1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion, attempting to remove as much 10 // code from the body of a loop as possible. It does this by either hoisting 11 // code into the preheader block, or by sinking code to the exit blocks if it is 12 // safe. This pass also promotes must-aliased memory locations in the loop to 13 // live in registers, thus hoisting and sinking "invariant" loads and stores. 14 // 15 // Hoisting operations out of loops is a canonicalization transform. It 16 // enables and simplifies subsequent optimizations in the middle-end. 17 // Rematerialization of hoisted instructions to reduce register pressure is the 18 // responsibility of the back-end, which has more accurate information about 19 // register pressure and also handles other optimizations than LICM that 20 // increase live-ranges. 21 // 22 // This pass uses alias analysis for two purposes: 23 // 24 // 1. Moving loop invariant loads and calls out of loops. If we can determine 25 // that a load or call inside of a loop never aliases anything stored to, 26 // we can hoist it or sink it like any other instruction. 27 // 2. Scalar Promotion of Memory - If there is a store instruction inside of 28 // the loop, we try to move the store to happen AFTER the loop instead of 29 // inside of the loop. This can only happen if a few conditions are true: 30 // A. The pointer stored through is loop invariant 31 // B. There are no stores or loads in the loop which _may_ alias the 32 // pointer. There are no calls in the loop which mod/ref the pointer. 33 // If these conditions are true, we can promote the loads and stores in the 34 // loop of the pointer to use a temporary alloca'd variable. We then use 35 // the SSAUpdater to construct the appropriate SSA form for the value. 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LICM.h" 40 #include "llvm/ADT/PriorityWorklist.h" 41 #include "llvm/ADT/SetOperations.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/AliasSetTracker.h" 45 #include "llvm/Analysis/AssumptionCache.h" 46 #include "llvm/Analysis/CaptureTracking.h" 47 #include "llvm/Analysis/GuardUtils.h" 48 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 49 #include "llvm/Analysis/Loads.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/LoopIterator.h" 52 #include "llvm/Analysis/LoopNestAnalysis.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemorySSA.h" 55 #include "llvm/Analysis/MemorySSAUpdater.h" 56 #include "llvm/Analysis/MustExecute.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/TargetLibraryInfo.h" 60 #include "llvm/Analysis/TargetTransformInfo.h" 61 #include "llvm/Analysis/ValueTracking.h" 62 #include "llvm/IR/CFG.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DebugInfoMetadata.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/IntrinsicInst.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/LLVMContext.h" 72 #include "llvm/IR/Metadata.h" 73 #include "llvm/IR/PatternMatch.h" 74 #include "llvm/IR/PredIteratorCache.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Target/TargetOptions.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/LoopUtils.h" 85 #include "llvm/Transforms/Utils/SSAUpdater.h" 86 #include <algorithm> 87 #include <utility> 88 using namespace llvm; 89 90 namespace llvm { 91 class LPMUpdater; 92 } // namespace llvm 93 94 #define DEBUG_TYPE "licm" 95 96 STATISTIC(NumCreatedBlocks, "Number of blocks created"); 97 STATISTIC(NumClonedBranches, "Number of branches cloned"); 98 STATISTIC(NumSunk, "Number of instructions sunk out of loop"); 99 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); 100 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); 101 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); 102 STATISTIC(NumPromotionCandidates, "Number of promotion candidates"); 103 STATISTIC(NumLoadPromoted, "Number of load-only promotions"); 104 STATISTIC(NumLoadStorePromoted, "Number of load and store promotions"); 105 STATISTIC(NumMinMaxHoisted, 106 "Number of min/max expressions hoisted out of the loop"); 107 STATISTIC(NumGEPsHoisted, 108 "Number of geps reassociated and hoisted out of the loop"); 109 STATISTIC(NumAddSubHoisted, "Number of add/subtract expressions reassociated " 110 "and hoisted out of the loop"); 111 STATISTIC(NumFPAssociationsHoisted, "Number of invariant FP expressions " 112 "reassociated and hoisted out of the loop"); 113 114 /// Memory promotion is enabled by default. 115 static cl::opt<bool> 116 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), 117 cl::desc("Disable memory promotion in LICM pass")); 118 119 static cl::opt<bool> ControlFlowHoisting( 120 "licm-control-flow-hoisting", cl::Hidden, cl::init(false), 121 cl::desc("Enable control flow (and PHI) hoisting in LICM")); 122 123 static cl::opt<bool> 124 SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false), 125 cl::desc("Force thread model single in LICM pass")); 126 127 static cl::opt<uint32_t> MaxNumUsesTraversed( 128 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), 129 cl::desc("Max num uses visited for identifying load " 130 "invariance in loop using invariant start (default = 8)")); 131 132 static cl::opt<unsigned> FPAssociationUpperLimit( 133 "licm-max-num-fp-reassociations", cl::init(5U), cl::Hidden, 134 cl::desc( 135 "Set upper limit for the number of transformations performed " 136 "during a single round of hoisting the reassociated expressions.")); 137 138 // Experimental option to allow imprecision in LICM in pathological cases, in 139 // exchange for faster compile. This is to be removed if MemorySSA starts to 140 // address the same issue. LICM calls MemorySSAWalker's 141 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect 142 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, 143 // which may not be precise, since optimizeUses is capped. The result is 144 // correct, but we may not get as "far up" as possible to get which access is 145 // clobbering the one queried. 146 cl::opt<unsigned> llvm::SetLicmMssaOptCap( 147 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, 148 cl::desc("Enable imprecision in LICM in pathological cases, in exchange " 149 "for faster compile. Caps the MemorySSA clobbering calls.")); 150 151 // Experimentally, memory promotion carries less importance than sinking and 152 // hoisting. Limit when we do promotion when using MemorySSA, in order to save 153 // compile time. 154 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( 155 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, 156 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " 157 "effect. When MSSA in LICM is enabled, then this is the maximum " 158 "number of accesses allowed to be present in a loop in order to " 159 "enable memory promotion.")); 160 161 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); 162 static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, 163 const LoopSafetyInfo *SafetyInfo, 164 TargetTransformInfo *TTI, 165 bool &FoldableInLoop, bool LoopNestMode); 166 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 167 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 168 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 169 OptimizationRemarkEmitter *ORE); 170 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 171 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 172 MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE); 173 static bool isSafeToExecuteUnconditionally( 174 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, 175 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, 176 OptimizationRemarkEmitter *ORE, const Instruction *CtxI, 177 AssumptionCache *AC, bool AllowSpeculation); 178 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, 179 Loop *CurLoop, Instruction &I, 180 SinkAndHoistLICMFlags &Flags, 181 bool InvariantGroup); 182 static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, 183 MemoryUse &MU); 184 /// Aggregates various functions for hoisting computations out of loop. 185 static bool hoistArithmetics(Instruction &I, Loop &L, 186 ICFLoopSafetyInfo &SafetyInfo, 187 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 188 DominatorTree *DT); 189 static Instruction *cloneInstructionInExitBlock( 190 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 191 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU); 192 193 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 194 MemorySSAUpdater &MSSAU); 195 196 static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest, 197 ICFLoopSafetyInfo &SafetyInfo, 198 MemorySSAUpdater &MSSAU, ScalarEvolution *SE); 199 200 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, 201 function_ref<void(Instruction *)> Fn); 202 using PointersAndHasReadsOutsideSet = 203 std::pair<SmallSetVector<Value *, 8>, bool>; 204 static SmallVector<PointersAndHasReadsOutsideSet, 0> 205 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L); 206 207 namespace { 208 struct LoopInvariantCodeMotion { 209 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, 210 AssumptionCache *AC, TargetLibraryInfo *TLI, 211 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, 212 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false); 213 214 LoopInvariantCodeMotion(unsigned LicmMssaOptCap, 215 unsigned LicmMssaNoAccForPromotionCap, 216 bool LicmAllowSpeculation) 217 : LicmMssaOptCap(LicmMssaOptCap), 218 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), 219 LicmAllowSpeculation(LicmAllowSpeculation) {} 220 221 private: 222 unsigned LicmMssaOptCap; 223 unsigned LicmMssaNoAccForPromotionCap; 224 bool LicmAllowSpeculation; 225 }; 226 227 struct LegacyLICMPass : public LoopPass { 228 static char ID; // Pass identification, replacement for typeid 229 LegacyLICMPass( 230 unsigned LicmMssaOptCap = SetLicmMssaOptCap, 231 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap, 232 bool LicmAllowSpeculation = true) 233 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 234 LicmAllowSpeculation) { 235 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); 236 } 237 238 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 239 if (skipLoop(L)) 240 return false; 241 242 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block " 243 << L->getHeader()->getNameOrAsOperand() << "\n"); 244 245 Function *F = L->getHeader()->getParent(); 246 247 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 248 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 249 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 250 // pass. Function analyses need to be preserved across loop transformations 251 // but ORE cannot be preserved (see comment before the pass definition). 252 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 253 return LICM.runOnLoop( 254 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(), 255 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 256 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 257 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F), 258 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*F), 259 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*F), 260 SE ? &SE->getSE() : nullptr, MSSA, &ORE); 261 } 262 263 /// This transformation requires natural loop information & requires that 264 /// loop preheaders be inserted into the CFG... 265 /// 266 void getAnalysisUsage(AnalysisUsage &AU) const override { 267 AU.addPreserved<DominatorTreeWrapperPass>(); 268 AU.addPreserved<LoopInfoWrapperPass>(); 269 AU.addRequired<TargetLibraryInfoWrapperPass>(); 270 AU.addRequired<MemorySSAWrapperPass>(); 271 AU.addPreserved<MemorySSAWrapperPass>(); 272 AU.addRequired<TargetTransformInfoWrapperPass>(); 273 AU.addRequired<AssumptionCacheTracker>(); 274 getLoopAnalysisUsage(AU); 275 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 276 AU.addPreserved<LazyBlockFrequencyInfoPass>(); 277 AU.addPreserved<LazyBranchProbabilityInfoPass>(); 278 } 279 280 private: 281 LoopInvariantCodeMotion LICM; 282 }; 283 } // namespace 284 285 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, 286 LoopStandardAnalysisResults &AR, LPMUpdater &) { 287 if (!AR.MSSA) 288 report_fatal_error("LICM requires MemorySSA (loop-mssa)", 289 /*GenCrashDiag*/false); 290 291 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 292 // pass. Function analyses need to be preserved across loop transformations 293 // but ORE cannot be preserved (see comment before the pass definition). 294 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 295 296 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, 297 Opts.AllowSpeculation); 298 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI, 299 &AR.SE, AR.MSSA, &ORE)) 300 return PreservedAnalyses::all(); 301 302 auto PA = getLoopPassPreservedAnalyses(); 303 PA.preserve<MemorySSAAnalysis>(); 304 305 return PA; 306 } 307 308 void LICMPass::printPipeline( 309 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 310 static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline( 311 OS, MapClassName2PassName); 312 313 OS << '<'; 314 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; 315 OS << '>'; 316 } 317 318 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM, 319 LoopStandardAnalysisResults &AR, 320 LPMUpdater &) { 321 if (!AR.MSSA) 322 report_fatal_error("LNICM requires MemorySSA (loop-mssa)", 323 /*GenCrashDiag*/false); 324 325 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 326 // pass. Function analyses need to be preserved across loop transformations 327 // but ORE cannot be preserved (see comment before the pass definition). 