1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion, attempting to remove as much 10 // code from the body of a loop as possible. It does this by either hoisting 11 // code into the preheader block, or by sinking code to the exit blocks if it is 12 // safe. This pass also promotes must-aliased memory locations in the loop to 13 // live in registers, thus hoisting and sinking "invariant" loads and stores. 14 // 15 // Hoisting operations out of loops is a canonicalization transform. It 16 // enables and simplifies subsequent optimizations in the middle-end. 17 // Rematerialization of hoisted instructions to reduce register pressure is the 18 // responsibility of the back-end, which has more accurate information about 19 // register pressure and also handles other optimizations than LICM that 20 // increase live-ranges. 21 // 22 // This pass uses alias analysis for two purposes: 23 // 24 // 1. Moving loop invariant loads and calls out of loops. If we can determine 25 // that a load or call inside of a loop never aliases anything stored to, 26 // we can hoist it or sink it like any other instruction. 27 // 2. Scalar Promotion of Memory - If there is a store instruction inside of 28 // the loop, we try to move the store to happen AFTER the loop instead of 29 // inside of the loop. This can only happen if a few conditions are true: 30 // A. The pointer stored through is loop invariant 31 // B. There are no stores or loads in the loop which _may_ alias the 32 // pointer. There are no calls in the loop which mod/ref the pointer. 33 // If these conditions are true, we can promote the loads and stores in the 34 // loop of the pointer to use a temporary alloca'd variable. We then use 35 // the SSAUpdater to construct the appropriate SSA form for the value. 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LICM.h" 40 #include "llvm/ADT/PriorityWorklist.h" 41 #include "llvm/ADT/SetOperations.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/AliasSetTracker.h" 45 #include "llvm/Analysis/AssumptionCache.h" 46 #include "llvm/Analysis/CaptureTracking.h" 47 #include "llvm/Analysis/ConstantFolding.h" 48 #include "llvm/Analysis/GuardUtils.h" 49 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 50 #include "llvm/Analysis/Loads.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/LoopIterator.h" 53 #include "llvm/Analysis/LoopNestAnalysis.h" 54 #include "llvm/Analysis/LoopPass.h" 55 #include "llvm/Analysis/MemorySSA.h" 56 #include "llvm/Analysis/MemorySSAUpdater.h" 57 #include "llvm/Analysis/MustExecute.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ScalarEvolution.h" 60 #include "llvm/Analysis/TargetLibraryInfo.h" 61 #include "llvm/Analysis/TargetTransformInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/CFG.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/LLVMContext.h" 72 #include "llvm/IR/Metadata.h" 73 #include "llvm/IR/PatternMatch.h" 74 #include "llvm/IR/PredIteratorCache.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Target/TargetOptions.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/LoopUtils.h" 85 #include "llvm/Transforms/Utils/SSAUpdater.h" 86 #include <algorithm> 87 #include <utility> 88 using namespace llvm; 89 90 namespace llvm { 91 class LPMUpdater; 92 } // namespace llvm 93 94 #define DEBUG_TYPE "licm" 95 96 STATISTIC(NumCreatedBlocks, "Number of blocks created"); 97 STATISTIC(NumClonedBranches, "Number of branches cloned"); 98 STATISTIC(NumSunk, "Number of instructions sunk out of loop"); 99 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); 100 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); 101 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); 102 STATISTIC(NumPromotionCandidates, "Number of promotion candidates"); 103 STATISTIC(NumLoadPromoted, "Number of load-only promotions"); 104 STATISTIC(NumLoadStorePromoted, "Number of load and store promotions"); 105 106 /// Memory promotion is enabled by default. 107 static cl::opt<bool> 108 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), 109 cl::desc("Disable memory promotion in LICM pass")); 110 111 static cl::opt<bool> ControlFlowHoisting( 112 "licm-control-flow-hoisting", cl::Hidden, cl::init(false), 113 cl::desc("Enable control flow (and PHI) hoisting in LICM")); 114 115 static cl::opt<bool> 116 SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false), 117 cl::desc("Force thread model single in LICM pass")); 118 119 static cl::opt<uint32_t> MaxNumUsesTraversed( 120 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), 121 cl::desc("Max num uses visited for identifying load " 122 "invariance in loop using invariant start (default = 8)")); 123 124 // Experimental option to allow imprecision in LICM in pathological cases, in 125 // exchange for faster compile. This is to be removed if MemorySSA starts to 126 // address the same issue. LICM calls MemorySSAWalker's 127 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect 128 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, 129 // which may not be precise, since optimizeUses is capped. The result is 130 // correct, but we may not get as "far up" as possible to get which access is 131 // clobbering the one queried. 132 cl::opt<unsigned> llvm::SetLicmMssaOptCap( 133 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, 134 cl::desc("Enable imprecision in LICM in pathological cases, in exchange " 135 "for faster compile. Caps the MemorySSA clobbering calls.")); 136 137 // Experimentally, memory promotion carries less importance than sinking and 138 // hoisting. Limit when we do promotion when using MemorySSA, in order to save 139 // compile time. 140 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( 141 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, 142 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " 143 "effect. When MSSA in LICM is enabled, then this is the maximum " 144 "number of accesses allowed to be present in a loop in order to " 145 "enable memory promotion.")); 146 147 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); 148 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 149 const LoopSafetyInfo *SafetyInfo, 150 TargetTransformInfo *TTI, bool &FreeInLoop, 151 bool LoopNestMode); 152 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 153 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 154 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 155 OptimizationRemarkEmitter *ORE); 156 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 157 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 158 MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE); 159 static bool isSafeToExecuteUnconditionally( 160 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, 161 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, 162 OptimizationRemarkEmitter *ORE, const Instruction *CtxI, 163 AssumptionCache *AC, bool AllowSpeculation); 164 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, 165 Loop *CurLoop, Instruction &I, 166 SinkAndHoistLICMFlags &Flags); 167 static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, 168 MemoryUse &MU); 169 static Instruction *cloneInstructionInExitBlock( 170 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 171 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU); 172 173 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 174 MemorySSAUpdater &MSSAU); 175 176 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 177 ICFLoopSafetyInfo &SafetyInfo, 178 MemorySSAUpdater &MSSAU, ScalarEvolution *SE); 179 180 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, 181 function_ref<void(Instruction *)> Fn); 182 using PointersAndHasReadsOutsideSet = 183 std::pair<SmallSetVector<Value *, 8>, bool>; 184 static SmallVector<PointersAndHasReadsOutsideSet, 0> 185 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L); 186 187 namespace { 188 struct LoopInvariantCodeMotion { 189 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, 190 AssumptionCache *AC, TargetLibraryInfo *TLI, 191 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, 192 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false); 193 194 LoopInvariantCodeMotion(unsigned LicmMssaOptCap, 195 unsigned LicmMssaNoAccForPromotionCap, 196 bool LicmAllowSpeculation) 197 : LicmMssaOptCap(LicmMssaOptCap), 198 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), 199 LicmAllowSpeculation(LicmAllowSpeculation) {} 200 201 private: 202 unsigned LicmMssaOptCap; 203 unsigned LicmMssaNoAccForPromotionCap; 204 bool LicmAllowSpeculation; 205 }; 206 207 struct LegacyLICMPass : public LoopPass { 208 static char ID; // Pass identification, replacement for typeid 209 LegacyLICMPass( 210 unsigned LicmMssaOptCap = SetLicmMssaOptCap, 211 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap, 212 bool LicmAllowSpeculation = true) 213 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 214 LicmAllowSpeculation) { 215 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); 216 } 217 218 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 219 if (skipLoop(L)) 220 return false; 221 222 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block " 223 << L->getHeader()->getNameOrAsOperand() << "\n"); 224 225 Function *F = L->getHeader()->getParent(); 226 227 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 228 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 229 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 230 // pass. Function analyses need to be preserved across loop transformations 231 // but ORE cannot be preserved (see comment before the pass definition). 232 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 233 return LICM.runOnLoop( 234 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(), 235 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 236 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 237 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F), 238 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*F), 239 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*F), 240 SE ? &SE->getSE() : nullptr, MSSA, &ORE); 241 } 242 243 /// This transformation requires natural loop information & requires that 244 /// loop preheaders be inserted into the CFG... 245 /// 246 void getAnalysisUsage(AnalysisUsage &AU) const override { 247 AU.addPreserved<DominatorTreeWrapperPass>(); 248 AU.addPreserved<LoopInfoWrapperPass>(); 249 AU.addRequired<TargetLibraryInfoWrapperPass>(); 250 AU.addRequired<MemorySSAWrapperPass>(); 251 AU.addPreserved<MemorySSAWrapperPass>(); 252 AU.addRequired<TargetTransformInfoWrapperPass>(); 253 AU.addRequired<AssumptionCacheTracker>(); 254 getLoopAnalysisUsage(AU); 255 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 256 AU.addPreserved<LazyBlockFrequencyInfoPass>(); 257 AU.addPreserved<LazyBranchProbabilityInfoPass>(); 258 } 259 260 private: 261 LoopInvariantCodeMotion LICM; 262 }; 263 } // namespace 264 265 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, 266 LoopStandardAnalysisResults &AR, LPMUpdater &) { 267 if (!AR.MSSA) 268 report_fatal_error("LICM requires MemorySSA (loop-mssa)", 269 /*GenCrashDiag*/false); 270 271 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 272 // pass. Function analyses need to be preserved across loop transformations 273 // but ORE cannot be preserved (see comment before the pass definition). 274 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 275 276 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, 277 Opts.AllowSpeculation); 278 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI, 279 &AR.SE, AR.MSSA, &ORE)) 280 return PreservedAnalyses::all(); 281 282 auto PA = getLoopPassPreservedAnalyses(); 283 284 PA.preserve<DominatorTreeAnalysis>(); 285 PA.preserve<LoopAnalysis>(); 286 PA.preserve<MemorySSAAnalysis>(); 287 288 return PA; 289 } 290 291 void LICMPass::printPipeline( 292 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 293 static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline( 294 OS, MapClassName2PassName); 295 296 OS << "<"; 297 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; 298 OS << ">"; 299 } 300 301 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM, 302 LoopStandardAnalysisResults &AR, 303 LPMUpdater &) { 304 if (!AR.MSSA) 305 report_fatal_error("LNICM requires MemorySSA (loop-mssa)", 306 /*GenCrashDiag*/false); 307 308 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 309 // pass. Function analyses need to be preserved across loop transformations 310 // but ORE cannot be preserved (see comment before the pass definition). 