1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion, attempting to remove as much 10 // code from the body of a loop as possible. It does this by either hoisting 11 // code into the preheader block, or by sinking code to the exit blocks if it is 12 // safe. This pass also promotes must-aliased memory locations in the loop to 13 // live in registers, thus hoisting and sinking "invariant" loads and stores. 14 // 15 // This pass uses alias analysis for two purposes: 16 // 17 // 1. Moving loop invariant loads and calls out of loops. If we can determine 18 // that a load or call inside of a loop never aliases anything stored to, 19 // we can hoist it or sink it like any other instruction. 20 // 2. Scalar Promotion of Memory - If there is a store instruction inside of 21 // the loop, we try to move the store to happen AFTER the loop instead of 22 // inside of the loop. This can only happen if a few conditions are true: 23 // A. The pointer stored through is loop invariant 24 // B. There are no stores or loads in the loop which _may_ alias the 25 // pointer. There are no calls in the loop which mod/ref the pointer. 26 // If these conditions are true, we can promote the loads and stores in the 27 // loop of the pointer to use a temporary alloca'd variable. We then use 28 // the SSAUpdater to construct the appropriate SSA form for the value. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/Transforms/Scalar/LICM.h" 33 #include "llvm/ADT/SetOperations.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AliasSetTracker.h" 37 #include "llvm/Analysis/BasicAliasAnalysis.h" 38 #include "llvm/Analysis/CaptureTracking.h" 39 #include "llvm/Analysis/ConstantFolding.h" 40 #include "llvm/Analysis/GlobalsModRef.h" 41 #include "llvm/Analysis/GuardUtils.h" 42 #include "llvm/Analysis/Loads.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/LoopIterator.h" 45 #include "llvm/Analysis/LoopPass.h" 46 #include "llvm/Analysis/MemoryBuiltins.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 50 #include "llvm/Analysis/ScalarEvolution.h" 51 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfoMetadata.h" 58 #include "llvm/IR/DerivedTypes.h" 59 #include "llvm/IR/Dominators.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/PredIteratorCache.h" 66 #include "llvm/InitializePasses.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/Scalar.h" 71 #include "llvm/Transforms/Scalar/LoopPassManager.h" 72 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 73 #include "llvm/Transforms/Utils/Local.h" 74 #include "llvm/Transforms/Utils/LoopUtils.h" 75 #include "llvm/Transforms/Utils/SSAUpdater.h" 76 #include <algorithm> 77 #include <utility> 78 using namespace llvm; 79 80 #define DEBUG_TYPE "licm" 81 82 STATISTIC(NumCreatedBlocks, "Number of blocks created"); 83 STATISTIC(NumClonedBranches, "Number of branches cloned"); 84 STATISTIC(NumSunk, "Number of instructions sunk out of loop"); 85 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); 86 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); 87 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); 88 STATISTIC(NumPromoted, "Number of memory locations promoted to registers"); 89 90 /// Memory promotion is enabled by default. 91 static cl::opt<bool> 92 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), 93 cl::desc("Disable memory promotion in LICM pass")); 94 95 static cl::opt<bool> ControlFlowHoisting( 96 "licm-control-flow-hoisting", cl::Hidden, cl::init(false), 97 cl::desc("Enable control flow (and PHI) hoisting in LICM")); 98 99 static cl::opt<uint32_t> MaxNumUsesTraversed( 100 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), 101 cl::desc("Max num uses visited for identifying load " 102 "invariance in loop using invariant start (default = 8)")); 103 104 // Default value of zero implies we use the regular alias set tracker mechanism 105 // instead of the cross product using AA to identify aliasing of the memory 106 // location we are interested in. 107 static cl::opt<int> 108 LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0), 109 cl::desc("How many instruction to cross product using AA")); 110 111 // Experimental option to allow imprecision in LICM in pathological cases, in 112 // exchange for faster compile. This is to be removed if MemorySSA starts to 113 // address the same issue. This flag applies only when LICM uses MemorySSA 114 // instead on AliasSetTracker. LICM calls MemorySSAWalker's 115 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect 116 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, 117 // which may not be precise, since optimizeUses is capped. The result is 118 // correct, but we may not get as "far up" as possible to get which access is 119 // clobbering the one queried. 120 cl::opt<unsigned> llvm::SetLicmMssaOptCap( 121 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, 122 cl::desc("Enable imprecision in LICM in pathological cases, in exchange " 123 "for faster compile. Caps the MemorySSA clobbering calls.")); 124 125 // Experimentally, memory promotion carries less importance than sinking and 126 // hoisting. Limit when we do promotion when using MemorySSA, in order to save 127 // compile time. 128 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( 129 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, 130 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " 131 "effect. When MSSA in LICM is enabled, then this is the maximum " 132 "number of accesses allowed to be present in a loop in order to " 133 "enable memory promotion.")); 134 135 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); 136 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 137 const LoopSafetyInfo *SafetyInfo, 138 TargetTransformInfo *TTI, bool &FreeInLoop); 139 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 140 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 141 MemorySSAUpdater *MSSAU, ScalarEvolution *SE, 142 OptimizationRemarkEmitter *ORE); 143 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 144 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 145 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE); 146 static bool isSafeToExecuteUnconditionally(Instruction &Inst, 147 const DominatorTree *DT, 148 const Loop *CurLoop, 149 const LoopSafetyInfo *SafetyInfo, 150 OptimizationRemarkEmitter *ORE, 151 const Instruction *CtxI = nullptr); 152 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, 153 AliasSetTracker *CurAST, Loop *CurLoop, 154 AliasAnalysis *AA); 155 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, 156 Loop *CurLoop, 157 SinkAndHoistLICMFlags &Flags); 158 static Instruction *CloneInstructionInExitBlock( 159 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 160 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU); 161 162 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 163 AliasSetTracker *AST, MemorySSAUpdater *MSSAU); 164 165 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 166 ICFLoopSafetyInfo &SafetyInfo, 167 MemorySSAUpdater *MSSAU, ScalarEvolution *SE); 168 169 namespace { 170 struct LoopInvariantCodeMotion { 171 using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>; 172 bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, 173 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, 174 ScalarEvolution *SE, MemorySSA *MSSA, 175 OptimizationRemarkEmitter *ORE, bool DeleteAST); 176 177 ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; } 178 LoopInvariantCodeMotion(unsigned LicmMssaOptCap, 179 unsigned LicmMssaNoAccForPromotionCap) 180 : LicmMssaOptCap(LicmMssaOptCap), 181 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {} 182 183 private: 184 ASTrackerMapTy LoopToAliasSetMap; 185 unsigned LicmMssaOptCap; 186 unsigned LicmMssaNoAccForPromotionCap; 187 188 std::unique_ptr<AliasSetTracker> 189 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA); 190 std::unique_ptr<AliasSetTracker> 191 collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA, 192 MemorySSAUpdater *MSSAU); 193 }; 194 195 struct LegacyLICMPass : public LoopPass { 196 static char ID; // Pass identification, replacement for typeid 197 LegacyLICMPass( 198 unsigned LicmMssaOptCap = SetLicmMssaOptCap, 199 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap) 200 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) { 201 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); 202 } 203 204 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 205 if (skipLoop(L)) { 206 // If we have run LICM on a previous loop but now we are skipping 207 // (because we've hit the opt-bisect limit), we need to clear the 208 // loop alias information. 209 LICM.getLoopToAliasSetMap().clear(); 210 return false; 211 } 212 213 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 214 MemorySSA *MSSA = EnableMSSALoopDependency 215 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA()) 216 : nullptr; 217 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 218 // pass. Function analyses need to be preserved across loop transformations 219 // but ORE cannot be preserved (see comment before the pass definition). 220 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 221 return LICM.runOnLoop(L, 222 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 223 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 224 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 225 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 226 *L->getHeader()->getParent()), 227 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 228 *L->getHeader()->getParent()), 229 SE ? &SE->getSE() : nullptr, MSSA, &ORE, false); 230 } 231 232 /// This transformation requires natural loop information & requires that 233 /// loop preheaders be inserted into the CFG... 234 /// 235 void getAnalysisUsage(AnalysisUsage &AU) const override { 236 AU.addPreserved<DominatorTreeWrapperPass>(); 237 AU.addPreserved<LoopInfoWrapperPass>(); 238 AU.addRequired<TargetLibraryInfoWrapperPass>(); 239 if (EnableMSSALoopDependency) { 240 AU.addRequired<MemorySSAWrapperPass>(); 241 AU.addPreserved<MemorySSAWrapperPass>(); 242 } 243 AU.addRequired<TargetTransformInfoWrapperPass>(); 244 getLoopAnalysisUsage(AU); 245 } 246 247 using llvm::Pass::doFinalization; 248 249 bool doFinalization() override { 250 auto &AliasSetMap = LICM.getLoopToAliasSetMap(); 251 // All loops in the AliasSetMap should be cleaned up already. The only case 252 // where we fail to do so is if an outer loop gets deleted before LICM 253 // visits it. 254 assert(all_of(AliasSetMap, 255 [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) { 256 return !KV.first->getParentLoop(); 257 }) && 258 "Didn't free loop alias sets"); 259 AliasSetMap.clear(); 260 return false; 261 } 262 263 private: 264 LoopInvariantCodeMotion LICM; 265 266 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. 267 void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, 268 Loop *L) override; 269 270 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias 271 /// set. 272 void deleteAnalysisValue(Value *V, Loop *L) override; 273 274 /// Simple Analysis hook. Delete loop L from alias set map. 275 void deleteAnalysisLoop(Loop *L) override; 276 }; 277 } // namespace 278 279 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, 280 LoopStandardAnalysisResults &AR, LPMUpdater &) { 281 const auto &FAM = 282 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 283 Function *F = L.getHeader()->getParent(); 284 285 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 286 // FIXME: This should probably be optional rather than required. 