328 OptimizationRemarkEmitter ORE(LN.getParent()); 329 330 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, 331 Opts.AllowSpeculation); 332 333 Loop &OutermostLoop = LN.getOutermostLoop(); 334 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, &AR.AC, 335 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true); 336 337 if (!Changed) 338 return PreservedAnalyses::all(); 339 340 auto PA = getLoopPassPreservedAnalyses(); 341 342 PA.preserve<DominatorTreeAnalysis>(); 343 PA.preserve<LoopAnalysis>(); 344 PA.preserve<MemorySSAAnalysis>(); 345 346 return PA; 347 } 348 349 void LNICMPass::printPipeline( 350 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 351 static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline( 352 OS, MapClassName2PassName); 353 354 OS << '<'; 355 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; 356 OS << '>'; 357 } 358 359 char LegacyLICMPass::ID = 0; 360 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", 361 false, false) 362 INITIALIZE_PASS_DEPENDENCY(LoopPass) 363 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 364 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 365 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 366 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) 367 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, 368 false) 369 370 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } 371 372 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop &L, 373 MemorySSA &MSSA) 374 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, 375 IsSink, L, MSSA) {} 376 377 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( 378 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, 379 Loop &L, MemorySSA &MSSA) 380 : LicmMssaOptCap(LicmMssaOptCap), 381 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), 382 IsSink(IsSink) { 383 unsigned AccessCapCount = 0; 384 for (auto *BB : L.getBlocks()) 385 if (const auto *Accesses = MSSA.getBlockAccesses(BB)) 386 for (const auto &MA : *Accesses) { 387 (void)MA; 388 ++AccessCapCount; 389 if (AccessCapCount > LicmMssaNoAccForPromotionCap) { 390 NoOfMemAccTooLarge = true; 391 return; 392 } 393 } 394 } 395 396 /// Hoist expressions out of the specified loop. Note, alias info for inner 397 /// loop is not preserved so it is not a good idea to run LICM multiple 398 /// times on one loop. 399 bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, 400 DominatorTree *DT, AssumptionCache *AC, 401 TargetLibraryInfo *TLI, 402 TargetTransformInfo *TTI, 403 ScalarEvolution *SE, MemorySSA *MSSA, 404 OptimizationRemarkEmitter *ORE, 405 bool LoopNestMode) { 406 bool Changed = false; 407 408 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); 409 410 // If this loop has metadata indicating that LICM is not to be performed then 411 // just exit. 412 if (hasDisableLICMTransformsHint(L)) { 413 return false; 414 } 415 416 // Don't sink stores from loops with coroutine suspend instructions. 417 // LICM would sink instructions into the default destination of 418 // the coroutine switch. The default destination of the switch is to 419 // handle the case where the coroutine is suspended, by which point the 420 // coroutine frame may have been destroyed. No instruction can be sunk there. 421 // FIXME: This would unfortunately hurt the performance of coroutines, however 422 // there is currently no general solution for this. Similar issues could also 423 // potentially happen in other passes where instructions are being moved 424 // across that edge. 425 bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) { 426 return llvm::any_of(*BB, [](Instruction &I) { 427 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 428 return II && II->getIntrinsicID() == Intrinsic::coro_suspend; 429 }); 430 }); 431 432 MemorySSAUpdater MSSAU(MSSA); 433 SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 434 /*IsSink=*/true, *L, *MSSA); 435 436 // Get the preheader block to move instructions into... 437 BasicBlock *Preheader = L->getLoopPreheader(); 438 439 // Compute loop safety information. 440 ICFLoopSafetyInfo SafetyInfo; 441 SafetyInfo.computeLoopSafetyInfo(L); 442 443 // We want to visit all of the instructions in this loop... that are not parts 444 // of our subloops (they have already had their invariants hoisted out of 445 // their loop, into this loop, so there is no need to process the BODIES of 446 // the subloops). 447 // 448 // Traverse the body of the loop in depth first order on the dominator tree so 449 // that we are guaranteed to see definitions before we see uses. This allows 450 // us to sink instructions in one pass, without iteration. After sinking 451 // instructions, we perform another pass to hoist them out of the loop. 452 if (L->hasDedicatedExits()) 453 Changed |= 454 LoopNestMode 455 ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, DT, 456 TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE) 457 : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 458 MSSAU, &SafetyInfo, Flags, ORE); 459 Flags.setIsSink(false); 460 if (Preheader) 461 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, AC, TLI, L, 462 MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode, 463 LicmAllowSpeculation); 464 465 // Now that all loop invariants have been removed from the loop, promote any 466 // memory references to scalars that we can. 467 // Don't sink stores from loops without dedicated block exits. Exits 468 // containing indirect branches are not transformed by loop simplify, 469 // make sure we catch that. An additional load may be generated in the 470 // preheader for SSA updater, so also avoid sinking when no preheader 471 // is available. 472 if (!DisablePromotion && Preheader && L->hasDedicatedExits() && 473 !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) { 474 // Figure out the loop exits and their insertion points 475 SmallVector<BasicBlock *, 8> ExitBlocks; 476 L->getUniqueExitBlocks(ExitBlocks); 477 478 // We can't insert into a catchswitch. 479 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { 480 return isa<CatchSwitchInst>(Exit->getTerminator()); 481 }); 482 483 if (!HasCatchSwitch) { 484 SmallVector<BasicBlock::iterator, 8> InsertPts; 485 SmallVector<MemoryAccess *, 8> MSSAInsertPts; 486 InsertPts.reserve(ExitBlocks.size()); 487 MSSAInsertPts.reserve(ExitBlocks.size()); 488 for (BasicBlock *ExitBlock : ExitBlocks) { 489 InsertPts.push_back(ExitBlock->getFirstInsertionPt()); 490 MSSAInsertPts.push_back(nullptr); 491 } 492 493 PredIteratorCache PIC; 494 495 // Promoting one set of accesses may make the pointers for another set 496 // loop invariant, so run this in a loop. 497 bool Promoted = false; 498 bool LocalPromoted; 499 do { 500 LocalPromoted = false; 501 for (auto [PointerMustAliases, HasReadsOutsideSet] : 502 collectPromotionCandidates(MSSA, AA, L)) { 503 LocalPromoted |= promoteLoopAccessesToScalars( 504 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, 505 DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE, 506 LicmAllowSpeculation, HasReadsOutsideSet); 507 } 508 Promoted |= LocalPromoted; 509 } while (LocalPromoted); 510 511 // Once we have promoted values across the loop body we have to 512 // recursively reform LCSSA as any nested loop may now have values defined 513 // within the loop used in the outer loop. 514 // FIXME: This is really heavy handed. It would be a bit better to use an 515 // SSAUpdater strategy during promotion that was LCSSA aware and reformed 516 // it as it went. 517 if (Promoted) 518 formLCSSARecursively(*L, *DT, LI, SE); 519 520 Changed |= Promoted; 521 } 522 } 523 524 // Check that neither this loop nor its parent have had LCSSA broken. LICM is 525 // specifically moving instructions across the loop boundary and so it is 526 // especially in need of basic functional correctness checking here. 527 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); 528 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && 529 "Parent loop not left in LCSSA form after LICM!"); 530 531 if (VerifyMemorySSA) 532 MSSA->verifyMemorySSA(); 533 534 if (Changed && SE) 535 SE->forgetLoopDispositions(); 536 return Changed; 537 } 538 539 /// Walk the specified region of the CFG (defined by all blocks dominated by 540 /// the specified block, and that are in the current loop) in reverse depth 541 /// first order w.r.t the DominatorTree. This allows us to visit uses before 542 /// definitions, allowing us to sink a loop body in one pass without iteration. 543 /// 544 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 545 DominatorTree *DT, TargetLibraryInfo *TLI, 546 TargetTransformInfo *TTI, Loop *CurLoop, 547 MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, 548 SinkAndHoistLICMFlags &Flags, 549 OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) { 550 551 // Verify inputs. 552 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 553 CurLoop != nullptr && SafetyInfo != nullptr && 554 "Unexpected input to sinkRegion."); 555 556 // We want to visit children before parents. We will enqueue all the parents 557 // before their children in the worklist and process the worklist in reverse 558 // order. 559 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); 560 561 bool Changed = false; 562 for (DomTreeNode *DTN : reverse(Worklist)) { 563 BasicBlock *BB = DTN->getBlock(); 564 // Only need to process the contents of this block if it is not part of a 565 // subloop (which would already have been processed). 566 if (inSubLoop(BB, CurLoop, LI)) 567 continue; 568 569 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { 570 Instruction &I = *--II; 571 572 // The instruction is not used in the loop if it is dead. In this case, 573 // we just delete it instead of sinking it. 574 if (isInstructionTriviallyDead(&I, TLI)) { 575 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); 576 salvageKnowledge(&I); 577 salvageDebugInfo(I); 578 ++II; 579 eraseInstruction(I, *SafetyInfo, MSSAU); 580 Changed = true; 581 continue; 582 } 583 584 // Check to see if we can sink this instruction to the exit blocks 585 // of the loop. We can do this if the all users of the instruction are 586 // outside of the loop. In this case, it doesn't even matter if the 587 // operands of the instruction are loop invariant. 588 // 589 bool FoldableInLoop = false; 590 bool LoopNestMode = OutermostLoop != nullptr; 591 if (!I.mayHaveSideEffects() && 592 isNotUsedOrFoldableInLoop(I, LoopNestMode ? OutermostLoop : CurLoop, 593 SafetyInfo, TTI, FoldableInLoop, 594 LoopNestMode) && 595 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) { 596 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { 597 if (!FoldableInLoop) { 598 ++II; 599 salvageDebugInfo(I); 600 eraseInstruction(I, *SafetyInfo, MSSAU); 601 } 602 Changed = true; 603 } 604 } 605 } 606 } 607 if (VerifyMemorySSA) 608 MSSAU.getMemorySSA()->verifyMemorySSA(); 609 return Changed; 610 } 611 612 bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 613 DominatorTree *DT, TargetLibraryInfo *TLI, 614 TargetTransformInfo *TTI, Loop *CurLoop, 615 MemorySSAUpdater &MSSAU, 616 ICFLoopSafetyInfo *SafetyInfo, 617 SinkAndHoistLICMFlags &Flags, 618 OptimizationRemarkEmitter *ORE) { 619 620 bool Changed = false; 621 SmallPriorityWorklist<Loop *, 4> Worklist; 622 Worklist.insert(CurLoop); 623 appendLoopsToWorklist(*CurLoop, Worklist); 624 while (!Worklist.empty()) { 625 Loop *L = Worklist.pop_back_val(); 626 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 627 MSSAU, SafetyInfo, Flags, ORE, CurLoop); 628 } 629 return Changed; 630 } 631 632 namespace { 633 // This is a helper class for hoistRegion to make it able to hoist control flow 634 // in order to be able to hoist phis. The way this works is that we initially 635 // start hoisting to the loop preheader, and when we see a loop invariant branch 636 // we make note of this. When we then come to hoist an instruction that's 637 // conditional on such a branch we duplicate the branch and the relevant control 638 // flow, then hoist the instruction into the block corresponding to its original 639 // block in the duplicated control flow. 640 class ControlFlowHoister { 641 private: 642 // Information about the loop we are hoisting from 643 LoopInfo *LI; 644 DominatorTree *DT; 645 Loop *CurLoop; 646 MemorySSAUpdater &MSSAU; 647 648 // A map of blocks in the loop to the block their instructions will be hoisted 649 // to. 650 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; 651 652 // The branches that we can hoist, mapped to the block that marks a 653 // convergence point of their control flow. 654 DenseMap<BranchInst *, BasicBlock *> HoistableBranches; 655 656 public: 657 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, 658 MemorySSAUpdater &MSSAU) 659 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} 660 661 void registerPossiblyHoistableBranch(BranchInst *BI) { 662 // We can only hoist conditional branches with loop invariant operands. 663 if (!ControlFlowHoisting || !BI->isConditional() || 664 !CurLoop->hasLoopInvariantOperands(BI)) 665 return; 666 667 // The branch destinations need to be in the loop, and we don't gain 668 // anything by duplicating conditional branches with duplicate successors, 669 // as it's essentially the same as an unconditional branch. 670 BasicBlock *TrueDest = BI->getSuccessor(0); 671 BasicBlock *FalseDest = BI->getSuccessor(1); 672 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || 673 TrueDest == FalseDest) 674 return; 675 676 // We can hoist BI if one branch destination is the successor of the other, 677 // or both have common successor which we check by seeing if the 678 // intersection of their successors is non-empty. 679 // TODO: This could be expanded to allowing branches where both ends 680 // eventually converge to a single block. 681 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; 682 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); 683 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); 684 BasicBlock *CommonSucc = nullptr; 685 if (TrueDestSucc.count(FalseDest)) { 686 CommonSucc = FalseDest; 687 } else if (FalseDestSucc.count(TrueDest)) { 688 CommonSucc = TrueDest; 689 } else { 690 set_intersect(TrueDestSucc, FalseDestSucc); 691 // If there's one common successor use that. 692 if (TrueDestSucc.size() == 1) 693 CommonSucc = *TrueDestSucc.begin(); 694 // If there's more than one pick whichever appears first in the block list 695 // (we can't use the value returned by TrueDestSucc.begin() as it's 696 // unpredicatable which element gets returned). 