311 OptimizationRemarkEmitter ORE(LN.getParent()); 312 313 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, 314 Opts.AllowSpeculation); 315 316 Loop &OutermostLoop = LN.getOutermostLoop(); 317 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, &AR.AC, 318 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true); 319 320 if (!Changed) 321 return PreservedAnalyses::all(); 322 323 auto PA = getLoopPassPreservedAnalyses(); 324 325 PA.preserve<DominatorTreeAnalysis>(); 326 PA.preserve<LoopAnalysis>(); 327 PA.preserve<MemorySSAAnalysis>(); 328 329 return PA; 330 } 331 332 void LNICMPass::printPipeline( 333 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 334 static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline( 335 OS, MapClassName2PassName); 336 337 OS << "<"; 338 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; 339 OS << ">"; 340 } 341 342 char LegacyLICMPass::ID = 0; 343 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", 344 false, false) 345 INITIALIZE_PASS_DEPENDENCY(LoopPass) 346 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 347 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 348 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 349 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) 350 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, 351 false) 352 353 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } 354 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap, 355 unsigned LicmMssaNoAccForPromotionCap, 356 bool LicmAllowSpeculation) { 357 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 358 LicmAllowSpeculation); 359 } 360 361 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L, 362 MemorySSA *MSSA) 363 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, 364 IsSink, L, MSSA) {} 365 366 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( 367 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, 368 Loop *L, MemorySSA *MSSA) 369 : LicmMssaOptCap(LicmMssaOptCap), 370 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), 371 IsSink(IsSink) { 372 assert(((L != nullptr) == (MSSA != nullptr)) && 373 "Unexpected values for SinkAndHoistLICMFlags"); 374 if (!MSSA) 375 return; 376 377 unsigned AccessCapCount = 0; 378 for (auto *BB : L->getBlocks()) 379 if (const auto *Accesses = MSSA->getBlockAccesses(BB)) 380 for (const auto &MA : *Accesses) { 381 (void)MA; 382 ++AccessCapCount; 383 if (AccessCapCount > LicmMssaNoAccForPromotionCap) { 384 NoOfMemAccTooLarge = true; 385 return; 386 } 387 } 388 } 389 390 /// Hoist expressions out of the specified loop. Note, alias info for inner 391 /// loop is not preserved so it is not a good idea to run LICM multiple 392 /// times on one loop. 393 bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, 394 DominatorTree *DT, AssumptionCache *AC, 395 TargetLibraryInfo *TLI, 396 TargetTransformInfo *TTI, 397 ScalarEvolution *SE, MemorySSA *MSSA, 398 OptimizationRemarkEmitter *ORE, 399 bool LoopNestMode) { 400 bool Changed = false; 401 402 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); 403 MSSA->ensureOptimizedUses(); 404 405 // If this loop has metadata indicating that LICM is not to be performed then 406 // just exit. 407 if (hasDisableLICMTransformsHint(L)) { 408 return false; 409 } 410 411 // Don't sink stores from loops with coroutine suspend instructions. 412 // LICM would sink instructions into the default destination of 413 // the coroutine switch. The default destination of the switch is to 414 // handle the case where the coroutine is suspended, by which point the 415 // coroutine frame may have been destroyed. No instruction can be sunk there. 416 // FIXME: This would unfortunately hurt the performance of coroutines, however 417 // there is currently no general solution for this. Similar issues could also 418 // potentially happen in other passes where instructions are being moved 419 // across that edge. 420 bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) { 421 return llvm::any_of(*BB, [](Instruction &I) { 422 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 423 return II && II->getIntrinsicID() == Intrinsic::coro_suspend; 424 }); 425 }); 426 427 MemorySSAUpdater MSSAU(MSSA); 428 SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 429 /*IsSink=*/true, L, MSSA); 430 431 // Get the preheader block to move instructions into... 432 BasicBlock *Preheader = L->getLoopPreheader(); 433 434 // Compute loop safety information. 435 ICFLoopSafetyInfo SafetyInfo; 436 SafetyInfo.computeLoopSafetyInfo(L); 437 438 // We want to visit all of the instructions in this loop... that are not parts 439 // of our subloops (they have already had their invariants hoisted out of 440 // their loop, into this loop, so there is no need to process the BODIES of 441 // the subloops). 442 // 443 // Traverse the body of the loop in depth first order on the dominator tree so 444 // that we are guaranteed to see definitions before we see uses. This allows 445 // us to sink instructions in one pass, without iteration. After sinking 446 // instructions, we perform another pass to hoist them out of the loop. 447 if (L->hasDedicatedExits()) 448 Changed |= 449 LoopNestMode 450 ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, DT, 451 TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE) 452 : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 453 MSSAU, &SafetyInfo, Flags, ORE); 454 Flags.setIsSink(false); 455 if (Preheader) 456 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, AC, TLI, L, 457 MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode, 458 LicmAllowSpeculation); 459 460 // Now that all loop invariants have been removed from the loop, promote any 461 // memory references to scalars that we can. 462 // Don't sink stores from loops without dedicated block exits. Exits 463 // containing indirect branches are not transformed by loop simplify, 464 // make sure we catch that. An additional load may be generated in the 465 // preheader for SSA updater, so also avoid sinking when no preheader 466 // is available. 467 if (!DisablePromotion && Preheader && L->hasDedicatedExits() && 468 !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) { 469 // Figure out the loop exits and their insertion points 470 SmallVector<BasicBlock *, 8> ExitBlocks; 471 L->getUniqueExitBlocks(ExitBlocks); 472 473 // We can't insert into a catchswitch. 474 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { 475 return isa<CatchSwitchInst>(Exit->getTerminator()); 476 }); 477 478 if (!HasCatchSwitch) { 479 SmallVector<Instruction *, 8> InsertPts; 480 SmallVector<MemoryAccess *, 8> MSSAInsertPts; 481 InsertPts.reserve(ExitBlocks.size()); 482 MSSAInsertPts.reserve(ExitBlocks.size()); 483 for (BasicBlock *ExitBlock : ExitBlocks) { 484 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 485 MSSAInsertPts.push_back(nullptr); 486 } 487 488 PredIteratorCache PIC; 489 490 // Promoting one set of accesses may make the pointers for another set 491 // loop invariant, so run this in a loop. 492 bool Promoted = false; 493 bool LocalPromoted; 494 do { 495 LocalPromoted = false; 496 for (auto [PointerMustAliases, HasReadsOutsideSet] : 497 collectPromotionCandidates(MSSA, AA, L)) { 498 LocalPromoted |= promoteLoopAccessesToScalars( 499 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, 500 DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE, 501 LicmAllowSpeculation, HasReadsOutsideSet); 502 } 503 Promoted |= LocalPromoted; 504 } while (LocalPromoted); 505 506 // Once we have promoted values across the loop body we have to 507 // recursively reform LCSSA as any nested loop may now have values defined 508 // within the loop used in the outer loop. 509 // FIXME: This is really heavy handed. It would be a bit better to use an 510 // SSAUpdater strategy during promotion that was LCSSA aware and reformed 511 // it as it went. 512 if (Promoted) 513 formLCSSARecursively(*L, *DT, LI, SE); 514 515 Changed |= Promoted; 516 } 517 } 518 519 // Check that neither this loop nor its parent have had LCSSA broken. LICM is 520 // specifically moving instructions across the loop boundary and so it is 521 // especially in need of basic functional correctness checking here. 522 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); 523 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && 524 "Parent loop not left in LCSSA form after LICM!"); 525 526 if (VerifyMemorySSA) 527 MSSA->verifyMemorySSA(); 528 529 if (Changed && SE) 530 SE->forgetLoopDispositions(); 531 return Changed; 532 } 533 534 /// Walk the specified region of the CFG (defined by all blocks dominated by 535 /// the specified block, and that are in the current loop) in reverse depth 536 /// first order w.r.t the DominatorTree. This allows us to visit uses before 537 /// definitions, allowing us to sink a loop body in one pass without iteration. 538 /// 539 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 540 DominatorTree *DT, TargetLibraryInfo *TLI, 541 TargetTransformInfo *TTI, Loop *CurLoop, 542 MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, 543 SinkAndHoistLICMFlags &Flags, 544 OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) { 545 546 // Verify inputs. 547 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 548 CurLoop != nullptr && SafetyInfo != nullptr && 549 "Unexpected input to sinkRegion."); 550 551 // We want to visit children before parents. We will enqueue all the parents 552 // before their children in the worklist and process the worklist in reverse 553 // order. 554 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); 555 556 bool Changed = false; 557 for (DomTreeNode *DTN : reverse(Worklist)) { 558 BasicBlock *BB = DTN->getBlock(); 559 // Only need to process the contents of this block if it is not part of a 560 // subloop (which would already have been processed). 561 if (inSubLoop(BB, CurLoop, LI)) 562 continue; 563 564 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { 565 Instruction &I = *--II; 566 567 // The instruction is not used in the loop if it is dead. In this case, 568 // we just delete it instead of sinking it. 569 if (isInstructionTriviallyDead(&I, TLI)) { 570 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); 571 salvageKnowledge(&I); 572 salvageDebugInfo(I); 573 ++II; 574 eraseInstruction(I, *SafetyInfo, MSSAU); 575 Changed = true; 576 continue; 577 } 578 579 // Check to see if we can sink this instruction to the exit blocks 580 // of the loop. We can do this if the all users of the instruction are 581 // outside of the loop. In this case, it doesn't even matter if the 582 // operands of the instruction are loop invariant. 