorySSA &MSSA,
1147                                                BatchAAResults &BAA,
1148                                                SinkAndHoistLICMFlags &Flags,
1149                                                MemoryUseOrDef *MA) {
1150   // See declaration of SetLicmMssaOptCap for usage details.
1151   if (Flags.tooManyClobberingCalls())
1152     return MA->getDefiningAccess();
1153 
1154   MemoryAccess *Source =
1155       MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(MA, BAA);
1156   Flags.incrementClobberingCalls();
1157   return Source;
1158 }
1159 
1160 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1161                               Loop *CurLoop, MemorySSAUpdater &MSSAU,
1162                               bool TargetExecutesOncePerLoop,
1163                               SinkAndHoistLICMFlags &Flags,
1164                               OptimizationRemarkEmitter *ORE) {
1165   // If we don't understand the instruction, bail early.
1166   if (!isHoistableAndSinkableInst(I))
1167     return false;
1168 
1169   MemorySSA *MSSA = MSSAU.getMemorySSA();
1170   // Loads have extra constraints we have to verify before we can hoist them.
1171   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1172     if (!LI->isUnordered())
1173       return false; // Don't sink/hoist volatile or ordered atomic loads!
1174 
1175     // Loads from constant memory are always safe to move, even if they end up
1176     // in the same alias set as something that ends up being modified.
1177     if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0))))
1178       return true;
1179     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1180       return true;
1181 
1182     if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1183       return false; // Don't risk duplicating unordered loads
1184 
1185     // This checks for an invariant.start dominating the load.
1186     if (isLoadInvariantInLoop(LI, DT, CurLoop))
1187       return true;
1188 
1189     auto MU = cast<MemoryUse>(MSSA->getMemoryAccess(LI));
1190 
1191     bool InvariantGroup = LI->hasMetadata(LLVMContext::MD_invariant_group);
1192 
1193     bool Invalidated = pointerInvalidatedByLoop(
1194         MSSA, MU, CurLoop, I, Flags, InvariantGroup);
1195     // Check loop-invariant address because this may also be a sinkable load
1196     // whose address is not necessarily loop-invariant.
1197     if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1198       ORE->emit([&]() {
1199         return OptimizationRemarkMissed(
1200                    DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1201                << "failed to move load with loop-invariant address "
1202                   "because the loop may invalidate its value";
1203       });
1204 
1205     return !Invalidated;
1206   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1207     // Don't sink or hoist dbg info; it's legal, but not useful.
1208     if (isa<DbgInfoIntrinsic>(I))
1209       return false;
1210 
1211     // Don't sink calls which can throw.
1212     if (CI->mayThrow())
1213       return false;
1214 
1215     // Convergent attribute has been used on operations that involve
1216     // inter-thread communication which results are implicitly affected by the
1217     // enclosing control flows. It is not safe to hoist or sink such operations
1218     // across control flow.
1219     if (CI->isConvergent())
1220       return false;
1221 
1222     // FIXME: Current LLVM IR semantics don't work well with coroutines and
1223     // thread local globals. We currently treat getting the address of a thread
1224     // local global as not accessing memory, even though it may not be a
1225     // constant throughout a function with coroutines. Remove this check after
1226     // we better model semantics of thread local globals.
1227     if (CI->getFunction()->isPresplitCoroutine())
1228       return false;
1229 
1230     using namespace PatternMatch;
1231     if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1232       // Assumes don't actually alias anything or throw
1233       return true;
1234 
1235     // Handle simple cases by querying alias analysis.
1236     MemoryEffects Behavior = AA->getMemoryEffects(CI);
1237 
1238     if (Behavior.doesNotAccessMemory())
1239       return true;
1240     if (Behavior.onlyReadsMemory()) {
1241       // A readonly argmemonly function only reads from memory pointed to by
1242       // it's arguments with arbitrary offsets.  If we can prove there are no
1243       // writes to this memory in the loop, we can hoist or sink.
1244       if (Behavior.onlyAccessesArgPointees()) {
1245         // TODO: expand to writeable arguments
1246         for (Value *Op : CI->args())
1247           if (Op->getType()->isPointerTy() &&
1248               pointerInvalidatedByLoop(
1249                   MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1250                   Flags, /*InvariantGroup=*/false))
1251             return false;
1252         return true;
1253       }
1254 
1255       // If this call only reads from memory and there are no writes to memory
1256       // in the loop, we can hoist or sink the call as appropriate.
1257       if (isReadOnly(MSSAU, CurLoop))
1258         return true;
1259     }
1260 
1261     // FIXME: This should use mod/ref information to see if we can hoist or
1262     // sink the call.
1263 
1264     return false;
1265   } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1266     // Fences alias (most) everything to provide ordering.  For the moment,
1267     // just give up if there are any other memory operations in the loop.
1268     return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1269   } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1270     if (!SI->isUnordered())
1271       return false; // Don't sink/hoist volatile or ordered atomic store!
1272 
1273     // We can only hoist a store that we can prove writes a value which is not
1274     // read or overwritten within the loop.  For those cases, we fallback to
1275     // load store promotion instead.  TODO: We can extend this to cases where
1276     // there is exactly one write to the location and that write dominates an
1277     // arbitrary number of reads in the loop.
1278     if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1279       return true;
1280     // If there are more accesses than the Promotion cap, then give up as we're
1281     // not walking a list that long.
1282     if (Flags.tooManyMemoryAccesses())
1283       return false;
1284 
1285     auto *SIMD = MSSA->getMemoryAccess(SI);
1286     BatchAAResults BAA(*AA);
1287     auto *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, SIMD);
1288     // Make sure there are no clobbers inside the loop.
1289     if (!MSSA->isLiveOnEntryDef(Source) &&
1290            CurLoop->contains(Source->getBlock()))
1291       return false;
1292 
1293     // If there are interfering Uses (i.e. their defining access is in the
1294     // loop), or ordered loads (stored as Defs!), don't move this store.
1295     // Could do better here, but this is conservatively correct.
1296     // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1297     // moving accesses. Can also extend to dominating uses.
1298     for (auto *BB : CurLoop->getBlocks())
1299       if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1300         for (const auto &MA : *Accesses)
1301           if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1302             auto *MD = getClobberingMemoryAccess(*MSSA, BAA, Flags,
1303                 const_cast<MemoryUse *>(MU));
1304             if (!MSSA->isLiveOnEntryDef(MD) &&
1305                 CurLoop->contains(MD->getBlock()))
1306               return false;
1307             // Disable hoisting past potentially interfering loads. Optimized
1308             // Uses may point to an access outside the loop, as getClobbering
1309             // checks the previous iteration when walking the backedge.
1310             // FIXME: More precise: no Uses that alias SI.
1311             if (!Flags.getIsSink() && !MSSA->dominates(SIMD, MU))
1312               return false;
1313           } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1314             if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1315               (void)LI; // Silence warning.
1316               assert(!LI->isUnordered() && "Expected unordered load");
1317               return false;
1318             }
1319             // Any call, while it may not be clobbering SI, it may be a use.
1320             if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1321               // Check if the call may read from the memory location written
1322               // to by SI. Check CI's attributes and arguments; the number of
1323               // such checks performed is limited above by NoOfMemAccTooLarge.
1324               ModRefInfo MRI = BAA.getModRefInfo(CI, MemoryLocation::get(SI));
1325               if (isModOrRefSet(MRI))
1326                 return false;
1327             }
1328           }
1329       }
1330     return true;
1331   }
1332 
1333   assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1334 
1335   // We've established mechanical ability and aliasing, it's up to the caller
1336   // to check fault safety
1337   return true;
1338 }
1339 
1340 /// Returns true if a PHINode is a trivially replaceable with an
1341 /// Instruction.
1342 /// This is true when all incoming values are that instruction.
1343 /// This pattern occurs most often with LCSSA PHI nodes.
1344 ///
1345 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1346   for (const Value *IncValue : PN.incoming_values())
1347     if (IncValue != &I)
1348       return false;
1349 
1350   return true;
1351 }
1352 
1353 /// Return true if the instruction is foldable in the loop.
1354 static bool isFoldableInLoop(const Instruction &I, const Loop *CurLoop,
1355                          const TargetTransformInfo *TTI) {
1356   if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1357     InstructionCost CostI =
1358         TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
1359     if (CostI != TargetTransformInfo::TCC_Free)
1360       return false;
1361     // For a GEP, we cannot simply use getInstructionCost because currently
1362     // it optimistically assumes that a GEP will fold into addressing mode
1363     // regardless of its users.