287 if (!ORE) 288 report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not " 289 "cached at a higher level"); 290 291 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 292 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE, 293 AR.MSSA, ORE, true)) 294 return PreservedAnalyses::all(); 295 296 auto PA = getLoopPassPreservedAnalyses(); 297 298 PA.preserve<DominatorTreeAnalysis>(); 299 PA.preserve<LoopAnalysis>(); 300 if (AR.MSSA) 301 PA.preserve<MemorySSAAnalysis>(); 302 303 return PA; 304 } 305 306 char LegacyLICMPass::ID = 0; 307 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", 308 false, false) 309 INITIALIZE_PASS_DEPENDENCY(LoopPass) 310 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 311 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 312 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 313 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, 314 false) 315 316 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } 317 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap, 318 unsigned LicmMssaNoAccForPromotionCap) { 319 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 320 } 321 322 /// Hoist expressions out of the specified loop. Note, alias info for inner 323 /// loop is not preserved so it is not a good idea to run LICM multiple 324 /// times on one loop. 325 /// We should delete AST for inner loops in the new pass manager to avoid 326 /// memory leak. 327 /// 328 bool LoopInvariantCodeMotion::runOnLoop( 329 Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, 330 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE, 331 MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) { 332 bool Changed = false; 333 334 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); 335 336 // If this loop has metadata indicating that LICM is not to be performed then 337 // just exit. 338 if (hasDisableLICMTransformsHint(L)) { 339 return false; 340 } 341 342 std::unique_ptr<AliasSetTracker> CurAST; 343 std::unique_ptr<MemorySSAUpdater> MSSAU; 344 bool NoOfMemAccTooLarge = false; 345 unsigned LicmMssaOptCounter = 0; 346 347 if (!MSSA) { 348 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n"); 349 CurAST = collectAliasInfoForLoop(L, LI, AA); 350 } else { 351 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n"); 352 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 353 354 unsigned AccessCapCount = 0; 355 for (auto *BB : L->getBlocks()) { 356 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 357 for (const auto &MA : *Accesses) { 358 (void)MA; 359 AccessCapCount++; 360 if (AccessCapCount > LicmMssaNoAccForPromotionCap) { 361 NoOfMemAccTooLarge = true; 362 break; 363 } 364 } 365 } 366 if (NoOfMemAccTooLarge) 367 break; 368 } 369 } 370 371 // Get the preheader block to move instructions into... 372 BasicBlock *Preheader = L->getLoopPreheader(); 373 374 // Compute loop safety information. 375 ICFLoopSafetyInfo SafetyInfo(DT); 376 SafetyInfo.computeLoopSafetyInfo(L); 377 378 // We want to visit all of the instructions in this loop... that are not parts 379 // of our subloops (they have already had their invariants hoisted out of 380 // their loop, into this loop, so there is no need to process the BODIES of 381 // the subloops). 382 // 383 // Traverse the body of the loop in depth first order on the dominator tree so 384 // that we are guaranteed to see definitions before we see uses. This allows 385 // us to sink instructions in one pass, without iteration. After sinking 386 // instructions, we perform another pass to hoist them out of the loop. 387 SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter, 388 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 389 /*IsSink=*/true}; 390 if (L->hasDedicatedExits()) 391 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 392 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE); 393 Flags.IsSink = false; 394 if (Preheader) 395 Changed |= 396 hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L, 397 CurAST.get(), MSSAU.get(), SE, &SafetyInfo, Flags, ORE); 398 399 // Now that all loop invariants have been removed from the loop, promote any 400 // memory references to scalars that we can. 401 // Don't sink stores from loops without dedicated block exits. Exits 402 // containing indirect branches are not transformed by loop simplify, 403 // make sure we catch that. An additional load may be generated in the 404 // preheader for SSA updater, so also avoid sinking when no preheader 405 // is available. 406 if (!DisablePromotion && Preheader && L->hasDedicatedExits() && 407 !NoOfMemAccTooLarge) { 408 // Figure out the loop exits and their insertion points 409 SmallVector<BasicBlock *, 8> ExitBlocks; 410 L->getUniqueExitBlocks(ExitBlocks); 411 412 // We can't insert into a catchswitch. 413 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { 414 return isa<CatchSwitchInst>(Exit->getTerminator()); 415 }); 416 417 if (!HasCatchSwitch) { 418 SmallVector<Instruction *, 8> InsertPts; 419 SmallVector<MemoryAccess *, 8> MSSAInsertPts; 420 InsertPts.reserve(ExitBlocks.size()); 421 if (MSSAU) 422 MSSAInsertPts.reserve(ExitBlocks.size()); 423 for (BasicBlock *ExitBlock : ExitBlocks) { 424 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 425 if (MSSAU) 426 MSSAInsertPts.push_back(nullptr); 427 } 428 429 PredIteratorCache PIC; 430 431 bool Promoted = false; 432 433 // Build an AST using MSSA. 434 if (!CurAST.get()) 435 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get()); 436 437 // Loop over all of the alias sets in the tracker object. 438 for (AliasSet &AS : *CurAST) { 439 // We can promote this alias set if it has a store, if it is a "Must" 440 // alias set, if the pointer is loop invariant, and if we are not 441 // eliminating any volatile loads or stores. 442 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || 443 !L->isLoopInvariant(AS.begin()->getValue())) 444 continue; 445 446 assert( 447 !AS.empty() && 448 "Must alias set should have at least one pointer element in it!"); 449 450 SmallSetVector<Value *, 8> PointerMustAliases; 451 for (const auto &ASI : AS) 452 PointerMustAliases.insert(ASI.getValue()); 453 454 Promoted |= promoteLoopAccessesToScalars( 455 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, 456 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE); 457 } 458 459 // Once we have promoted values across the loop body we have to 460 // recursively reform LCSSA as any nested loop may now have values defined 461 // within the loop used in the outer loop. 462 // FIXME: This is really heavy handed. It would be a bit better to use an 463 // SSAUpdater strategy during promotion that was LCSSA aware and reformed 464 // it as it went. 465 if (Promoted) 466 formLCSSARecursively(*L, *DT, LI, SE); 467 468 Changed |= Promoted; 469 } 470 } 471 472 // Check that neither this loop nor its parent have had LCSSA broken. LICM is 473 // specifically moving instructions across the loop boundary and so it is 474 // especially in need of sanity checking here. 475 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); 476 assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && 477 "Parent loop not left in LCSSA form after LICM!"); 478 479 // If this loop is nested inside of another one, save the alias information 480 // for when we process the outer loop. 481 if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST) 482 LoopToAliasSetMap[L] = std::move(CurAST); 483 484 if (MSSAU.get() && VerifyMemorySSA) 485 MSSAU->getMemorySSA()->verifyMemorySSA(); 486 487 if (Changed && SE) 488 SE->forgetLoopDispositions(L); 489 return Changed; 490 } 491 492 /// Walk the specified region of the CFG (defined by all blocks dominated by 493 /// the specified block, and that are in the current loop) in reverse depth 494 /// first order w.r.t the DominatorTree. This allows us to visit uses before 495 /// definitions, allowing us to sink a loop body in one pass without iteration. 496 /// 497 bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, 498 DominatorTree *DT, TargetLibraryInfo *TLI, 499 TargetTransformInfo *TTI, Loop *CurLoop, 500 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 501 ICFLoopSafetyInfo *SafetyInfo, 502 SinkAndHoistLICMFlags &Flags, 503 OptimizationRemarkEmitter *ORE) { 504 505 // Verify inputs. 506 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 507 CurLoop != nullptr && SafetyInfo != nullptr && 508 "Unexpected input to sinkRegion."); 509 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && 510 "Either AliasSetTracker or MemorySSA should be initialized."); 511 512 // We want to visit children before parents. We will enque all the parents 513 // before their children in the worklist and process the worklist in reverse 514 // order. 515 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); 516 517 bool Changed = false; 518 for (DomTreeNode *DTN : reverse(Worklist)) { 519 BasicBlock *BB = DTN->getBlock(); 520 // Only need to process the contents of this block if it is not part of a 521 // subloop (which would already have been processed). 522 if (inSubLoop(BB, CurLoop, LI)) 523 continue; 524 525 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { 526 Instruction &I = *--II; 527 528 // If the instruction is dead, we would try to sink it because it isn't 529 // used in the loop, instead, just delete it. 530 if (isInstructionTriviallyDead(&I, TLI)) { 531 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); 532 salvageDebugInfo(I); 533 ++II; 534 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 535 Changed = true; 536 continue; 537 } 538 539 // Check to see if we can sink this instruction to the exit blocks 540 // of the loop. We can do this if the all users of the instruction are 541 // outside of the loop. In this case, it doesn't even matter if the 542 // operands of the instruction are loop invariant. 543 // 544 bool FreeInLoop = false; 545 if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) && 546 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, 547 ORE) && 548 !I.mayHaveSideEffects()) { 549 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { 550 if (!FreeInLoop) { 551 ++II; 552 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 553 } 554 Changed = true; 555 } 556 } 557 } 558 } 559 if (MSSAU && VerifyMemorySSA) 560 MSSAU->getMemorySSA()->verifyMemorySSA(); 561 return Changed; 562 } 563 564 namespace { 565 // This is a helper class for hoistRegion to make it able to hoist control flow 566 // in order to be able to hoist phis. The way this works is that we initially 567 // start hoisting to the loop preheader, and when we see a loop invariant branch 568 // we make note of this. When we then come to hoist an instruction that's 569 // conditional on such a branch we duplicate the branch and the relevant control 570 // flow, then hoist the instruction into the block corresponding to its original 571 // block in the duplicated control flow. 572 class ControlFlowHoister { 573 private: 574 // Information about the loop we are hoisting from 575 LoopInfo *LI; 576 DominatorTree *DT; 577 Loop *CurLoop; 578 MemorySSAUpdater *MSSAU; 579 580 // A map of blocks in the loop to the block their instructions will be hoisted 581 // to. 582 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; 583 584 // The branches that we can hoist, mapped to the block that marks a 585 // convergence point of their control flow. 586 DenseMap<BranchInst *, BasicBlock *> HoistableBranches; 587 588 public: 589 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, 590 MemorySSAUpdater *MSSAU) 591 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} 592 593 void registerPossiblyHoistableBranch(BranchInst *BI) { 594 // We can only hoist conditional branches with loop invariant operands. 