583 // 584 bool FreeInLoop = false; 585 bool LoopNestMode = OutermostLoop != nullptr; 586 if (!I.mayHaveSideEffects() && 587 isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop, 588 SafetyInfo, TTI, FreeInLoop, LoopNestMode) && 589 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) { 590 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { 591 if (!FreeInLoop) { 592 ++II; 593 salvageDebugInfo(I); 594 eraseInstruction(I, *SafetyInfo, MSSAU); 595 } 596 Changed = true; 597 } 598 } 599 } 600 } 601 if (VerifyMemorySSA) 602 MSSAU.getMemorySSA()->verifyMemorySSA(); 603 return Changed; 604 } 605 606 bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 607 DominatorTree *DT, TargetLibraryInfo *TLI, 608 TargetTransformInfo *TTI, Loop *CurLoop, 609 MemorySSAUpdater &MSSAU, 610 ICFLoopSafetyInfo *SafetyInfo, 611 SinkAndHoistLICMFlags &Flags, 612 OptimizationRemarkEmitter *ORE) { 613 614 bool Changed = false; 615 SmallPriorityWorklist<Loop *, 4> Worklist; 616 Worklist.insert(CurLoop); 617 appendLoopsToWorklist(*CurLoop, Worklist); 618 while (!Worklist.empty()) { 619 Loop *L = Worklist.pop_back_val(); 620 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 621 MSSAU, SafetyInfo, Flags, ORE, CurLoop); 622 } 623 return Changed; 624 } 625 626 namespace { 627 // This is a helper class for hoistRegion to make it able to hoist control flow 628 // in order to be able to hoist phis. The way this works is that we initially 629 // start hoisting to the loop preheader, and when we see a loop invariant branch 630 // we make note of this. When we then come to hoist an instruction that's 631 // conditional on such a branch we duplicate the branch and the relevant control 632 // flow, then hoist the instruction into the block corresponding to its original 633 // block in the duplicated control flow. 634 class ControlFlowHoister { 635 private: 636 // Information about the loop we are hoisting from 637 LoopInfo *LI; 638 DominatorTree *DT; 639 Loop *CurLoop; 640 MemorySSAUpdater &MSSAU; 641 642 // A map of blocks in the loop to the block their instructions will be hoisted 643 // to. 644 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; 645 646 // The branches that we can hoist, mapped to the block that marks a 647 // convergence point of their control flow. 648 DenseMap<BranchInst *, BasicBlock *> HoistableBranches; 649 650 public: 651 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, 652 MemorySSAUpdater &MSSAU) 653 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} 654 655 void registerPossiblyHoistableBranch(BranchInst *BI) { 656 // We can only hoist conditional branches with loop invariant operands. 657 if (!ControlFlowHoisting || !BI->isConditional() || 658 !CurLoop->hasLoopInvariantOperands(BI)) 659 return; 660 661 // The branch destinations need to be in the loop, and we don't gain 662 // anything by duplicating conditional branches with duplicate successors, 663 // as it's essentially the same as an unconditional branch. 664 BasicBlock *TrueDest = BI->getSuccessor(0); 665 BasicBlock *FalseDest = BI->getSuccessor(1); 666 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || 667 TrueDest == FalseDest) 668 return; 669 670 // We can hoist BI if one branch destination is the successor of the other, 671 // or both have common successor which we check by seeing if the 672 // intersection of their successors is non-empty. 673 // TODO: This could be expanded to allowing branches where both ends 674 // eventually converge to a single block. 675 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; 676 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); 677 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); 678 BasicBlock *CommonSucc = nullptr; 679 if (TrueDestSucc.count(FalseDest)) { 680 CommonSucc = FalseDest; 681 } else if (FalseDestSucc.count(TrueDest)) { 682 CommonSucc = TrueDest; 683 } else { 684 set_intersect(TrueDestSucc, FalseDestSucc); 685 // If there's one common successor use that. 686 if (TrueDestSucc.size() == 1) 687 CommonSucc = *TrueDestSucc.begin(); 688 // If there's more than one pick whichever appears first in the block list 689 // (we can't use the value returned by TrueDestSucc.begin() as it's 690 // unpredicatable which element gets returned). 691 else if (!TrueDestSucc.empty()) { 692 Function *F = TrueDest->getParent(); 693 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; 694 auto It = llvm::find_if(*F, IsSucc); 695 assert(It != F->end() && "Could not find successor in function"); 696 CommonSucc = &*It; 697 } 698 } 699 // The common successor has to be dominated by the branch, as otherwise 700 // there will be some other path to the successor that will not be 701 // controlled by this branch so any phi we hoist would be controlled by the 702 // wrong condition. This also takes care of avoiding hoisting of loop back 703 // edges. 704 // TODO: In some cases this could be relaxed if the successor is dominated 705 // by another block that's been hoisted and we can guarantee that the 706 // control flow has been replicated exactly. 707 if (CommonSucc && DT->dominates(BI, CommonSucc)) 708 HoistableBranches[BI] = CommonSucc; 709 } 710 711 bool canHoistPHI(PHINode *PN) { 712 // The phi must have loop invariant operands. 713 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) 714 return false; 715 // We can hoist phis if the block they are in is the target of hoistable 716 // branches which cover all of the predecessors of the block. 717 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; 718 BasicBlock *BB = PN->getParent(); 719 for (BasicBlock *PredBB : predecessors(BB)) 720 PredecessorBlocks.insert(PredBB); 721 // If we have less predecessor blocks than predecessors then the phi will 722 // have more than one incoming value for the same block which we can't 723 // handle. 724 // TODO: This could be handled be erasing some of the duplicate incoming 725 // values. 726 if (PredecessorBlocks.size() != pred_size(BB)) 727 return false; 728 for (auto &Pair : HoistableBranches) { 729 if (Pair.second == BB) { 730 // Which blocks are predecessors via this branch depends on if the 731 // branch is triangle-like or diamond-like. 732 if (Pair.first->getSuccessor(0) == BB) { 733 PredecessorBlocks.erase(Pair.first->getParent()); 734 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 735 } else if (Pair.first->getSuccessor(1) == BB) { 736 PredecessorBlocks.erase(Pair.first->getParent()); 737 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 738 } else { 739 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 740 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 741 } 742 } 743 } 744 // PredecessorBlocks will now be empty if for every predecessor of BB we 745 // found a hoistable branch source. 746 return PredecessorBlocks.empty(); 747 } 748 749 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { 750 if (!ControlFlowHoisting) 751 return CurLoop->getLoopPreheader(); 752 // If BB has already been hoisted, return that 753 if (HoistDestinationMap.count(BB)) 754 return HoistDestinationMap[BB]; 755 756 // Check if this block is conditional based on a pending branch 757 auto HasBBAsSuccessor = 758 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { 759 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || 760 Pair.first->getSuccessor(1) == BB); 761 }; 762 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor); 763 764 // If not involved in a pending branch, hoist to preheader 765 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); 766 if (It == HoistableBranches.end()) { 767 LLVM_DEBUG(dbgs() << "LICM using " 768 << InitialPreheader->getNameOrAsOperand() 769 << " as hoist destination for " 770 << BB->getNameOrAsOperand() << "\n"); 771 HoistDestinationMap[BB] = InitialPreheader; 772 return InitialPreheader; 773 } 774 BranchInst *BI = It->first; 775 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == 776 HoistableBranches.end() && 777 "BB is expected to be the target of at most one branch"); 778 779 LLVMContext &C = BB->getContext(); 780 BasicBlock *TrueDest = BI->getSuccessor(0); 781 BasicBlock *FalseDest = BI->getSuccessor(1); 782 BasicBlock *CommonSucc = HoistableBranches[BI]; 783 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); 784 785 // Create hoisted versions of blocks that currently don't have them 786 auto CreateHoistedBlock = [&](BasicBlock *Orig) { 787 if (HoistDestinationMap.count(Orig)) 788 return HoistDestinationMap[Orig]; 789 BasicBlock *New = 790 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); 791 HoistDestinationMap[Orig] = New; 792 DT->addNewBlock(New, HoistTarget); 793 if (CurLoop->getParentLoop()) 794 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); 795 ++NumCreatedBlocks; 796 LLVM_DEBUG(dbgs() << "LICM created " << New->getName() 797 << " as hoist destination for " << Orig->getName() 798 << "\n"); 799 return New; 800 }; 801 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); 802 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); 803 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); 804 805 // Link up these blocks with branches. 806 if (!HoistCommonSucc->getTerminator()) { 807 // The new common successor we've generated will branch to whatever that 808 // hoist target branched to. 809 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); 810 assert(TargetSucc && "Expected hoist target to have a single successor"); 811 HoistCommonSucc->moveBefore(TargetSucc); 812 BranchInst::Create(TargetSucc, HoistCommonSucc); 813 } 814 if (!HoistTrueDest->getTerminator()) { 815 HoistTrueDest->moveBefore(HoistCommonSucc); 816 BranchInst::Create(HoistCommonSucc, HoistTrueDest); 817 } 818 if (!HoistFalseDest->getTerminator()) { 819 HoistFalseDest->moveBefore(HoistCommonSucc); 820 BranchInst::Create(HoistCommonSucc, HoistFalseDest); 821 } 822 823 // If BI is being cloned to what was originally the preheader then 824 // HoistCommonSucc will now be the new preheader. 825 if (HoistTarget == InitialPreheader) { 826 // Phis in the loop header now need to use the new preheader. 827 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); 828 MSSAU.wireOldPredecessorsToNewImmediatePredecessor( 829 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); 830 // The new preheader dominates the loop header. 831 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); 832 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); 833 DT->changeImmediateDominator(HeaderNode, PreheaderNode); 834 // The preheader hoist destination is now the new preheader, with the 835 // exception of the hoist destination of this branch. 836 for (auto &Pair : HoistDestinationMap) 837 if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) 838 Pair.second = HoistCommonSucc; 839 } 840 841 // Now finally clone BI. 842 ReplaceInstWithInst( 843 HoistTarget->getTerminator(), 844 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); 845 ++NumClonedBranches; 846 847 assert(CurLoop->getLoopPreheader() && 848 "Hoisting blocks should not have destroyed preheader"); 849 return HoistDestinationMap[BB]; 850 } 851 }; 852 } // namespace 853 854 /// Walk the specified region of the CFG (defined by all blocks dominated by 855 /// the specified block, and that are in the current loop) in depth first 856 /// order w.r.t the DominatorTree. This allows us to visit definitions before 857 /// uses, allowing us to hoist a loop body in one pass without iteration. 858 /// 859 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 860 DominatorTree *DT, AssumptionCache *AC, 861 TargetLibraryInfo *TLI, Loop *CurLoop, 862 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 863 ICFLoopSafetyInfo *SafetyInfo, 864 SinkAndHoistLICMFlags &Flags, 865 OptimizationRemarkEmitter *ORE, bool LoopNestMode, 866 bool AllowSpeculation) { 867 // Verify inputs. 868 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 869 CurLoop != nullptr && SafetyInfo != nullptr && 870 "Unexpected input to hoistRegion."); 871 872 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); 873 874 // Keep track of instructions that have been hoisted, as they may need to be 875 // re-hoisted if they end up not dominating all of their uses. 876 SmallVector<Instruction *, 16> HoistedInstructions; 877 878 // For PHI hoisting to work we need to hoist blocks before their successors. 879 // We can do this by iterating through the blocks in the loop in reverse 880 // post-order. 881 LoopBlocksRPO Worklist(CurLoop); 882 Worklist.perform(LI); 883 bool Changed = false; 884 for (BasicBlock *BB : Worklist) { 885 // Only need to process the contents of this block if it is not part of a 886 // subloop (which would already have been processed). 