1364     const BasicBlock *BB = GEP->getParent();
1365     for (const User *U : GEP->users()) {
1366       const Instruction *UI = cast<Instruction>(U);
1367       if (CurLoop->contains(UI) &&
1368           (BB != UI->getParent() ||
1369            (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1370         return false;
1371     }
1372     return true;
1373   }
1374 
1375   return false;
1376 }
1377 
1378 /// Return true if the only users of this instruction are outside of
1379 /// the loop. If this is true, we can sink the instruction to the exit
1380 /// blocks of the loop.
1381 ///
1382 /// We also return true if the instruction could be folded away in lowering.
1383 /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
1384 static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop,
1385                                       const LoopSafetyInfo *SafetyInfo,
1386                                       TargetTransformInfo *TTI,
1387                                       bool &FoldableInLoop, bool LoopNestMode) {
1388   const auto &BlockColors = SafetyInfo->getBlockColors();
1389   bool IsFoldable = isFoldableInLoop(I, CurLoop, TTI);
1390   for (const User *U : I.users()) {
1391     const Instruction *UI = cast<Instruction>(U);
1392     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1393       const BasicBlock *BB = PN->getParent();
1394       // We cannot sink uses in catchswitches.
1395       if (isa<CatchSwitchInst>(BB->getTerminator()))
1396         return false;
1397 
1398       // We need to sink a callsite to a unique funclet.  Avoid sinking if the
1399       // phi use is too muddled.
1400       if (isa<CallInst>(I))
1401         if (!BlockColors.empty() &&
1402             BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1403           return false;
1404 
1405       if (LoopNestMode) {
1406         while (isa<PHINode>(UI) && UI->hasOneUser() &&
1407                UI->getNumOperands() == 1) {
1408           if (!CurLoop->contains(UI))
1409             break;
1410           UI = cast<Instruction>(UI->user_back());
1411         }
1412       }
1413     }
1414 
1415     if (CurLoop->contains(UI)) {
1416       if (IsFoldable) {
1417         FoldableInLoop = true;
1418         continue;
1419       }
1420       return false;
1421     }
1422   }
1423   return true;
1424 }
1425 
1426 static Instruction *cloneInstructionInExitBlock(
1427     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1428     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) {
1429   Instruction *New;
1430   if (auto *CI = dyn_cast<CallInst>(&I)) {
1431     const auto &BlockColors = SafetyInfo->getBlockColors();
1432 
1433     // Sinking call-sites need to be handled differently from other
1434     // instructions.  The cloned call-site needs a funclet bundle operand
1435     // appropriate for its location in the CFG.
1436     SmallVector<OperandBundleDef, 1> OpBundles;
1437     for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1438          BundleIdx != BundleEnd; ++BundleIdx) {
1439       OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1440       if (Bundle.getTagID() == LLVMContext::OB_funclet)
1441         continue;
1442 
1443       OpBundles.emplace_back(Bundle);
1444     }
1445 
1446     if (!BlockColors.empty()) {
1447       const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1448       assert(CV.size() == 1 && "non-unique color for exit block!");
1449       BasicBlock *BBColor = CV.front();
1450       Instruction *EHPad = BBColor->getFirstNonPHI();
1451       if (EHPad->isEHPad())
1452         OpBundles.emplace_back("funclet", EHPad);
1453     }
1454 
1455     New = CallInst::Create(CI, OpBundles);
1456     New->copyMetadata(*CI);
1457   } else {
1458     New = I.clone();
1459   }
1460 
1461   New->insertInto(&ExitBlock, ExitBlock.getFirstInsertionPt());
1462   if (!I.getName().empty())
1463     New->setName(I.getName() + ".le");
1464 
1465   if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) {
1466     // Create a new MemoryAccess and let MemorySSA set its defining access.
1467     // After running some passes, MemorySSA might be outdated, and the
1468     // instruction `I` may have become a non-memory touching instruction.
1469     MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB(
1470         New, nullptr, New->getParent(), MemorySSA::Beginning,
1471         /*CreationMustSucceed=*/false);
1472     if (NewMemAcc) {
1473       if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1474         MSSAU.insertDef(MemDef, /*RenameUses=*/true);
1475       else {
1476         auto *MemUse = cast<MemoryUse>(NewMemAcc);
1477         MSSAU.insertUse(MemUse, /*RenameUses=*/true);
1478       }
1479     }
1480   }
1481 
1482   // Build LCSSA PHI nodes for any in-loop operands (if legal).  Note that
1483   // this is particularly cheap because we can rip off the PHI node that we're
1484   // replacing for the number and blocks of the predecessors.
1485   // OPT: If this shows up in a profile, we can instead finish sinking all
1486   // invariant instructions, and then walk their operands to re-establish
1487   // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1488   // sinking bottom-up.
1489   for (Use &Op : New->operands())
1490     if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1491       auto *OInst = cast<Instruction>(Op.get());
1492       PHINode *OpPN =
1493           PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1494                           OInst->getName() + ".lcssa");
1495       OpPN->insertBefore(ExitBlock.begin());
1496       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1497         OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1498       Op = OpPN;
1499     }
1500   return New;
1501 }
1502 
1503 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1504                              MemorySSAUpdater &MSSAU) {
1505   MSSAU.removeMemoryAccess(&I);
1506   SafetyInfo.removeInstruction(&I);
1507   I.eraseFromParent();
1508 }
1509 
1510 static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest,
1511                                   ICFLoopSafetyInfo &SafetyInfo,
1512                                   MemorySSAUpdater &MSSAU,
1513                                   ScalarEvolution *SE) {
1514   SafetyInfo.removeInstruction(&I);
1515   SafetyInfo.insertInstructionTo(&I, Dest->getParent());
1516   I.moveBefore(*Dest->getParent(), Dest);
1517   if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1518           MSSAU.getMemorySSA()->getMemoryAccess(&I)))
1519     MSSAU.moveToPlace(OldMemAcc, Dest->getParent(),
1520                       MemorySSA::BeforeTerminator);
1521   if (SE)
1522     SE->forgetBlockAndLoopDispositions(&I);
1523 }
1524 
1525 static Instruction *sinkThroughTriviallyReplaceablePHI(
1526     PHINode *TPN, Instruction *I, LoopInfo *LI,
1527     SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1528     const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1529     MemorySSAUpdater &MSSAU) {
1530   assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1531          "Expect only trivially replaceable PHI");
1532   BasicBlock *ExitBlock = TPN->getParent();
1533   Instruction *New;
1534   auto It = SunkCopies.find(ExitBlock);
1535   if (It != SunkCopies.end())
1536     New = It->second;
1537   else
1538     New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1539         *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1540   return New;
1541 }
1542 
1543 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1544   BasicBlock *BB = PN->getParent();
1545   if (!BB->canSplitPredecessors())
1546     return false;
1547   // It's not impossible to split EHPad blocks, but if BlockColors already exist
1548   // it require updating BlockColors for all offspring blocks accordingly. By
1549   // skipping such corner case, we can make updating BlockColors after splitting
1550   // predecessor fairly simple.
1551   if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1552     return false;
1553   for (BasicBlock *BBPred : predecessors(BB)) {
1554     if (isa<IndirectBrInst>(BBPred->getTerminator()))
1555       return false;
1556   }
1557   return true;
1558 }
1559 
1560 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1561                                         LoopInfo *LI, const Loop *CurLoop,
1562                                         LoopSafetyInfo *SafetyInfo,
1563                                         MemorySSAUpdater *MSSAU) {
1564 #ifndef NDEBUG
1565   SmallVector<BasicBlock *, 32> ExitBlocks;
1566   CurLoop->getUniqueExitBlocks(ExitBlocks);
1567   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1568                                              ExitBlocks.end());
1569 #endif
1570   BasicBlock *ExitBB = PN->getParent();
1571   assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1572 
1573   // Split predecessors of the loop exit to make instructions in the loop are
1574   // exposed to exit blocks through trivially replaceable PHIs while keeping the
1575   // loop in the canonical form where each predecessor of each exit block should
1576   // be contained within the loop. For example, this will convert the loop below
1577   // from
1578   //
1579   // LB1:
1580   //   %v1 =
1581   //   br %LE, %LB2
1582   // LB2:
1583   //   %v2 =
1584   //   br %LE, %LB1
1585   // LE:
1586   //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1587   //
1588   // to
1589   //
1590   // LB1:
1591   //   %v1 =
1592   //   br %LE.split, %LB2
1593   // LB2:
1594   //   %v2 =
1595   //   br %LE.split2, %LB1
1596   // LE.split:
1597   //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
1598   //   br %LE
1599   // LE.split2:
1600   //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
1601   //   br %LE
1602   // LE:
1603   //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1604   //
1605   const auto &BlockColors = SafetyInfo->getBlockColors();
1606   SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1607   while (!PredBBs.empty()) {
1608     BasicBlock *PredBB = *PredBBs.begin();
1609     assert(CurLoop->contains(PredBB) &&
1610            "Expect all predecessors are in the loop");
1611     if (PN->getBasicBlockIndex(PredBB) >= 0) {
1612       BasicBlock *NewPred = SplitBlockPredecessors(
1613           ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1614       // Since we do not allow splitting EH-block with BlockColors in
1615       // canSplitPredecessors(), we can simply assign predecessor's color to
1616       // the new block.