595 if (!ControlFlowHoisting || !BI->isConditional() || 596 !CurLoop->hasLoopInvariantOperands(BI)) 597 return; 598 599 // The branch destinations need to be in the loop, and we don't gain 600 // anything by duplicating conditional branches with duplicate successors, 601 // as it's essentially the same as an unconditional branch. 602 BasicBlock *TrueDest = BI->getSuccessor(0); 603 BasicBlock *FalseDest = BI->getSuccessor(1); 604 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || 605 TrueDest == FalseDest) 606 return; 607 608 // We can hoist BI if one branch destination is the successor of the other, 609 // or both have common successor which we check by seeing if the 610 // intersection of their successors is non-empty. 611 // TODO: This could be expanded to allowing branches where both ends 612 // eventually converge to a single block. 613 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; 614 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); 615 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); 616 BasicBlock *CommonSucc = nullptr; 617 if (TrueDestSucc.count(FalseDest)) { 618 CommonSucc = FalseDest; 619 } else if (FalseDestSucc.count(TrueDest)) { 620 CommonSucc = TrueDest; 621 } else { 622 set_intersect(TrueDestSucc, FalseDestSucc); 623 // If there's one common successor use that. 624 if (TrueDestSucc.size() == 1) 625 CommonSucc = *TrueDestSucc.begin(); 626 // If there's more than one pick whichever appears first in the block list 627 // (we can't use the value returned by TrueDestSucc.begin() as it's 628 // unpredicatable which element gets returned). 629 else if (!TrueDestSucc.empty()) { 630 Function *F = TrueDest->getParent(); 631 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; 632 auto It = std::find_if(F->begin(), F->end(), IsSucc); 633 assert(It != F->end() && "Could not find successor in function"); 634 CommonSucc = &*It; 635 } 636 } 637 // The common successor has to be dominated by the branch, as otherwise 638 // there will be some other path to the successor that will not be 639 // controlled by this branch so any phi we hoist would be controlled by the 640 // wrong condition. This also takes care of avoiding hoisting of loop back 641 // edges. 642 // TODO: In some cases this could be relaxed if the successor is dominated 643 // by another block that's been hoisted and we can guarantee that the 644 // control flow has been replicated exactly. 645 if (CommonSucc && DT->dominates(BI, CommonSucc)) 646 HoistableBranches[BI] = CommonSucc; 647 } 648 649 bool canHoistPHI(PHINode *PN) { 650 // The phi must have loop invariant operands. 651 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) 652 return false; 653 // We can hoist phis if the block they are in is the target of hoistable 654 // branches which cover all of the predecessors of the block. 655 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; 656 BasicBlock *BB = PN->getParent(); 657 for (BasicBlock *PredBB : predecessors(BB)) 658 PredecessorBlocks.insert(PredBB); 659 // If we have less predecessor blocks than predecessors then the phi will 660 // have more than one incoming value for the same block which we can't 661 // handle. 662 // TODO: This could be handled be erasing some of the duplicate incoming 663 // values. 664 if (PredecessorBlocks.size() != pred_size(BB)) 665 return false; 666 for (auto &Pair : HoistableBranches) { 667 if (Pair.second == BB) { 668 // Which blocks are predecessors via this branch depends on if the 669 // branch is triangle-like or diamond-like. 670 if (Pair.first->getSuccessor(0) == BB) { 671 PredecessorBlocks.erase(Pair.first->getParent()); 672 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 673 } else if (Pair.first->getSuccessor(1) == BB) { 674 PredecessorBlocks.erase(Pair.first->getParent()); 675 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 676 } else { 677 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 678 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 679 } 680 } 681 } 682 // PredecessorBlocks will now be empty if for every predecessor of BB we 683 // found a hoistable branch source. 684 return PredecessorBlocks.empty(); 685 } 686 687 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { 688 if (!ControlFlowHoisting) 689 return CurLoop->getLoopPreheader(); 690 // If BB has already been hoisted, return that 691 if (HoistDestinationMap.count(BB)) 692 return HoistDestinationMap[BB]; 693 694 // Check if this block is conditional based on a pending branch 695 auto HasBBAsSuccessor = 696 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { 697 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || 698 Pair.first->getSuccessor(1) == BB); 699 }; 700 auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(), 701 HasBBAsSuccessor); 702 703 // If not involved in a pending branch, hoist to preheader 704 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); 705 if (It == HoistableBranches.end()) { 706 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName() 707 << " as hoist destination for " << BB->getName() 708 << "\n"); 709 HoistDestinationMap[BB] = InitialPreheader; 710 return InitialPreheader; 711 } 712 BranchInst *BI = It->first; 713 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == 714 HoistableBranches.end() && 715 "BB is expected to be the target of at most one branch"); 716 717 LLVMContext &C = BB->getContext(); 718 BasicBlock *TrueDest = BI->getSuccessor(0); 719 BasicBlock *FalseDest = BI->getSuccessor(1); 720 BasicBlock *CommonSucc = HoistableBranches[BI]; 721 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); 722 723 // Create hoisted versions of blocks that currently don't have them 724 auto CreateHoistedBlock = [&](BasicBlock *Orig) { 725 if (HoistDestinationMap.count(Orig)) 726 return HoistDestinationMap[Orig]; 727 BasicBlock *New = 728 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); 729 HoistDestinationMap[Orig] = New; 730 DT->addNewBlock(New, HoistTarget); 731 if (CurLoop->getParentLoop()) 732 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); 733 ++NumCreatedBlocks; 734 LLVM_DEBUG(dbgs() << "LICM created " << New->getName() 735 << " as hoist destination for " << Orig->getName() 736 << "\n"); 737 return New; 738 }; 739 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); 740 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); 741 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); 742 743 // Link up these blocks with branches. 744 if (!HoistCommonSucc->getTerminator()) { 745 // The new common successor we've generated will branch to whatever that 746 // hoist target branched to. 747 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); 748 assert(TargetSucc && "Expected hoist target to have a single successor"); 749 HoistCommonSucc->moveBefore(TargetSucc); 750 BranchInst::Create(TargetSucc, HoistCommonSucc); 751 } 752 if (!HoistTrueDest->getTerminator()) { 753 HoistTrueDest->moveBefore(HoistCommonSucc); 754 BranchInst::Create(HoistCommonSucc, HoistTrueDest); 755 } 756 if (!HoistFalseDest->getTerminator()) { 757 HoistFalseDest->moveBefore(HoistCommonSucc); 758 BranchInst::Create(HoistCommonSucc, HoistFalseDest); 759 } 760 761 // If BI is being cloned to what was originally the preheader then 762 // HoistCommonSucc will now be the new preheader. 763 if (HoistTarget == InitialPreheader) { 764 // Phis in the loop header now need to use the new preheader. 765 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); 766 if (MSSAU) 767 MSSAU->wireOldPredecessorsToNewImmediatePredecessor( 768 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); 769 // The new preheader dominates the loop header. 770 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); 771 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); 772 DT->changeImmediateDominator(HeaderNode, PreheaderNode); 773 // The preheader hoist destination is now the new preheader, with the 774 // exception of the hoist destination of this branch. 775 for (auto &Pair : HoistDestinationMap) 776 if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) 777 Pair.second = HoistCommonSucc; 778 } 779 780 // Now finally clone BI. 781 ReplaceInstWithInst( 782 HoistTarget->getTerminator(), 783 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); 784 ++NumClonedBranches; 785 786 assert(CurLoop->getLoopPreheader() && 787 "Hoisting blocks should not have destroyed preheader"); 788 return HoistDestinationMap[BB]; 789 } 790 }; 791 } // namespace 792 793 /// Walk the specified region of the CFG (defined by all blocks dominated by 794 /// the specified block, and that are in the current loop) in depth first 795 /// order w.r.t the DominatorTree. This allows us to visit definitions before 796 /// uses, allowing us to hoist a loop body in one pass without iteration. 797 /// 798 bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, 799 DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop, 800 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 801 ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo, 802 SinkAndHoistLICMFlags &Flags, 803 OptimizationRemarkEmitter *ORE) { 804 // Verify inputs. 805 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 806 CurLoop != nullptr && SafetyInfo != nullptr && 807 "Unexpected input to hoistRegion."); 808 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && 809 "Either AliasSetTracker or MemorySSA should be initialized."); 810 811 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); 812 813 // Keep track of instructions that have been hoisted, as they may need to be 814 // re-hoisted if they end up not dominating all of their uses. 815 SmallVector<Instruction *, 16> HoistedInstructions; 816 817 // For PHI hoisting to work we need to hoist blocks before their successors. 818 // We can do this by iterating through the blocks in the loop in reverse 819 // post-order. 820 LoopBlocksRPO Worklist(CurLoop); 821 Worklist.perform(LI); 822 bool Changed = false; 823 for (BasicBlock *BB : Worklist) { 824 // Only need to process the contents of this block if it is not part of a 825 // subloop (which would already have been processed). 826 if (inSubLoop(BB, CurLoop, LI)) 827 continue; 828 829 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) { 830 Instruction &I = *II++; 831 // Try constant folding this instruction. If all the operands are 832 // constants, it is technically hoistable, but it would be better to 833 // just fold it. 834 if (Constant *C = ConstantFoldInstruction( 835 &I, I.getModule()->getDataLayout(), TLI)) { 836 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C 837 << '\n'); 838 if (CurAST) 839 CurAST->copyValue(&I, C); 840 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960). 841 I.replaceAllUsesWith(C); 842 if (isInstructionTriviallyDead(&I, TLI)) 843 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 844 Changed = true; 845 continue; 846 } 847 848 // Try hoisting the instruction out to the preheader. We can only do 849 // this if all of the operands of the instruction are loop invariant and 850 // if it is safe to hoist the instruction. 851 // TODO: It may be safe to hoist if we are hoisting to a conditional block 852 // and we have accurately duplicated the control flow from the loop header 853 // to that block. 854 if (CurLoop->hasLoopInvariantOperands(&I) && 855 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, 856 ORE) && 857 isSafeToExecuteUnconditionally( 858 I, DT, CurLoop, SafetyInfo, ORE, 859 CurLoop->getLoopPreheader()->getTerminator())) { 860 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 861 MSSAU, SE, ORE); 862 HoistedInstructions.push_back(&I); 863 Changed = true; 864 continue; 865 } 866 867 // Attempt to remove floating point division out of the loop by 868 // converting it to a reciprocal multiplication. 