887 if (!LoopNestMode && inSubLoop(BB, CurLoop, LI)) 888 continue; 889 890 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 891 // Try constant folding this instruction. If all the operands are 892 // constants, it is technically hoistable, but it would be better to 893 // just fold it. 894 if (Constant *C = ConstantFoldInstruction( 895 &I, I.getModule()->getDataLayout(), TLI)) { 896 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C 897 << '\n'); 898 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960). 899 I.replaceAllUsesWith(C); 900 if (isInstructionTriviallyDead(&I, TLI)) 901 eraseInstruction(I, *SafetyInfo, MSSAU); 902 Changed = true; 903 continue; 904 } 905 906 // Try hoisting the instruction out to the preheader. We can only do 907 // this if all of the operands of the instruction are loop invariant and 908 // if it is safe to hoist the instruction. We also check block frequency 909 // to make sure instruction only gets hoisted into colder blocks. 910 // TODO: It may be safe to hoist if we are hoisting to a conditional block 911 // and we have accurately duplicated the control flow from the loop header 912 // to that block. 913 if (CurLoop->hasLoopInvariantOperands(&I) && 914 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) && 915 isSafeToExecuteUnconditionally( 916 I, DT, TLI, CurLoop, SafetyInfo, ORE, 917 CurLoop->getLoopPreheader()->getTerminator(), AC, 918 AllowSpeculation)) { 919 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 920 MSSAU, SE, ORE); 921 HoistedInstructions.push_back(&I); 922 Changed = true; 923 continue; 924 } 925 926 // Attempt to remove floating point division out of the loop by 927 // converting it to a reciprocal multiplication. 928 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && 929 CurLoop->isLoopInvariant(I.getOperand(1))) { 930 auto Divisor = I.getOperand(1); 931 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); 932 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); 933 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); 934 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); 935 ReciprocalDivisor->insertBefore(&I); 936 937 auto Product = 938 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); 939 Product->setFastMathFlags(I.getFastMathFlags()); 940 SafetyInfo->insertInstructionTo(Product, I.getParent()); 941 Product->insertAfter(&I); 942 I.replaceAllUsesWith(Product); 943 eraseInstruction(I, *SafetyInfo, MSSAU); 944 945 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), 946 SafetyInfo, MSSAU, SE, ORE); 947 HoistedInstructions.push_back(ReciprocalDivisor); 948 Changed = true; 949 continue; 950 } 951 952 auto IsInvariantStart = [&](Instruction &I) { 953 using namespace PatternMatch; 954 return I.use_empty() && 955 match(&I, m_Intrinsic<Intrinsic::invariant_start>()); 956 }; 957 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { 958 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && 959 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); 960 }; 961 if ((IsInvariantStart(I) || isGuard(&I)) && 962 CurLoop->hasLoopInvariantOperands(&I) && 963 MustExecuteWithoutWritesBefore(I)) { 964 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 965 MSSAU, SE, ORE); 966 HoistedInstructions.push_back(&I); 967 Changed = true; 968 continue; 969 } 970 971 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 972 if (CFH.canHoistPHI(PN)) { 973 // Redirect incoming blocks first to ensure that we create hoisted 974 // versions of those blocks before we hoist the phi. 975 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) 976 PN->setIncomingBlock( 977 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); 978 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 979 MSSAU, SE, ORE); 980 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); 981 Changed = true; 982 continue; 983 } 984 } 985 986 // Remember possibly hoistable branches so we can actually hoist them 987 // later if needed. 988 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 989 CFH.registerPossiblyHoistableBranch(BI); 990 } 991 } 992 993 // If we hoisted instructions to a conditional block they may not dominate 994 // their uses that weren't hoisted (such as phis where some operands are not 995 // loop invariant). If so make them unconditional by moving them to their 996 // immediate dominator. We iterate through the instructions in reverse order 997 // which ensures that when we rehoist an instruction we rehoist its operands, 998 // and also keep track of where in the block we are rehoisting to to make sure 999 // that we rehoist instructions before the instructions that use them. 1000 Instruction *HoistPoint = nullptr; 1001 if (ControlFlowHoisting) { 1002 for (Instruction *I : reverse(HoistedInstructions)) { 1003 if (!llvm::all_of(I->uses(), 1004 [&](Use &U) { return DT->dominates(I, U); })) { 1005 BasicBlock *Dominator = 1006 DT->getNode(I->getParent())->getIDom()->getBlock(); 1007 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { 1008 if (HoistPoint) 1009 assert(DT->dominates(Dominator, HoistPoint->getParent()) && 1010 "New hoist point expected to dominate old hoist point"); 1011 HoistPoint = Dominator->getTerminator(); 1012 } 1013 LLVM_DEBUG(dbgs() << "LICM rehoisting to " 1014 << HoistPoint->getParent()->getNameOrAsOperand() 1015 << ": " << *I << "\n"); 1016 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE); 1017 HoistPoint = I; 1018 Changed = true; 1019 } 1020 } 1021 } 1022 if (VerifyMemorySSA) 1023 MSSAU.getMemorySSA()->verifyMemorySSA(); 1024 1025 // Now that we've finished hoisting make sure that LI and DT are still 1026 // valid. 1027 #ifdef EXPENSIVE_CHECKS 1028 if (Changed) { 1029 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 1030 "Dominator tree verification failed"); 1031 LI->verify(*DT); 1032 } 1033 #endif 1034 1035 return Changed; 1036 } 1037 1038 // Return true if LI is invariant within scope of the loop. LI is invariant if 1039 // CurLoop is dominated by an invariant.start representing the same memory 1040 // location and size as the memory location LI loads from, and also the 1041 // invariant.start has no uses. 1042 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, 1043 Loop *CurLoop) { 1044 Value *Addr = LI->getOperand(0); 1045 const DataLayout &DL = LI->getModule()->getDataLayout(); 1046 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); 1047 1048 // It is not currently possible for clang to generate an invariant.start 1049 // intrinsic with scalable vector types because we don't support thread local 1050 // sizeless types and we don't permit sizeless types in structs or classes. 1051 // Furthermore, even if support is added for this in future the intrinsic 1052 // itself is defined to have a size of -1 for variable sized objects. This 1053 // makes it impossible to verify if the intrinsic envelops our region of 1054 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8> 1055 // types would have a -1 parameter, but the former is clearly double the size 1056 // of the latter. 1057 if (LocSizeInBits.isScalable()) 1058 return false; 1059 1060 // if the type is i8 addrspace(x)*, we know this is the type of 1061 // llvm.invariant.start operand 1062 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), 1063 LI->getPointerAddressSpace()); 1064 unsigned BitcastsVisited = 0; 1065 // Look through bitcasts until we reach the i8* type (this is invariant.start 1066 // operand type). 1067 while (Addr->getType() != PtrInt8Ty) { 1068 auto *BC = dyn_cast<BitCastInst>(Addr); 1069 // Avoid traversing high number of bitcast uses. 1070 if (++BitcastsVisited > MaxNumUsesTraversed || !BC) 1071 return false; 1072 Addr = BC->getOperand(0); 1073 } 1074 // If we've ended up at a global/constant, bail. We shouldn't be looking at 1075 // uselists for non-local Values in a loop pass. 1076 if (isa<Constant>(Addr)) 1077 return false; 1078 1079 unsigned UsesVisited = 0; 1080 // Traverse all uses of the load operand value, to see if invariant.start is 1081 // one of the uses, and whether it dominates the load instruction. 1082 for (auto *U : Addr->users()) { 1083 // Avoid traversing for Load operand with high number of users. 1084 if (++UsesVisited > MaxNumUsesTraversed) 1085 return false; 1086 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1087 // If there are escaping uses of invariant.start instruction, the load maybe 1088 // non-invariant. 1089 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || 1090 !II->use_empty()) 1091 continue; 1092 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0)); 1093 // The intrinsic supports having a -1 argument for variable sized objects 1094 // so we should check for that here. 1095 if (InvariantSize->isNegative()) 1096 continue; 1097 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; 1098 // Confirm the invariant.start location size contains the load operand size 1099 // in bits. Also, the invariant.start should dominate the load, and we 1100 // should not hoist the load out of a loop that contains this dominating 1101 // invariant.start. 1102 if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits && 1103 DT->properlyDominates(II->getParent(), CurLoop->getHeader())) 1104 return true; 1105 } 1106 1107 return false; 1108 } 1109 1110 namespace { 1111 /// Return true if-and-only-if we know how to (mechanically) both hoist and 1112 /// sink a given instruction out of a loop. Does not address legality 1113 /// concerns such as aliasing or speculation safety. 1114 bool isHoistableAndSinkableInst(Instruction &I) { 1115 // Only these instructions are hoistable/sinkable. 1116 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 1117 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) || 1118 isa<BinaryOperator>(I) || isa<SelectInst>(I) || 1119 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || 1120 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 1121 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || 1122 isa<InsertValueInst>(I) || isa<FreezeInst>(I)); 1123 } 1124 /// Return true if MSSA knows there are no MemoryDefs in the loop. 1125 bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) { 1126 for (auto *BB : L->getBlocks()) 1127 if (MSSAU.getMemorySSA()->getBlockDefs(BB)) 1128 return false; 1129 return true; 1130 } 1131 1132 /// Return true if I is the only Instruction with a MemoryAccess in L. 1133 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, 1134 const MemorySSAUpdater &MSSAU) { 1135 for (auto *BB : L->getBlocks()) 1136 if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) { 1137 int NotAPhi = 0; 1138 for (const auto &Acc : *Accs) { 1139 if (isa<MemoryPhi>(&Acc)) 1140 continue; 1141 const auto *MUD = cast<MemoryUseOrDef>(&Acc); 1142 if (MUD->getMemoryInst() != I || NotAPhi++ == 1) 1143 return false; 1144 } 1145 } 1146 return true; 1147 } 1148 } 1149 1150 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, 1151 Loop *CurLoop, MemorySSAUpdater &MSSAU, 1152 bool TargetExecutesOncePerLoop, 1153 SinkAndHoistLICMFlags &Flags, 1154 OptimizationRemarkEmitter *ORE) { 1155 // If we don't understand the instruction, bail early. 1156 if (!isHoistableAndSinkableInst(I)) 1157 return false; 1158 1159 MemorySSA *MSSA = MSSAU.getMemorySSA(); 1160 // Loads have extra constraints we have to verify before we can hoist them. 1161 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 1162 if (!LI->isUnordered()) 1163 return false; // Don't sink/hoist volatile or ordered atomic loads! 1164 1165 // Loads from constant memory are always safe to move, even if they end up 1166 // in the same alias set as something that ends up being modified. 1167 if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0)))) 1168 return true; 1169 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1170 return true; 1171 1172 if (LI->isAtomic() && !TargetExecutesOncePerLoop) 1173 return false; // Don't risk duplicating unordered loads 1174 1175 // This checks for an invariant.start dominating the load. 1176 if (isLoadInvariantInLoop(LI, DT, CurLoop)) 1177 return true; 1178 1179 bool Invalidated = pointerInvalidatedByLoop( 1180 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, Flags); 1181 // Check loop-invariant address because this may also be a sinkable load 1182 // whose address is not necessarily loop-invariant. 