697 else if (!TrueDestSucc.empty()) { 698 Function *F = TrueDest->getParent(); 699 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; 700 auto It = llvm::find_if(*F, IsSucc); 701 assert(It != F->end() && "Could not find successor in function"); 702 CommonSucc = &*It; 703 } 704 } 705 // The common successor has to be dominated by the branch, as otherwise 706 // there will be some other path to the successor that will not be 707 // controlled by this branch so any phi we hoist would be controlled by the 708 // wrong condition. This also takes care of avoiding hoisting of loop back 709 // edges. 710 // TODO: In some cases this could be relaxed if the successor is dominated 711 // by another block that's been hoisted and we can guarantee that the 712 // control flow has been replicated exactly. 713 if (CommonSucc && DT->dominates(BI, CommonSucc)) 714 HoistableBranches[BI] = CommonSucc; 715 } 716 717 bool canHoistPHI(PHINode *PN) { 718 // The phi must have loop invariant operands. 719 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) 720 return false; 721 // We can hoist phis if the block they are in is the target of hoistable 722 // branches which cover all of the predecessors of the block. 723 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; 724 BasicBlock *BB = PN->getParent(); 725 for (BasicBlock *PredBB : predecessors(BB)) 726 PredecessorBlocks.insert(PredBB); 727 // If we have less predecessor blocks than predecessors then the phi will 728 // have more than one incoming value for the same block which we can't 729 // handle. 730 // TODO: This could be handled be erasing some of the duplicate incoming 731 // values. 732 if (PredecessorBlocks.size() != pred_size(BB)) 733 return false; 734 for (auto &Pair : HoistableBranches) { 735 if (Pair.second == BB) { 736 // Which blocks are predecessors via this branch depends on if the 737 // branch is triangle-like or diamond-like. 738 if (Pair.first->getSuccessor(0) == BB) { 739 PredecessorBlocks.erase(Pair.first->getParent()); 740 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 741 } else if (Pair.first->getSuccessor(1) == BB) { 742 PredecessorBlocks.erase(Pair.first->getParent()); 743 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 744 } else { 745 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 746 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 747 } 748 } 749 } 750 // PredecessorBlocks will now be empty if for every predecessor of BB we 751 // found a hoistable branch source. 752 return PredecessorBlocks.empty(); 753 } 754 755 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { 756 if (!ControlFlowHoisting) 757 return CurLoop->getLoopPreheader(); 758 // If BB has already been hoisted, return that 759 if (HoistDestinationMap.count(BB)) 760 return HoistDestinationMap[BB]; 761 762 // Check if this block is conditional based on a pending branch 763 auto HasBBAsSuccessor = 764 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { 765 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || 766 Pair.first->getSuccessor(1) == BB); 767 }; 768 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor); 769 770 // If not involved in a pending branch, hoist to preheader 771 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); 772 if (It == HoistableBranches.end()) { 773 LLVM_DEBUG(dbgs() << "LICM using " 774 << InitialPreheader->getNameOrAsOperand() 775 << " as hoist destination for " 776 << BB->getNameOrAsOperand() << "\n"); 777 HoistDestinationMap[BB] = InitialPreheader; 778 return InitialPreheader; 779 } 780 BranchInst *BI = It->first; 781 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == 782 HoistableBranches.end() && 783 "BB is expected to be the target of at most one branch"); 784 785 LLVMContext &C = BB->getContext(); 786 BasicBlock *TrueDest = BI->getSuccessor(0); 787 BasicBlock *FalseDest = BI->getSuccessor(1); 788 BasicBlock *CommonSucc = HoistableBranches[BI]; 789 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); 790 791 // Create hoisted versions of blocks that currently don't have them 792 auto CreateHoistedBlock = [&](BasicBlock *Orig) { 793 if (HoistDestinationMap.count(Orig)) 794 return HoistDestinationMap[Orig]; 795 BasicBlock *New = 796 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); 797 HoistDestinationMap[Orig] = New; 798 DT->addNewBlock(New, HoistTarget); 799 if (CurLoop->getParentLoop()) 800 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); 801 ++NumCreatedBlocks; 802 LLVM_DEBUG(dbgs() << "LICM created " << New->getName() 803 << " as hoist destination for " << Orig->getName() 804 << "\n"); 805 return New; 806 }; 807 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); 808 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); 809 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); 810 811 // Link up these blocks with branches. 812 if (!HoistCommonSucc->getTerminator()) { 813 // The new common successor we've generated will branch to whatever that 814 // hoist target branched to. 815 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); 816 assert(TargetSucc && "Expected hoist target to have a single successor"); 817 HoistCommonSucc->moveBefore(TargetSucc); 818 BranchInst::Create(TargetSucc, HoistCommonSucc); 819 } 820 if (!HoistTrueDest->getTerminator()) { 821 HoistTrueDest->moveBefore(HoistCommonSucc); 822 BranchInst::Create(HoistCommonSucc, HoistTrueDest); 823 } 824 if (!HoistFalseDest->getTerminator()) { 825 HoistFalseDest->moveBefore(HoistCommonSucc); 826 BranchInst::Create(HoistCommonSucc, HoistFalseDest); 827 } 828 829 // If BI is being cloned to what was originally the preheader then 830 // HoistCommonSucc will now be the new preheader. 831 if (HoistTarget == InitialPreheader) { 832 // Phis in the loop header now need to use the new preheader. 833 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); 834 MSSAU.wireOldPredecessorsToNewImmediatePredecessor( 835 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); 836 // The new preheader dominates the loop header. 837 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); 838 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); 839 DT->changeImmediateDominator(HeaderNode, PreheaderNode); 840 // The preheader hoist destination is now the new preheader, with the 841 // exception of the hoist destination of this branch. 842 for (auto &Pair : HoistDestinationMap) 843 if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) 844 Pair.second = HoistCommonSucc; 845 } 846 847 // Now finally clone BI. 848 ReplaceInstWithInst( 849 HoistTarget->getTerminator(), 850 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); 851 ++NumClonedBranches; 852 853 assert(CurLoop->getLoopPreheader() && 854 "Hoisting blocks should not have destroyed preheader"); 855 return HoistDestinationMap[BB]; 856 } 857 }; 858 } // namespace 859 860 /// Walk the specified region of the CFG (defined by all blocks dominated by 861 /// the specified block, and that are in the current loop) in depth first 862 /// order w.r.t the DominatorTree. This allows us to visit definitions before 863 /// uses, allowing us to hoist a loop body in one pass without iteration. 864 /// 865 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 866 DominatorTree *DT, AssumptionCache *AC, 867 TargetLibraryInfo *TLI, Loop *CurLoop, 868 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 869 ICFLoopSafetyInfo *SafetyInfo, 870 SinkAndHoistLICMFlags &Flags, 871 OptimizationRemarkEmitter *ORE, bool LoopNestMode, 872 bool AllowSpeculation) { 873 // Verify inputs. 874 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 875 CurLoop != nullptr && SafetyInfo != nullptr && 876 "Unexpected input to hoistRegion."); 877 878 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); 879 880 // Keep track of instructions that have been hoisted, as they may need to be 881 // re-hoisted if they end up not dominating all of their uses. 882 SmallVector<Instruction *, 16> HoistedInstructions; 883 884 // For PHI hoisting to work we need to hoist blocks before their successors. 885 // We can do this by iterating through the blocks in the loop in reverse 886 // post-order. 887 LoopBlocksRPO Worklist(CurLoop); 888 Worklist.perform(LI); 889 bool Changed = false; 890 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 891 for (BasicBlock *BB : Worklist) { 892 // Only need to process the contents of this block if it is not part of a 893 // subloop (which would already have been processed). 894 if (!LoopNestMode && inSubLoop(BB, CurLoop, LI)) 895 continue; 896 897 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 898 // Try hoisting the instruction out to the preheader. We can only do 899 // this if all of the operands of the instruction are loop invariant and 900 // if it is safe to hoist the instruction. We also check block frequency 901 // to make sure instruction only gets hoisted into colder blocks. 902 // TODO: It may be safe to hoist if we are hoisting to a conditional block 903 // and we have accurately duplicated the control flow from the loop header 904 // to that block. 905 if (CurLoop->hasLoopInvariantOperands(&I) && 906 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) && 907 isSafeToExecuteUnconditionally( 908 I, DT, TLI, CurLoop, SafetyInfo, ORE, 909 Preheader->getTerminator(), AC, AllowSpeculation)) { 910 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 911 MSSAU, SE, ORE); 912 HoistedInstructions.push_back(&I); 913 Changed = true; 914 continue; 915 } 916 917 // Attempt to remove floating point division out of the loop by 918 // converting it to a reciprocal multiplication. 919 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && 920 CurLoop->isLoopInvariant(I.getOperand(1))) { 921 auto Divisor = I.getOperand(1); 922 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); 923 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); 924 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); 925 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); 926 ReciprocalDivisor->insertBefore(&I); 927 928 auto Product = 929 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); 930 Product->setFastMathFlags(I.getFastMathFlags()); 931 SafetyInfo->insertInstructionTo(Product, I.getParent()); 932 Product->insertAfter(&I); 933 I.replaceAllUsesWith(Product); 934 eraseInstruction(I, *SafetyInfo, MSSAU); 935 936 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), 937 SafetyInfo, MSSAU, SE, ORE); 938 HoistedInstructions.push_back(ReciprocalDivisor); 939 Changed = true; 940 continue; 941 } 942 943 auto IsInvariantStart = [&](Instruction &I) { 944 using namespace PatternMatch; 945 return I.use_empty() && 946 match(&I, m_Intrinsic<Intrinsic::invariant_start>()); 947 }; 948 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { 949 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && 950 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); 951 }; 952 if ((IsInvariantStart(I) || isGuard(&I)) && 953 CurLoop->hasLoopInvariantOperands(&I) && 954 MustExecuteWithoutWritesBefore(I)) { 955 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 956 MSSAU, SE, ORE); 957 HoistedInstructions.push_back(&I); 958 Changed = true; 959 continue; 960 } 961 962 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 963 if (CFH.canHoistPHI(PN)) { 964 // Redirect incoming blocks first to ensure that we create hoisted 965 // versions of those blocks before we hoist the phi. 966 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) 967 PN->setIncomingBlock( 968 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); 969 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 970 MSSAU, SE, ORE); 971 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); 972 Changed = true; 973 continue; 974 } 975 } 976 977 // Try to reassociate instructions so that part of computations can be 978 // done out of loop. 979 if (hoistArithmetics(I, *CurLoop, *SafetyInfo, MSSAU, AC, DT)) { 980 Changed = true; 981 continue; 982 } 983 984 // Remember possibly hoistable branches so we can actually hoist them 985 // later if needed. 986 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 987 CFH.registerPossiblyHoistableBranch(BI); 988 } 989 } 990 991 // If we hoisted instructions to a conditional block they may not dominate 992 // their uses that weren't hoisted (such as phis where some operands are not 993 // loop invariant). If so make them unconditional by moving them to their 994 // immediate dominator. We iterate through the instructions in reverse order 995 // which ensures that when we rehoist an instruction we rehoist its operands, 996 // and also keep track of where in the block we are rehoisting to make sure 997 // that we rehoist instructions before the instructions that use them. 998 Instruction *HoistPoint = nullptr; 999 if (ControlFlowHoisting) { 1000 for (Instruction *I : reverse(HoistedInstructions)) { 1001 if (!llvm::all_of(I->uses(), 1002 [&](Use &U) { return DT->dominates(I, U); })) { 1003 BasicBlock *Dominator = 1004 DT->getNode(I->getParent())->getIDom()->getBlock(); 1005 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { 1006 if (HoistPoint) 1007 assert(DT->dominates(Dominator, HoistPoint->getParent()) && 1008 "New hoist point expected to dominate old hoist point"); 1009 HoistPoint = Dominator->getTerminator(); 1010 } 1011 LLVM_DEBUG(dbgs() << "LICM rehoisting to " 1012 << HoistPoint->getParent()->getNameOrAsOperand() 1013 << ": " << *I << "\n"); 1014 moveInstructionBefore(*I, HoistPoint->getIterator(), *SafetyInfo, MSSAU, 1015 SE); 1016 HoistPoint = I; 1017 Changed = true; 1018 } 1019 } 1020 } 1021 if (VerifyMemorySSA) 1022 MSSAU.getMemorySSA()->verifyMemorySSA(); 1023 1024 // Now that we've finished hoisting make sure that LI and DT are still 1025 // valid. 