1617       if (!BlockColors.empty())
1618         // Grab a reference to the ColorVector to be inserted before getting the
1619         // reference to the vector we are copying because inserting the new
1620         // element in BlockColors might cause the map to be reallocated.
1621         SafetyInfo->copyColors(NewPred, PredBB);
1622     }
1623     PredBBs.remove(PredBB);
1624   }
1625 }
1626 
1627 /// When an instruction is found to only be used outside of the loop, this
1628 /// function moves it to the exit blocks and patches up SSA form as needed.
1629 /// This method is guaranteed to remove the original instruction from its
1630 /// position, and may either delete it or move it to outside of the loop.
1631 ///
1632 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1633                  const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
1634                  MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) {
1635   bool Changed = false;
1636   LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1637 
1638   // Iterate over users to be ready for actual sinking. Replace users via
1639   // unreachable blocks with undef and make all user PHIs trivially replaceable.
1640   SmallPtrSet<Instruction *, 8> VisitedUsers;
1641   for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1642     auto *User = cast<Instruction>(*UI);
1643     Use &U = UI.getUse();
1644     ++UI;
1645 
1646     if (VisitedUsers.count(User) || CurLoop->contains(User))
1647       continue;
1648 
1649     if (!DT->isReachableFromEntry(User->getParent())) {
1650       U = PoisonValue::get(I.getType());
1651       Changed = true;
1652       continue;
1653     }
1654 
1655     // The user must be a PHI node.
1656     PHINode *PN = cast<PHINode>(User);
1657 
1658     // Surprisingly, instructions can be used outside of loops without any
1659     // exits.  This can only happen in PHI nodes if the incoming block is
1660     // unreachable.
1661     BasicBlock *BB = PN->getIncomingBlock(U);
1662     if (!DT->isReachableFromEntry(BB)) {
1663       U = PoisonValue::get(I.getType());
1664       Changed = true;
1665       continue;
1666     }
1667 
1668     VisitedUsers.insert(PN);
1669     if (isTriviallyReplaceablePHI(*PN, I))
1670       continue;
1671 
1672     if (!canSplitPredecessors(PN, SafetyInfo))
1673       return Changed;
1674 
1675     // Split predecessors of the PHI so that we can make users trivially
1676     // replaceable.
1677     splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU);
1678 
1679     // Should rebuild the iterators, as they may be invalidated by
1680     // splitPredecessorsOfLoopExit().
1681     UI = I.user_begin();
1682     UE = I.user_end();
1683   }
1684 
1685   if (VisitedUsers.empty())
1686     return Changed;
1687 
1688   ORE->emit([&]() {
1689     return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1690            << "sinking " << ore::NV("Inst", &I);
1691   });
1692   if (isa<LoadInst>(I))
1693     ++NumMovedLoads;
1694   else if (isa<CallInst>(I))
1695     ++NumMovedCalls;
1696   ++NumSunk;
1697 
1698 #ifndef NDEBUG
1699   SmallVector<BasicBlock *, 32> ExitBlocks;
1700   CurLoop->getUniqueExitBlocks(ExitBlocks);
1701   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1702                                              ExitBlocks.end());
1703 #endif
1704 
1705   // Clones of this instruction. Don't create more than one per exit block!
1706   SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1707 
1708   // If this instruction is only used outside of the loop, then all users are
1709   // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1710   // the instruction.
1711   // First check if I is worth sinking for all uses. Sink only when it is worth
1712   // across all uses.
1713   SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1714   for (auto *UI : Users) {
1715     auto *User = cast<Instruction>(UI);
1716 
1717     if (CurLoop->contains(User))
1718       continue;
1719 
1720     PHINode *PN = cast<PHINode>(User);
1721     assert(ExitBlockSet.count(PN->getParent()) &&
1722            "The LCSSA PHI is not in an exit block!");
1723 
1724     // The PHI must be trivially replaceable.
1725     Instruction *New = sinkThroughTriviallyReplaceablePHI(
1726         PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1727     // As we sink the instruction out of the BB, drop its debug location.
1728     New->dropLocation();
1729     PN->replaceAllUsesWith(New);
1730     eraseInstruction(*PN, *SafetyInfo, MSSAU);
1731     Changed = true;
1732   }
1733   return Changed;
1734 }
1735 
1736 /// When an instruction is found to only use loop invariant operands that
1737 /// is safe to hoist, this instruction is called to do the dirty work.
1738 ///
1739 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1740                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1741                   MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
1742                   OptimizationRemarkEmitter *ORE) {
1743   LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
1744                     << I << "\n");
1745   ORE->emit([&]() {
1746     return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1747                                                          << ore::NV("Inst", &I);
1748   });
1749 
1750   // Metadata can be dependent on conditions we are hoisting above.
1751   // Conservatively strip all metadata on the instruction unless we were
1752   // guaranteed to execute I if we entered the loop, in which case the metadata
1753   // is valid in the loop preheader.
1754   // Similarly, If I is a call and it is not guaranteed to execute in the loop,
1755   // then moving to the preheader means we should strip attributes on the call
1756   // that can cause UB since we may be hoisting above conditions that allowed
1757   // inferring those attributes. They may not be valid at the preheader.
1758   if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
1759       // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1760       // time in isGuaranteedToExecute if we don't actually have anything to
1761       // drop.  It is a compile time optimization, not required for correctness.
1762       !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1763     I.dropUBImplyingAttrsAndMetadata();
1764 
1765   if (isa<PHINode>(I))
1766     // Move the new node to the end of the phi list in the destination block.
1767     moveInstructionBefore(I, Dest->getFirstNonPHIIt(), *SafetyInfo, MSSAU, SE);
1768   else
1769     // Move the new node to the destination block, before its terminator.
1770     moveInstructionBefore(I, Dest->getTerminator()->getIterator(), *SafetyInfo,
1771                           MSSAU, SE);
1772 
1773   I.updateLocationAfterHoist();
1774 
1775   if (isa<LoadInst>(I))
1776     ++NumMovedLoads;
1777   else if (isa<CallInst>(I))
1778     ++NumMovedCalls;
1779   ++NumHoisted;
1780 }
1781 
1782 /// Only sink or hoist an instruction if it is not a trapping instruction,
1783 /// or if the instruction is known not to trap when moved to the preheader.
1784 /// or if it is a trapping instruction and is guaranteed to execute.
1785 static bool isSafeToExecuteUnconditionally(
1786     Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
1787     const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
1788     OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
1789     AssumptionCache *AC, bool AllowSpeculation) {
1790   if (AllowSpeculation &&
1791       isSafeToSpeculativelyExecute(&Inst, CtxI, AC, DT, TLI))
1792     return true;
1793 
1794   bool GuaranteedToExecute =
1795       SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1796 
1797   if (!GuaranteedToExecute) {
1798     auto *LI = dyn_cast<LoadInst>(&Inst);
1799     if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1800       ORE->emit([&]() {
1801         return OptimizationRemarkMissed(
1802                    DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1803                << "failed to hoist load with loop-invariant address "
1804                   "because load is conditionally executed";
1805       });
1806   }
1807 
1808   return GuaranteedToExecute;
1809 }
1810 
1811 namespace {
1812 class LoopPromoter : public LoadAndStorePromoter {
1813   Value *SomePtr; // Designated pointer to store to.
1814   SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1815   SmallVectorImpl<BasicBlock::iterator> &LoopInsertPts;
1816   SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1817   PredIteratorCache &PredCache;
1818   MemorySSAUpdater &MSSAU;
1819   LoopInfo &LI;
1820   DebugLoc DL;
1821   Align Alignment;
1822   bool UnorderedAtomic;
1823   AAMDNodes AATags;
1824   ICFLoopSafetyInfo &SafetyInfo;
1825   bool CanInsertStoresInExitBlocks;
1826   ArrayRef<const Instruction *> Uses;
1827 
1828   // We're about to add a use of V in a loop exit block.  Insert an LCSSA phi
1829   // (if legal) if doing so would add an out-of-loop use to an instruction
1830   // defined in-loop.
1831   Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1832     if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1833       return V;
1834 
1835     Instruction *I = cast<Instruction>(V);
1836     // We need to create an LCSSA PHI node for the incoming value and
1837     // store that.