869 if (I.getOpcode() == Instruction::FDiv && 870 CurLoop->isLoopInvariant(I.getOperand(1)) && 871 I.hasAllowReciprocal()) { 872 auto Divisor = I.getOperand(1); 873 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); 874 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); 875 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); 876 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); 877 ReciprocalDivisor->insertBefore(&I); 878 879 auto Product = 880 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); 881 Product->setFastMathFlags(I.getFastMathFlags()); 882 SafetyInfo->insertInstructionTo(Product, I.getParent()); 883 Product->insertAfter(&I); 884 I.replaceAllUsesWith(Product); 885 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 886 887 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), 888 SafetyInfo, MSSAU, SE, ORE); 889 HoistedInstructions.push_back(ReciprocalDivisor); 890 Changed = true; 891 continue; 892 } 893 894 auto IsInvariantStart = [&](Instruction &I) { 895 using namespace PatternMatch; 896 return I.use_empty() && 897 match(&I, m_Intrinsic<Intrinsic::invariant_start>()); 898 }; 899 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { 900 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && 901 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); 902 }; 903 if ((IsInvariantStart(I) || isGuard(&I)) && 904 CurLoop->hasLoopInvariantOperands(&I) && 905 MustExecuteWithoutWritesBefore(I)) { 906 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 907 MSSAU, SE, ORE); 908 HoistedInstructions.push_back(&I); 909 Changed = true; 910 continue; 911 } 912 913 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 914 if (CFH.canHoistPHI(PN)) { 915 // Redirect incoming blocks first to ensure that we create hoisted 916 // versions of those blocks before we hoist the phi. 917 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) 918 PN->setIncomingBlock( 919 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); 920 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 921 MSSAU, SE, ORE); 922 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); 923 Changed = true; 924 continue; 925 } 926 } 927 928 // Remember possibly hoistable branches so we can actually hoist them 929 // later if needed. 930 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 931 CFH.registerPossiblyHoistableBranch(BI); 932 } 933 } 934 935 // If we hoisted instructions to a conditional block they may not dominate 936 // their uses that weren't hoisted (such as phis where some operands are not 937 // loop invariant). If so make them unconditional by moving them to their 938 // immediate dominator. We iterate through the instructions in reverse order 939 // which ensures that when we rehoist an instruction we rehoist its operands, 940 // and also keep track of where in the block we are rehoisting to to make sure 941 // that we rehoist instructions before the instructions that use them. 942 Instruction *HoistPoint = nullptr; 943 if (ControlFlowHoisting) { 944 for (Instruction *I : reverse(HoistedInstructions)) { 945 if (!llvm::all_of(I->uses(), 946 [&](Use &U) { return DT->dominates(I, U); })) { 947 BasicBlock *Dominator = 948 DT->getNode(I->getParent())->getIDom()->getBlock(); 949 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { 950 if (HoistPoint) 951 assert(DT->dominates(Dominator, HoistPoint->getParent()) && 952 "New hoist point expected to dominate old hoist point"); 953 HoistPoint = Dominator->getTerminator(); 954 } 955 LLVM_DEBUG(dbgs() << "LICM rehoisting to " 956 << HoistPoint->getParent()->getName() 957 << ": " << *I << "\n"); 958 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE); 959 HoistPoint = I; 960 Changed = true; 961 } 962 } 963 } 964 if (MSSAU && VerifyMemorySSA) 965 MSSAU->getMemorySSA()->verifyMemorySSA(); 966 967 // Now that we've finished hoisting make sure that LI and DT are still 968 // valid. 969 #ifdef EXPENSIVE_CHECKS 970 if (Changed) { 971 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 972 "Dominator tree verification failed"); 973 LI->verify(*DT); 974 } 975 #endif 976 977 return Changed; 978 } 979 980 // Return true if LI is invariant within scope of the loop. LI is invariant if 981 // CurLoop is dominated by an invariant.start representing the same memory 982 // location and size as the memory location LI loads from, and also the 983 // invariant.start has no uses. 984 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, 985 Loop *CurLoop) { 986 Value *Addr = LI->getOperand(0); 987 const DataLayout &DL = LI->getModule()->getDataLayout(); 988 const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); 989 990 // if the type is i8 addrspace(x)*, we know this is the type of 991 // llvm.invariant.start operand 992 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), 993 LI->getPointerAddressSpace()); 994 unsigned BitcastsVisited = 0; 995 // Look through bitcasts until we reach the i8* type (this is invariant.start 996 // operand type). 997 while (Addr->getType() != PtrInt8Ty) { 998 auto *BC = dyn_cast<BitCastInst>(Addr); 999 // Avoid traversing high number of bitcast uses. 1000 if (++BitcastsVisited > MaxNumUsesTraversed || !BC) 1001 return false; 1002 Addr = BC->getOperand(0); 1003 } 1004 1005 unsigned UsesVisited = 0; 1006 // Traverse all uses of the load operand value, to see if invariant.start is 1007 // one of the uses, and whether it dominates the load instruction. 1008 for (auto *U : Addr->users()) { 1009 // Avoid traversing for Load operand with high number of users. 1010 if (++UsesVisited > MaxNumUsesTraversed) 1011 return false; 1012 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1013 // If there are escaping uses of invariant.start instruction, the load maybe 1014 // non-invariant. 1015 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || 1016 !II->use_empty()) 1017 continue; 1018 unsigned InvariantSizeInBits = 1019 cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8; 1020 // Confirm the invariant.start location size contains the load operand size 1021 // in bits. Also, the invariant.start should dominate the load, and we 1022 // should not hoist the load out of a loop that contains this dominating 1023 // invariant.start. 1024 if (LocSizeInBits <= InvariantSizeInBits && 1025 DT->properlyDominates(II->getParent(), CurLoop->getHeader())) 1026 return true; 1027 } 1028 1029 return false; 1030 } 1031 1032 namespace { 1033 /// Return true if-and-only-if we know how to (mechanically) both hoist and 1034 /// sink a given instruction out of a loop. Does not address legality 1035 /// concerns such as aliasing or speculation safety. 1036 bool isHoistableAndSinkableInst(Instruction &I) { 1037 // Only these instructions are hoistable/sinkable. 1038 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 1039 isa<FenceInst>(I) || isa<CastInst>(I) || 1040 isa<UnaryOperator>(I) || isa<BinaryOperator>(I) || 1041 isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || 1042 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 1043 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || 1044 isa<InsertValueInst>(I)); 1045 } 1046 /// Return true if all of the alias sets within this AST are known not to 1047 /// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop. 1048 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU, 1049 const Loop *L) { 1050 if (CurAST) { 1051 for (AliasSet &AS : *CurAST) { 1052 if (!AS.isForwardingAliasSet() && AS.isMod()) { 1053 return false; 1054 } 1055 } 1056 return true; 1057 } else { /*MSSAU*/ 1058 for (auto *BB : L->getBlocks()) 1059 if (MSSAU->getMemorySSA()->getBlockDefs(BB)) 1060 return false; 1061 return true; 1062 } 1063 } 1064 1065 /// Return true if I is the only Instruction with a MemoryAccess in L. 1066 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, 1067 const MemorySSAUpdater *MSSAU) { 1068 for (auto *BB : L->getBlocks()) 1069 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) { 1070 int NotAPhi = 0; 1071 for (const auto &Acc : *Accs) { 1072 if (isa<MemoryPhi>(&Acc)) 1073 continue; 1074 const auto *MUD = cast<MemoryUseOrDef>(&Acc); 1075 if (MUD->getMemoryInst() != I || NotAPhi++ == 1) 1076 return false; 1077 } 1078 } 1079 return true; 1080 } 1081 } 1082 1083 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, 1084 Loop *CurLoop, AliasSetTracker *CurAST, 1085 MemorySSAUpdater *MSSAU, 1086 bool TargetExecutesOncePerLoop, 1087 SinkAndHoistLICMFlags *Flags, 1088 OptimizationRemarkEmitter *ORE) { 1089 // If we don't understand the instruction, bail early. 1090 if (!isHoistableAndSinkableInst(I)) 1091 return false; 1092 1093 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr; 1094 if (MSSA) 1095 assert(Flags != nullptr && "Flags cannot be null."); 1096 1097 // Loads have extra constraints we have to verify before we can hoist them. 1098 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 1099 if (!LI->isUnordered()) 1100 return false; // Don't sink/hoist volatile or ordered atomic loads! 1101 1102 // Loads from constant memory are always safe to move, even if they end up 1103 // in the same alias set as something that ends up being modified. 1104 if (AA->pointsToConstantMemory(LI->getOperand(0))) 1105 return true; 1106 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1107 return true; 1108 1109 if (LI->isAtomic() && !TargetExecutesOncePerLoop) 1110 return false; // Don't risk duplicating unordered loads 1111 1112 // This checks for an invariant.start dominating the load. 1113 if (isLoadInvariantInLoop(LI, DT, CurLoop)) 1114 return true; 1115 1116 bool Invalidated; 1117 if (CurAST) 1118 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST, 1119 CurLoop, AA); 1120 else 1121 Invalidated = pointerInvalidatedByLoopWithMSSA( 1122 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags); 1123 // Check loop-invariant address because this may also be a sinkable load 1124 // whose address is not necessarily loop-invariant. 1125 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1126 ORE->emit([&]() { 1127 return OptimizationRemarkMissed( 1128 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) 1129 << "failed to move load with loop-invariant address " 1130 "because the loop may invalidate its value"; 1131 }); 1132 1133 return !Invalidated; 1134 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1135 // Don't sink or hoist dbg info; it's legal, but not useful. 1136 if (isa<DbgInfoIntrinsic>(I)) 1137 return false; 1138 1139 // Don't sink calls which can throw. 1140 if (CI->mayThrow()) 1141 return false; 1142 1143 using namespace PatternMatch; 1144 if (match(CI, m_Intrinsic<Intrinsic::assume>())) 1145 // Assumes don't actually alias anything or throw 1146 return true; 1147 1148 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>())) 1149 // Widenable conditions don't actually alias anything or throw 1150 return true; 1151 1152 // Handle simple cases by querying alias analysis. 1153 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI); 1154 if (Behavior == FMRB_DoesNotAccessMemory) 1155 return true; 1156 if (AliasAnalysis::onlyReadsMemory(Behavior)) { 1157 // A readonly argmemonly function only reads from memory pointed to by 1158 // it's arguments with arbitrary offsets. If we can prove there are no 1159 // writes to this memory in the loop, we can hoist or sink. 1160 if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) { 1161 // TODO: expand to writeable arguments 1162 for (Value *Op : CI->arg_operands()) 1163 if (Op->getType()->isPointerTy()) { 1164 bool Invalidated; 1165 if (CurAST) 1166 Invalidated = pointerInvalidatedByLoop( 1167 MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()), 1168 CurAST, CurLoop, AA); 1169 else 1170 Invalidated = pointerInvalidatedByLoopWithMSSA( 1171 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, 1172 *Flags); 1173 if (Invalidated) 1174 return false; 1175 } 1176 return true; 1177 } 1178 1179 // If this call only reads from memory and there are no writes to memory 1180 // in the loop, we can hoist or sink the call as appropriate. 