1026 #ifdef EXPENSIVE_CHECKS 1027 if (Changed) { 1028 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 1029 "Dominator tree verification failed"); 1030 LI->verify(*DT); 1031 } 1032 #endif 1033 1034 return Changed; 1035 } 1036 1037 // Return true if LI is invariant within scope of the loop. LI is invariant if 1038 // CurLoop is dominated by an invariant.start representing the same memory 1039 // location and size as the memory location LI loads from, and also the 1040 // invariant.start has no uses. 1041 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, 1042 Loop *CurLoop) { 1043 Value *Addr = LI->getPointerOperand(); 1044 const DataLayout &DL = LI->getModule()->getDataLayout(); 1045 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); 1046 1047 // It is not currently possible for clang to generate an invariant.start 1048 // intrinsic with scalable vector types because we don't support thread local 1049 // sizeless types and we don't permit sizeless types in structs or classes. 1050 // Furthermore, even if support is added for this in future the intrinsic 1051 // itself is defined to have a size of -1 for variable sized objects. This 1052 // makes it impossible to verify if the intrinsic envelops our region of 1053 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8> 1054 // types would have a -1 parameter, but the former is clearly double the size 1055 // of the latter. 1056 if (LocSizeInBits.isScalable()) 1057 return false; 1058 1059 // If we've ended up at a global/constant, bail. We shouldn't be looking at 1060 // uselists for non-local Values in a loop pass. 1061 if (isa<Constant>(Addr)) 1062 return false; 1063 1064 unsigned UsesVisited = 0; 1065 // Traverse all uses of the load operand value, to see if invariant.start is 1066 // one of the uses, and whether it dominates the load instruction. 1067 for (auto *U : Addr->users()) { 1068 // Avoid traversing for Load operand with high number of users. 1069 if (++UsesVisited > MaxNumUsesTraversed) 1070 return false; 1071 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1072 // If there are escaping uses of invariant.start instruction, the load maybe 1073 // non-invariant. 1074 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || 1075 !II->use_empty()) 1076 continue; 1077 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0)); 1078 // The intrinsic supports having a -1 argument for variable sized objects 1079 // so we should check for that here. 1080 if (InvariantSize->isNegative()) 1081 continue; 1082 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; 1083 // Confirm the invariant.start location size contains the load operand size 1084 // in bits. Also, the invariant.start should dominate the load, and we 1085 // should not hoist the load out of a loop that contains this dominating 1086 // invariant.start. 1087 if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits && 1088 DT->properlyDominates(II->getParent(), CurLoop->getHeader())) 1089 return true; 1090 } 1091 1092 return false; 1093 } 1094 1095 namespace { 1096 /// Return true if-and-only-if we know how to (mechanically) both hoist and 1097 /// sink a given instruction out of a loop. Does not address legality 1098 /// concerns such as aliasing or speculation safety. 1099 bool isHoistableAndSinkableInst(Instruction &I) { 1100 // Only these instructions are hoistable/sinkable. 1101 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 1102 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) || 1103 isa<BinaryOperator>(I) || isa<SelectInst>(I) || 1104 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || 1105 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 1106 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || 1107 isa<InsertValueInst>(I) || isa<FreezeInst>(I)); 1108 } 1109 /// Return true if MSSA knows there are no MemoryDefs in the loop. 1110 bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) { 1111 for (auto *BB : L->getBlocks()) 1112 if (MSSAU.getMemorySSA()->getBlockDefs(BB)) 1113 return false; 1114 return true; 1115 } 1116 1117 /// Return true if I is the only Instruction with a MemoryAccess in L. 1118 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, 1119 const MemorySSAUpdater &MSSAU) { 1120 for (auto *BB : L->getBlocks()) 1121 if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) { 1122 int NotAPhi = 0; 1123 for (const auto &Acc : *Accs) { 1124 if (isa<MemoryPhi>(&Acc)) 1125 continue; 1126 const auto *MUD = cast<MemoryUseOrDef>(&Acc); 1127 if (MUD->getMemoryInst() != I || NotAPhi++ == 1) 1128 return false; 1129 } 1130 } 1131 return true; 1132 } 1133 } 1134 1135 static MemoryAccess *getClobberingMemoryAccess(MemorySSA &MSSA, 1136 BatchAAResults &BAA, 1137 SinkAndHoistLICMFlags &Flags, 1138 MemoryUseOrDef *MA) { 1139 // See declaration of SetLicmMssaOptCap for usage details. 1140 if (Flags.tooManyClobberingCalls()) 1141 return MA->getDefiningAccess(); 1142 1143 MemoryAccess *Source = 1144 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(MA, BAA); 1145 Flags.incrementClobberingCalls(); 1146 return Source; 1147 } 1148 1149 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, 1150 Loop *CurLoop, MemorySSAUpdater &MSSAU, 1151 bool TargetExecutesOncePerLoop, 1152 SinkAndHoistLICMFlags &Flags, 1153 OptimizationRemarkEmitter *ORE) { 1154 // If we don't understand the instruction, bail early. 1155 if (!isHoistableAndSinkableInst(I)) 1156 return false; 1157 1158 MemorySSA *MSSA = MSSAU.getMemorySSA(); 1159 // Loads have extra constraints we have to verify before we can hoist them. 1160 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 1161 if (!LI->isUnordered()) 1162 return false; // Don't sink/hoist volatile or ordered atomic loads! 1163 1164 // Loads from constant memory are always safe to move, even if they end up 1165 // in the same alias set as something that ends up being modified. 1166 if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0)))) 1167 return true; 1168 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1169 return true; 1170 1171 if (LI->isAtomic() && !TargetExecutesOncePerLoop) 1172 return false; // Don't risk duplicating unordered loads 1173 1174 // This checks for an invariant.start dominating the load. 1175 if (isLoadInvariantInLoop(LI, DT, CurLoop)) 1176 return true; 1177 1178 auto MU = cast<MemoryUse>(MSSA->getMemoryAccess(LI)); 1179 1180 bool InvariantGroup = LI->hasMetadata(LLVMContext::MD_invariant_group); 1181 1182 bool Invalidated = pointerInvalidatedByLoop( 1183 MSSA, MU, CurLoop, I, Flags, InvariantGroup); 1184 // Check loop-invariant address because this may also be a sinkable load 1185 // whose address is not necessarily loop-invariant. 1186 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1187 ORE->emit([&]() { 1188 return OptimizationRemarkMissed( 1189 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) 1190 << "failed to move load with loop-invariant address " 1191 "because the loop may invalidate its value"; 1192 }); 1193 1194 return !Invalidated; 1195 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1196 // Don't sink or hoist dbg info; it's legal, but not useful. 1197 if (isa<DbgInfoIntrinsic>(I)) 1198 return false; 1199 1200 // Don't sink calls which can throw. 1201 if (CI->mayThrow()) 1202 return false; 1203 1204 // Convergent attribute has been used on operations that involve 1205 // inter-thread communication which results are implicitly affected by the 1206 // enclosing control flows. It is not safe to hoist or sink such operations 1207 // across control flow. 1208 if (CI->isConvergent()) 1209 return false; 1210 1211 using namespace PatternMatch; 1212 if (match(CI, m_Intrinsic<Intrinsic::assume>())) 1213 // Assumes don't actually alias anything or throw 1214 return true; 1215 1216 // Handle simple cases by querying alias analysis. 1217 MemoryEffects Behavior = AA->getMemoryEffects(CI); 1218 1219 // FIXME: we don't handle the semantics of thread local well. So that the 1220 // address of thread locals are fake constants in coroutines. So We forbid 1221 // to treat onlyReadsMemory call in coroutines as constants now. Note that 1222 // it is possible to hide a thread local access in a onlyReadsMemory call. 1223 // Remove this check after we handle the semantics of thread locals well. 1224 if (Behavior.onlyReadsMemory() && CI->getFunction()->isPresplitCoroutine()) 1225 return false; 1226 1227 if (Behavior.doesNotAccessMemory()) 1228 return true; 1229 if (Behavior.onlyReadsMemory()) { 1230 // A readonly argmemonly function only reads from memory pointed to by 1231 // it's arguments with arbitrary offsets. If we can prove there are no 1232 // writes to this memory in the loop, we can hoist or sink. 1233 if (Behavior.onlyAccessesArgPointees()) { 1234 // TODO: expand to writeable arguments 1235 for (Value *Op : CI->args()) 1236 if (Op->getType()->isPointerTy() && 1237 pointerInvalidatedByLoop( 1238 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I, 1239 Flags, /*InvariantGroup=*/false)) 1240 return false; 1241 return true; 1242 } 1243 1244 // If this call only reads from memory and there are no writes to memory 1245 // in the loop, we can hoist or sink the call as appropriate. 1246 if (isReadOnly(MSSAU, CurLoop)) 1247 return true; 1248 } 1249 1250 // FIXME: This should use mod/ref information to see if we can hoist or 1251 // sink the call. 1252 1253 return false; 1254 } else if (auto *FI = dyn_cast<FenceInst>(&I)) { 1255 // Fences alias (most) everything to provide ordering. For the moment, 1256 // just give up if there are any other memory operations in the loop. 1257 return isOnlyMemoryAccess(FI, CurLoop, MSSAU); 1258 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 1259 if (!SI->isUnordered()) 1260 return false; // Don't sink/hoist volatile or ordered atomic store! 1261 1262 // We can only hoist a store that we can prove writes a value which is not 1263 // read or overwritten within the loop. For those cases, we fallback to 1264 // load store promotion instead. TODO: We can extend this to cases where 1265 // there is exactly one write to the location and that write dominates an 1266 // arbitrary number of reads in the loop. 1267 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) 1268 return true; 1269 // If there are more accesses than the Promotion cap, then give up as we're 1270 // not walking a list that long. 1271 if (Flags.tooManyMemoryAccesses()) 1272 return false; 1273 1274 auto *SIMD = MSSA->getMemoryAccess(SI); 1275 BatchAAResults BAA(*AA); 1276 auto *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, SIMD); 1277 // Make sure there are no clobbers inside the loop. 1278 if (!MSSA->isLiveOnEntryDef(Source) && 1279 CurLoop->contains(Source->getBlock())) 1280 return false; 1281 1282 // If there are interfering Uses (i.e. their defining access is in the 1283 // loop), or ordered loads (stored as Defs!), don't move this store. 1284 // Could do better here, but this is conservatively correct. 1285 // TODO: Cache set of Uses on the first walk in runOnLoop, update when 1286 // moving accesses. Can also extend to dominating uses. 1287 for (auto *BB : CurLoop->getBlocks()) 1288 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 1289 for (const auto &MA : *Accesses) 1290 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { 1291 auto *MD = getClobberingMemoryAccess(*MSSA, BAA, Flags, 1292 const_cast<MemoryUse *>(MU)); 1293 if (!MSSA->isLiveOnEntryDef(MD) && 1294 CurLoop->contains(MD->getBlock())) 1295 return false; 1296 // Disable hoisting past potentially interfering loads. Optimized 1297 // Uses may point to an access outside the loop, as getClobbering 1298 // checks the previous iteration when walking the backedge. 1299 // FIXME: More precise: no Uses that alias SI. 1300 if (!Flags.getIsSink() && !MSSA->dominates(SIMD, MU)) 1301 return false; 1302 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { 1303 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { 1304 (void)LI; // Silence warning. 1305 assert(!LI->isUnordered() && "Expected unordered load"); 1306 return false; 1307 } 1308 // Any call, while it may not be clobbering SI, it may be a use. 1309 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { 1310 // Check if the call may read from the memory location written 1311 // to by SI. Check CI's attributes and arguments; the number of 1312 // such checks performed is limited above by NoOfMemAccTooLarge. 1313 ModRefInfo MRI = BAA.getModRefInfo(CI, MemoryLocation::get(SI)); 1314 if (isModOrRefSet(MRI)) 1315 return false; 1316 } 1317 } 1318 } 1319 return true; 1320 } 1321 1322 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); 1323 1324 // We've established mechanical ability and aliasing, it's up to the caller 1325 // to check fault safety 1326 return true; 1327 } 1328 1329 /// Returns true if a PHINode is a trivially replaceable with an 1330 /// Instruction. 1331 /// This is true when all incoming values are that instruction. 1332 /// This pattern occurs most often with LCSSA PHI nodes. 1333 /// 1334 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { 1335 for (const Value *IncValue : PN.incoming_values()) 1336 if (IncValue != &I) 1337 return false; 1338 1339 return true; 1340 } 1341 1342 /// Return true if the instruction is foldable in the loop. 1343 static bool isFoldableInLoop(const Instruction &I, const Loop *CurLoop, 1344 const TargetTransformInfo *TTI) { 1345 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1346 InstructionCost CostI = 1347 TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1348 if (CostI != TargetTransformInfo::TCC_Free) 1349 return false; 1350 // For a GEP, we cannot simply use getInstructionCost because currently 1351 // it optimistically assumes that a GEP will fold into addressing mode 1352 // regardless of its users. 1353 const BasicBlock *BB = GEP->getParent(); 1354 for (const User *U : GEP->users()) { 1355 const Instruction *UI = cast<Instruction>(U); 1356 if (CurLoop->contains(UI) && 1357 (BB != UI->getParent() || 1358 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) 1359 return false; 1360 } 1361 return true; 1362 } 1363 1364 return false; 1365 } 1366 1367 /// Return true if the only users of this instruction are outside of 1368 /// the loop. If this is true, we can sink the instruction to the exit 1369 /// blocks of the loop. 1370 /// 1371 /// We also return true if the instruction could be folded away in lowering. 