1838     PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1839                                   I->getName() + ".lcssa");
1840     PN->insertBefore(BB->begin());
1841     for (BasicBlock *Pred : PredCache.get(BB))
1842       PN->addIncoming(I, Pred);
1843     return PN;
1844   }
1845 
1846 public:
1847   LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1848                SmallVectorImpl<BasicBlock *> &LEB,
1849                SmallVectorImpl<BasicBlock::iterator> &LIP,
1850                SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1851                MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl,
1852                Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
1853                ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks)
1854       : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB),
1855         LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU),
1856         LI(li), DL(std::move(dl)), Alignment(Alignment),
1857         UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1858         SafetyInfo(SafetyInfo),
1859         CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {}
1860 
1861   void insertStoresInLoopExitBlocks() {
1862     // Insert stores after in the loop exit blocks.  Each exit block gets a
1863     // store of the live-out values that feed them.  Since we've already told
1864     // the SSA updater about the defs in the loop and the preheader
1865     // definition, it is all set and we can start using it.
1866     DIAssignID *NewID = nullptr;
1867     for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1868       BasicBlock *ExitBlock = LoopExitBlocks[i];
1869       Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1870       LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1871       Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1872       BasicBlock::iterator InsertPos = LoopInsertPts[i];
1873       StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1874       if (UnorderedAtomic)
1875         NewSI->setOrdering(AtomicOrdering::Unordered);
1876       NewSI->setAlignment(Alignment);
1877       NewSI->setDebugLoc(DL);
1878       // Attach DIAssignID metadata to the new store, generating it on the
1879       // first loop iteration.
1880       if (i == 0) {
1881         // NewSI will have its DIAssignID set here if there are any stores in
1882         // Uses with a DIAssignID attachment. This merged ID will then be
1883         // attached to the other inserted stores (in the branch below).
1884         NewSI->mergeDIAssignID(Uses);
1885         NewID = cast_or_null<DIAssignID>(
1886             NewSI->getMetadata(LLVMContext::MD_DIAssignID));
1887       } else {
1888         // Attach the DIAssignID (or nullptr) merged from Uses in the branch
1889         // above.
1890         NewSI->setMetadata(LLVMContext::MD_DIAssignID, NewID);
1891       }
1892 
1893       if (AATags)
1894         NewSI->setAAMetadata(AATags);
1895 
1896       MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1897       MemoryAccess *NewMemAcc;
1898       if (!MSSAInsertPoint) {
1899         NewMemAcc = MSSAU.createMemoryAccessInBB(
1900             NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1901       } else {
1902         NewMemAcc =
1903             MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1904       }
1905       MSSAInsertPts[i] = NewMemAcc;
1906       MSSAU.insertDef(cast<MemoryDef>(NewMemAcc), true);
1907       // FIXME: true for safety, false may still be correct.
1908     }
1909   }
1910 
1911   void doExtraRewritesBeforeFinalDeletion() override {
1912     if (CanInsertStoresInExitBlocks)
1913       insertStoresInLoopExitBlocks();
1914   }
1915 
1916   void instructionDeleted(Instruction *I) const override {
1917     SafetyInfo.removeInstruction(I);
1918     MSSAU.removeMemoryAccess(I);
1919   }
1920 
1921   bool shouldDelete(Instruction *I) const override {
1922     if (isa<StoreInst>(I))
1923       return CanInsertStoresInExitBlocks;
1924     return true;
1925   }
1926 };
1927 
1928 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1929                                  DominatorTree *DT) {
1930   // We can perform the captured-before check against any instruction in the
1931   // loop header, as the loop header is reachable from any instruction inside
1932   // the loop.
1933   // TODO: ReturnCaptures=true shouldn't be necessary here.
1934   return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1935                                      /* StoreCaptures */ true,
1936                                      L->getHeader()->getTerminator(), DT);
1937 }
1938 
1939 /// Return true if we can prove that a caller cannot inspect the object if an
1940 /// unwind occurs inside the loop.
1941 bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L,
1942                                 DominatorTree *DT) {
1943   bool RequiresNoCaptureBeforeUnwind;
1944   if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind))
1945     return false;
1946 
1947   return !RequiresNoCaptureBeforeUnwind ||
1948          isNotCapturedBeforeOrInLoop(Object, L, DT);
1949 }
1950 
1951 bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT,
1952                          TargetTransformInfo *TTI) {
1953   // The object must be function-local to start with, and then not captured
1954   // before/in the loop.
1955   return (isIdentifiedFunctionLocal(Object) &&
1956           isNotCapturedBeforeOrInLoop(Object, L, DT)) ||
1957          (TTI->isSingleThreaded() || SingleThread);
1958 }
1959 
1960 } // namespace
1961 
1962 /// Try to promote memory values to scalars by sinking stores out of the
1963 /// loop and moving loads to before the loop.  We do this by looping over
1964 /// the stores in the loop, looking for stores to Must pointers which are
1965 /// loop invariant.
1966 ///
1967 bool llvm::promoteLoopAccessesToScalars(
1968     const SmallSetVector<Value *, 8> &PointerMustAliases,
1969     SmallVectorImpl<BasicBlock *> &ExitBlocks,
1970     SmallVectorImpl<BasicBlock::iterator> &InsertPts,
1971     SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1972     LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1973     const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop,
1974     MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo,
1975     OptimizationRemarkEmitter *ORE, bool AllowSpeculation,
1976     bool HasReadsOutsideSet) {
1977   // Verify inputs.
1978   assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1979          SafetyInfo != nullptr &&
1980          "Unexpected Input to promoteLoopAccessesToScalars");
1981 
1982   LLVM_DEBUG({
1983     dbgs() << "Trying to promote set of must-aliased pointers:\n";
1984     for (Value *Ptr : PointerMustAliases)
1985       dbgs() << "  " << *Ptr << "\n";
1986   });
1987   ++NumPromotionCandidates;
1988 
1989   Value *SomePtr = *PointerMustAliases.begin();
1990   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1991 
1992   // It is not safe to promote a load/store from the loop if the load/store is
1993   // conditional.  For example, turning:
1994   //
1995   //    for () { if (c) *P += 1; }
1996   //
1997   // into:
1998   //
1999   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
2000   //
2001   // is not safe, because *P may only be valid to access if 'c' is true.
2002   //
2003   // The safety property divides into two parts:
2004   // p1) The memory may not be dereferenceable on entry to the loop.  In this
2005   //    case, we can't insert the required load in the preheader.
2006   // p2) The memory model does not allow us to insert a store along any dynamic
2007   //    path which did not originally have one.
2008   //
2009   // If at least one store is guaranteed to execute, both properties are
2010   // satisfied, and promotion is legal.
2011   //
2012   // This, however, is not a necessary condition. Even if no store/load is
2013   // guaranteed to execute, we can still establish these properties.
2014   // We can establish (p1) by proving that hoisting the load into the preheader
2015   // is safe (i.e. proving dereferenceability on all paths through the loop). We
2016   // can use any access within the alias set to prove dereferenceability,
2017   // since they're all must alias.
2018   //
2019   // There are two ways establish (p2):
2020   // a) Prove the location is thread-local. In this case the memory model
2021   // requirement does not apply, and stores are safe to insert.
2022   // b) Prove a store dominates every exit block. In this case, if an exit
2023   // blocks is reached, the original dynamic path would have taken us through
2024   // the store, so inserting a store into the exit block is safe. Note that this
2025   // is different from the store being guaranteed to execute. For instance,
2026   // if an exception is thrown on the first iteration of the loop, the original
2027   // store is never executed, but the exit blocks are not executed either.
2028 
2029   bool DereferenceableInPH = false;
2030   bool StoreIsGuanteedToExecute = false;
2031   bool FoundLoadToPromote = false;
2032   // Goes from Unknown to either Safe or Unsafe, but can't switch between them.
2033   enum {
2034     StoreSafe,
2035     StoreUnsafe,
2036     StoreSafetyUnknown,
2037   } StoreSafety = StoreSafetyUnknown;
2038 
2039   SmallVector<Instruction *, 64> LoopUses;
2040 
2041   // We start with an alignment of one and try to find instructions that allow
2042   // us to prove better alignment.
2043   Align Alignment;
2044   // Keep track of which types of access we see
2045   bool SawUnorderedAtomic = false;
2046   bool SawNotAtomic = false;
2047   AAMDNodes AATags;
2048 
2049   const DataLayout &MDL = Preheader->getDataLayout();
2050 
2051   // If there are reads outside the promoted set, then promoting stores is
2052   // definitely not safe.
2053   if (HasReadsOutsideSet)
2054     StoreSafety = StoreUnsafe;
2055 
2056   if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) {
2057     // If a loop can throw, we have to insert a store along each unwind edge.