1181 if (isReadOnly(CurAST, MSSAU, CurLoop)) 1182 return true; 1183 } 1184 1185 // FIXME: This should use mod/ref information to see if we can hoist or 1186 // sink the call. 1187 1188 return false; 1189 } else if (auto *FI = dyn_cast<FenceInst>(&I)) { 1190 // Fences alias (most) everything to provide ordering. For the moment, 1191 // just give up if there are any other memory operations in the loop. 1192 if (CurAST) { 1193 auto Begin = CurAST->begin(); 1194 assert(Begin != CurAST->end() && "must contain FI"); 1195 if (std::next(Begin) != CurAST->end()) 1196 // constant memory for instance, TODO: handle better 1197 return false; 1198 auto *UniqueI = Begin->getUniqueInstruction(); 1199 if (!UniqueI) 1200 // other memory op, give up 1201 return false; 1202 (void)FI; // suppress unused variable warning 1203 assert(UniqueI == FI && "AS must contain FI"); 1204 return true; 1205 } else // MSSAU 1206 return isOnlyMemoryAccess(FI, CurLoop, MSSAU); 1207 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 1208 if (!SI->isUnordered()) 1209 return false; // Don't sink/hoist volatile or ordered atomic store! 1210 1211 // We can only hoist a store that we can prove writes a value which is not 1212 // read or overwritten within the loop. For those cases, we fallback to 1213 // load store promotion instead. TODO: We can extend this to cases where 1214 // there is exactly one write to the location and that write dominates an 1215 // arbitrary number of reads in the loop. 1216 if (CurAST) { 1217 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI)); 1218 1219 if (AS.isRef() || !AS.isMustAlias()) 1220 // Quick exit test, handled by the full path below as well. 1221 return false; 1222 auto *UniqueI = AS.getUniqueInstruction(); 1223 if (!UniqueI) 1224 // other memory op, give up 1225 return false; 1226 assert(UniqueI == SI && "AS must contain SI"); 1227 return true; 1228 } else { // MSSAU 1229 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) 1230 return true; 1231 // If there are more accesses than the Promotion cap, give up, we're not 1232 // walking a list that long. 1233 if (Flags->NoOfMemAccTooLarge) 1234 return false; 1235 // Check store only if there's still "quota" to check clobber. 1236 if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap) 1237 return false; 1238 // If there are interfering Uses (i.e. their defining access is in the 1239 // loop), or ordered loads (stored as Defs!), don't move this store. 1240 // Could do better here, but this is conservatively correct. 1241 // TODO: Cache set of Uses on the first walk in runOnLoop, update when 1242 // moving accesses. Can also extend to dominating uses. 1243 auto *SIMD = MSSA->getMemoryAccess(SI); 1244 for (auto *BB : CurLoop->getBlocks()) 1245 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 1246 for (const auto &MA : *Accesses) 1247 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { 1248 auto *MD = MU->getDefiningAccess(); 1249 if (!MSSA->isLiveOnEntryDef(MD) && 1250 CurLoop->contains(MD->getBlock())) 1251 return false; 1252 // Disable hoisting past potentially interfering loads. Optimized 1253 // Uses may point to an access outside the loop, as getClobbering 1254 // checks the previous iteration when walking the backedge. 1255 // FIXME: More precise: no Uses that alias SI. 1256 if (!Flags->IsSink && !MSSA->dominates(SIMD, MU)) 1257 return false; 1258 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { 1259 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { 1260 (void)LI; // Silence warning. 1261 assert(!LI->isUnordered() && "Expected unordered load"); 1262 return false; 1263 } 1264 // Any call, while it may not be clobbering SI, it may be a use. 1265 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { 1266 // Check if the call may read from the memory locattion written 1267 // to by SI. Check CI's attributes and arguments; the number of 1268 // such checks performed is limited above by NoOfMemAccTooLarge. 1269 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI)); 1270 if (isModOrRefSet(MRI)) 1271 return false; 1272 } 1273 } 1274 } 1275 1276 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI); 1277 Flags->LicmMssaOptCounter++; 1278 // If there are no clobbering Defs in the loop, store is safe to hoist. 1279 return MSSA->isLiveOnEntryDef(Source) || 1280 !CurLoop->contains(Source->getBlock()); 1281 } 1282 } 1283 1284 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); 1285 1286 // We've established mechanical ability and aliasing, it's up to the caller 1287 // to check fault safety 1288 return true; 1289 } 1290 1291 /// Returns true if a PHINode is a trivially replaceable with an 1292 /// Instruction. 1293 /// This is true when all incoming values are that instruction. 1294 /// This pattern occurs most often with LCSSA PHI nodes. 1295 /// 1296 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { 1297 for (const Value *IncValue : PN.incoming_values()) 1298 if (IncValue != &I) 1299 return false; 1300 1301 return true; 1302 } 1303 1304 /// Return true if the instruction is free in the loop. 1305 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, 1306 const TargetTransformInfo *TTI) { 1307 1308 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1309 if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free) 1310 return false; 1311 // For a GEP, we cannot simply use getUserCost because currently it 1312 // optimistically assume that a GEP will fold into addressing mode 1313 // regardless of its users. 1314 const BasicBlock *BB = GEP->getParent(); 1315 for (const User *U : GEP->users()) { 1316 const Instruction *UI = cast<Instruction>(U); 1317 if (CurLoop->contains(UI) && 1318 (BB != UI->getParent() || 1319 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) 1320 return false; 1321 } 1322 return true; 1323 } else 1324 return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free; 1325 } 1326 1327 /// Return true if the only users of this instruction are outside of 1328 /// the loop. If this is true, we can sink the instruction to the exit 1329 /// blocks of the loop. 1330 /// 1331 /// We also return true if the instruction could be folded away in lowering. 1332 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). 1333 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 1334 const LoopSafetyInfo *SafetyInfo, 1335 TargetTransformInfo *TTI, bool &FreeInLoop) { 1336 const auto &BlockColors = SafetyInfo->getBlockColors(); 1337 bool IsFree = isFreeInLoop(I, CurLoop, TTI); 1338 for (const User *U : I.users()) { 1339 const Instruction *UI = cast<Instruction>(U); 1340 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1341 const BasicBlock *BB = PN->getParent(); 1342 // We cannot sink uses in catchswitches. 1343 if (isa<CatchSwitchInst>(BB->getTerminator())) 1344 return false; 1345 1346 // We need to sink a callsite to a unique funclet. Avoid sinking if the 1347 // phi use is too muddled. 1348 if (isa<CallInst>(I)) 1349 if (!BlockColors.empty() && 1350 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) 1351 return false; 1352 } 1353 1354 if (CurLoop->contains(UI)) { 1355 if (IsFree) { 1356 FreeInLoop = true; 1357 continue; 1358 } 1359 return false; 1360 } 1361 } 1362 return true; 1363 } 1364 1365 static Instruction *CloneInstructionInExitBlock( 1366 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 1367 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) { 1368 Instruction *New; 1369 if (auto *CI = dyn_cast<CallInst>(&I)) { 1370 const auto &BlockColors = SafetyInfo->getBlockColors(); 1371 1372 // Sinking call-sites need to be handled differently from other 1373 // instructions. The cloned call-site needs a funclet bundle operand 1374 // appropriate for its location in the CFG. 1375 SmallVector<OperandBundleDef, 1> OpBundles; 1376 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); 1377 BundleIdx != BundleEnd; ++BundleIdx) { 1378 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); 1379 if (Bundle.getTagID() == LLVMContext::OB_funclet) 1380 continue; 1381 1382 OpBundles.emplace_back(Bundle); 1383 } 1384 1385 if (!BlockColors.empty()) { 1386 const ColorVector &CV = BlockColors.find(&ExitBlock)->second; 1387 assert(CV.size() == 1 && "non-unique color for exit block!"); 1388 BasicBlock *BBColor = CV.front(); 1389 Instruction *EHPad = BBColor->getFirstNonPHI(); 1390 if (EHPad->isEHPad()) 1391 OpBundles.emplace_back("funclet", EHPad); 1392 } 1393 1394 New = CallInst::Create(CI, OpBundles); 1395 } else { 1396 New = I.clone(); 1397 } 1398 1399 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New); 1400 if (!I.getName().empty()) 1401 New->setName(I.getName() + ".le"); 1402 1403 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 1404 // Create a new MemoryAccess and let MemorySSA set its defining access. 1405 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1406 New, nullptr, New->getParent(), MemorySSA::Beginning); 1407 if (NewMemAcc) { 1408 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 1409 MSSAU->insertDef(MemDef, /*RenameUses=*/true); 1410 else { 1411 auto *MemUse = cast<MemoryUse>(NewMemAcc); 1412 MSSAU->insertUse(MemUse, /*RenameUses=*/true); 1413 } 1414 } 1415 } 1416 1417 // Build LCSSA PHI nodes for any in-loop operands. Note that this is 1418 // particularly cheap because we can rip off the PHI node that we're 1419 // replacing for the number and blocks of the predecessors. 1420 // OPT: If this shows up in a profile, we can instead finish sinking all 1421 // invariant instructions, and then walk their operands to re-establish 1422 // LCSSA. That will eliminate creating PHI nodes just to nuke them when 1423 // sinking bottom-up. 1424 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE; 1425 ++OI) 1426 if (Instruction *OInst = dyn_cast<Instruction>(*OI)) 1427 if (Loop *OLoop = LI->getLoopFor(OInst->getParent())) 1428 if (!OLoop->contains(&PN)) { 1429 PHINode *OpPN = 1430 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), 1431 OInst->getName() + ".lcssa", &ExitBlock.front()); 1432 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1433 OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); 1434 *OI = OpPN; 1435 } 1436 return New; 1437 } 1438 1439 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 1440 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) { 1441 if (AST) 1442 AST->deleteValue(&I); 1443 if (MSSAU) 1444 MSSAU->removeMemoryAccess(&I); 1445 SafetyInfo.removeInstruction(&I); 1446 I.eraseFromParent(); 1447 } 1448 1449 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 1450 ICFLoopSafetyInfo &SafetyInfo, 1451 MemorySSAUpdater *MSSAU, 1452 ScalarEvolution *SE) { 1453 SafetyInfo.removeInstruction(&I); 1454 SafetyInfo.insertInstructionTo(&I, Dest.getParent()); 1455 I.moveBefore(&Dest); 1456 if (MSSAU) 1457 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 1458 MSSAU->getMemorySSA()->getMemoryAccess(&I))) 1459 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), 1460 MemorySSA::BeforeTerminator); 1461 if (SE) 1462 SE->forgetValue(&I); 1463 } 1464 1465 static Instruction *sinkThroughTriviallyReplaceablePHI( 1466 PHINode *TPN, Instruction *I, LoopInfo *LI, 1467 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, 1468 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, 1469 MemorySSAUpdater *MSSAU) { 1470 assert(isTriviallyReplaceablePHI(*TPN, *I) && 1471 "Expect only trivially replaceable PHI"); 1472 BasicBlock *ExitBlock = TPN->getParent(); 1473 Instruction *New; 1474 auto It = SunkCopies.find(ExitBlock); 1475 if (It != SunkCopies.end()) 1476 New = It->second; 1477 else 1478 New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock( 1479 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); 1480 return New; 1481 } 1482 1483 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { 1484 BasicBlock *BB = PN->getParent(); 1485 if (!BB->canSplitPredecessors()) 1486 return false; 1487 // It's not impossible to split EHPad blocks, but if BlockColors already exist 1488 // it require updating BlockColors for all offspring blocks accordingly. By 1489 // skipping such corner case, we can make updating BlockColors after splitting 1490 // predecessor fairly simple. 