1183 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1184 ORE->emit([&]() { 1185 return OptimizationRemarkMissed( 1186 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) 1187 << "failed to move load with loop-invariant address " 1188 "because the loop may invalidate its value"; 1189 }); 1190 1191 return !Invalidated; 1192 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1193 // Don't sink or hoist dbg info; it's legal, but not useful. 1194 if (isa<DbgInfoIntrinsic>(I)) 1195 return false; 1196 1197 // Don't sink calls which can throw. 1198 if (CI->mayThrow()) 1199 return false; 1200 1201 // Convergent attribute has been used on operations that involve 1202 // inter-thread communication which results are implicitly affected by the 1203 // enclosing control flows. It is not safe to hoist or sink such operations 1204 // across control flow. 1205 if (CI->isConvergent()) 1206 return false; 1207 1208 using namespace PatternMatch; 1209 if (match(CI, m_Intrinsic<Intrinsic::assume>())) 1210 // Assumes don't actually alias anything or throw 1211 return true; 1212 1213 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>())) 1214 // Widenable conditions don't actually alias anything or throw 1215 return true; 1216 1217 // Handle simple cases by querying alias analysis. 1218 MemoryEffects Behavior = AA->getMemoryEffects(CI); 1219 if (Behavior.doesNotAccessMemory()) 1220 return true; 1221 if (Behavior.onlyReadsMemory()) { 1222 // A readonly argmemonly function only reads from memory pointed to by 1223 // it's arguments with arbitrary offsets. If we can prove there are no 1224 // writes to this memory in the loop, we can hoist or sink. 1225 if (Behavior.onlyAccessesArgPointees()) { 1226 // TODO: expand to writeable arguments 1227 for (Value *Op : CI->args()) 1228 if (Op->getType()->isPointerTy() && 1229 pointerInvalidatedByLoop( 1230 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I, 1231 Flags)) 1232 return false; 1233 return true; 1234 } 1235 1236 // If this call only reads from memory and there are no writes to memory 1237 // in the loop, we can hoist or sink the call as appropriate. 1238 if (isReadOnly(MSSAU, CurLoop)) 1239 return true; 1240 } 1241 1242 // FIXME: This should use mod/ref information to see if we can hoist or 1243 // sink the call. 1244 1245 return false; 1246 } else if (auto *FI = dyn_cast<FenceInst>(&I)) { 1247 // Fences alias (most) everything to provide ordering. For the moment, 1248 // just give up if there are any other memory operations in the loop. 1249 return isOnlyMemoryAccess(FI, CurLoop, MSSAU); 1250 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 1251 if (!SI->isUnordered()) 1252 return false; // Don't sink/hoist volatile or ordered atomic store! 1253 1254 // We can only hoist a store that we can prove writes a value which is not 1255 // read or overwritten within the loop. For those cases, we fallback to 1256 // load store promotion instead. TODO: We can extend this to cases where 1257 // there is exactly one write to the location and that write dominates an 1258 // arbitrary number of reads in the loop. 1259 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) 1260 return true; 1261 // If there are more accesses than the Promotion cap or no "quota" to 1262 // check clobber, then give up as we're not walking a list that long. 1263 if (Flags.tooManyMemoryAccesses() || Flags.tooManyClobberingCalls()) 1264 return false; 1265 // If there are interfering Uses (i.e. their defining access is in the 1266 // loop), or ordered loads (stored as Defs!), don't move this store. 1267 // Could do better here, but this is conservatively correct. 1268 // TODO: Cache set of Uses on the first walk in runOnLoop, update when 1269 // moving accesses. Can also extend to dominating uses. 1270 auto *SIMD = MSSA->getMemoryAccess(SI); 1271 for (auto *BB : CurLoop->getBlocks()) 1272 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 1273 for (const auto &MA : *Accesses) 1274 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { 1275 auto *MD = MU->getDefiningAccess(); 1276 if (!MSSA->isLiveOnEntryDef(MD) && 1277 CurLoop->contains(MD->getBlock())) 1278 return false; 1279 // Disable hoisting past potentially interfering loads. Optimized 1280 // Uses may point to an access outside the loop, as getClobbering 1281 // checks the previous iteration when walking the backedge. 1282 // FIXME: More precise: no Uses that alias SI. 1283 if (!Flags.getIsSink() && !MSSA->dominates(SIMD, MU)) 1284 return false; 1285 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { 1286 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { 1287 (void)LI; // Silence warning. 1288 assert(!LI->isUnordered() && "Expected unordered load"); 1289 return false; 1290 } 1291 // Any call, while it may not be clobbering SI, it may be a use. 1292 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { 1293 // Check if the call may read from the memory location written 1294 // to by SI. Check CI's attributes and arguments; the number of 1295 // such checks performed is limited above by NoOfMemAccTooLarge. 1296 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI)); 1297 if (isModOrRefSet(MRI)) 1298 return false; 1299 } 1300 } 1301 } 1302 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI); 1303 Flags.incrementClobberingCalls(); 1304 // If there are no clobbering Defs in the loop, store is safe to hoist. 1305 return MSSA->isLiveOnEntryDef(Source) || 1306 !CurLoop->contains(Source->getBlock()); 1307 } 1308 1309 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); 1310 1311 // We've established mechanical ability and aliasing, it's up to the caller 1312 // to check fault safety 1313 return true; 1314 } 1315 1316 /// Returns true if a PHINode is a trivially replaceable with an 1317 /// Instruction. 1318 /// This is true when all incoming values are that instruction. 1319 /// This pattern occurs most often with LCSSA PHI nodes. 1320 /// 1321 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { 1322 for (const Value *IncValue : PN.incoming_values()) 1323 if (IncValue != &I) 1324 return false; 1325 1326 return true; 1327 } 1328 1329 /// Return true if the instruction is free in the loop. 1330 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, 1331 const TargetTransformInfo *TTI) { 1332 InstructionCost CostI = 1333 TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1334 1335 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1336 if (CostI != TargetTransformInfo::TCC_Free) 1337 return false; 1338 // For a GEP, we cannot simply use getInstructionCost because currently 1339 // it optimistically assumes that a GEP will fold into addressing mode 1340 // regardless of its users. 1341 const BasicBlock *BB = GEP->getParent(); 1342 for (const User *U : GEP->users()) { 1343 const Instruction *UI = cast<Instruction>(U); 1344 if (CurLoop->contains(UI) && 1345 (BB != UI->getParent() || 1346 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) 1347 return false; 1348 } 1349 return true; 1350 } 1351 1352 return CostI == TargetTransformInfo::TCC_Free; 1353 } 1354 1355 /// Return true if the only users of this instruction are outside of 1356 /// the loop. If this is true, we can sink the instruction to the exit 1357 /// blocks of the loop. 1358 /// 1359 /// We also return true if the instruction could be folded away in lowering. 1360 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). 1361 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 1362 const LoopSafetyInfo *SafetyInfo, 1363 TargetTransformInfo *TTI, bool &FreeInLoop, 1364 bool LoopNestMode) { 1365 const auto &BlockColors = SafetyInfo->getBlockColors(); 1366 bool IsFree = isFreeInLoop(I, CurLoop, TTI); 1367 for (const User *U : I.users()) { 1368 const Instruction *UI = cast<Instruction>(U); 1369 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1370 const BasicBlock *BB = PN->getParent(); 1371 // We cannot sink uses in catchswitches. 1372 if (isa<CatchSwitchInst>(BB->getTerminator())) 1373 return false; 1374 1375 // We need to sink a callsite to a unique funclet. Avoid sinking if the 1376 // phi use is too muddled. 1377 if (isa<CallInst>(I)) 1378 if (!BlockColors.empty() && 1379 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) 1380 return false; 1381 1382 if (LoopNestMode) { 1383 while (isa<PHINode>(UI) && UI->hasOneUser() && 1384 UI->getNumOperands() == 1) { 1385 if (!CurLoop->contains(UI)) 1386 break; 1387 UI = cast<Instruction>(UI->user_back()); 1388 } 1389 } 1390 } 1391 1392 if (CurLoop->contains(UI)) { 1393 if (IsFree) { 1394 FreeInLoop = true; 1395 continue; 1396 } 1397 return false; 1398 } 1399 } 1400 return true; 1401 } 1402 1403 static Instruction *cloneInstructionInExitBlock( 1404 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 1405 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) { 1406 Instruction *New; 1407 if (auto *CI = dyn_cast<CallInst>(&I)) { 1408 const auto &BlockColors = SafetyInfo->getBlockColors(); 1409 1410 // Sinking call-sites need to be handled differently from other 1411 // instructions. The cloned call-site needs a funclet bundle operand 1412 // appropriate for its location in the CFG. 1413 SmallVector<OperandBundleDef, 1> OpBundles; 1414 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); 1415 BundleIdx != BundleEnd; ++BundleIdx) { 1416 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); 1417 if (Bundle.getTagID() == LLVMContext::OB_funclet) 1418 continue; 1419 1420 OpBundles.emplace_back(Bundle); 1421 } 1422 1423 if (!BlockColors.empty()) { 1424 const ColorVector &CV = BlockColors.find(&ExitBlock)->second; 1425 assert(CV.size() == 1 && "non-unique color for exit block!"); 1426 BasicBlock *BBColor = CV.front(); 1427 Instruction *EHPad = BBColor->getFirstNonPHI(); 1428 if (EHPad->isEHPad()) 1429 OpBundles.emplace_back("funclet", EHPad); 1430 } 1431 1432 New = CallInst::Create(CI, OpBundles); 1433 } else { 1434 New = I.clone(); 1435 } 1436 1437 New->insertInto(&ExitBlock, ExitBlock.getFirstInsertionPt()); 1438 if (!I.getName().empty()) 1439 New->setName(I.getName() + ".le"); 1440 1441 if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) { 1442 // Create a new MemoryAccess and let MemorySSA set its defining access. 1443 MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB( 1444 New, nullptr, New->getParent(), MemorySSA::Beginning); 1445 if (NewMemAcc) { 1446 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 1447 MSSAU.insertDef(MemDef, /*RenameUses=*/true); 1448 else { 1449 auto *MemUse = cast<MemoryUse>(NewMemAcc); 1450 MSSAU.insertUse(MemUse, /*RenameUses=*/true); 1451 } 1452 } 1453 } 1454 1455 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that 1456 // this is particularly cheap because we can rip off the PHI node that we're 1457 // replacing for the number and blocks of the predecessors. 