2058     // That said, we can't actually make the unwind edge explicit. Therefore,
2059     // we have to prove that the store is dead along the unwind edge.  We do
2060     // this by proving that the caller can't have a reference to the object
2061     // after return and thus can't possibly load from the object.
2062     Value *Object = getUnderlyingObject(SomePtr);
2063     if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT))
2064       StoreSafety = StoreUnsafe;
2065   }
2066 
2067   // Check that all accesses to pointers in the alias set use the same type.
2068   // We cannot (yet) promote a memory location that is loaded and stored in
2069   // different sizes.  While we are at it, collect alignment and AA info.
2070   Type *AccessTy = nullptr;
2071   for (Value *ASIV : PointerMustAliases) {
2072     for (Use &U : ASIV->uses()) {
2073       // Ignore instructions that are outside the loop.
2074       Instruction *UI = dyn_cast<Instruction>(U.getUser());
2075       if (!UI || !CurLoop->contains(UI))
2076         continue;
2077 
2078       // If there is an non-load/store instruction in the loop, we can't promote
2079       // it.
2080       if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2081         if (!Load->isUnordered())
2082           return false;
2083 
2084         SawUnorderedAtomic |= Load->isAtomic();
2085         SawNotAtomic |= !Load->isAtomic();
2086         FoundLoadToPromote = true;
2087 
2088         Align InstAlignment = Load->getAlign();
2089 
2090         // Note that proving a load safe to speculate requires proving
2091         // sufficient alignment at the target location.  Proving it guaranteed
2092         // to execute does as well.  Thus we can increase our guaranteed
2093         // alignment as well.
2094         if (!DereferenceableInPH || (InstAlignment > Alignment))
2095           if (isSafeToExecuteUnconditionally(
2096                   *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
2097                   Preheader->getTerminator(), AC, AllowSpeculation)) {
2098             DereferenceableInPH = true;
2099             Alignment = std::max(Alignment, InstAlignment);
2100           }
2101       } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2102         // Stores *of* the pointer are not interesting, only stores *to* the
2103         // pointer.
2104         if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
2105           continue;
2106         if (!Store->isUnordered())
2107           return false;
2108 
2109         SawUnorderedAtomic |= Store->isAtomic();
2110         SawNotAtomic |= !Store->isAtomic();
2111 
2112         // If the store is guaranteed to execute, both properties are satisfied.
2113         // We may want to check if a store is guaranteed to execute even if we
2114         // already know that promotion is safe, since it may have higher
2115         // alignment than any other guaranteed stores, in which case we can
2116         // raise the alignment on the promoted store.
2117         Align InstAlignment = Store->getAlign();
2118         bool GuaranteedToExecute =
2119             SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop);
2120         StoreIsGuanteedToExecute |= GuaranteedToExecute;
2121         if (GuaranteedToExecute) {
2122           DereferenceableInPH = true;
2123           if (StoreSafety == StoreSafetyUnknown)
2124             StoreSafety = StoreSafe;
2125           Alignment = std::max(Alignment, InstAlignment);
2126         }
2127 
2128         // If a store dominates all exit blocks, it is safe to sink.
2129         // As explained above, if an exit block was executed, a dominating
2130         // store must have been executed at least once, so we are not
2131         // introducing stores on paths that did not have them.
2132         // Note that this only looks at explicit exit blocks. If we ever
2133         // start sinking stores into unwind edges (see above), this will break.
2134         if (StoreSafety == StoreSafetyUnknown &&
2135             llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2136               return DT->dominates(Store->getParent(), Exit);
2137             }))
2138           StoreSafety = StoreSafe;
2139 
2140         // If the store is not guaranteed to execute, we may still get
2141         // deref info through it.
2142         if (!DereferenceableInPH) {
2143           DereferenceableInPH = isDereferenceableAndAlignedPointer(
2144               Store->getPointerOperand(), Store->getValueOperand()->getType(),
2145               Store->getAlign(), MDL, Preheader->getTerminator(), AC, DT, TLI);
2146         }
2147       } else
2148         continue; // Not a load or store.
2149 
2150       if (!AccessTy)
2151         AccessTy = getLoadStoreType(UI);
2152       else if (AccessTy != getLoadStoreType(UI))
2153         return false;
2154 
2155       // Merge the AA tags.
2156       if (LoopUses.empty()) {
2157         // On the first load/store, just take its AA tags.
2158         AATags = UI->getAAMetadata();
2159       } else if (AATags) {
2160         AATags = AATags.merge(UI->getAAMetadata());
2161       }
2162 
2163       LoopUses.push_back(UI);
2164     }
2165   }
2166 
2167   // If we found both an unordered atomic instruction and a non-atomic memory
2168   // access, bail.  We can't blindly promote non-atomic to atomic since we
2169   // might not be able to lower the result.  We can't downgrade since that
2170   // would violate memory model.  Also, align 0 is an error for atomics.
2171   if (SawUnorderedAtomic && SawNotAtomic)
2172     return false;
2173 
2174   // If we're inserting an atomic load in the preheader, we must be able to
2175   // lower it.  We're only guaranteed to be able to lower naturally aligned
2176   // atomics.
2177   if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy))
2178     return false;
2179 
2180   // If we couldn't prove we can hoist the load, bail.
2181   if (!DereferenceableInPH) {
2182     LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n");
2183     return false;
2184   }
2185 
2186   // We know we can hoist the load, but don't have a guaranteed store.
2187   // Check whether the location is writable and thread-local. If it is, then we
2188   // can insert stores along paths which originally didn't have them without
2189   // violating the memory model.
2190   if (StoreSafety == StoreSafetyUnknown) {
2191     Value *Object = getUnderlyingObject(SomePtr);
2192     bool ExplicitlyDereferenceableOnly;
2193     if (isWritableObject(Object, ExplicitlyDereferenceableOnly) &&
2194         (!ExplicitlyDereferenceableOnly ||
2195          isDereferenceablePointer(SomePtr, AccessTy, MDL)) &&
2196         isThreadLocalObject(Object, CurLoop, DT, TTI))
2197       StoreSafety = StoreSafe;
2198   }
2199 
2200   // If we've still failed to prove we can sink the store, hoist the load
2201   // only, if possible.
2202   if (StoreSafety != StoreSafe && !FoundLoadToPromote)
2203     // If we cannot hoist the load either, give up.
2204     return false;
2205 
2206   // Lets do the promotion!
2207   if (StoreSafety == StoreSafe) {
2208     LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr
2209                       << '\n');
2210     ++NumLoadStorePromoted;
2211   } else {
2212     LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr
2213                       << '\n');
2214     ++NumLoadPromoted;
2215   }
2216 
2217   ORE->emit([&]() {
2218     return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2219                               LoopUses[0])
2220            << "Moving accesses to memory location out of the loop";
2221   });
2222 
2223   // Look at all the loop uses, and try to merge their locations.
2224   std::vector<DILocation *> LoopUsesLocs;
2225   for (auto *U : LoopUses)
2226     LoopUsesLocs.push_back(U->getDebugLoc().get());
2227   auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2228 
2229   // We use the SSAUpdater interface to insert phi nodes as required.
2230   SmallVector<PHINode *, 16> NewPHIs;
2231   SSAUpdater SSA(&NewPHIs);
2232   LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts,
2233                         MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment,
2234                         SawUnorderedAtomic, AATags, *SafetyInfo,
2235                         StoreSafety == StoreSafe);
2236 
2237   // Set up the preheader to have a definition of the value.  It is the live-out
2238   // value from the preheader that uses in the loop will use.
2239   LoadInst *PreheaderLoad = nullptr;
2240   if (FoundLoadToPromote || !StoreIsGuanteedToExecute) {
2241     PreheaderLoad =
2242         new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted",
2243                      Preheader->getTerminator()->getIterator());
2244     if (SawUnorderedAtomic)
2245       PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2246     PreheaderLoad->setAlignment(Alignment);
2247     PreheaderLoad->setDebugLoc(DebugLoc());
2248     if (AATags)
2249       PreheaderLoad->setAAMetadata(AATags);
2250 
2251     MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB(
2252         PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2253     MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2254     MSSAU.insertUse(NewMemUse, /*RenameUses=*/true);
2255     SSA.AddAvailableValue(Preheader, PreheaderLoad);
2256   } else {
2257     SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy));
2258   }
2259 
2260   if (VerifyMemorySSA)
2261     MSSAU.getMemorySSA()->verifyMemorySSA();
2262   // Rewrite all the loads in the loop and remember all the definitions from
2263   // stores in the loop.