1372 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). 1373 static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, 1374 const LoopSafetyInfo *SafetyInfo, 1375 TargetTransformInfo *TTI, 1376 bool &FoldableInLoop, bool LoopNestMode) { 1377 const auto &BlockColors = SafetyInfo->getBlockColors(); 1378 bool IsFoldable = isFoldableInLoop(I, CurLoop, TTI); 1379 for (const User *U : I.users()) { 1380 const Instruction *UI = cast<Instruction>(U); 1381 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1382 const BasicBlock *BB = PN->getParent(); 1383 // We cannot sink uses in catchswitches. 1384 if (isa<CatchSwitchInst>(BB->getTerminator())) 1385 return false; 1386 1387 // We need to sink a callsite to a unique funclet. Avoid sinking if the 1388 // phi use is too muddled. 1389 if (isa<CallInst>(I)) 1390 if (!BlockColors.empty() && 1391 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) 1392 return false; 1393 1394 if (LoopNestMode) { 1395 while (isa<PHINode>(UI) && UI->hasOneUser() && 1396 UI->getNumOperands() == 1) { 1397 if (!CurLoop->contains(UI)) 1398 break; 1399 UI = cast<Instruction>(UI->user_back()); 1400 } 1401 } 1402 } 1403 1404 if (CurLoop->contains(UI)) { 1405 if (IsFoldable) { 1406 FoldableInLoop = true; 1407 continue; 1408 } 1409 return false; 1410 } 1411 } 1412 return true; 1413 } 1414 1415 static Instruction *cloneInstructionInExitBlock( 1416 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 1417 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) { 1418 Instruction *New; 1419 if (auto *CI = dyn_cast<CallInst>(&I)) { 1420 const auto &BlockColors = SafetyInfo->getBlockColors(); 1421 1422 // Sinking call-sites need to be handled differently from other 1423 // instructions. The cloned call-site needs a funclet bundle operand 1424 // appropriate for its location in the CFG. 1425 SmallVector<OperandBundleDef, 1> OpBundles; 1426 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); 1427 BundleIdx != BundleEnd; ++BundleIdx) { 1428 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); 1429 if (Bundle.getTagID() == LLVMContext::OB_funclet) 1430 continue; 1431 1432 OpBundles.emplace_back(Bundle); 1433 } 1434 1435 if (!BlockColors.empty()) { 1436 const ColorVector &CV = BlockColors.find(&ExitBlock)->second; 1437 assert(CV.size() == 1 && "non-unique color for exit block!"); 1438 BasicBlock *BBColor = CV.front(); 1439 Instruction *EHPad = BBColor->getFirstNonPHI(); 1440 if (EHPad->isEHPad()) 1441 OpBundles.emplace_back("funclet", EHPad); 1442 } 1443 1444 New = CallInst::Create(CI, OpBundles); 1445 } else { 1446 New = I.clone(); 1447 } 1448 1449 New->insertInto(&ExitBlock, ExitBlock.getFirstInsertionPt()); 1450 if (!I.getName().empty()) 1451 New->setName(I.getName() + ".le"); 1452 1453 if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) { 1454 // Create a new MemoryAccess and let MemorySSA set its defining access. 1455 MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB( 1456 New, nullptr, New->getParent(), MemorySSA::Beginning); 1457 if (NewMemAcc) { 1458 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 1459 MSSAU.insertDef(MemDef, /*RenameUses=*/true); 1460 else { 1461 auto *MemUse = cast<MemoryUse>(NewMemAcc); 1462 MSSAU.insertUse(MemUse, /*RenameUses=*/true); 1463 } 1464 } 1465 } 1466 1467 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that 1468 // this is particularly cheap because we can rip off the PHI node that we're 1469 // replacing for the number and blocks of the predecessors. 1470 // OPT: If this shows up in a profile, we can instead finish sinking all 1471 // invariant instructions, and then walk their operands to re-establish 1472 // LCSSA. That will eliminate creating PHI nodes just to nuke them when 1473 // sinking bottom-up. 1474 for (Use &Op : New->operands()) 1475 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) { 1476 auto *OInst = cast<Instruction>(Op.get()); 1477 PHINode *OpPN = 1478 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), 1479 OInst->getName() + ".lcssa"); 1480 OpPN->insertBefore(ExitBlock.begin()); 1481 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1482 OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); 1483 Op = OpPN; 1484 } 1485 return New; 1486 } 1487 1488 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 1489 MemorySSAUpdater &MSSAU) { 1490 MSSAU.removeMemoryAccess(&I); 1491 SafetyInfo.removeInstruction(&I); 1492 I.eraseFromParent(); 1493 } 1494 1495 static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest, 1496 ICFLoopSafetyInfo &SafetyInfo, 1497 MemorySSAUpdater &MSSAU, 1498 ScalarEvolution *SE) { 1499 SafetyInfo.removeInstruction(&I); 1500 SafetyInfo.insertInstructionTo(&I, Dest->getParent()); 1501 I.moveBefore(*Dest->getParent(), Dest); 1502 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 1503 MSSAU.getMemorySSA()->getMemoryAccess(&I))) 1504 MSSAU.moveToPlace(OldMemAcc, Dest->getParent(), 1505 MemorySSA::BeforeTerminator); 1506 if (SE) 1507 SE->forgetBlockAndLoopDispositions(&I); 1508 } 1509 1510 static Instruction *sinkThroughTriviallyReplaceablePHI( 1511 PHINode *TPN, Instruction *I, LoopInfo *LI, 1512 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, 1513 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, 1514 MemorySSAUpdater &MSSAU) { 1515 assert(isTriviallyReplaceablePHI(*TPN, *I) && 1516 "Expect only trivially replaceable PHI"); 1517 BasicBlock *ExitBlock = TPN->getParent(); 1518 Instruction *New; 1519 auto It = SunkCopies.find(ExitBlock); 1520 if (It != SunkCopies.end()) 1521 New = It->second; 1522 else 1523 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock( 1524 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); 1525 return New; 1526 } 1527 1528 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { 1529 BasicBlock *BB = PN->getParent(); 1530 if (!BB->canSplitPredecessors()) 1531 return false; 1532 // It's not impossible to split EHPad blocks, but if BlockColors already exist 1533 // it require updating BlockColors for all offspring blocks accordingly. By 1534 // skipping such corner case, we can make updating BlockColors after splitting 1535 // predecessor fairly simple. 1536 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) 1537 return false; 1538 for (BasicBlock *BBPred : predecessors(BB)) { 1539 if (isa<IndirectBrInst>(BBPred->getTerminator())) 1540 return false; 1541 } 1542 return true; 1543 } 1544 1545 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, 1546 LoopInfo *LI, const Loop *CurLoop, 1547 LoopSafetyInfo *SafetyInfo, 1548 MemorySSAUpdater *MSSAU) { 1549 #ifndef NDEBUG 1550 SmallVector<BasicBlock *, 32> ExitBlocks; 1551 CurLoop->getUniqueExitBlocks(ExitBlocks); 1552 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1553 ExitBlocks.end()); 1554 #endif 1555 BasicBlock *ExitBB = PN->getParent(); 1556 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); 1557 1558 // Split predecessors of the loop exit to make instructions in the loop are 1559 // exposed to exit blocks through trivially replaceable PHIs while keeping the 1560 // loop in the canonical form where each predecessor of each exit block should 1561 // be contained within the loop. For example, this will convert the loop below 1562 // from 1563 // 1564 // LB1: 1565 // %v1 = 1566 // br %LE, %LB2 1567 // LB2: 1568 // %v2 = 1569 // br %LE, %LB1 1570 // LE: 1571 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable 1572 // 1573 // to 1574 // 1575 // LB1: 1576 // %v1 = 1577 // br %LE.split, %LB2 1578 // LB2: 1579 // %v2 = 1580 // br %LE.split2, %LB1 1581 // LE.split: 1582 // %p1 = phi [%v1, %LB1] <-- trivially replaceable 1583 // br %LE 1584 // LE.split2: 1585 // %p2 = phi [%v2, %LB2] <-- trivially replaceable 1586 // br %LE 1587 // LE: 1588 // %p = phi [%p1, %LE.split], [%p2, %LE.split2] 1589 // 1590 const auto &BlockColors = SafetyInfo->getBlockColors(); 1591 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); 1592 while (!PredBBs.empty()) { 1593 BasicBlock *PredBB = *PredBBs.begin(); 1594 assert(CurLoop->contains(PredBB) && 1595 "Expect all predecessors are in the loop"); 1596 if (PN->getBasicBlockIndex(PredBB) >= 0) { 1597 BasicBlock *NewPred = SplitBlockPredecessors( 1598 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); 1599 // Since we do not allow splitting EH-block with BlockColors in 1600 // canSplitPredecessors(), we can simply assign predecessor's color to 1601 // the new block. 1602 if (!BlockColors.empty()) 1603 // Grab a reference to the ColorVector to be inserted before getting the 1604 // reference to the vector we are copying because inserting the new 1605 // element in BlockColors might cause the map to be reallocated. 1606 SafetyInfo->copyColors(NewPred, PredBB); 1607 } 1608 PredBBs.remove(PredBB); 1609 } 1610 } 1611 1612 /// When an instruction is found to only be used outside of the loop, this 1613 /// function moves it to the exit blocks and patches up SSA form as needed. 1614 /// This method is guaranteed to remove the original instruction from its 1615 /// position, and may either delete it or move it to outside of the loop. 1616 /// 1617 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 1618 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 1619 MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) { 1620 bool Changed = false; 1621 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); 1622 1623 // Iterate over users to be ready for actual sinking. Replace users via 1624 // unreachable blocks with undef and make all user PHIs trivially replaceable. 1625 SmallPtrSet<Instruction *, 8> VisitedUsers; 1626 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { 1627 auto *User = cast<Instruction>(*UI); 1628 Use &U = UI.getUse(); 1629 ++UI; 1630 1631 if (VisitedUsers.count(User) || CurLoop->contains(User)) 1632 continue; 1633 1634 if (!DT->isReachableFromEntry(User->getParent())) { 1635 U = PoisonValue::get(I.getType()); 1636 Changed = true; 1637 continue; 1638 } 1639 1640 // The user must be a PHI node. 1641 PHINode *PN = cast<PHINode>(User); 1642 1643 // Surprisingly, instructions can be used outside of loops without any 1644 // exits. This can only happen in PHI nodes if the incoming block is 1645 // unreachable. 1646 BasicBlock *BB = PN->getIncomingBlock(U); 1647 if (!DT->isReachableFromEntry(BB)) { 1648 U = PoisonValue::get(I.getType()); 1649 Changed = true; 1650 continue; 1651 } 1652 1653 VisitedUsers.insert(PN); 1654 if (isTriviallyReplaceablePHI(*PN, I)) 1655 continue; 1656 1657 if (!canSplitPredecessors(PN, SafetyInfo)) 1658 return Changed; 1659 1660 // Split predecessors of the PHI so that we can make users trivially 1661 // replaceable. 1662 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU); 1663 1664 // Should rebuild the iterators, as they may be invalidated by 1665 // splitPredecessorsOfLoopExit(). 1666 UI = I.user_begin(); 1667 UE = I.user_end(); 1668 } 1669 1670 if (VisitedUsers.empty()) 1671 return Changed; 1672 1673 ORE->emit([&]() { 1674 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) 1675 << "sinking " << ore::NV("Inst", &I); 1676 }); 1677 if (isa<LoadInst>(I)) 1678 ++NumMovedLoads; 1679 else if (isa<CallInst>(I)) 1680 ++NumMovedCalls; 1681 ++NumSunk; 1682 1683 #ifndef NDEBUG 1684 SmallVector<BasicBlock *, 32> ExitBlocks; 1685 CurLoop->getUniqueExitBlocks(ExitBlocks); 1686 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1687 ExitBlocks.end()); 1688 #endif 1689 1690 // Clones of this instruction. Don't create more than one per exit block! 1691 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; 1692 1693 // If this instruction is only used outside of the loop, then all users are 1694 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of 1695 // the instruction. 1696 // First check if I is worth sinking for all uses. Sink only when it is worth 1697 // across all uses. 1698 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); 1699 for (auto *UI : Users) { 1700 auto *User = cast<Instruction>(UI); 1701 1702 if (CurLoop->contains(User)) 1703 continue; 1704 1705 PHINode *PN = cast<PHINode>(User); 1706 assert(ExitBlockSet.count(PN->getParent()) && 1707 "The LCSSA PHI is not in an exit block!"); 1708 1709 // The PHI must be trivially replaceable. 1710 Instruction *New = sinkThroughTriviallyReplaceablePHI( 1711 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); 1712 // As we sink the instruction out of the BB, drop its debug location. 1713 New->dropLocation(); 1714 PN->replaceAllUsesWith(New); 1715 eraseInstruction(*PN, *SafetyInfo, MSSAU); 1716 Changed = true; 1717 } 1718 return Changed; 1719 } 1720 1721 /// When an instruction is found to only use loop invariant operands that 1722 /// is safe to hoist, this instruction is called to do the dirty work. 1723 /// 1724 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 1725 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 1726 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 1727 OptimizationRemarkEmitter *ORE) { 1728 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": " 1729 << I << "\n"); 1730 ORE->emit([&]() { 1731 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " 1732 << ore::NV("Inst", &I); 1733 }); 1734 1735 // Metadata can be dependent on conditions we are hoisting above. 1736 // Conservatively strip all metadata on the instruction unless we were 1737 // guaranteed to execute I if we entered the loop, in which case the metadata 1738 // is valid in the loop preheader. 1739 // Similarly, If I is a call and it is not guaranteed to execute in the loop, 1740 // then moving to the preheader means we should strip attributes on the call 1741 // that can cause UB since we may be hoisting above conditions that allowed 1742 // inferring those attributes. They may not be valid at the preheader. 