1458 // OPT: If this shows up in a profile, we can instead finish sinking all 1459 // invariant instructions, and then walk their operands to re-establish 1460 // LCSSA. That will eliminate creating PHI nodes just to nuke them when 1461 // sinking bottom-up. 1462 for (Use &Op : New->operands()) 1463 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) { 1464 auto *OInst = cast<Instruction>(Op.get()); 1465 PHINode *OpPN = 1466 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), 1467 OInst->getName() + ".lcssa", &ExitBlock.front()); 1468 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1469 OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); 1470 Op = OpPN; 1471 } 1472 return New; 1473 } 1474 1475 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 1476 MemorySSAUpdater &MSSAU) { 1477 MSSAU.removeMemoryAccess(&I); 1478 SafetyInfo.removeInstruction(&I); 1479 I.eraseFromParent(); 1480 } 1481 1482 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 1483 ICFLoopSafetyInfo &SafetyInfo, 1484 MemorySSAUpdater &MSSAU, 1485 ScalarEvolution *SE) { 1486 SafetyInfo.removeInstruction(&I); 1487 SafetyInfo.insertInstructionTo(&I, Dest.getParent()); 1488 I.moveBefore(&Dest); 1489 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 1490 MSSAU.getMemorySSA()->getMemoryAccess(&I))) 1491 MSSAU.moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::BeforeTerminator); 1492 if (SE) 1493 SE->forgetValue(&I); 1494 } 1495 1496 static Instruction *sinkThroughTriviallyReplaceablePHI( 1497 PHINode *TPN, Instruction *I, LoopInfo *LI, 1498 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, 1499 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, 1500 MemorySSAUpdater &MSSAU) { 1501 assert(isTriviallyReplaceablePHI(*TPN, *I) && 1502 "Expect only trivially replaceable PHI"); 1503 BasicBlock *ExitBlock = TPN->getParent(); 1504 Instruction *New; 1505 auto It = SunkCopies.find(ExitBlock); 1506 if (It != SunkCopies.end()) 1507 New = It->second; 1508 else 1509 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock( 1510 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); 1511 return New; 1512 } 1513 1514 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { 1515 BasicBlock *BB = PN->getParent(); 1516 if (!BB->canSplitPredecessors()) 1517 return false; 1518 // It's not impossible to split EHPad blocks, but if BlockColors already exist 1519 // it require updating BlockColors for all offspring blocks accordingly. By 1520 // skipping such corner case, we can make updating BlockColors after splitting 1521 // predecessor fairly simple. 1522 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) 1523 return false; 1524 for (BasicBlock *BBPred : predecessors(BB)) { 1525 if (isa<IndirectBrInst>(BBPred->getTerminator())) 1526 return false; 1527 } 1528 return true; 1529 } 1530 1531 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, 1532 LoopInfo *LI, const Loop *CurLoop, 1533 LoopSafetyInfo *SafetyInfo, 1534 MemorySSAUpdater *MSSAU) { 1535 #ifndef NDEBUG 1536 SmallVector<BasicBlock *, 32> ExitBlocks; 1537 CurLoop->getUniqueExitBlocks(ExitBlocks); 1538 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1539 ExitBlocks.end()); 1540 #endif 1541 BasicBlock *ExitBB = PN->getParent(); 1542 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); 1543 1544 // Split predecessors of the loop exit to make instructions in the loop are 1545 // exposed to exit blocks through trivially replaceable PHIs while keeping the 1546 // loop in the canonical form where each predecessor of each exit block should 1547 // be contained within the loop. For example, this will convert the loop below 1548 // from 1549 // 1550 // LB1: 1551 // %v1 = 1552 // br %LE, %LB2 1553 // LB2: 1554 // %v2 = 1555 // br %LE, %LB1 1556 // LE: 1557 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable 1558 // 1559 // to 1560 // 1561 // LB1: 1562 // %v1 = 1563 // br %LE.split, %LB2 1564 // LB2: 1565 // %v2 = 1566 // br %LE.split2, %LB1 1567 // LE.split: 1568 // %p1 = phi [%v1, %LB1] <-- trivially replaceable 1569 // br %LE 1570 // LE.split2: 1571 // %p2 = phi [%v2, %LB2] <-- trivially replaceable 1572 // br %LE 1573 // LE: 1574 // %p = phi [%p1, %LE.split], [%p2, %LE.split2] 1575 // 1576 const auto &BlockColors = SafetyInfo->getBlockColors(); 1577 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); 1578 while (!PredBBs.empty()) { 1579 BasicBlock *PredBB = *PredBBs.begin(); 1580 assert(CurLoop->contains(PredBB) && 1581 "Expect all predecessors are in the loop"); 1582 if (PN->getBasicBlockIndex(PredBB) >= 0) { 1583 BasicBlock *NewPred = SplitBlockPredecessors( 1584 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); 1585 // Since we do not allow splitting EH-block with BlockColors in 1586 // canSplitPredecessors(), we can simply assign predecessor's color to 1587 // the new block. 1588 if (!BlockColors.empty()) 1589 // Grab a reference to the ColorVector to be inserted before getting the 1590 // reference to the vector we are copying because inserting the new 1591 // element in BlockColors might cause the map to be reallocated. 1592 SafetyInfo->copyColors(NewPred, PredBB); 1593 } 1594 PredBBs.remove(PredBB); 1595 } 1596 } 1597 1598 /// When an instruction is found to only be used outside of the loop, this 1599 /// function moves it to the exit blocks and patches up SSA form as needed. 1600 /// This method is guaranteed to remove the original instruction from its 1601 /// position, and may either delete it or move it to outside of the loop. 1602 /// 1603 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 1604 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 1605 MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) { 1606 bool Changed = false; 1607 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); 1608 1609 // Iterate over users to be ready for actual sinking. Replace users via 1610 // unreachable blocks with undef and make all user PHIs trivially replaceable. 1611 SmallPtrSet<Instruction *, 8> VisitedUsers; 1612 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { 1613 auto *User = cast<Instruction>(*UI); 1614 Use &U = UI.getUse(); 1615 ++UI; 1616 1617 if (VisitedUsers.count(User) || CurLoop->contains(User)) 1618 continue; 1619 1620 if (!DT->isReachableFromEntry(User->getParent())) { 1621 U = PoisonValue::get(I.getType()); 1622 Changed = true; 1623 continue; 1624 } 1625 1626 // The user must be a PHI node. 1627 PHINode *PN = cast<PHINode>(User); 1628 1629 // Surprisingly, instructions can be used outside of loops without any 1630 // exits. This can only happen in PHI nodes if the incoming block is 1631 // unreachable. 1632 BasicBlock *BB = PN->getIncomingBlock(U); 1633 if (!DT->isReachableFromEntry(BB)) { 1634 U = PoisonValue::get(I.getType()); 1635 Changed = true; 1636 continue; 1637 } 1638 1639 VisitedUsers.insert(PN); 1640 if (isTriviallyReplaceablePHI(*PN, I)) 1641 continue; 1642 1643 if (!canSplitPredecessors(PN, SafetyInfo)) 1644 return Changed; 1645 1646 // Split predecessors of the PHI so that we can make users trivially 1647 // replaceable. 1648 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU); 1649 1650 // Should rebuild the iterators, as they may be invalidated by 1651 // splitPredecessorsOfLoopExit(). 1652 UI = I.user_begin(); 1653 UE = I.user_end(); 1654 } 1655 1656 if (VisitedUsers.empty()) 1657 return Changed; 1658 1659 ORE->emit([&]() { 1660 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) 1661 << "sinking " << ore::NV("Inst", &I); 1662 }); 1663 if (isa<LoadInst>(I)) 1664 ++NumMovedLoads; 1665 else if (isa<CallInst>(I)) 1666 ++NumMovedCalls; 1667 ++NumSunk; 1668 1669 #ifndef NDEBUG 1670 SmallVector<BasicBlock *, 32> ExitBlocks; 1671 CurLoop->getUniqueExitBlocks(ExitBlocks); 1672 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1673 ExitBlocks.end()); 1674 #endif 1675 1676 // Clones of this instruction. Don't create more than one per exit block! 1677 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; 1678 1679 // If this instruction is only used outside of the loop, then all users are 1680 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of 1681 // the instruction. 1682 // First check if I is worth sinking for all uses. Sink only when it is worth 1683 // across all uses. 1684 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); 1685 for (auto *UI : Users) { 1686 auto *User = cast<Instruction>(UI); 1687 1688 if (CurLoop->contains(User)) 1689 continue; 1690 1691 PHINode *PN = cast<PHINode>(User); 1692 assert(ExitBlockSet.count(PN->getParent()) && 1693 "The LCSSA PHI is not in an exit block!"); 1694 1695 // The PHI must be trivially replaceable. 1696 Instruction *New = sinkThroughTriviallyReplaceablePHI( 1697 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); 1698 PN->replaceAllUsesWith(New); 1699 eraseInstruction(*PN, *SafetyInfo, MSSAU); 1700 Changed = true; 1701 } 1702 return Changed; 1703 } 1704 1705 /// When an instruction is found to only use loop invariant operands that 1706 /// is safe to hoist, this instruction is called to do the dirty work. 1707 /// 1708 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 1709 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 1710 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 1711 OptimizationRemarkEmitter *ORE) { 1712 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": " 1713 << I << "\n"); 1714 ORE->emit([&]() { 1715 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " 1716 << ore::NV("Inst", &I); 1717 }); 1718 1719 // Metadata can be dependent on conditions we are hoisting above. 1720 // Conservatively strip all metadata on the instruction unless we were 1721 // guaranteed to execute I if we entered the loop, in which case the metadata 1722 // is valid in the loop preheader. 1723 // Similarly, If I is a call and it is not guaranteed to execute in the loop, 1724 // then moving to the preheader means we should strip attributes on the call 1725 // that can cause UB since we may be hoisting above conditions that allowed 1726 // inferring those attributes. They may not be valid at the preheader. 1727 if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) && 1728 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning 1729 // time in isGuaranteedToExecute if we don't actually have anything to 1730 // drop. It is a compile time optimization, not required for correctness. 1731 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) 1732 I.dropUndefImplyingAttrsAndUnknownMetadata(); 1733 1734 if (isa<PHINode>(I)) 1735 // Move the new node to the end of the phi list in the destination block. 1736 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE); 1737 else 1738 // Move the new node to the destination block, before its terminator. 1739 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE); 1740 1741 I.updateLocationAfterHoist(); 1742 1743 if (isa<LoadInst>(I)) 1744 ++NumMovedLoads; 1745 else if (isa<CallInst>(I)) 1746 ++NumMovedCalls; 1747 ++NumHoisted; 1748 } 1749 1750 /// Only sink or hoist an instruction if it is not a trapping instruction, 1751 /// or if the instruction is known not to trap when moved to the preheader. 1752 /// or if it is a trapping instruction and is guaranteed to execute. 