2264   Promoter.run(LoopUses);
2265 
2266   if (VerifyMemorySSA)
2267     MSSAU.getMemorySSA()->verifyMemorySSA();
2268   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2269   if (PreheaderLoad && PreheaderLoad->use_empty())
2270     eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);
2271 
2272   return true;
2273 }
2274 
2275 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2276                                 function_ref<void(Instruction *)> Fn) {
2277   for (const BasicBlock *BB : L->blocks())
2278     if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2279       for (const auto &Access : *Accesses)
2280         if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2281           Fn(MUD->getMemoryInst());
2282 }
2283 
2284 // The bool indicates whether there might be reads outside the set, in which
2285 // case only loads may be promoted.
2286 static SmallVector<PointersAndHasReadsOutsideSet, 0>
2287 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2288   BatchAAResults BatchAA(*AA);
2289   AliasSetTracker AST(BatchAA);
2290 
2291   auto IsPotentiallyPromotable = [L](const Instruction *I) {
2292     if (const auto *SI = dyn_cast<StoreInst>(I))
2293       return L->isLoopInvariant(SI->getPointerOperand());
2294     if (const auto *LI = dyn_cast<LoadInst>(I))
2295       return L->isLoopInvariant(LI->getPointerOperand());
2296     return false;
2297   };
2298 
2299   // Populate AST with potentially promotable accesses.
2300   SmallPtrSet<Value *, 16> AttemptingPromotion;
2301   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2302     if (IsPotentiallyPromotable(I)) {
2303       AttemptingPromotion.insert(I);
2304       AST.add(I);
2305     }
2306   });
2307 
2308   // We're only interested in must-alias sets that contain a mod.
2309   SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets;
2310   for (AliasSet &AS : AST)
2311     if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2312       Sets.push_back({&AS, false});
2313 
2314   if (Sets.empty())
2315     return {}; // Nothing to promote...
2316 
2317   // Discard any sets for which there is an aliasing non-promotable access.
2318   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2319     if (AttemptingPromotion.contains(I))
2320       return;
2321 
2322     llvm::erase_if(Sets, [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) {
2323       ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA);
2324       // Cannot promote if there are writes outside the set.
2325       if (isModSet(MR))
2326         return true;
2327       if (isRefSet(MR)) {
2328         // Remember reads outside the set.
2329         Pair.setInt(true);
2330         // If this is a mod-only set and there are reads outside the set,
2331         // we will not be able to promote, so bail out early.
2332         return !Pair.getPointer()->isRef();
2333       }
2334       return false;
2335     });
2336   });
2337 
2338   SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result;
2339   for (auto [Set, HasReadsOutsideSet] : Sets) {
2340     SmallSetVector<Value *, 8> PointerMustAliases;
2341     for (const auto &MemLoc : *Set)
2342       PointerMustAliases.insert(const_cast<Value *>(MemLoc.Ptr));
2343     Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet);
2344   }
2345 
2346   return Result;
2347 }
2348 
2349 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU,
2350                                      Loop *CurLoop, Instruction &I,
2351                                      SinkAndHoistLICMFlags &Flags,
2352                                      bool InvariantGroup) {
2353   // For hoisting, use the walker to determine safety
2354   if (!Flags.getIsSink()) {
2355     // If hoisting an invariant group, we only need to check that there
2356     // is no store to the loaded pointer between the start of the loop,
2357     // and the load (since all values must be the same).
2358 
2359     // This can be checked in two conditions:
2360     // 1) if the memoryaccess is outside the loop
2361     // 2) the earliest access is at the loop header,
2362     // if the memory loaded is the phi node
2363 
2364     BatchAAResults BAA(MSSA->getAA());
2365     MemoryAccess *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, MU);
2366     return !MSSA->isLiveOnEntryDef(Source) &&
2367            CurLoop->contains(Source->getBlock()) &&
2368            !(InvariantGroup && Source->getBlock() == CurLoop->getHeader() && isa<MemoryPhi>(Source));
2369   }
2370 
2371   // For sinking, we'd need to check all Defs below this use. The getClobbering
2372   // call will look on the backedge of the loop, but will check aliasing with
2373   // the instructions on the previous iteration.
2374   // For example:
2375   // for (i ... )
2376   //   load a[i] ( Use (LoE)
2377   //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2378   //   i++;
2379   // The load sees no clobbering inside the loop, as the backedge alias check
2380   // does phi translation, and will check aliasing against store a[i-1].
2381   // However sinking the load outside the loop, below the store is incorrect.
2382 
2383   // For now, only sink if there are no Defs in the loop, and the existing ones
2384   // precede the use and are in the same block.
2385   // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2386   // needs PostDominatorTreeAnalysis.
2387   // FIXME: More precise: no Defs that alias this Use.
2388   if (Flags.tooManyMemoryAccesses())
2389     return true;
2390   for (auto *BB : CurLoop->getBlocks())
2391     if (pointerInvalidatedByBlock(*BB, *MSSA, *MU))
2392       return true;
2393   // When sinking, the source block may not be part of the loop so check it.
2394   if (!CurLoop->contains(&I))
2395     return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU);
2396 
2397   return false;
2398 }
2399 
2400 bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) {
2401   if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2402     for (const auto &MA : *Accesses)
2403       if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2404         if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2405           return true;
2406   return false;
2407 }
2408 
2409 /// Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A <
2410 /// min(INV_1, INV_2)), if INV_1 and INV_2 are both loop invariants and their
2411 /// minimun can be computed outside of loop, and X is not a loop-invariant.
2412 static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo,
2413                         MemorySSAUpdater &MSSAU) {
2414   bool Inverse = false;
2415   using namespace PatternMatch;
2416   Value *Cond1, *Cond2;
2417   if (match(&I, m_LogicalOr(m_Value(Cond1), m_Value(Cond2)))) {
2418     Inverse = true;
2419   } else if (match(&I, m_LogicalAnd(m_Value(Cond1), m_Value(Cond2)))) {
2420     // Do nothing
2421   } else
2422     return false;
2423 
2424   auto MatchICmpAgainstInvariant = [&](Value *C, ICmpInst::Predicate &P,
2425                                        Value *&LHS, Value *&RHS) {
2426     if (!match(C, m_OneUse(m_ICmp(P, m_Value(LHS), m_Value(RHS)))))
2427       return false;
2428     if (!LHS->getType()->isIntegerTy())
2429       return false;
2430     if (!ICmpInst::isRelational(P))
2431       return false;
2432     if (L.isLoopInvariant(LHS)) {
2433       std::swap(LHS, RHS);
2434       P = ICmpInst::getSwappedPredicate(P);
2435     }
2436     if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS))
2437       return false;
2438     if (Inverse)
2439       P = ICmpInst::getInversePredicate(P);
2440     return true;
2441   };
2442   ICmpInst::Predicate P1, P2;
2443   Value *LHS1, *LHS2, *RHS1, *RHS2;
2444   if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) ||
2445       !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2))
2446     return false;
2447   if (P1 != P2 || LHS1 != LHS2)
2448     return false;
2449 
2450   // Everything is fine, we can do the transform.
2451   bool UseMin = ICmpInst::isLT(P1) || ICmpInst::isLE(P1);
2452   assert(
2453       (UseMin || ICmpInst::isGT(P1) || ICmpInst::isGE(P1)) &&
2454       "Relational predicate is either less (or equal) or greater (or equal)!");
2455   Intrinsic::ID id = ICmpInst::isSigned(P1)
2456                          ? (UseMin ? Intrinsic::smin : Intrinsic::smax)
2457                          : (UseMin ? Intrinsic::umin : Intrinsic::umax);
2458   auto *Preheader = L.getLoopPreheader();
2459   assert(Preheader && "Loop is not in simplify form?");
2460   IRBuilder<> Builder(Preheader->getTerminator());
2461   // We are about to create a new guaranteed use for RHS2 which might not exist
2462   // before (if it was a non-taken input of logical and/or instruction). If it
2463   // was poison, we need to freeze it. Note that no new use for LHS and RHS1 are
2464   // introduced, so they don't need this.
2465   if (isa<SelectInst>(I))
2466     RHS2 = Builder.CreateFreeze(RHS2, RHS2->getName() + ".fr");
2467   Value *NewRHS = Builder.CreateBinaryIntrinsic(
2468       id, RHS1, RHS2, nullptr, StringRef("invariant.") +
2469                                    (ICmpInst::isSigned(P1) ? "s" : "u") +
2470                                    (UseMin ? "min" : "max"));
2471   Builder.SetInsertPoint(&I);
2472   ICmpInst::Predicate P = P1;
2473   if (Inverse)
2474     P = ICmpInst::getInversePredicate(P);
2475   Value *NewCond = Builder.CreateICmp(P, LHS1, NewRHS);
2476   NewCond->takeName(&I);
2477   I.replaceAllUsesWith(NewCond);
2478   eraseInstruction(I, SafetyInfo, MSSAU);
2479   eraseInstruction(*cast<Instruction>(Cond1), SafetyInfo, MSSAU);
2480   eraseInstruction(*cast<Instruction>(Cond2), SafetyInfo, MSSAU);
2481   return true;
2482 }
2483 
2484 /// Reassociate gep (gep ptr, idx1), idx2 to gep (gep ptr, idx2), idx1 if
2485 /// this allows hoisting the inner GEP.