1743 if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) && 1744 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning 1745 // time in isGuaranteedToExecute if we don't actually have anything to 1746 // drop. It is a compile time optimization, not required for correctness. 1747 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) 1748 I.dropUBImplyingAttrsAndMetadata(); 1749 1750 if (isa<PHINode>(I)) 1751 // Move the new node to the end of the phi list in the destination block. 1752 moveInstructionBefore(I, Dest->getFirstNonPHIIt(), *SafetyInfo, MSSAU, SE); 1753 else 1754 // Move the new node to the destination block, before its terminator. 1755 moveInstructionBefore(I, Dest->getTerminator()->getIterator(), *SafetyInfo, 1756 MSSAU, SE); 1757 1758 I.updateLocationAfterHoist(); 1759 1760 if (isa<LoadInst>(I)) 1761 ++NumMovedLoads; 1762 else if (isa<CallInst>(I)) 1763 ++NumMovedCalls; 1764 ++NumHoisted; 1765 } 1766 1767 /// Only sink or hoist an instruction if it is not a trapping instruction, 1768 /// or if the instruction is known not to trap when moved to the preheader. 1769 /// or if it is a trapping instruction and is guaranteed to execute. 1770 static bool isSafeToExecuteUnconditionally( 1771 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, 1772 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, 1773 OptimizationRemarkEmitter *ORE, const Instruction *CtxI, 1774 AssumptionCache *AC, bool AllowSpeculation) { 1775 if (AllowSpeculation && 1776 isSafeToSpeculativelyExecute(&Inst, CtxI, AC, DT, TLI)) 1777 return true; 1778 1779 bool GuaranteedToExecute = 1780 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); 1781 1782 if (!GuaranteedToExecute) { 1783 auto *LI = dyn_cast<LoadInst>(&Inst); 1784 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1785 ORE->emit([&]() { 1786 return OptimizationRemarkMissed( 1787 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) 1788 << "failed to hoist load with loop-invariant address " 1789 "because load is conditionally executed"; 1790 }); 1791 } 1792 1793 return GuaranteedToExecute; 1794 } 1795 1796 namespace { 1797 class LoopPromoter : public LoadAndStorePromoter { 1798 Value *SomePtr; // Designated pointer to store to. 1799 SmallVectorImpl<BasicBlock *> &LoopExitBlocks; 1800 SmallVectorImpl<BasicBlock::iterator> &LoopInsertPts; 1801 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; 1802 PredIteratorCache &PredCache; 1803 MemorySSAUpdater &MSSAU; 1804 LoopInfo &LI; 1805 DebugLoc DL; 1806 Align Alignment; 1807 bool UnorderedAtomic; 1808 AAMDNodes AATags; 1809 ICFLoopSafetyInfo &SafetyInfo; 1810 bool CanInsertStoresInExitBlocks; 1811 ArrayRef<const Instruction *> Uses; 1812 1813 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi 1814 // (if legal) if doing so would add an out-of-loop use to an instruction 1815 // defined in-loop. 1816 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { 1817 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB)) 1818 return V; 1819 1820 Instruction *I = cast<Instruction>(V); 1821 // We need to create an LCSSA PHI node for the incoming value and 1822 // store that. 1823 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), 1824 I->getName() + ".lcssa"); 1825 PN->insertBefore(BB->begin()); 1826 for (BasicBlock *Pred : PredCache.get(BB)) 1827 PN->addIncoming(I, Pred); 1828 return PN; 1829 } 1830 1831 public: 1832 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, 1833 SmallVectorImpl<BasicBlock *> &LEB, 1834 SmallVectorImpl<BasicBlock::iterator> &LIP, 1835 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, 1836 MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl, 1837 Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags, 1838 ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks) 1839 : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB), 1840 LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU), 1841 LI(li), DL(std::move(dl)), Alignment(Alignment), 1842 UnorderedAtomic(UnorderedAtomic), AATags(AATags), 1843 SafetyInfo(SafetyInfo), 1844 CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {} 1845 1846 void insertStoresInLoopExitBlocks() { 1847 // Insert stores after in the loop exit blocks. Each exit block gets a 1848 // store of the live-out values that feed them. Since we've already told 1849 // the SSA updater about the defs in the loop and the preheader 1850 // definition, it is all set and we can start using it. 1851 DIAssignID *NewID = nullptr; 1852 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { 1853 BasicBlock *ExitBlock = LoopExitBlocks[i]; 1854 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 1855 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); 1856 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); 1857 BasicBlock::iterator InsertPos = LoopInsertPts[i]; 1858 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); 1859 if (UnorderedAtomic) 1860 NewSI->setOrdering(AtomicOrdering::Unordered); 1861 NewSI->setAlignment(Alignment); 1862 NewSI->setDebugLoc(DL); 1863 // Attach DIAssignID metadata to the new store, generating it on the 1864 // first loop iteration. 1865 if (i == 0) { 1866 // NewSI will have its DIAssignID set here if there are any stores in 1867 // Uses with a DIAssignID attachment. This merged ID will then be 1868 // attached to the other inserted stores (in the branch below). 1869 NewSI->mergeDIAssignID(Uses); 1870 NewID = cast_or_null<DIAssignID>( 1871 NewSI->getMetadata(LLVMContext::MD_DIAssignID)); 1872 } else { 1873 // Attach the DIAssignID (or nullptr) merged from Uses in the branch 1874 // above. 1875 NewSI->setMetadata(LLVMContext::MD_DIAssignID, NewID); 1876 } 1877 1878 if (AATags) 1879 NewSI->setAAMetadata(AATags); 1880 1881 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; 1882 MemoryAccess *NewMemAcc; 1883 if (!MSSAInsertPoint) { 1884 NewMemAcc = MSSAU.createMemoryAccessInBB( 1885 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); 1886 } else { 1887 NewMemAcc = 1888 MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); 1889 } 1890 MSSAInsertPts[i] = NewMemAcc; 1891 MSSAU.insertDef(cast<MemoryDef>(NewMemAcc), true); 1892 // FIXME: true for safety, false may still be correct. 1893 } 1894 } 1895 1896 void doExtraRewritesBeforeFinalDeletion() override { 1897 if (CanInsertStoresInExitBlocks) 1898 insertStoresInLoopExitBlocks(); 1899 } 1900 1901 void instructionDeleted(Instruction *I) const override { 1902 SafetyInfo.removeInstruction(I); 1903 MSSAU.removeMemoryAccess(I); 1904 } 1905 1906 bool shouldDelete(Instruction *I) const override { 1907 if (isa<StoreInst>(I)) 1908 return CanInsertStoresInExitBlocks; 1909 return true; 1910 } 1911 }; 1912 1913 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L, 1914 DominatorTree *DT) { 1915 // We can perform the captured-before check against any instruction in the 1916 // loop header, as the loop header is reachable from any instruction inside 1917 // the loop. 1918 // TODO: ReturnCaptures=true shouldn't be necessary here. 1919 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true, 1920 /* StoreCaptures */ true, 1921 L->getHeader()->getTerminator(), DT); 1922 } 1923 1924 /// Return true if we can prove that a caller cannot inspect the object if an 1925 /// unwind occurs inside the loop. 1926 bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L, 1927 DominatorTree *DT) { 1928 bool RequiresNoCaptureBeforeUnwind; 1929 if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind)) 1930 return false; 1931 1932 return !RequiresNoCaptureBeforeUnwind || 1933 isNotCapturedBeforeOrInLoop(Object, L, DT); 1934 } 1935 1936 bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT, 1937 TargetTransformInfo *TTI) { 1938 // The object must be function-local to start with, and then not captured 1939 // before/in the loop. 1940 return (isIdentifiedFunctionLocal(Object) && 1941 isNotCapturedBeforeOrInLoop(Object, L, DT)) || 1942 (TTI->isSingleThreaded() || SingleThread); 1943 } 1944 1945 } // namespace 1946 1947 /// Try to promote memory values to scalars by sinking stores out of the 1948 /// loop and moving loads to before the loop. We do this by looping over 1949 /// the stores in the loop, looking for stores to Must pointers which are 1950 /// loop invariant. 1951 /// 1952 bool llvm::promoteLoopAccessesToScalars( 1953 const SmallSetVector<Value *, 8> &PointerMustAliases, 1954 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1955 SmallVectorImpl<BasicBlock::iterator> &InsertPts, 1956 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, 1957 LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, 1958 const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, 1959 MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, 1960 OptimizationRemarkEmitter *ORE, bool AllowSpeculation, 1961 bool HasReadsOutsideSet) { 1962 // Verify inputs. 1963 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && 1964 SafetyInfo != nullptr && 1965 "Unexpected Input to promoteLoopAccessesToScalars"); 1966 1967 LLVM_DEBUG({ 1968 dbgs() << "Trying to promote set of must-aliased pointers:\n"; 1969 for (Value *Ptr : PointerMustAliases) 1970 dbgs() << " " << *Ptr << "\n"; 1971 }); 1972 ++NumPromotionCandidates; 1973 1974 Value *SomePtr = *PointerMustAliases.begin(); 1975 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1976 1977 // It is not safe to promote a load/store from the loop if the load/store is 1978 // conditional. For example, turning: 1979 // 1980 // for () { if (c) *P += 1; } 1981 // 1982 // into: 1983 // 1984 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; 1985 // 1986 // is not safe, because *P may only be valid to access if 'c' is true. 1987 // 1988 // The safety property divides into two parts: 1989 // p1) The memory may not be dereferenceable on entry to the loop. In this 1990 // case, we can't insert the required load in the preheader. 1991 // p2) The memory model does not allow us to insert a store along any dynamic 1992 // path which did not originally have one. 1993 // 1994 // If at least one store is guaranteed to execute, both properties are 1995 // satisfied, and promotion is legal. 1996 // 1997 // This, however, is not a necessary condition. Even if no store/load is 1998 // guaranteed to execute, we can still establish these properties. 1999 // We can establish (p1) by proving that hoisting the load into the preheader 2000 // is safe (i.e. proving dereferenceability on all paths through the loop). We 2001 // can use any access within the alias set to prove dereferenceability, 2002 // since they're all must alias. 2003 // 2004 // There are two ways establish (p2): 2005 // a) Prove the location is thread-local. In this case the memory model 2006 // requirement does not apply, and stores are safe to insert. 2007 // b) Prove a store dominates every exit block. In this case, if an exit 2008 // blocks is reached, the original dynamic path would have taken us through 2009 // the store, so inserting a store into the exit block is safe. Note that this 2010 // is different from the store being guaranteed to execute. For instance, 2011 // if an exception is thrown on the first iteration of the loop, the original 2012 // store is never executed, but the exit blocks are not executed either. 2013 2014 bool DereferenceableInPH = false; 2015 bool StoreIsGuanteedToExecute = false; 2016 bool FoundLoadToPromote = false; 2017 // Goes from Unknown to either Safe or Unsafe, but can't switch between them. 2018 enum { 2019 StoreSafe, 2020 StoreUnsafe, 2021 StoreSafetyUnknown, 2022 } StoreSafety = StoreSafetyUnknown; 2023 2024 SmallVector<Instruction *, 64> LoopUses; 2025 2026 // We start with an alignment of one and try to find instructions that allow 2027 // us to prove better alignment. 2028 Align Alignment; 2029 // Keep track of which types of access we see 2030 bool SawUnorderedAtomic = false; 2031 bool SawNotAtomic = false; 2032 AAMDNodes AATags; 2033 2034 const DataLayout &MDL = Preheader->getModule()->getDataLayout(); 2035 2036 // If there are reads outside the promoted set, then promoting stores is 2037 // definitely not safe. 2038 if (HasReadsOutsideSet) 2039 StoreSafety = StoreUnsafe; 2040 2041 if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) { 2042 // If a loop can throw, we have to insert a store along each unwind edge. 2043 // That said, we can't actually make the unwind edge explicit. Therefore, 2044 // we have to prove that the store is dead along the unwind edge. We do 2045 // this by proving that the caller can't have a reference to the object 2046 // after return and thus can't possibly load from the object. 2047 Value *Object = getUnderlyingObject(SomePtr); 2048 if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT)) 2049 StoreSafety = StoreUnsafe; 2050 } 2051 2052 // Check that all accesses to pointers in the alias set use the same type. 2053 // We cannot (yet) promote a memory location that is loaded and stored in 2054 // different sizes. While we are at it, collect alignment and AA info. 2055 Type *AccessTy = nullptr; 2056 for (Value *ASIV : PointerMustAliases) { 2057 for (Use &U : ASIV->uses()) { 2058 // Ignore instructions that are outside the loop. 2059 Instruction *UI = dyn_cast<Instruction>(U.getUser()); 2060 if (!UI || !CurLoop->contains(UI)) 2061 continue; 2062 2063 // If there is an non-load/store instruction in the loop, we can't promote 2064 // it. 2065 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { 2066 if (!Load->isUnordered()) 2067 return false; 2068 2069 SawUnorderedAtomic |= Load->isAtomic(); 2070 SawNotAtomic |= !Load->isAtomic(); 2071 FoundLoadToPromote = true; 2072 2073 Align InstAlignment = Load->getAlign(); 2074 2075 // Note that proving a load safe to speculate requires proving 2076 // sufficient alignment at the target location. Proving it guaranteed 2077 // to execute does as well. Thus we can increase our guaranteed 2078 // alignment as well. 2079 if (!DereferenceableInPH || (InstAlignment > Alignment)) 2080 if (isSafeToExecuteUnconditionally( 2081 *Load, DT, TLI, CurLoop, SafetyInfo, ORE, 2082 Preheader->getTerminator(), AC, AllowSpeculation)) { 2083 DereferenceableInPH = true; 2084 Alignment = std::max(Alignment, InstAlignment); 2085 } 2086 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { 2087 // Stores *of* the pointer are not interesting, only stores *to* the 2088 // pointer. 