1491 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) 1492 return false; 1493 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1494 BasicBlock *BBPred = *PI; 1495 if (isa<IndirectBrInst>(BBPred->getTerminator()) || 1496 isa<CallBrInst>(BBPred->getTerminator())) 1497 return false; 1498 } 1499 return true; 1500 } 1501 1502 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, 1503 LoopInfo *LI, const Loop *CurLoop, 1504 LoopSafetyInfo *SafetyInfo, 1505 MemorySSAUpdater *MSSAU) { 1506 #ifndef NDEBUG 1507 SmallVector<BasicBlock *, 32> ExitBlocks; 1508 CurLoop->getUniqueExitBlocks(ExitBlocks); 1509 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1510 ExitBlocks.end()); 1511 #endif 1512 BasicBlock *ExitBB = PN->getParent(); 1513 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); 1514 1515 // Split predecessors of the loop exit to make instructions in the loop are 1516 // exposed to exit blocks through trivially replaceable PHIs while keeping the 1517 // loop in the canonical form where each predecessor of each exit block should 1518 // be contained within the loop. For example, this will convert the loop below 1519 // from 1520 // 1521 // LB1: 1522 // %v1 = 1523 // br %LE, %LB2 1524 // LB2: 1525 // %v2 = 1526 // br %LE, %LB1 1527 // LE: 1528 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable 1529 // 1530 // to 1531 // 1532 // LB1: 1533 // %v1 = 1534 // br %LE.split, %LB2 1535 // LB2: 1536 // %v2 = 1537 // br %LE.split2, %LB1 1538 // LE.split: 1539 // %p1 = phi [%v1, %LB1] <-- trivially replaceable 1540 // br %LE 1541 // LE.split2: 1542 // %p2 = phi [%v2, %LB2] <-- trivially replaceable 1543 // br %LE 1544 // LE: 1545 // %p = phi [%p1, %LE.split], [%p2, %LE.split2] 1546 // 1547 const auto &BlockColors = SafetyInfo->getBlockColors(); 1548 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); 1549 while (!PredBBs.empty()) { 1550 BasicBlock *PredBB = *PredBBs.begin(); 1551 assert(CurLoop->contains(PredBB) && 1552 "Expect all predecessors are in the loop"); 1553 if (PN->getBasicBlockIndex(PredBB) >= 0) { 1554 BasicBlock *NewPred = SplitBlockPredecessors( 1555 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); 1556 // Since we do not allow splitting EH-block with BlockColors in 1557 // canSplitPredecessors(), we can simply assign predecessor's color to 1558 // the new block. 1559 if (!BlockColors.empty()) 1560 // Grab a reference to the ColorVector to be inserted before getting the 1561 // reference to the vector we are copying because inserting the new 1562 // element in BlockColors might cause the map to be reallocated. 1563 SafetyInfo->copyColors(NewPred, PredBB); 1564 } 1565 PredBBs.remove(PredBB); 1566 } 1567 } 1568 1569 /// When an instruction is found to only be used outside of the loop, this 1570 /// function moves it to the exit blocks and patches up SSA form as needed. 1571 /// This method is guaranteed to remove the original instruction from its 1572 /// position, and may either delete it or move it to outside of the loop. 1573 /// 1574 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 1575 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 1576 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) { 1577 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); 1578 ORE->emit([&]() { 1579 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) 1580 << "sinking " << ore::NV("Inst", &I); 1581 }); 1582 bool Changed = false; 1583 if (isa<LoadInst>(I)) 1584 ++NumMovedLoads; 1585 else if (isa<CallInst>(I)) 1586 ++NumMovedCalls; 1587 ++NumSunk; 1588 1589 // Iterate over users to be ready for actual sinking. Replace users via 1590 // unreachable blocks with undef and make all user PHIs trivially replaceable. 1591 SmallPtrSet<Instruction *, 8> VisitedUsers; 1592 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { 1593 auto *User = cast<Instruction>(*UI); 1594 Use &U = UI.getUse(); 1595 ++UI; 1596 1597 if (VisitedUsers.count(User) || CurLoop->contains(User)) 1598 continue; 1599 1600 if (!DT->isReachableFromEntry(User->getParent())) { 1601 U = UndefValue::get(I.getType()); 1602 Changed = true; 1603 continue; 1604 } 1605 1606 // The user must be a PHI node. 1607 PHINode *PN = cast<PHINode>(User); 1608 1609 // Surprisingly, instructions can be used outside of loops without any 1610 // exits. This can only happen in PHI nodes if the incoming block is 1611 // unreachable. 1612 BasicBlock *BB = PN->getIncomingBlock(U); 1613 if (!DT->isReachableFromEntry(BB)) { 1614 U = UndefValue::get(I.getType()); 1615 Changed = true; 1616 continue; 1617 } 1618 1619 VisitedUsers.insert(PN); 1620 if (isTriviallyReplaceablePHI(*PN, I)) 1621 continue; 1622 1623 if (!canSplitPredecessors(PN, SafetyInfo)) 1624 return Changed; 1625 1626 // Split predecessors of the PHI so that we can make users trivially 1627 // replaceable. 1628 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU); 1629 1630 // Should rebuild the iterators, as they may be invalidated by 1631 // splitPredecessorsOfLoopExit(). 1632 UI = I.user_begin(); 1633 UE = I.user_end(); 1634 } 1635 1636 if (VisitedUsers.empty()) 1637 return Changed; 1638 1639 #ifndef NDEBUG 1640 SmallVector<BasicBlock *, 32> ExitBlocks; 1641 CurLoop->getUniqueExitBlocks(ExitBlocks); 1642 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1643 ExitBlocks.end()); 1644 #endif 1645 1646 // Clones of this instruction. Don't create more than one per exit block! 1647 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; 1648 1649 // If this instruction is only used outside of the loop, then all users are 1650 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of 1651 // the instruction. 1652 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); 1653 for (auto *UI : Users) { 1654 auto *User = cast<Instruction>(UI); 1655 1656 if (CurLoop->contains(User)) 1657 continue; 1658 1659 PHINode *PN = cast<PHINode>(User); 1660 assert(ExitBlockSet.count(PN->getParent()) && 1661 "The LCSSA PHI is not in an exit block!"); 1662 // The PHI must be trivially replaceable. 1663 Instruction *New = sinkThroughTriviallyReplaceablePHI( 1664 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); 1665 PN->replaceAllUsesWith(New); 1666 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr); 1667 Changed = true; 1668 } 1669 return Changed; 1670 } 1671 1672 /// When an instruction is found to only use loop invariant operands that 1673 /// is safe to hoist, this instruction is called to do the dirty work. 1674 /// 1675 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 1676 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 1677 MemorySSAUpdater *MSSAU, ScalarEvolution *SE, 1678 OptimizationRemarkEmitter *ORE) { 1679 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I 1680 << "\n"); 1681 ORE->emit([&]() { 1682 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " 1683 << ore::NV("Inst", &I); 1684 }); 1685 1686 // Metadata can be dependent on conditions we are hoisting above. 1687 // Conservatively strip all metadata on the instruction unless we were 1688 // guaranteed to execute I if we entered the loop, in which case the metadata 1689 // is valid in the loop preheader. 1690 if (I.hasMetadataOtherThanDebugLoc() && 1691 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning 1692 // time in isGuaranteedToExecute if we don't actually have anything to 1693 // drop. It is a compile time optimization, not required for correctness. 1694 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) 1695 I.dropUnknownNonDebugMetadata(); 1696 1697 if (isa<PHINode>(I)) 1698 // Move the new node to the end of the phi list in the destination block. 1699 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE); 1700 else 1701 // Move the new node to the destination block, before its terminator. 1702 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE); 1703 1704 // Apply line 0 debug locations when we are moving instructions to different 1705 // basic blocks because we want to avoid jumpy line tables. 1706 if (const DebugLoc &DL = I.getDebugLoc()) 1707 I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 1708 1709 if (isa<LoadInst>(I)) 1710 ++NumMovedLoads; 1711 else if (isa<CallInst>(I)) 1712 ++NumMovedCalls; 1713 ++NumHoisted; 1714 } 1715 1716 /// Only sink or hoist an instruction if it is not a trapping instruction, 1717 /// or if the instruction is known not to trap when moved to the preheader. 1718 /// or if it is a trapping instruction and is guaranteed to execute. 1719 static bool isSafeToExecuteUnconditionally(Instruction &Inst, 1720 const DominatorTree *DT, 1721 const Loop *CurLoop, 1722 const LoopSafetyInfo *SafetyInfo, 1723 OptimizationRemarkEmitter *ORE, 1724 const Instruction *CtxI) { 1725 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT)) 1726 return true; 1727 1728 bool GuaranteedToExecute = 1729 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); 1730 1731 if (!GuaranteedToExecute) { 1732 auto *LI = dyn_cast<LoadInst>(&Inst); 1733 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1734 ORE->emit([&]() { 1735 return OptimizationRemarkMissed( 1736 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) 1737 << "failed to hoist load with loop-invariant address " 1738 "because load is conditionally executed"; 1739 }); 1740 } 1741 1742 return GuaranteedToExecute; 1743 } 1744 1745 namespace { 1746 class LoopPromoter : public LoadAndStorePromoter { 1747 Value *SomePtr; // Designated pointer to store to. 1748 const SmallSetVector<Value *, 8> &PointerMustAliases; 1749 SmallVectorImpl<BasicBlock *> &LoopExitBlocks; 1750 SmallVectorImpl<Instruction *> &LoopInsertPts; 1751 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; 1752 PredIteratorCache &PredCache; 1753 AliasSetTracker &AST; 1754 MemorySSAUpdater *MSSAU; 1755 LoopInfo &LI; 1756 DebugLoc DL; 1757 int Alignment; 1758 bool UnorderedAtomic; 1759 AAMDNodes AATags; 1760 ICFLoopSafetyInfo &SafetyInfo; 1761 1762 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { 1763 if (Instruction *I = dyn_cast<Instruction>(V)) 1764 if (Loop *L = LI.getLoopFor(I->getParent())) 1765 if (!L->contains(BB)) { 1766 // We need to create an LCSSA PHI node for the incoming value and 1767 // store that. 1768 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), 1769 I->getName() + ".lcssa", &BB->front()); 1770 for (BasicBlock *Pred : PredCache.get(BB)) 1771 PN->addIncoming(I, Pred); 1772 return PN; 1773 } 1774 return V; 1775 } 1776 1777 public: 1778 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, 1779 const SmallSetVector<Value *, 8> &PMA, 1780 SmallVectorImpl<BasicBlock *> &LEB, 1781 SmallVectorImpl<Instruction *> &LIP, 1782 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, 1783 AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li, 1784 