2486 static bool hoistGEP(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo,
2487                      MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2488                      DominatorTree *DT) {
2489   auto *GEP = dyn_cast<GetElementPtrInst>(&I);
2490   if (!GEP)
2491     return false;
2492 
2493   auto *Src = dyn_cast<GetElementPtrInst>(GEP->getPointerOperand());
2494   if (!Src || !Src->hasOneUse() || !L.contains(Src))
2495     return false;
2496 
2497   Value *SrcPtr = Src->getPointerOperand();
2498   auto LoopInvariant = [&](Value *V) { return L.isLoopInvariant(V); };
2499   if (!L.isLoopInvariant(SrcPtr) || !all_of(GEP->indices(), LoopInvariant))
2500     return false;
2501 
2502   // This can only happen if !AllowSpeculation, otherwise this would already be
2503   // handled.
2504   // FIXME: Should we respect AllowSpeculation in these reassociation folds?
2505   // The flag exists to prevent metadata dropping, which is not relevant here.
2506   if (all_of(Src->indices(), LoopInvariant))
2507     return false;
2508 
2509   // The swapped GEPs are inbounds if both original GEPs are inbounds
2510   // and the sign of the offsets is the same. For simplicity, only
2511   // handle both offsets being non-negative.
2512   const DataLayout &DL = GEP->getDataLayout();
2513   auto NonNegative = [&](Value *V) {
2514     return isKnownNonNegative(V, SimplifyQuery(DL, DT, AC, GEP));
2515   };
2516   bool IsInBounds = Src->isInBounds() && GEP->isInBounds() &&
2517                     all_of(Src->indices(), NonNegative) &&
2518                     all_of(GEP->indices(), NonNegative);
2519 
2520   BasicBlock *Preheader = L.getLoopPreheader();
2521   IRBuilder<> Builder(Preheader->getTerminator());
2522   Value *NewSrc = Builder.CreateGEP(GEP->getSourceElementType(), SrcPtr,
2523                                     SmallVector<Value *>(GEP->indices()),
2524                                     "invariant.gep", IsInBounds);
2525   Builder.SetInsertPoint(GEP);
2526   Value *NewGEP = Builder.CreateGEP(Src->getSourceElementType(), NewSrc,
2527                                     SmallVector<Value *>(Src->indices()), "gep",
2528                                     IsInBounds);
2529   GEP->replaceAllUsesWith(NewGEP);
2530   eraseInstruction(*GEP, SafetyInfo, MSSAU);
2531   eraseInstruction(*Src, SafetyInfo, MSSAU);
2532   return true;
2533 }
2534 
2535 /// Try to turn things like "LV + C1 < C2" into "LV < C2 - C1". Here
2536 /// C1 and C2 are loop invariants and LV is a loop-variant.
2537 static bool hoistAdd(ICmpInst::Predicate Pred, Value *VariantLHS,
2538                      Value *InvariantRHS, ICmpInst &ICmp, Loop &L,
2539                      ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU,
2540                      AssumptionCache *AC, DominatorTree *DT) {
2541   assert(ICmpInst::isSigned(Pred) && "Not supported yet!");
2542   assert(!L.isLoopInvariant(VariantLHS) && "Precondition.");
2543   assert(L.isLoopInvariant(InvariantRHS) && "Precondition.");
2544 
2545   // Try to represent VariantLHS as sum of invariant and variant operands.
2546   using namespace PatternMatch;
2547   Value *VariantOp, *InvariantOp;
2548   if (!match(VariantLHS, m_NSWAdd(m_Value(VariantOp), m_Value(InvariantOp))))
2549     return false;
2550 
2551   // LHS itself is a loop-variant, try to represent it in the form:
2552   // "VariantOp + InvariantOp". If it is possible, then we can reassociate.
2553   if (L.isLoopInvariant(VariantOp))
2554     std::swap(VariantOp, InvariantOp);
2555   if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp))
2556     return false;
2557 
2558   // In order to turn "LV + C1 < C2" into "LV < C2 - C1", we need to be able to
2559   // freely move values from left side of inequality to right side (just as in
2560   // normal linear arithmetics). Overflows make things much more complicated, so
2561   // we want to avoid this.
2562   auto &DL = L.getHeader()->getDataLayout();
2563   bool ProvedNoOverflowAfterReassociate =
2564       computeOverflowForSignedSub(InvariantRHS, InvariantOp,
2565                                   SimplifyQuery(DL, DT, AC, &ICmp)) ==
2566       llvm::OverflowResult::NeverOverflows;
2567   if (!ProvedNoOverflowAfterReassociate)
2568     return false;
2569   auto *Preheader = L.getLoopPreheader();
2570   assert(Preheader && "Loop is not in simplify form?");
2571   IRBuilder<> Builder(Preheader->getTerminator());
2572   Value *NewCmpOp = Builder.CreateSub(InvariantRHS, InvariantOp, "invariant.op",
2573                                       /*HasNUW*/ false, /*HasNSW*/ true);
2574   ICmp.setPredicate(Pred);
2575   ICmp.setOperand(0, VariantOp);
2576   ICmp.setOperand(1, NewCmpOp);
2577   eraseInstruction(cast<Instruction>(*VariantLHS), SafetyInfo, MSSAU);
2578   return true;
2579 }
2580 
2581 /// Try to reassociate and hoist the following two patterns:
2582 /// LV - C1 < C2 --> LV < C1 + C2,
2583 /// C1 - LV < C2 --> LV > C1 - C2.
2584 static bool hoistSub(ICmpInst::Predicate Pred, Value *VariantLHS,
2585                      Value *InvariantRHS, ICmpInst &ICmp, Loop &L,
2586                      ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU,
2587                      AssumptionCache *AC, DominatorTree *DT) {
2588   assert(ICmpInst::isSigned(Pred) && "Not supported yet!");
2589   assert(!L.isLoopInvariant(VariantLHS) && "Precondition.");
2590   assert(L.isLoopInvariant(InvariantRHS) && "Precondition.");
2591 
2592   // Try to represent VariantLHS as sum of invariant and variant operands.
2593   using namespace PatternMatch;
2594   Value *VariantOp, *InvariantOp;
2595   if (!match(VariantLHS, m_NSWSub(m_Value(VariantOp), m_Value(InvariantOp))))
2596     return false;
2597 
2598   bool VariantSubtracted = false;
2599   // LHS itself is a loop-variant, try to represent it in the form:
2600   // "VariantOp + InvariantOp". If it is possible, then we can reassociate. If
2601   // the variant operand goes with minus, we use a slightly different scheme.
2602   if (L.isLoopInvariant(VariantOp)) {
2603     std::swap(VariantOp, InvariantOp);
2604     VariantSubtracted = true;
2605     Pred = ICmpInst::getSwappedPredicate(Pred);
2606   }
2607   if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp))
2608     return false;
2609 
2610   // In order to turn "LV - C1 < C2" into "LV < C2 + C1", we need to be able to
2611   // freely move values from left side of inequality to right side (just as in
2612   // normal linear arithmetics). Overflows make things much more complicated, so
2613   // we want to avoid this. Likewise, for "C1 - LV < C2" we need to prove that
2614   // "C1 - C2" does not overflow.
2615   auto &DL = L.getHeader()->getDataLayout();
2616   SimplifyQuery SQ(DL, DT, AC, &ICmp);
2617   if (VariantSubtracted) {
2618     // C1 - LV < C2 --> LV > C1 - C2
2619     if (computeOverflowForSignedSub(InvariantOp, InvariantRHS, SQ) !=
2620         llvm::OverflowResult::NeverOverflows)
2621       return false;
2622   } else {
2623     // LV - C1 < C2 --> LV < C1 + C2
2624     if (computeOverflowForSignedAdd(InvariantOp, InvariantRHS, SQ) !=
2625         llvm::OverflowResult::NeverOverflows)
2626       return false;
2627   }
2628   auto *Preheader = L.getLoopPreheader();
2629   assert(Preheader && "Loop is not in simplify form?");
2630   IRBuilder<> Builder(Preheader->getTerminator());
2631   Value *NewCmpOp =
2632       VariantSubtracted
2633           ? Builder.CreateSub(InvariantOp, InvariantRHS, "invariant.op",
2634                               /*HasNUW*/ false, /*HasNSW*/ true)
2635           : Builder.CreateAdd(InvariantOp, InvariantRHS, "invariant.op",
2636                               /*HasNUW*/ false, /*HasNSW*/ true);
2637   ICmp.setPredicate(Pred);
2638   ICmp.setOperand(0, VariantOp);
2639   ICmp.setOperand(1, NewCmpOp);
2640   eraseInstruction(cast<Instruction>(*VariantLHS), SafetyInfo, MSSAU);
2641   return true;
2642 }
2643 
2644 /// Reassociate and hoist add/sub expressions.