1753 static bool isSafeToExecuteUnconditionally( 1754 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, 1755 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, 1756 OptimizationRemarkEmitter *ORE, const Instruction *CtxI, 1757 AssumptionCache *AC, bool AllowSpeculation) { 1758 if (AllowSpeculation && 1759 isSafeToSpeculativelyExecute(&Inst, CtxI, AC, DT, TLI)) 1760 return true; 1761 1762 bool GuaranteedToExecute = 1763 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); 1764 1765 if (!GuaranteedToExecute) { 1766 auto *LI = dyn_cast<LoadInst>(&Inst); 1767 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1768 ORE->emit([&]() { 1769 return OptimizationRemarkMissed( 1770 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) 1771 << "failed to hoist load with loop-invariant address " 1772 "because load is conditionally executed"; 1773 }); 1774 } 1775 1776 return GuaranteedToExecute; 1777 } 1778 1779 namespace { 1780 class LoopPromoter : public LoadAndStorePromoter { 1781 Value *SomePtr; // Designated pointer to store to. 1782 SmallVectorImpl<BasicBlock *> &LoopExitBlocks; 1783 SmallVectorImpl<Instruction *> &LoopInsertPts; 1784 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; 1785 PredIteratorCache &PredCache; 1786 MemorySSAUpdater &MSSAU; 1787 LoopInfo &LI; 1788 DebugLoc DL; 1789 Align Alignment; 1790 bool UnorderedAtomic; 1791 AAMDNodes AATags; 1792 ICFLoopSafetyInfo &SafetyInfo; 1793 bool CanInsertStoresInExitBlocks; 1794 ArrayRef<const Instruction *> Uses; 1795 1796 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi 1797 // (if legal) if doing so would add an out-of-loop use to an instruction 1798 // defined in-loop. 1799 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { 1800 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB)) 1801 return V; 1802 1803 Instruction *I = cast<Instruction>(V); 1804 // We need to create an LCSSA PHI node for the incoming value and 1805 // store that. 1806 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), 1807 I->getName() + ".lcssa", &BB->front()); 1808 for (BasicBlock *Pred : PredCache.get(BB)) 1809 PN->addIncoming(I, Pred); 1810 return PN; 1811 } 1812 1813 public: 1814 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, 1815 SmallVectorImpl<BasicBlock *> &LEB, 1816 SmallVectorImpl<Instruction *> &LIP, 1817 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, 1818 MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl, 1819 Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags, 1820 ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks) 1821 : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB), 1822 LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU), 1823 LI(li), DL(std::move(dl)), Alignment(Alignment), 1824 UnorderedAtomic(UnorderedAtomic), AATags(AATags), 1825 SafetyInfo(SafetyInfo), 1826 CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {} 1827 1828 void insertStoresInLoopExitBlocks() { 1829 // Insert stores after in the loop exit blocks. Each exit block gets a 1830 // store of the live-out values that feed them. Since we've already told 1831 // the SSA updater about the defs in the loop and the preheader 1832 // definition, it is all set and we can start using it. 1833 DIAssignID *NewID = nullptr; 1834 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { 1835 BasicBlock *ExitBlock = LoopExitBlocks[i]; 1836 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 1837 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); 1838 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); 1839 Instruction *InsertPos = LoopInsertPts[i]; 1840 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); 1841 if (UnorderedAtomic) 1842 NewSI->setOrdering(AtomicOrdering::Unordered); 1843 NewSI->setAlignment(Alignment); 1844 NewSI->setDebugLoc(DL); 1845 // Attach DIAssignID metadata to the new store, generating it on the 1846 // first loop iteration. 1847 if (i == 0) { 1848 // NewSI will have its DIAssignID set here if there are any stores in 1849 // Uses with a DIAssignID attachment. This merged ID will then be 1850 // attached to the other inserted stores (in the branch below). 1851 NewSI->mergeDIAssignID(Uses); 1852 NewID = cast_or_null<DIAssignID>( 1853 NewSI->getMetadata(LLVMContext::MD_DIAssignID)); 1854 } else { 1855 // Attach the DIAssignID (or nullptr) merged from Uses in the branch 1856 // above. 1857 NewSI->setMetadata(LLVMContext::MD_DIAssignID, NewID); 1858 } 1859 1860 if (AATags) 1861 NewSI->setAAMetadata(AATags); 1862 1863 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; 1864 MemoryAccess *NewMemAcc; 1865 if (!MSSAInsertPoint) { 1866 NewMemAcc = MSSAU.createMemoryAccessInBB( 1867 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); 1868 } else { 1869 NewMemAcc = 1870 MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); 1871 } 1872 MSSAInsertPts[i] = NewMemAcc; 1873 MSSAU.insertDef(cast<MemoryDef>(NewMemAcc), true); 1874 // FIXME: true for safety, false may still be correct. 1875 } 1876 } 1877 1878 void doExtraRewritesBeforeFinalDeletion() override { 1879 if (CanInsertStoresInExitBlocks) 1880 insertStoresInLoopExitBlocks(); 1881 } 1882 1883 void instructionDeleted(Instruction *I) const override { 1884 SafetyInfo.removeInstruction(I); 1885 MSSAU.removeMemoryAccess(I); 1886 } 1887 1888 bool shouldDelete(Instruction *I) const override { 1889 if (isa<StoreInst>(I)) 1890 return CanInsertStoresInExitBlocks; 1891 return true; 1892 } 1893 }; 1894 1895 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L, 1896 DominatorTree *DT) { 1897 // We can perform the captured-before check against any instruction in the 1898 // loop header, as the loop header is reachable from any instruction inside 1899 // the loop. 1900 // TODO: ReturnCaptures=true shouldn't be necessary here. 1901 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true, 1902 /* StoreCaptures */ true, 1903 L->getHeader()->getTerminator(), DT); 1904 } 1905 1906 /// Return true if we can prove that a caller cannot inspect the object if an 1907 /// unwind occurs inside the loop. 1908 bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L, 1909 DominatorTree *DT) { 1910 bool RequiresNoCaptureBeforeUnwind; 1911 if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind)) 1912 return false; 1913 1914 return !RequiresNoCaptureBeforeUnwind || 1915 isNotCapturedBeforeOrInLoop(Object, L, DT); 1916 } 1917 1918 bool isWritableObject(const Value *Object) { 1919 // TODO: Alloca might not be writable after its lifetime ends. 1920 // See https://github.com/llvm/llvm-project/issues/51838. 1921 if (isa<AllocaInst>(Object)) 1922 return true; 1923 1924 // TODO: Also handle sret. 1925 if (auto *A = dyn_cast<Argument>(Object)) 1926 return A->hasByValAttr(); 1927 1928 if (auto *G = dyn_cast<GlobalVariable>(Object)) 1929 return !G->isConstant(); 1930 1931 // TODO: Noalias has nothing to do with writability, this should check for 1932 // an allocator function. 1933 return isNoAliasCall(Object); 1934 } 1935 1936 bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT, 1937 TargetTransformInfo *TTI) { 1938 // The object must be function-local to start with, and then not captured 1939 // before/in the loop. 1940 return (isIdentifiedFunctionLocal(Object) && 1941 isNotCapturedBeforeOrInLoop(Object, L, DT)) || 1942 (TTI->isSingleThreaded() || SingleThread); 1943 } 1944 1945 } // namespace 1946 1947 /// Try to promote memory values to scalars by sinking stores out of the 1948 /// loop and moving loads to before the loop. We do this by looping over 1949 /// the stores in the loop, looking for stores to Must pointers which are 1950 /// loop invariant. 1951 /// 1952 bool llvm::promoteLoopAccessesToScalars( 1953 const SmallSetVector<Value *, 8> &PointerMustAliases, 1954 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1955 SmallVectorImpl<Instruction *> &InsertPts, 1956 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, 1957 LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, 1958 const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, 1959 MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, 1960 OptimizationRemarkEmitter *ORE, bool AllowSpeculation, 1961 bool HasReadsOutsideSet) { 1962 // Verify inputs. 1963 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && 1964 SafetyInfo != nullptr && 1965 "Unexpected Input to promoteLoopAccessesToScalars"); 1966 1967 LLVM_DEBUG({ 1968 dbgs() << "Trying to promote set of must-aliased pointers:\n"; 1969 for (Value *Ptr : PointerMustAliases) 1970 dbgs() << " " << *Ptr << "\n"; 1971 }); 1972 ++NumPromotionCandidates; 1973 1974 Value *SomePtr = *PointerMustAliases.begin(); 1975 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1976 1977 // It is not safe to promote a load/store from the loop if the load/store is 1978 // conditional. For example, turning: 1979 // 1980 // for () { if (c) *P += 1; } 1981 // 1982 // into: 1983 // 1984 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; 1985 // 1986 // is not safe, because *P may only be valid to access if 'c' is true. 1987 // 1988 // The safety property divides into two parts: 1989 // p1) The memory may not be dereferenceable on entry to the loop. In this 1990 // case, we can't insert the required load in the preheader. 1991 // p2) The memory model does not allow us to insert a store along any dynamic 1992 // path which did not originally have one. 1993 // 1994 // If at least one store is guaranteed to execute, both properties are 1995 // satisfied, and promotion is legal. 1996 // 1997 // This, however, is not a necessary condition. Even if no store/load is 1998 // guaranteed to execute, we can still establish these properties. 1999 // We can establish (p1) by proving that hoisting the load into the preheader 2000 // is safe (i.e. proving dereferenceability on all paths through the loop). We 2001 // can use any access within the alias set to prove dereferenceability, 2002 // since they're all must alias. 2003 // 2004 // There are two ways establish (p2): 2005 // a) Prove the location is thread-local. In this case the memory model 2006 // requirement does not apply, and stores are safe to insert. 2007 // b) Prove a store dominates every exit block. In this case, if an exit 2008 // blocks is reached, the original dynamic path would have taken us through 2009 // the store, so inserting a store into the exit block is safe. Note that this 2010 // is different from the store being guaranteed to execute. For instance, 2011 // if an exception is thrown on the first iteration of the loop, the original 2012 // store is never executed, but the exit blocks are not executed either. 2013 2014 bool DereferenceableInPH = false; 2015 bool StoreIsGuanteedToExecute = false; 2016 bool FoundLoadToPromote = false; 2017 // Goes from Unknown to either Safe or Unsafe, but can't switch between them. 2018 enum { 2019 StoreSafe, 2020 StoreUnsafe, 2021 StoreSafetyUnknown, 2022 } StoreSafety = StoreSafetyUnknown; 2023 2024 SmallVector<Instruction *, 64> LoopUses; 2025 2026 // We start with an alignment of one and try to find instructions that allow 2027 // us to prove better alignment. 2028 Align Alignment; 2029 // Keep track of which types of access we see 2030 bool SawUnorderedAtomic = false; 2031 bool SawNotAtomic = false; 2032 AAMDNodes AATags; 2033 2034 const DataLayout &MDL = Preheader->getModule()->getDataLayout(); 2035 2036 // If there are reads outside the promoted set, then promoting stores is 2037 // definitely not safe. 2038 if (HasReadsOutsideSet) 2039 StoreSafety = StoreUnsafe; 2040 2041 if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) { 2042 // If a loop can throw, we have to insert a store along each unwind edge. 2043 // That said, we can't actually make the unwind edge explicit. Therefore, 2044 // we have to prove that the store is dead along the unwind edge. We do 2045 // this by proving that the caller can't have a reference to the object 2046 // after return and thus can't possibly load from the object. 2047 Value *Object = getUnderlyingObject(SomePtr); 2048 if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT)) 2049 StoreSafety = StoreUnsafe; 2050 } 2051 2052 // Check that all accesses to pointers in the alias set use the same type. 2053 // We cannot (yet) promote a memory location that is loaded and stored in 2054 // different sizes. While we are at it, collect alignment and AA info. 2055 Type *AccessTy = nullptr; 2056 for (Value *ASIV : PointerMustAliases) { 2057 for (Use &U : ASIV->uses()) { 2058 // Ignore instructions that are outside the loop. 2059 Instruction *UI = dyn_cast<Instruction>(U.getUser()); 2060 if (!UI || !CurLoop->contains(UI)) 2061 continue; 2062 2063 // If there is an non-load/store instruction in the loop, we can't promote 2064 // it. 2065 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { 2066 if (!Load->isUnordered()) 2067 return false; 2068 2069 SawUnorderedAtomic |= Load->isAtomic(); 2070 SawNotAtomic |= !Load->isAtomic(); 2071 FoundLoadToPromote = true; 2072 2073 Align InstAlignment = Load->getAlign(); 2074 2075 // Note that proving a load safe to speculate requires proving 2076 // sufficient alignment at the target location. Proving it guaranteed 2077 // to execute does as well. Thus we can increase our guaranteed 2078 // alignment as well. 2079 if (!DereferenceableInPH || (InstAlignment > Alignment)) 2080 if (isSafeToExecuteUnconditionally( 2081 *Load, DT, TLI, CurLoop, SafetyInfo, ORE, 2082 Preheader->getTerminator(), AC, AllowSpeculation)) { 2083 DereferenceableInPH = true; 2084 Alignment = std::max(Alignment, InstAlignment); 2085 } 2086 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { 2087 // Stores *of* the pointer are not interesting, only stores *to* the 2088 // pointer. 