DebugLoc dl, int alignment, bool UnorderedAtomic, 1785 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo) 1786 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA), 1787 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), 1788 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)), 1789 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags), 1790 SafetyInfo(SafetyInfo) {} 1791 1792 bool isInstInList(Instruction *I, 1793 const SmallVectorImpl<Instruction *> &) const override { 1794 Value *Ptr; 1795 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1796 Ptr = LI->getOperand(0); 1797 else 1798 Ptr = cast<StoreInst>(I)->getPointerOperand(); 1799 return PointerMustAliases.count(Ptr); 1800 } 1801 1802 void doExtraRewritesBeforeFinalDeletion() override { 1803 // Insert stores after in the loop exit blocks. Each exit block gets a 1804 // store of the live-out values that feed them. Since we've already told 1805 // the SSA updater about the defs in the loop and the preheader 1806 // definition, it is all set and we can start using it. 1807 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { 1808 BasicBlock *ExitBlock = LoopExitBlocks[i]; 1809 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 1810 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); 1811 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); 1812 Instruction *InsertPos = LoopInsertPts[i]; 1813 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); 1814 if (UnorderedAtomic) 1815 NewSI->setOrdering(AtomicOrdering::Unordered); 1816 NewSI->setAlignment(MaybeAlign(Alignment)); 1817 NewSI->setDebugLoc(DL); 1818 if (AATags) 1819 NewSI->setAAMetadata(AATags); 1820 1821 if (MSSAU) { 1822 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; 1823 MemoryAccess *NewMemAcc; 1824 if (!MSSAInsertPoint) { 1825 NewMemAcc = MSSAU->createMemoryAccessInBB( 1826 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); 1827 } else { 1828 NewMemAcc = 1829 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); 1830 } 1831 MSSAInsertPts[i] = NewMemAcc; 1832 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1833 // FIXME: true for safety, false may still be correct. 1834 } 1835 } 1836 } 1837 1838 void replaceLoadWithValue(LoadInst *LI, Value *V) const override { 1839 // Update alias analysis. 1840 AST.copyValue(LI, V); 1841 } 1842 void instructionDeleted(Instruction *I) const override { 1843 SafetyInfo.removeInstruction(I); 1844 AST.deleteValue(I); 1845 if (MSSAU) 1846 MSSAU->removeMemoryAccess(I); 1847 } 1848 }; 1849 1850 1851 /// Return true iff we can prove that a caller of this function can not inspect 1852 /// the contents of the provided object in a well defined program. 1853 bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) { 1854 if (isa<AllocaInst>(Object)) 1855 // Since the alloca goes out of scope, we know the caller can't retain a 1856 // reference to it and be well defined. Thus, we don't need to check for 1857 // capture. 1858 return true; 1859 1860 // For all other objects we need to know that the caller can't possibly 1861 // have gotten a reference to the object. There are two components of 1862 // that: 1863 // 1) Object can't be escaped by this function. This is what 1864 // PointerMayBeCaptured checks. 1865 // 2) Object can't have been captured at definition site. For this, we 1866 // need to know the return value is noalias. At the moment, we use a 1867 // weaker condition and handle only AllocLikeFunctions (which are 1868 // known to be noalias). TODO 1869 return isAllocLikeFn(Object, TLI) && 1870 !PointerMayBeCaptured(Object, true, true); 1871 } 1872 1873 } // namespace 1874 1875 /// Try to promote memory values to scalars by sinking stores out of the 1876 /// loop and moving loads to before the loop. We do this by looping over 1877 /// the stores in the loop, looking for stores to Must pointers which are 1878 /// loop invariant. 1879 /// 1880 bool llvm::promoteLoopAccessesToScalars( 1881 const SmallSetVector<Value *, 8> &PointerMustAliases, 1882 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1883 SmallVectorImpl<Instruction *> &InsertPts, 1884 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, 1885 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, 1886 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 1887 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) { 1888 // Verify inputs. 1889 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && 1890 CurAST != nullptr && SafetyInfo != nullptr && 1891 "Unexpected Input to promoteLoopAccessesToScalars"); 1892 1893 Value *SomePtr = *PointerMustAliases.begin(); 1894 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1895 1896 // It is not safe to promote a load/store from the loop if the load/store is 1897 // conditional. For example, turning: 1898 // 1899 // for () { if (c) *P += 1; } 1900 // 1901 // into: 1902 // 1903 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; 1904 // 1905 // is not safe, because *P may only be valid to access if 'c' is true. 1906 // 1907 // The safety property divides into two parts: 1908 // p1) The memory may not be dereferenceable on entry to the loop. In this 1909 // case, we can't insert the required load in the preheader. 1910 // p2) The memory model does not allow us to insert a store along any dynamic 1911 // path which did not originally have one. 1912 // 1913 // If at least one store is guaranteed to execute, both properties are 1914 // satisfied, and promotion is legal. 1915 // 1916 // This, however, is not a necessary condition. Even if no store/load is 1917 // guaranteed to execute, we can still establish these properties. 1918 // We can establish (p1) by proving that hoisting the load into the preheader 1919 // is safe (i.e. proving dereferenceability on all paths through the loop). We 1920 // can use any access within the alias set to prove dereferenceability, 1921 // since they're all must alias. 1922 // 1923 // There are two ways establish (p2): 1924 // a) Prove the location is thread-local. In this case the memory model 1925 // requirement does not apply, and stores are safe to insert. 1926 // b) Prove a store dominates every exit block. In this case, if an exit 1927 // blocks is reached, the original dynamic path would have taken us through 1928 // the store, so inserting a store into the exit block is safe. Note that this 1929 // is different from the store being guaranteed to execute. For instance, 1930 // if an exception is thrown on the first iteration of the loop, the original 1931 // store is never executed, but the exit blocks are not executed either. 1932 1933 bool DereferenceableInPH = false; 1934 bool SafeToInsertStore = false; 1935 1936 SmallVector<Instruction *, 64> LoopUses; 1937 1938 // We start with an alignment of one and try to find instructions that allow 1939 // us to prove better alignment. 1940 unsigned Alignment = 1; 1941 // Keep track of which types of access we see 1942 bool SawUnorderedAtomic = false; 1943 bool SawNotAtomic = false; 1944 AAMDNodes AATags; 1945 1946 const DataLayout &MDL = Preheader->getModule()->getDataLayout(); 1947 1948 bool IsKnownThreadLocalObject = false; 1949 if (SafetyInfo->anyBlockMayThrow()) { 1950 // If a loop can throw, we have to insert a store along each unwind edge. 1951 // That said, we can't actually make the unwind edge explicit. Therefore, 1952 // we have to prove that the store is dead along the unwind edge. We do 1953 // this by proving that the caller can't have a reference to the object 1954 // after return and thus can't possibly load from the object. 1955 Value *Object = GetUnderlyingObject(SomePtr, MDL); 1956 if (!isKnownNonEscaping(Object, TLI)) 1957 return false; 1958 // Subtlety: Alloca's aren't visible to callers, but *are* potentially 1959 // visible to other threads if captured and used during their lifetimes. 1960 IsKnownThreadLocalObject = !isa<AllocaInst>(Object); 1961 } 1962 1963 // Check that all of the pointers in the alias set have the same type. We 1964 // cannot (yet) promote a memory location that is loaded and stored in 1965 // different sizes. While we are at it, collect alignment and AA info. 1966 for (Value *ASIV : PointerMustAliases) { 1967 // Check that all of the pointers in the alias set have the same type. We 1968 // cannot (yet) promote a memory location that is loaded and stored in 1969 // different sizes. 1970 if (SomePtr->getType() != ASIV->getType()) 1971 return false; 1972 1973 for (User *U : ASIV->users()) { 1974 // Ignore instructions that are outside the loop. 1975 Instruction *UI = dyn_cast<Instruction>(U); 1976 if (!UI || !CurLoop->contains(UI)) 1977 continue; 1978 1979 // If there is an non-load/store instruction in the loop, we can't promote 1980 // it. 1981 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { 1982 if (!Load->isUnordered()) 1983 return false; 1984 1985 SawUnorderedAtomic |= Load->isAtomic(); 1986 SawNotAtomic |= !Load->isAtomic(); 1987 1988 unsigned InstAlignment = Load->getAlignment(); 1989 if (!InstAlignment) 1990 InstAlignment = 1991 MDL.getABITypeAlignment(Load->getType()); 1992 1993 // Note that proving a load safe to speculate requires proving 1994 // sufficient alignment at the target location. Proving it guaranteed 1995 // to execute does as well. Thus we can increase our guaranteed 1996 // alignment as well. 1997 if (!DereferenceableInPH || (InstAlignment > Alignment)) 1998 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo, 1999 ORE, Preheader->getTerminator())) { 2000 DereferenceableInPH = true; 2001 Alignment = std::max(Alignment, InstAlignment); 2002 } 2003 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { 2004 // Stores *of* the pointer are not interesting, only stores *to* the 2005 // pointer. 2006 if (UI->getOperand(1) != ASIV) 2007 continue; 2008 if (!Store->isUnordered()) 2009 return false; 2010 2011 SawUnorderedAtomic |= Store->isAtomic(); 2012 SawNotAtomic |= !Store->isAtomic(); 2013 2014 // If the store is guaranteed to execute, both properties are satisfied. 2015 // We may want to check if a store is guaranteed to execute even if we 2016 // already know that promotion is safe, since it may have higher 2017 // alignment than any other guaranteed stores, in which case we can 2018 // raise the alignment on the promoted store. 2019 unsigned InstAlignment = Store->getAlignment(); 2020 if (!InstAlignment) 2021 InstAlignment = 2022 MDL.getABITypeAlignment(Store->getValueOperand()->getType()); 2023 2024 if (!DereferenceableInPH || !SafeToInsertStore || 2025 (InstAlignment > Alignment)) { 2026 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) { 2027 DereferenceableInPH = true; 2028 SafeToInsertStore = true; 2029 Alignment = std::max(Alignment, InstAlignment); 2030 } 2031 } 2032 2033 // If a store dominates all exit blocks, it is safe to sink. 2034 // As explained above, if an exit block was executed, a dominating 2035 // store must have been executed at least once, so we are not 2036 // introducing stores on paths that did not have them. 2037 // Note that this only looks at explicit exit blocks. If we ever 2038 // start sinking stores into unwind edges (see above), this will break. 2039 if (!SafeToInsertStore) 2040 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { 2041 return DT->dominates(Store->getParent(), Exit); 2042 }); 2043 2044 // If the store is not guaranteed to execute, we may still get 2045 // deref info through it. 2046 if (!DereferenceableInPH) { 2047 DereferenceableInPH = isDereferenceableAndAlignedPointer( 2048 Store->getPointerOperand(), Store->getValueOperand()->getType(), 2049 MaybeAlign(Store->getAlignment()), MDL, 2050 Preheader->getTerminator(), DT); 2051 } 2052 } else 2053 return false; // Not a load or store. 