2645 static bool hoistAddSub(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo,
2646                         MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2647                         DominatorTree *DT) {
2648   using namespace PatternMatch;
2649   ICmpInst::Predicate Pred;
2650   Value *LHS, *RHS;
2651   if (!match(&I, m_ICmp(Pred, m_Value(LHS), m_Value(RHS))))
2652     return false;
2653 
2654   // TODO: Support unsigned predicates?
2655   if (!ICmpInst::isSigned(Pred))
2656     return false;
2657 
2658   // Put variant operand to LHS position.
2659   if (L.isLoopInvariant(LHS)) {
2660     std::swap(LHS, RHS);
2661     Pred = ICmpInst::getSwappedPredicate(Pred);
2662   }
2663   // We want to delete the initial operation after reassociation, so only do it
2664   // if it has no other uses.
2665   if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS) || !LHS->hasOneUse())
2666     return false;
2667 
2668   // TODO: We could go with smarter context, taking common dominator of all I's
2669   // users instead of I itself.
2670   if (hoistAdd(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT))
2671     return true;
2672 
2673   if (hoistSub(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT))
2674     return true;
2675 
2676   return false;
2677 }
2678 
2679 static bool isReassociableOp(Instruction *I, unsigned IntOpcode,
2680                              unsigned FPOpcode) {
2681   if (I->getOpcode() == IntOpcode)
2682     return true;
2683   if (I->getOpcode() == FPOpcode && I->hasAllowReassoc() &&
2684       I->hasNoSignedZeros())
2685     return true;
2686   return false;
2687 }
2688 
2689 /// Try to reassociate expressions like ((A1 * B1) + (A2 * B2) + ...) * C where
2690 /// A1, A2, ... and C are loop invariants into expressions like
2691 /// ((A1 * C * B1) + (A2 * C * B2) + ...) and hoist the (A1 * C), (A2 * C), ...
2692 /// invariant expressions. This functions returns true only if any hoisting has
2693 /// actually occured.
2694 static bool hoistMulAddAssociation(Instruction &I, Loop &L,
2695                                    ICFLoopSafetyInfo &SafetyInfo,
2696                                    MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2697                                    DominatorTree *DT) {
2698   if (!isReassociableOp(&I, Instruction::Mul, Instruction::FMul))
2699     return false;
2700   Value *VariantOp = I.getOperand(0);
2701   Value *InvariantOp = I.getOperand(1);
2702   if (L.isLoopInvariant(VariantOp))
2703     std::swap(VariantOp, InvariantOp);
2704   if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp))
2705     return false;
2706   Value *Factor = InvariantOp;
2707 
2708   // First, we need to make sure we should do the transformation.
2709   SmallVector<Use *> Changes;
2710   SmallVector<BinaryOperator *> Adds;
2711   SmallVector<BinaryOperator *> Worklist;
2712   if (BinaryOperator *VariantBinOp = dyn_cast<BinaryOperator>(VariantOp))
2713     Worklist.push_back(VariantBinOp);
2714   while (!Worklist.empty()) {
2715     BinaryOperator *BO = Worklist.pop_back_val();
2716     if (!BO->hasOneUse())
2717       return false;
2718     if (isReassociableOp(BO, Instruction::Add, Instruction::FAdd) &&
2719         isa<BinaryOperator>(BO->getOperand(0)) &&
2720         isa<BinaryOperator>(BO->getOperand(1))) {
2721       Worklist.push_back(cast<BinaryOperator>(BO->getOperand(0)));
2722       Worklist.push_back(cast<BinaryOperator>(BO->getOperand(1)));
2723       Adds.push_back(BO);
2724       continue;
2725     }
2726     if (!isReassociableOp(BO, Instruction::Mul, Instruction::FMul) ||
2727         L.isLoopInvariant(BO))
2728       return false;
2729     Use &U0 = BO->getOperandUse(0);
2730     Use &U1 = BO->getOperandUse(1);
2731     if (L.isLoopInvariant(U0))
2732       Changes.push_back(&U0);
2733     else if (L.isLoopInvariant(U1))
2734       Changes.push_back(&U1);
2735     else
2736       return false;
2737     unsigned Limit = I.getType()->isIntOrIntVectorTy()
2738                          ? IntAssociationUpperLimit
2739                          : FPAssociationUpperLimit;
2740     if (Changes.size() > Limit)
2741       return false;
2742   }
2743   if (Changes.empty())
2744     return false;
2745 
2746   // Drop the poison flags for any adds we looked through.
2747   if (I.getType()->isIntOrIntVectorTy()) {
2748     for (auto *Add : Adds)
2749       Add->dropPoisonGeneratingFlags();
2750   }
2751 
2752   // We know we should do it so let's do the transformation.
2753   auto *Preheader = L.getLoopPreheader();
2754   assert(Preheader && "Loop is not in simplify form?");
2755   IRBuilder<> Builder(Preheader->getTerminator());
2756   for (auto *U : Changes) {
2757     assert(L.isLoopInvariant(U->get()));
2758     auto *Ins = cast<BinaryOperator>(U->getUser());
2759     Value *Mul;
2760     if (I.getType()->isIntOrIntVectorTy()) {
2761       Mul = Builder.CreateMul(U->get(), Factor, "factor.op.mul");
2762       // Drop the poison flags on the original multiply.
2763       Ins->dropPoisonGeneratingFlags();
2764     } else
2765       Mul = Builder.CreateFMulFMF(U->get(), Factor, Ins, "factor.op.fmul");
2766 
2767     // Rewrite the reassociable instruction.
2768     unsigned OpIdx = U->getOperandNo();
2769     auto *LHS = OpIdx == 0 ? Mul : Ins->getOperand(0);
2770     auto *RHS = OpIdx == 1 ? Mul : Ins->getOperand(1);
2771     auto *NewBO = BinaryOperator::Create(Ins->getOpcode(), LHS, RHS,
2772                                          Ins->getName() + ".reass", Ins);
2773     NewBO->copyIRFlags(Ins);
2774     if (VariantOp == Ins)
2775       VariantOp = NewBO;
2776     Ins->replaceAllUsesWith(NewBO);
2777     eraseInstruction(*Ins, SafetyInfo, MSSAU);
2778   }
2779 
2780   I.replaceAllUsesWith(VariantOp);
2781   eraseInstruction(I, SafetyInfo, MSSAU);
2782   return true;
2783 }
2784 
2785 static bool hoistArithmetics(Instruction &I, Loop &L,
2786                              ICFLoopSafetyInfo &SafetyInfo,
2787                              MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2788                              DominatorTree *DT) {
2789   // Optimize complex patterns, such as (x < INV1 && x < INV2), turning them
2790   // into (x < min(INV1, INV2)), and hoisting the invariant part of this
2791   // expression out of the loop.
2792   if (hoistMinMax(I, L, SafetyInfo, MSSAU)) {
2793     ++NumHoisted;
2794     ++NumMinMaxHoisted;
2795     return true;
2796   }
2797 
2798   // Try to hoist GEPs by reassociation.
2799   if (hoistGEP(I, L, SafetyInfo, MSSAU, AC, DT)) {
2800     ++NumHoisted;
2801     ++NumGEPsHoisted;
2802     return true;
2803   }
2804 
2805   // Try to hoist add/sub's by reassociation.
2806   if (hoistAddSub(I, L, SafetyInfo, MSSAU, AC, DT)) {
2807     ++NumHoisted;
2808     ++NumAddSubHoisted;
2809     return true;
2810   }
2811 
2812   bool IsInt = I.getType()->isIntOrIntVectorTy();
2813   if (hoistMulAddAssociation(I, L, SafetyInfo, MSSAU, AC, DT)) {
2814     ++NumHoisted;
2815     if (IsInt)
2816       ++NumIntAssociationsHoisted;
2817     else
2818       ++NumFPAssociationsHoisted;
2819     return true;
2820   }
2821 
2822   return false;
2823 }
2824 
2825 /// Little predicate that returns true if the specified basic block is in
2826 /// a subloop of the current one, not the current one itself.
2827 ///
2828 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2829   assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2830   return LI->getLoopFor(BB) != CurLoop;
2831 }
2832