2089 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 2090 continue; 2091 if (!Store->isUnordered()) 2092 return false; 2093 2094 SawUnorderedAtomic |= Store->isAtomic(); 2095 SawNotAtomic |= !Store->isAtomic(); 2096 2097 // If the store is guaranteed to execute, both properties are satisfied. 2098 // We may want to check if a store is guaranteed to execute even if we 2099 // already know that promotion is safe, since it may have higher 2100 // alignment than any other guaranteed stores, in which case we can 2101 // raise the alignment on the promoted store. 2102 Align InstAlignment = Store->getAlign(); 2103 bool GuaranteedToExecute = 2104 SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop); 2105 StoreIsGuanteedToExecute |= GuaranteedToExecute; 2106 if (GuaranteedToExecute) { 2107 DereferenceableInPH = true; 2108 if (StoreSafety == StoreSafetyUnknown) 2109 StoreSafety = StoreSafe; 2110 Alignment = std::max(Alignment, InstAlignment); 2111 } 2112 2113 // If a store dominates all exit blocks, it is safe to sink. 2114 // As explained above, if an exit block was executed, a dominating 2115 // store must have been executed at least once, so we are not 2116 // introducing stores on paths that did not have them. 2117 // Note that this only looks at explicit exit blocks. If we ever 2118 // start sinking stores into unwind edges (see above), this will break. 2119 if (StoreSafety == StoreSafetyUnknown && 2120 llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { 2121 return DT->dominates(Store->getParent(), Exit); 2122 })) 2123 StoreSafety = StoreSafe; 2124 2125 // If the store is not guaranteed to execute, we may still get 2126 // deref info through it. 2127 if (!DereferenceableInPH) { 2128 DereferenceableInPH = isDereferenceableAndAlignedPointer( 2129 Store->getPointerOperand(), Store->getValueOperand()->getType(), 2130 Store->getAlign(), MDL, Preheader->getTerminator(), AC, DT, TLI); 2131 } 2132 } else 2133 continue; // Not a load or store. 2134 2135 if (!AccessTy) 2136 AccessTy = getLoadStoreType(UI); 2137 else if (AccessTy != getLoadStoreType(UI)) 2138 return false; 2139 2140 // Merge the AA tags. 2141 if (LoopUses.empty()) { 2142 // On the first load/store, just take its AA tags. 2143 AATags = UI->getAAMetadata(); 2144 } else if (AATags) { 2145 AATags = AATags.merge(UI->getAAMetadata()); 2146 } 2147 2148 LoopUses.push_back(UI); 2149 } 2150 } 2151 2152 // If we found both an unordered atomic instruction and a non-atomic memory 2153 // access, bail. We can't blindly promote non-atomic to atomic since we 2154 // might not be able to lower the result. We can't downgrade since that 2155 // would violate memory model. Also, align 0 is an error for atomics. 2156 if (SawUnorderedAtomic && SawNotAtomic) 2157 return false; 2158 2159 // If we're inserting an atomic load in the preheader, we must be able to 2160 // lower it. We're only guaranteed to be able to lower naturally aligned 2161 // atomics. 2162 if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy)) 2163 return false; 2164 2165 // If we couldn't prove we can hoist the load, bail. 2166 if (!DereferenceableInPH) { 2167 LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n"); 2168 return false; 2169 } 2170 2171 // We know we can hoist the load, but don't have a guaranteed store. 2172 // Check whether the location is writable and thread-local. If it is, then we 2173 // can insert stores along paths which originally didn't have them without 2174 // violating the memory model. 2175 if (StoreSafety == StoreSafetyUnknown) { 2176 Value *Object = getUnderlyingObject(SomePtr); 2177 if (isWritableObject(Object) && 2178 isThreadLocalObject(Object, CurLoop, DT, TTI)) 2179 StoreSafety = StoreSafe; 2180 } 2181 2182 // If we've still failed to prove we can sink the store, hoist the load 2183 // only, if possible. 2184 if (StoreSafety != StoreSafe && !FoundLoadToPromote) 2185 // If we cannot hoist the load either, give up. 2186 return false; 2187 2188 // Lets do the promotion! 2189 if (StoreSafety == StoreSafe) { 2190 LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr 2191 << '\n'); 2192 ++NumLoadStorePromoted; 2193 } else { 2194 LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr 2195 << '\n'); 2196 ++NumLoadPromoted; 2197 } 2198 2199 ORE->emit([&]() { 2200 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", 2201 LoopUses[0]) 2202 << "Moving accesses to memory location out of the loop"; 2203 }); 2204 2205 // Look at all the loop uses, and try to merge their locations. 2206 std::vector<const DILocation *> LoopUsesLocs; 2207 for (auto *U : LoopUses) 2208 LoopUsesLocs.push_back(U->getDebugLoc().get()); 2209 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs)); 2210 2211 // We use the SSAUpdater interface to insert phi nodes as required. 2212 SmallVector<PHINode *, 16> NewPHIs; 2213 SSAUpdater SSA(&NewPHIs); 2214 LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts, 2215 MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment, 2216 SawUnorderedAtomic, AATags, *SafetyInfo, 2217 StoreSafety == StoreSafe); 2218 2219 // Set up the preheader to have a definition of the value. It is the live-out 2220 // value from the preheader that uses in the loop will use. 2221 LoadInst *PreheaderLoad = nullptr; 2222 if (FoundLoadToPromote || !StoreIsGuanteedToExecute) { 2223 PreheaderLoad = 2224 new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted", 2225 Preheader->getTerminator()); 2226 if (SawUnorderedAtomic) 2227 PreheaderLoad->setOrdering(AtomicOrdering::Unordered); 2228 PreheaderLoad->setAlignment(Alignment); 2229 PreheaderLoad->setDebugLoc(DebugLoc()); 2230 if (AATags) 2231 PreheaderLoad->setAAMetadata(AATags); 2232 2233 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB( 2234 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); 2235 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); 2236 MSSAU.insertUse(NewMemUse, /*RenameUses=*/true); 2237 SSA.AddAvailableValue(Preheader, PreheaderLoad); 2238 } else { 2239 SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy)); 2240 } 2241 2242 if (VerifyMemorySSA) 2243 MSSAU.getMemorySSA()->verifyMemorySSA(); 2244 // Rewrite all the loads in the loop and remember all the definitions from 2245 // stores in the loop. 2246 Promoter.run(LoopUses); 2247 2248 if (VerifyMemorySSA) 2249 MSSAU.getMemorySSA()->verifyMemorySSA(); 2250 // If the SSAUpdater didn't use the load in the preheader, just zap it now. 2251 if (PreheaderLoad && PreheaderLoad->use_empty()) 2252 eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU); 2253 2254 return true; 2255 } 2256 2257 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, 2258 function_ref<void(Instruction *)> Fn) { 2259 for (const BasicBlock *BB : L->blocks()) 2260 if (const auto *Accesses = MSSA->getBlockAccesses(BB)) 2261 for (const auto &Access : *Accesses) 2262 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access)) 2263 Fn(MUD->getMemoryInst()); 2264 } 2265 2266 // The bool indicates whether there might be reads outside the set, in which 2267 // case only loads may be promoted. 2268 static SmallVector<PointersAndHasReadsOutsideSet, 0> 2269 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) { 2270 BatchAAResults BatchAA(*AA); 2271 AliasSetTracker AST(BatchAA); 2272 2273 auto IsPotentiallyPromotable = [L](const Instruction *I) { 2274 if (const auto *SI = dyn_cast<StoreInst>(I)) 2275 return L->isLoopInvariant(SI->getPointerOperand()); 2276 if (const auto *LI = dyn_cast<LoadInst>(I)) 2277 return L->isLoopInvariant(LI->getPointerOperand()); 2278 return false; 2279 }; 2280 2281 // Populate AST with potentially promotable accesses. 2282 SmallPtrSet<Value *, 16> AttemptingPromotion; 2283 foreachMemoryAccess(MSSA, L, [&](Instruction *I) { 2284 if (IsPotentiallyPromotable(I)) { 2285 AttemptingPromotion.insert(I); 2286 AST.add(I); 2287 } 2288 }); 2289 2290 // We're only interested in must-alias sets that contain a mod. 2291 SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets; 2292 for (AliasSet &AS : AST) 2293 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias()) 2294 Sets.push_back({&AS, false}); 2295 2296 if (Sets.empty()) 2297 return {}; // Nothing to promote... 2298 2299 // Discard any sets for which there is an aliasing non-promotable access. 2300 foreachMemoryAccess(MSSA, L, [&](Instruction *I) { 2301 if (AttemptingPromotion.contains(I)) 2302 return; 2303 2304 llvm::erase_if(Sets, [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) { 2305 ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA); 2306 // Cannot promote if there are writes outside the set. 2307 if (isModSet(MR)) 2308 return true; 2309 if (isRefSet(MR)) { 2310 // Remember reads outside the set. 2311 Pair.setInt(true); 2312 // If this is a mod-only set and there are reads outside the set, 2313 // we will not be able to promote, so bail out early. 2314 return !Pair.getPointer()->isRef(); 2315 } 2316 return false; 2317 }); 2318 }); 2319 2320 SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result; 2321 for (auto [Set, HasReadsOutsideSet] : Sets) { 2322 SmallSetVector<Value *, 8> PointerMustAliases; 2323 for (const auto &ASI : *Set) 2324 PointerMustAliases.insert(ASI.getValue()); 2325 Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet); 2326 } 2327 2328 return Result; 2329 } 2330 2331 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, 2332 Loop *CurLoop, Instruction &I, 2333 SinkAndHoistLICMFlags &Flags) { 2334 // For hoisting, use the walker to determine safety 2335 if (!Flags.getIsSink()) { 2336 MemoryAccess *Source; 2337 // See declaration of SetLicmMssaOptCap for usage details. 2338 if (Flags.tooManyClobberingCalls()) 2339 Source = MU->getDefiningAccess(); 2340 else { 2341 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU); 2342 Flags.incrementClobberingCalls(); 2343 } 2344 return !MSSA->isLiveOnEntryDef(Source) && 2345 CurLoop->contains(Source->getBlock()); 2346 } 2347 2348 // For sinking, we'd need to check all Defs below this use. The getClobbering 2349 // call will look on the backedge of the loop, but will check aliasing with 2350 // the instructions on the previous iteration. 2351 // For example: 2352 // for (i ... ) 2353 // load a[i] ( Use (LoE) 2354 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. 2355 // i++; 2356 // The load sees no clobbering inside the loop, as the backedge alias check 2357 // does phi translation, and will check aliasing against store a[i-1]. 2358 // However sinking the load outside the loop, below the store is incorrect. 2359 2360 // For now, only sink if there are no Defs in the loop, and the existing ones 2361 // precede the use and are in the same block. 2362 // FIXME: Increase precision: Safe to sink if Use post dominates the Def; 2363 // needs PostDominatorTreeAnalysis. 2364 // FIXME: More precise: no Defs that alias this Use. 2365 if (Flags.tooManyMemoryAccesses()) 2366 return true; 2367 for (auto *BB : CurLoop->getBlocks()) 2368 if (pointerInvalidatedByBlock(*BB, *MSSA, *MU)) 2369 return true; 2370 // When sinking, the source block may not be part of the loop so check it. 2371 if (!CurLoop->contains(&I)) 2372 return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU); 2373 2374 return false; 2375 } 2376 2377 bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) { 2378 if (const auto *Accesses = MSSA.getBlockDefs(&BB)) 2379 for (const auto &MA : *Accesses) 2380 if (const auto *MD = dyn_cast<MemoryDef>(&MA)) 2381 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU)) 2382 return true; 2383 return false; 2384 } 2385 2386 /// Little predicate that returns true if the specified basic block is in 2387 /// a subloop of the current one, not the current one itself. 2388 /// 2389 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { 2390 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); 2391 return LI->getLoopFor(BB) != CurLoop; 2392 } 2393