2054 2055 // Merge the AA tags. 2056 if (LoopUses.empty()) { 2057 // On the first load/store, just take its AA tags. 2058 UI->getAAMetadata(AATags); 2059 } else if (AATags) { 2060 UI->getAAMetadata(AATags, /* Merge = */ true); 2061 } 2062 2063 LoopUses.push_back(UI); 2064 } 2065 } 2066 2067 // If we found both an unordered atomic instruction and a non-atomic memory 2068 // access, bail. We can't blindly promote non-atomic to atomic since we 2069 // might not be able to lower the result. We can't downgrade since that 2070 // would violate memory model. Also, align 0 is an error for atomics. 2071 if (SawUnorderedAtomic && SawNotAtomic) 2072 return false; 2073 2074 // If we're inserting an atomic load in the preheader, we must be able to 2075 // lower it. We're only guaranteed to be able to lower naturally aligned 2076 // atomics. 2077 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType(); 2078 if (SawUnorderedAtomic && 2079 Alignment < MDL.getTypeStoreSize(SomePtrElemType)) 2080 return false; 2081 2082 // If we couldn't prove we can hoist the load, bail. 2083 if (!DereferenceableInPH) 2084 return false; 2085 2086 // We know we can hoist the load, but don't have a guaranteed store. 2087 // Check whether the location is thread-local. If it is, then we can insert 2088 // stores along paths which originally didn't have them without violating the 2089 // memory model. 2090 if (!SafeToInsertStore) { 2091 if (IsKnownThreadLocalObject) 2092 SafeToInsertStore = true; 2093 else { 2094 Value *Object = GetUnderlyingObject(SomePtr, MDL); 2095 SafeToInsertStore = 2096 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) && 2097 !PointerMayBeCaptured(Object, true, true); 2098 } 2099 } 2100 2101 // If we've still failed to prove we can sink the store, give up. 2102 if (!SafeToInsertStore) 2103 return false; 2104 2105 // Otherwise, this is safe to promote, lets do it! 2106 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr 2107 << '\n'); 2108 ORE->emit([&]() { 2109 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", 2110 LoopUses[0]) 2111 << "Moving accesses to memory location out of the loop"; 2112 }); 2113 ++NumPromoted; 2114 2115 // Grab a debug location for the inserted loads/stores; given that the 2116 // inserted loads/stores have little relation to the original loads/stores, 2117 // this code just arbitrarily picks a location from one, since any debug 2118 // location is better than none. 2119 DebugLoc DL = LoopUses[0]->getDebugLoc(); 2120 2121 // We use the SSAUpdater interface to insert phi nodes as required. 2122 SmallVector<PHINode *, 16> NewPHIs; 2123 SSAUpdater SSA(&NewPHIs); 2124 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, 2125 InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL, 2126 Alignment, SawUnorderedAtomic, AATags, *SafetyInfo); 2127 2128 // Set up the preheader to have a definition of the value. It is the live-out 2129 // value from the preheader that uses in the loop will use. 2130 LoadInst *PreheaderLoad = new LoadInst( 2131 SomePtr->getType()->getPointerElementType(), SomePtr, 2132 SomePtr->getName() + ".promoted", Preheader->getTerminator()); 2133 if (SawUnorderedAtomic) 2134 PreheaderLoad->setOrdering(AtomicOrdering::Unordered); 2135 PreheaderLoad->setAlignment(MaybeAlign(Alignment)); 2136 PreheaderLoad->setDebugLoc(DL); 2137 if (AATags) 2138 PreheaderLoad->setAAMetadata(AATags); 2139 SSA.AddAvailableValue(Preheader, PreheaderLoad); 2140 2141 if (MSSAU) { 2142 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB( 2143 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); 2144 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); 2145 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true); 2146 } 2147 2148 if (MSSAU && VerifyMemorySSA) 2149 MSSAU->getMemorySSA()->verifyMemorySSA(); 2150 // Rewrite all the loads in the loop and remember all the definitions from 2151 // stores in the loop. 2152 Promoter.run(LoopUses); 2153 2154 if (MSSAU && VerifyMemorySSA) 2155 MSSAU->getMemorySSA()->verifyMemorySSA(); 2156 // If the SSAUpdater didn't use the load in the preheader, just zap it now. 2157 if (PreheaderLoad->use_empty()) 2158 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU); 2159 2160 return true; 2161 } 2162 2163 /// Returns an owning pointer to an alias set which incorporates aliasing info 2164 /// from L and all subloops of L. 2165 /// FIXME: In new pass manager, there is no helper function to handle loop 2166 /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed 2167 /// from scratch for every loop. Hook up with the helper functions when 2168 /// available in the new pass manager to avoid redundant computation. 2169 std::unique_ptr<AliasSetTracker> 2170 LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI, 2171 AliasAnalysis *AA) { 2172 std::unique_ptr<AliasSetTracker> CurAST; 2173 SmallVector<Loop *, 4> RecomputeLoops; 2174 for (Loop *InnerL : L->getSubLoops()) { 2175 auto MapI = LoopToAliasSetMap.find(InnerL); 2176 // If the AST for this inner loop is missing it may have been merged into 2177 // some other loop's AST and then that loop unrolled, and so we need to 2178 // recompute it. 2179 if (MapI == LoopToAliasSetMap.end()) { 2180 RecomputeLoops.push_back(InnerL); 2181 continue; 2182 } 2183 std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second); 2184 2185 if (CurAST) { 2186 // What if InnerLoop was modified by other passes ? 2187 // Once we've incorporated the inner loop's AST into ours, we don't need 2188 // the subloop's anymore. 2189 CurAST->add(*InnerAST); 2190 } else { 2191 CurAST = std::move(InnerAST); 2192 } 2193 LoopToAliasSetMap.erase(MapI); 2194 } 2195 if (!CurAST) 2196 CurAST = std::make_unique<AliasSetTracker>(*AA); 2197 2198 // Add everything from the sub loops that are no longer directly available. 2199 for (Loop *InnerL : RecomputeLoops) 2200 for (BasicBlock *BB : InnerL->blocks()) 2201 CurAST->add(*BB); 2202 2203 // And merge in this loop (without anything from inner loops). 2204 for (BasicBlock *BB : L->blocks()) 2205 if (LI->getLoopFor(BB) == L) 2206 CurAST->add(*BB); 2207 2208 return CurAST; 2209 } 2210 2211 std::unique_ptr<AliasSetTracker> 2212 LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA( 2213 Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) { 2214 auto *MSSA = MSSAU->getMemorySSA(); 2215 auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L); 2216 CurAST->addAllInstructionsInLoopUsingMSSA(); 2217 return CurAST; 2218 } 2219 2220 /// Simple analysis hook. Clone alias set info. 2221 /// 2222 void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, 2223 Loop *L) { 2224 auto ASTIt = LICM.getLoopToAliasSetMap().find(L); 2225 if (ASTIt == LICM.getLoopToAliasSetMap().end()) 2226 return; 2227 2228 ASTIt->second->copyValue(From, To); 2229 } 2230 2231 /// Simple Analysis hook. Delete value V from alias set 2232 /// 2233 void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) { 2234 auto ASTIt = LICM.getLoopToAliasSetMap().find(L); 2235 if (ASTIt == LICM.getLoopToAliasSetMap().end()) 2236 return; 2237 2238 ASTIt->second->deleteValue(V); 2239 } 2240 2241 /// Simple Analysis hook. Delete value L from alias set map. 2242 /// 2243 void LegacyLICMPass::deleteAnalysisLoop(Loop *L) { 2244 if (!LICM.getLoopToAliasSetMap().count(L)) 2245 return; 2246 2247 LICM.getLoopToAliasSetMap().erase(L); 2248 } 2249 2250 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, 2251 AliasSetTracker *CurAST, Loop *CurLoop, 2252 AliasAnalysis *AA) { 2253 // First check to see if any of the basic blocks in CurLoop invalidate *V. 2254 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod(); 2255 2256 if (!isInvalidatedAccordingToAST || !LICMN2Theshold) 2257 return isInvalidatedAccordingToAST; 2258 2259 // Check with a diagnostic analysis if we can refine the information above. 2260 // This is to identify the limitations of using the AST. 2261 // The alias set mechanism used by LICM has a major weakness in that it 2262 // combines all things which may alias into a single set *before* asking 2263 // modref questions. As a result, a single readonly call within a loop will 2264 // collapse all loads and stores into a single alias set and report 2265 // invalidation if the loop contains any store. For example, readonly calls 2266 // with deopt states have this form and create a general alias set with all 2267 // loads and stores. In order to get any LICM in loops containing possible 2268 // deopt states we need a more precise invalidation of checking the mod ref 2269 // info of each instruction within the loop and LI. This has a complexity of 2270 // O(N^2), so currently, it is used only as a diagnostic tool since the 2271 // default value of LICMN2Threshold is zero. 2272 2273 // Don't look at nested loops. 2274 if (CurLoop->begin() != CurLoop->end()) 2275 return true; 2276 2277 int N = 0; 2278 for (BasicBlock *BB : CurLoop->getBlocks()) 2279 for (Instruction &I : *BB) { 2280 if (N >= LICMN2Theshold) { 2281 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for " 2282 << *(MemLoc.Ptr) << "\n"); 2283 return true; 2284 } 2285 N++; 2286 auto Res = AA->getModRefInfo(&I, MemLoc); 2287 if (isModSet(Res)) { 2288 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for " 2289 << *(MemLoc.Ptr) << "\n"); 2290 return true; 2291 } 2292 } 2293 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n"); 2294 return false; 2295 } 2296 2297 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, 2298 Loop *CurLoop, 2299 SinkAndHoistLICMFlags &Flags) { 2300 // For hoisting, use the walker to determine safety 2301 if (!Flags.IsSink) { 2302 MemoryAccess *Source; 2303 // See declaration of SetLicmMssaOptCap for usage details. 2304 if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap) 2305 Source = MU->getDefiningAccess(); 2306 else { 2307 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU); 2308 Flags.LicmMssaOptCounter++; 2309 } 2310 return !MSSA->isLiveOnEntryDef(Source) && 2311 CurLoop->contains(Source->getBlock()); 2312 } 2313 2314 // For sinking, we'd need to check all Defs below this use. The getClobbering 2315 // call will look on the backedge of the loop, but will check aliasing with 2316 // the instructions on the previous iteration. 2317 // For example: 2318 // for (i ... ) 2319 // load a[i] ( Use (LoE) 2320 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. 2321 // i++; 2322 // The load sees no clobbering inside the loop, as the backedge alias check 2323 // does phi translation, and will check aliasing against store a[i-1]. 2324 // However sinking the load outside the loop, below the store is incorrect. 2325 2326 // For now, only sink if there are no Defs in the loop, and the existing ones 2327 // precede the use and are in the same block. 2328 // FIXME: Increase precision: Safe to sink if Use post dominates the Def; 2329 // needs PostDominatorTreeAnalysis. 2330 // FIXME: More precise: no Defs that alias this Use. 2331 if (Flags.NoOfMemAccTooLarge) 2332 return true; 2333 for (auto *BB : CurLoop->getBlocks()) 2334 if (auto *Accesses = MSSA->getBlockDefs(BB)) 2335 for (const auto &MA : *Accesses) 2336 if (const auto *MD = dyn_cast<MemoryDef>(&MA)) 2337 if (MU->getBlock() != MD->getBlock() || 2338 !MSSA->locallyDominates(MD, MU)) 2339 return true; 2340 return false; 2341 } 2342 2343 /// Little predicate that returns true if the specified basic block is in 2344 /// a subloop of the current one, not the current one itself. 2345 /// 2346 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { 2347 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); 2348 return LI->getLoopFor(BB) != CurLoop; 2349 } 2350