2089 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 2090 continue; 2091 if (!Store->isUnordered()) 2092 return false; 2093 2094 SawUnorderedAtomic |= Store->isAtomic(); 2095 SawNotAtomic |= !Store->isAtomic(); 2096 2097 // If the store is guaranteed to execute, both properties are satisfied. 2098 // We may want to check if a store is guaranteed to execute even if we 2099 // already know that promotion is safe, since it may have higher 2100 // alignment than any other guaranteed stores, in which case we can 2101 // raise the alignment on the promoted store. 2102 Align InstAlignment = Store->getAlign(); 2103 bool GuaranteedToExecute = 2104 SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop); 2105 StoreIsGuanteedToExecute |= GuaranteedToExecute; 2106 if (GuaranteedToExecute) { 2107 DereferenceableInPH = true; 2108 if (StoreSafety == StoreSafetyUnknown) 2109 StoreSafety = StoreSafe; 2110 Alignment = std::max(Alignment, InstAlignment); 2111 } 2112 2113 // If a store dominates all exit blocks, it is safe to sink. 2114 // As explained above, if an exit block was executed, a dominating 2115 // store must have been executed at least once, so we are not 2116 // introducing stores on paths that did not have them. 2117 // Note that this only looks at explicit exit blocks. If we ever 2118 // start sinking stores into unwind edges (see above), this will break. 2119 if (StoreSafety == StoreSafetyUnknown && 2120 llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { 2121 return DT->dominates(Store->getParent(), Exit); 2122 })) 2123 StoreSafety = StoreSafe; 2124 2125 // If the store is not guaranteed to execute, we may still get 2126 // deref info through it. 2127 if (!DereferenceableInPH) { 2128 DereferenceableInPH = isDereferenceableAndAlignedPointer( 2129 Store->getPointerOperand(), Store->getValueOperand()->getType(), 2130 Store->getAlign(), MDL, Preheader->getTerminator(), AC, DT, TLI); 2131 } 2132 } else 2133 continue; // Not a load or store. 2134 2135 if (!AccessTy) 2136 AccessTy = getLoadStoreType(UI); 2137 else if (AccessTy != getLoadStoreType(UI)) 2138 return false; 2139 2140 // Merge the AA tags. 2141 if (LoopUses.empty()) { 2142 // On the first load/store, just take its AA tags. 2143 AATags = UI->getAAMetadata(); 2144 } else if (AATags) { 2145 AATags = AATags.merge(UI->getAAMetadata()); 2146 } 2147 2148 LoopUses.push_back(UI); 2149 } 2150 } 2151 2152 // If we found both an unordered atomic instruction and a non-atomic memory 2153 // access, bail. We can't blindly promote non-atomic to atomic since we 2154 // might not be able to lower the result. We can't downgrade since that 2155 // would violate memory model. Also, align 0 is an error for atomics. 2156 if (SawUnorderedAtomic && SawNotAtomic) 2157 return false; 2158 2159 // If we're inserting an atomic load in the preheader, we must be able to 2160 // lower it. We're only guaranteed to be able to lower naturally aligned 2161 // atomics. 2162 if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy)) 2163 return false; 2164 2165 // If we couldn't prove we can hoist the load, bail. 2166 if (!DereferenceableInPH) { 2167 LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n"); 2168 return false; 2169 } 2170 2171 // We know we can hoist the load, but don't have a guaranteed store. 2172 // Check whether the location is writable and thread-local. If it is, then we 2173 // can insert stores along paths which originally didn't have them without 2174 // violating the memory model. 2175 if (StoreSafety == StoreSafetyUnknown) { 2176 Value *Object = getUnderlyingObject(SomePtr); 2177 bool ExplicitlyDereferenceableOnly; 2178 if (isWritableObject(Object, ExplicitlyDereferenceableOnly) && 2179 (!ExplicitlyDereferenceableOnly || 2180 isDereferenceablePointer(SomePtr, AccessTy, MDL)) && 2181 isThreadLocalObject(Object, CurLoop, DT, TTI)) 2182 StoreSafety = StoreSafe; 2183 } 2184 2185 // If we've still failed to prove we can sink the store, hoist the load 2186 // only, if possible. 2187 if (StoreSafety != StoreSafe && !FoundLoadToPromote) 2188 // If we cannot hoist the load either, give up. 2189 return false; 2190 2191 // Lets do the promotion! 2192 if (StoreSafety == StoreSafe) { 2193 LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr 2194 << '\n'); 2195 ++NumLoadStorePromoted; 2196 } else { 2197 LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr 2198 << '\n'); 2199 ++NumLoadPromoted; 2200 } 2201 2202 ORE->emit([&]() { 2203 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", 2204 LoopUses[0]) 2205 << "Moving accesses to memory location out of the loop"; 2206 }); 2207 2208 // Look at all the loop uses, and try to merge their locations. 2209 std::vector<DILocation *> LoopUsesLocs; 2210 for (auto *U : LoopUses) 2211 LoopUsesLocs.push_back(U->getDebugLoc().get()); 2212 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs)); 2213 2214 // We use the SSAUpdater interface to insert phi nodes as required. 2215 SmallVector<PHINode *, 16> NewPHIs; 2216 SSAUpdater SSA(&NewPHIs); 2217 LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts, 2218 MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment, 2219 SawUnorderedAtomic, AATags, *SafetyInfo, 2220 StoreSafety == StoreSafe); 2221 2222 // Set up the preheader to have a definition of the value. It is the live-out 2223 // value from the preheader that uses in the loop will use. 2224 LoadInst *PreheaderLoad = nullptr; 2225 if (FoundLoadToPromote || !StoreIsGuanteedToExecute) { 2226 PreheaderLoad = 2227 new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted", 2228 Preheader->getTerminator()); 2229 if (SawUnorderedAtomic) 2230 PreheaderLoad->setOrdering(AtomicOrdering::Unordered); 2231 PreheaderLoad->setAlignment(Alignment); 2232 PreheaderLoad->setDebugLoc(DebugLoc()); 2233 if (AATags) 2234 PreheaderLoad->setAAMetadata(AATags); 2235 2236 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB( 2237 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); 2238 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); 2239 MSSAU.insertUse(NewMemUse, /*RenameUses=*/true); 2240 SSA.AddAvailableValue(Preheader, PreheaderLoad); 2241 } else { 2242 SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy)); 2243 } 2244 2245 if (VerifyMemorySSA) 2246 MSSAU.getMemorySSA()->verifyMemorySSA(); 2247 // Rewrite all the loads in the loop and remember all the definitions from 2248 // stores in the loop. 2249 Promoter.run(LoopUses); 2250 2251 if (VerifyMemorySSA) 2252 MSSAU.getMemorySSA()->verifyMemorySSA(); 2253 // If the SSAUpdater didn't use the load in the preheader, just zap it now. 2254 if (PreheaderLoad && PreheaderLoad->use_empty()) 2255 eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU); 2256 2257 return true; 2258 } 2259 2260 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, 2261 function_ref<void(Instruction *)> Fn) { 2262 for (const BasicBlock *BB : L->blocks()) 2263 if (const auto *Accesses = MSSA->getBlockAccesses(BB)) 2264 for (const auto &Access : *Accesses) 2265 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access)) 2266 Fn(MUD->getMemoryInst()); 2267 } 2268 2269 // The bool indicates whether there might be reads outside the set, in which 2270 // case only loads may be promoted. 2271 static SmallVector<PointersAndHasReadsOutsideSet, 0> 2272 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) { 2273 BatchAAResults BatchAA(*AA); 2274 AliasSetTracker AST(BatchAA); 2275 2276 auto IsPotentiallyPromotable = [L](const Instruction *I) { 2277 if (const auto *SI = dyn_cast<StoreInst>(I)) 2278 return L->isLoopInvariant(SI->getPointerOperand()); 2279 if (const auto *LI = dyn_cast<LoadInst>(I)) 2280 return L->isLoopInvariant(LI->getPointerOperand()); 2281 return false; 2282 }; 2283 2284 // Populate AST with potentially promotable accesses. 2285 SmallPtrSet<Value *, 16> AttemptingPromotion; 2286 foreachMemoryAccess(MSSA, L, [&](Instruction *I) { 2287 if (IsPotentiallyPromotable(I)) { 2288 AttemptingPromotion.insert(I); 2289 AST.add(I); 2290 } 2291 }); 2292 2293 // We're only interested in must-alias sets that contain a mod. 2294 SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets; 2295 for (AliasSet &AS : AST) 2296 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias()) 2297 Sets.push_back({&AS, false}); 2298 2299 if (Sets.empty()) 2300 return {}; // Nothing to promote... 2301 2302 // Discard any sets for which there is an aliasing non-promotable access. 2303 foreachMemoryAccess(MSSA, L, [&](Instruction *I) { 2304 if (AttemptingPromotion.contains(I)) 2305 return; 2306 2307 llvm::erase_if(Sets, [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) { 2308 ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA); 2309 // Cannot promote if there are writes outside the set. 2310 if (isModSet(MR)) 2311 return true; 2312 if (isRefSet(MR)) { 2313 // Remember reads outside the set. 2314 Pair.setInt(true); 2315 // If this is a mod-only set and there are reads outside the set, 2316 // we will not be able to promote, so bail out early. 2317 return !Pair.getPointer()->isRef(); 2318 } 2319 return false; 2320 }); 2321 }); 2322 2323 SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result; 2324 for (auto [Set, HasReadsOutsideSet] : Sets) { 2325 SmallSetVector<Value *, 8> PointerMustAliases; 2326 for (const auto &MemLoc : *Set) 2327 PointerMustAliases.insert(const_cast<Value *>(MemLoc.Ptr)); 2328 Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet); 2329 } 2330 2331 return Result; 2332 } 2333 2334 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, 2335 Loop *CurLoop, Instruction &I, 2336 SinkAndHoistLICMFlags &Flags, 2337 bool InvariantGroup) { 2338 // For hoisting, use the walker to determine safety 2339 if (!Flags.getIsSink()) { 2340 // If hoisting an invariant group, we only need to check that there 2341 // is no store to the loaded pointer between the start of the loop, 2342 // and the load (since all values must be the same). 2343 2344 // This can be checked in two conditions: 2345 // 1) if the memoryaccess is outside the loop 2346 // 2) the earliest access is at the loop header, 2347 // if the memory loaded is the phi node 2348 2349 BatchAAResults BAA(MSSA->getAA()); 2350 MemoryAccess *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, MU); 2351 return !MSSA->isLiveOnEntryDef(Source) && 2352 CurLoop->contains(Source->getBlock()) && 2353 !(InvariantGroup && Source->getBlock() == CurLoop->getHeader() && isa<MemoryPhi>(Source)); 2354 } 2355 2356 // For sinking, we'd need to check all Defs below this use. The getClobbering 2357 // call will look on the backedge of the loop, but will check aliasing with 2358 // the instructions on the previous iteration. 2359 // For example: 2360 // for (i ... ) 2361 // load a[i] ( Use (LoE) 2362 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. 2363 // i++; 2364 // The load sees no clobbering inside the loop, as the backedge alias check 2365 // does phi translation, and will check aliasing against store a[i-1]. 2366 // However sinking the load outside the loop, below the store is incorrect. 2367 2368 // For now, only sink if there are no Defs in the loop, and the existing ones 2369 // precede the use and are in the same block. 2370 // FIXME: Increase precision: Safe to sink if Use post dominates the Def; 2371 // needs PostDominatorTreeAnalysis. 2372 // FIXME: More precise: no Defs that alias this Use. 2373 if (Flags.tooManyMemoryAccesses()) 2374 return true; 2375 for (auto *BB : CurLoop->getBlocks()) 2376 if (pointerInvalidatedByBlock(*BB, *MSSA, *MU)) 2377 return true; 2378 // When sinking, the source block may not be part of the loop so check it. 2379 if (!CurLoop->contains(&I)) 2380 return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU); 2381 2382 return false; 2383 } 2384 2385 bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) { 2386 if (const auto *Accesses = MSSA.getBlockDefs(&BB)) 2387 for (const auto &MA : *Accesses) 2388 if (const auto *MD = dyn_cast<MemoryDef>(&MA)) 2389 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU)) 2390 return true; 2391 return false; 2392 } 2393 2394 /// Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A < 2395 /// min(INV_1, INV_2)), if INV_1 and INV_2 are both loop invariants and their 2396 /// minimun can be computed outside of loop, and X is not a loop-invariant. 2397 static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, 2398 MemorySSAUpdater &MSSAU) { 2399 bool Inverse = false; 2400 using namespace PatternMatch; 2401 Value *Cond1, *Cond2; 2402 if (match(&I, m_LogicalOr(m_Value(Cond1), m_Value(Cond2)))) { 2403 Inverse = true; 2404 } else if (match(&I, m_LogicalAnd(m_Value(Cond1), m_Value(Cond2)))) { 2405 // Do nothing 2406 } else 2407 return false; 2408 2409 auto MatchICmpAgainstInvariant = [&](Value *C, ICmpInst::Predicate &P, 2410 Value *&LHS, Value *&RHS) { 2411 if (!match(C, m_OneUse(m_ICmp(P, m_Value(LHS), m_Value(RHS))))) 2412 return false; 2413 if (!LHS->getType()->isIntegerTy()) 2414 return false; 2415 if (!ICmpInst::isRelational(P)) 2416 return false; 2417 if (L.isLoopInvariant(LHS)) { 2418 std::swap(LHS, RHS); 2419 P = ICmpInst::getSwappedPredicate(P); 2420 } 2421 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS)) 2422 return false; 2423 if (Inverse) 2424 P = ICmpInst::getInversePredicate(P); 2425 return true; 2426 }; 2427 ICmpInst::Predicate P1, P2; 2428 Value *LHS1, *LHS2, *RHS1, *RHS2; 2429 if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) || 2430 !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2)) 2431 return false; 2432 if (P1 != P2 || LHS1 != LHS2) 2433 return false; 2434 2435 // Everything is fine, we can do the transform. 2436 bool UseMin = ICmpInst::isLT(P1) || ICmpInst::isLE(P1); 2437 assert( 2438 (UseMin || ICmpInst::isGT(P1) || ICmpInst::isGE(P1)) && 2439 "Relational predicate is either less (or equal) or greater (or equal)!"); 2440 Intrinsic::ID id = ICmpInst::isSigned(P1) 2441 ? (UseMin ? Intrinsic::smin : Intrinsic::smax) 2442 : (UseMin ? Intrinsic::umin : Intrinsic::umax); 2443 auto *Preheader = L.getLoopPreheader(); 2444 assert(Preheader && "Loop is not in simplify form?"); 2445 IRBuilder<> Builder(Preheader->getTerminator()); 2446 // We are about to create a new guaranteed use for RHS2 which might not exist 2447 // before (if it was a non-taken input of logical and/or instruction). If it 2448 // was poison, we need to freeze it. Note that no new use for LHS and RHS1 are 2449 // introduced, so they don't need this. 2450 if (isa<SelectInst>(I)) 2451 RHS2 = Builder.CreateFreeze(RHS2, RHS2->getName() + ".fr"); 2452 Value *NewRHS = Builder.CreateBinaryIntrinsic( 2453 id, RHS1, RHS2, nullptr, StringRef("invariant.") + 2454 (ICmpInst::isSigned(P1) ? "s" : "u") + 2455 (UseMin ? "min" : "max")); 2456 Builder.SetInsertPoint(&I); 2457 ICmpInst::Predicate P = P1; 2458 if (Inverse) 2459 P = ICmpInst::getInversePredicate(P); 2460 Value *NewCond = Builder.CreateICmp(P, LHS1, NewRHS); 2461 NewCond->takeName(&I); 2462 I.replaceAllUsesWith(NewCond); 2463 eraseInstruction(I, SafetyInfo, MSSAU); 2464 eraseInstruction(*cast<Instruction>(Cond1), SafetyInfo, MSSAU); 2465 eraseInstruction(*cast<Instruction>(Cond2), SafetyInfo, MSSAU); 2466 return true; 2467 } 2468 2469 /// Reassociate gep (gep ptr, idx1), idx2 to gep (gep ptr, idx2), idx1 if 2470 /// this allows hoisting the inner GEP. 2471 static bool hoistGEP(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, 2472 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2473 DominatorTree *DT) { 2474 auto *GEP = dyn_cast<GetElementPtrInst>(&I); 2475 if (!GEP) 2476 return false; 2477 2478 auto *Src = dyn_cast<GetElementPtrInst>(GEP->getPointerOperand()); 2479 if (!Src || !Src->hasOneUse() || !L.contains(Src)) 2480 return false; 2481 2482 Value *SrcPtr = Src->getPointerOperand(); 2483 auto LoopInvariant = [&](Value *V) { return L.isLoopInvariant(V); }; 2484 if (!L.isLoopInvariant(SrcPtr) || !all_of(GEP->indices(), LoopInvariant)) 2485 return false; 2486 2487 // This can only happen if !AllowSpeculation, otherwise this would already be 2488 // handled. 2489 // FIXME: Should we respect AllowSpeculation in these reassociation folds? 2490 // The flag exists to prevent metadata dropping, which is not relevant here. 2491 if (all_of(Src->indices(), LoopInvariant)) 2492 return false; 2493 2494 // The swapped GEPs are inbounds if both original GEPs are inbounds 2495 // and the sign of the offsets is the same. For simplicity, only 2496 // handle both offsets being non-negative. 2497 const DataLayout &DL = GEP->getModule()->getDataLayout(); 2498 auto NonNegative = [&](Value *V) { 2499 return isKnownNonNegative(V, SimplifyQuery(DL, DT, AC, GEP)); 2500 }; 2501 bool IsInBounds = Src->isInBounds() && GEP->isInBounds() && 2502 all_of(Src->indices(), NonNegative) && 2503 all_of(GEP->indices(), NonNegative); 2504 2505 BasicBlock *Preheader = L.getLoopPreheader(); 2506 IRBuilder<> Builder(Preheader->getTerminator()); 2507 Value *NewSrc = Builder.CreateGEP(GEP->getSourceElementType(), SrcPtr, 2508 SmallVector<Value *>(GEP->indices()), 2509 "invariant.gep", IsInBounds); 2510 Builder.SetInsertPoint(GEP); 2511 Value *NewGEP = Builder.CreateGEP(Src->getSourceElementType(), NewSrc, 2512 SmallVector<Value *>(Src->indices()), "gep", 2513 IsInBounds); 2514 GEP->replaceAllUsesWith(NewGEP); 2515 eraseInstruction(*GEP, SafetyInfo, MSSAU); 2516 eraseInstruction(*Src, SafetyInfo, MSSAU); 2517 return true; 2518 } 2519 2520 /// Try to turn things like "LV + C1 < C2" into "LV < C2 - C1". Here 2521 /// C1 and C2 are loop invariants and LV is a loop-variant. 2522 static bool hoistAdd(ICmpInst::Predicate Pred, Value *VariantLHS, 2523 Value *InvariantRHS, ICmpInst &ICmp, Loop &L, 2524 ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, 2525 AssumptionCache *AC, DominatorTree *DT) { 2526 assert(ICmpInst::isSigned(Pred) && "Not supported yet!"); 2527 assert(!L.isLoopInvariant(VariantLHS) && "Precondition."); 2528 assert(L.isLoopInvariant(InvariantRHS) && "Precondition."); 2529 2530 // Try to represent VariantLHS as sum of invariant and variant operands. 2531 using namespace PatternMatch; 2532 Value *VariantOp, *InvariantOp; 2533 if (!match(VariantLHS, m_NSWAdd(m_Value(VariantOp), m_Value(InvariantOp)))) 2534 return false; 2535 2536 // LHS itself is a loop-variant, try to represent it in the form: 2537 // "VariantOp + InvariantOp". If it is possible, then we can reassociate. 2538 if (L.isLoopInvariant(VariantOp)) 2539 std::swap(VariantOp, InvariantOp); 2540 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) 2541 return false; 2542 2543 // In order to turn "LV + C1 < C2" into "LV < C2 - C1", we need to be able to 2544 // freely move values from left side of inequality to right side (just as in 2545 // normal linear arithmetics). Overflows make things much more complicated, so 2546 // we want to avoid this. 2547 auto &DL = L.getHeader()->getModule()->getDataLayout(); 2548 bool ProvedNoOverflowAfterReassociate = 2549 computeOverflowForSignedSub(InvariantRHS, InvariantOp, 2550 SimplifyQuery(DL, DT, AC, &ICmp)) == 2551 llvm::OverflowResult::NeverOverflows; 2552 if (!ProvedNoOverflowAfterReassociate) 2553 return false; 2554 auto *Preheader = L.getLoopPreheader(); 2555 assert(Preheader && "Loop is not in simplify form?"); 2556 IRBuilder<> Builder(Preheader->getTerminator()); 2557 Value *NewCmpOp = Builder.CreateSub(InvariantRHS, InvariantOp, "invariant.op", 2558 /*HasNUW*/ false, /*HasNSW*/ true); 2559 ICmp.setPredicate(Pred); 2560 ICmp.setOperand(0, VariantOp); 2561 ICmp.setOperand(1, NewCmpOp); 2562 eraseInstruction(cast<Instruction>(*VariantLHS), SafetyInfo, MSSAU); 2563 return true; 2564 } 2565 2566 /// Try to reassociate and hoist the following two patterns: 2567 /// LV - C1 < C2 --> LV < C1 + C2, 2568 /// C1 - LV < C2 --> LV > C1 - C2. 2569 static bool hoistSub(ICmpInst::Predicate Pred, Value *VariantLHS, 2570 Value *InvariantRHS, ICmpInst &ICmp, Loop &L, 2571 ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, 2572 AssumptionCache *AC, DominatorTree *DT) { 2573 assert(ICmpInst::isSigned(Pred) && "Not supported yet!"); 2574 assert(!L.isLoopInvariant(VariantLHS) && "Precondition."); 2575 assert(L.isLoopInvariant(InvariantRHS) && "Precondition."); 2576 2577 // Try to represent VariantLHS as sum of invariant and variant operands. 2578 using namespace PatternMatch; 2579 Value *VariantOp, *InvariantOp; 2580 if (!match(VariantLHS, m_NSWSub(m_Value(VariantOp), m_Value(InvariantOp)))) 2581 return false; 2582 2583 bool VariantSubtracted = false; 2584 // LHS itself is a loop-variant, try to represent it in the form: 2585 // "VariantOp + InvariantOp". If it is possible, then we can reassociate. If 2586 // the variant operand goes with minus, we use a slightly different scheme. 2587 if (L.isLoopInvariant(VariantOp)) { 2588 std::swap(VariantOp, InvariantOp); 2589 VariantSubtracted = true; 2590 Pred = ICmpInst::getSwappedPredicate(Pred); 2591 } 2592 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) 2593 return false; 2594 2595 // In order to turn "LV - C1 < C2" into "LV < C2 + C1", we need to be able to 2596 // freely move values from left side of inequality to right side (just as in 2597 // normal linear arithmetics). Overflows make things much more complicated, so 2598 // we want to avoid this. Likewise, for "C1 - LV < C2" we need to prove that 2599 // "C1 - C2" does not overflow. 2600 auto &DL = L.getHeader()->getModule()->getDataLayout(); 2601 SimplifyQuery SQ(DL, DT, AC, &ICmp); 2602 if (VariantSubtracted) { 2603 // C1 - LV < C2 --> LV > C1 - C2 2604 if (computeOverflowForSignedSub(InvariantOp, InvariantRHS, SQ) != 2605 llvm::OverflowResult::NeverOverflows) 2606 return false; 2607 } else { 2608 // LV - C1 < C2 --> LV < C1 + C2 2609 if (computeOverflowForSignedAdd(InvariantOp, InvariantRHS, SQ) != 2610 llvm::OverflowResult::NeverOverflows) 2611 return false; 2612 } 2613 auto *Preheader = L.getLoopPreheader(); 2614 assert(Preheader && "Loop is not in simplify form?"); 2615 IRBuilder<> Builder(Preheader->getTerminator()); 2616 Value *NewCmpOp = 2617 VariantSubtracted 2618 ? Builder.CreateSub(InvariantOp, InvariantRHS, "invariant.op", 2619 /*HasNUW*/ false, /*HasNSW*/ true) 2620 : Builder.CreateAdd(InvariantOp, InvariantRHS, "invariant.op", 2621 /*HasNUW*/ false, /*HasNSW*/ true); 2622 ICmp.setPredicate(Pred); 2623 ICmp.setOperand(0, VariantOp); 2624 ICmp.setOperand(1, NewCmpOp); 2625 eraseInstruction(cast<Instruction>(*VariantLHS), SafetyInfo, MSSAU); 2626 return true; 2627 } 2628 2629 /// Reassociate and hoist add/sub expressions. 2630 static bool hoistAddSub(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, 2631 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2632 DominatorTree *DT) { 2633 using namespace PatternMatch; 2634 ICmpInst::Predicate Pred; 2635 Value *LHS, *RHS; 2636 if (!match(&I, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) 2637 return false; 2638 2639 // TODO: Support unsigned predicates? 2640 if (!ICmpInst::isSigned(Pred)) 2641 return false; 2642 2643 // Put variant operand to LHS position. 2644 if (L.isLoopInvariant(LHS)) { 2645 std::swap(LHS, RHS); 2646 Pred = ICmpInst::getSwappedPredicate(Pred); 2647 } 2648 // We want to delete the initial operation after reassociation, so only do it 2649 // if it has no other uses. 2650 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS) || !LHS->hasOneUse()) 2651 return false; 2652 2653 // TODO: We could go with smarter context, taking common dominator of all I's 2654 // users instead of I itself. 2655 if (hoistAdd(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT)) 2656 return true; 2657 2658 if (hoistSub(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT)) 2659 return true; 2660 2661 return false; 2662 } 2663 2664 /// Try to reassociate expressions like ((A1 * B1) + (A2 * B2) + ...) * C where 2665 /// A1, A2, ... and C are loop invariants into expressions like 2666 /// ((A1 * C * B1) + (A2 * C * B2) + ...) and hoist the (A1 * C), (A2 * C), ... 2667 /// invariant expressions. This functions returns true only if any hoisting has 2668 /// actually occured. 2669 static bool hoistFPAssociation(Instruction &I, Loop &L, 2670 ICFLoopSafetyInfo &SafetyInfo, 2671 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2672 DominatorTree *DT) { 2673 using namespace PatternMatch; 2674 Value *VariantOp = nullptr, *InvariantOp = nullptr; 2675 2676 if (!match(&I, m_FMul(m_Value(VariantOp), m_Value(InvariantOp))) || 2677 !I.hasAllowReassoc() || !I.hasNoSignedZeros()) 2678 return false; 2679 if (L.isLoopInvariant(VariantOp)) 2680 std::swap(VariantOp, InvariantOp); 2681 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) 2682 return false; 2683 Value *Factor = InvariantOp; 2684 2685 // First, we need to make sure we should do the transformation. 2686 SmallVector<Use *> Changes; 2687 SmallVector<BinaryOperator *> Worklist; 2688 if (BinaryOperator *VariantBinOp = dyn_cast<BinaryOperator>(VariantOp)) 2689 Worklist.push_back(VariantBinOp); 2690 while (!Worklist.empty()) { 2691 BinaryOperator *BO = Worklist.pop_back_val(); 2692 if (!BO->hasOneUse() || !BO->hasAllowReassoc() || !BO->hasNoSignedZeros()) 2693 return false; 2694 BinaryOperator *Op0, *Op1; 2695 if (match(BO, m_FAdd(m_BinOp(Op0), m_BinOp(Op1)))) { 2696 Worklist.push_back(Op0); 2697 Worklist.push_back(Op1); 2698 continue; 2699 } 2700 if (BO->getOpcode() != Instruction::FMul || L.isLoopInvariant(BO)) 2701 return false; 2702 Use &U0 = BO->getOperandUse(0); 2703 Use &U1 = BO->getOperandUse(1); 2704 if (L.isLoopInvariant(U0)) 2705 Changes.push_back(&U0); 2706 else if (L.isLoopInvariant(U1)) 2707 Changes.push_back(&U1); 2708 else 2709 return false; 2710 if (Changes.size() > FPAssociationUpperLimit) 2711 return false; 2712 } 2713 if (Changes.empty()) 2714 return false; 2715 2716 // We know we should do it so let's do the transformation. 2717 auto *Preheader = L.getLoopPreheader(); 2718 assert(Preheader && "Loop is not in simplify form?"); 2719 IRBuilder<> Builder(Preheader->getTerminator()); 2720 for (auto *U : Changes) { 2721 assert(L.isLoopInvariant(U->get())); 2722 Instruction *Ins = cast<Instruction>(U->getUser()); 2723 U->set(Builder.CreateFMulFMF(U->get(), Factor, Ins, "factor.op.fmul")); 2724 } 2725 I.replaceAllUsesWith(VariantOp); 2726 eraseInstruction(I, SafetyInfo, MSSAU); 2727 return true; 2728 } 2729 2730 static bool hoistArithmetics(Instruction &I, Loop &L, 2731 ICFLoopSafetyInfo &SafetyInfo, 2732 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2733 DominatorTree *DT) { 2734 // Optimize complex patterns, such as (x < INV1 && x < INV2), turning them 2735 // into (x < min(INV1, INV2)), and hoisting the invariant part of this 2736 // expression out of the loop. 2737 if (hoistMinMax(I, L, SafetyInfo, MSSAU)) { 2738 ++NumHoisted; 2739 ++NumMinMaxHoisted; 2740 return true; 2741 } 2742 2743 // Try to hoist GEPs by reassociation. 2744 if (hoistGEP(I, L, SafetyInfo, MSSAU, AC, DT)) { 2745 ++NumHoisted; 2746 ++NumGEPsHoisted; 2747 return true; 2748 } 2749 2750 // Try to hoist add/sub's by reassociation. 2751 if (hoistAddSub(I, L, SafetyInfo, MSSAU, AC, DT)) { 2752 ++NumHoisted; 2753 ++NumAddSubHoisted; 2754 return true; 2755 } 2756 2757 if (hoistFPAssociation(I, L, SafetyInfo, MSSAU, AC, DT)) { 2758 ++NumHoisted; 2759 ++NumFPAssociationsHoisted; 2760 return true; 2761 } 2762 2763 return false; 2764 } 2765 2766 /// Little predicate that returns true if the specified basic block is in 2767 /// a subloop of the current one, not the current one itself. 2768 /// 2769 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { 2770 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); 2771 return LI->getLoopFor(BB) != CurLoop; 2772 } 2773