1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion, attempting to remove as much 10 // code from the body of a loop as possible. It does this by either hoisting 11 // code into the preheader block, or by sinking code to the exit blocks if it is 12 // safe. This pass also promotes must-aliased memory locations in the loop to 13 // live in registers, thus hoisting and sinking "invariant" loads and stores. 14 // 15 // This pass uses alias analysis for two purposes: 16 // 17 // 1. Moving loop invariant loads and calls out of loops. If we can determine 18 // that a load or call inside of a loop never aliases anything stored to, 19 // we can hoist it or sink it like any other instruction. 20 // 2. Scalar Promotion of Memory - If there is a store instruction inside of 21 // the loop, we try to move the store to happen AFTER the loop instead of 22 // inside of the loop. This can only happen if a few conditions are true: 23 // A. The pointer stored through is loop invariant 24 // B. There are no stores or loads in the loop which _may_ alias the 25 // pointer. There are no calls in the loop which mod/ref the pointer. 26 // If these conditions are true, we can promote the loads and stores in the 27 // loop of the pointer to use a temporary alloca'd variable. We then use 28 // the SSAUpdater to construct the appropriate SSA form for the value. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/Transforms/Scalar/LICM.h" 33 #include "llvm/ADT/SetOperations.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AliasSetTracker.h" 37 #include "llvm/Analysis/BasicAliasAnalysis.h" 38 #include "llvm/Analysis/CaptureTracking.h" 39 #include "llvm/Analysis/ConstantFolding.h" 40 #include "llvm/Analysis/GlobalsModRef.h" 41 #include "llvm/Analysis/GuardUtils.h" 42 #include "llvm/Analysis/Loads.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/LoopIterator.h" 45 #include "llvm/Analysis/LoopPass.h" 46 #include "llvm/Analysis/MemoryBuiltins.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 50 #include "llvm/Analysis/ScalarEvolution.h" 51 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfoMetadata.h" 58 #include "llvm/IR/DerivedTypes.h" 59 #include "llvm/IR/Dominators.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/PredIteratorCache.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar.h" 70 #include "llvm/Transforms/Scalar/LoopPassManager.h" 71 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/LoopUtils.h" 74 #include "llvm/Transforms/Utils/SSAUpdater.h" 75 #include <algorithm> 76 #include <utility> 77 using namespace llvm; 78 79 #define DEBUG_TYPE "licm" 80 81 STATISTIC(NumCreatedBlocks, "Number of blocks created"); 82 STATISTIC(NumClonedBranches, "Number of branches cloned"); 83 STATISTIC(NumSunk, "Number of instructions sunk out of loop"); 84 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); 85 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); 86 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); 87 STATISTIC(NumPromoted, "Number of memory locations promoted to registers"); 88 89 /// Memory promotion is enabled by default. 90 static cl::opt<bool> 91 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), 92 cl::desc("Disable memory promotion in LICM pass")); 93 94 static cl::opt<bool> ControlFlowHoisting( 95 "licm-control-flow-hoisting", cl::Hidden, cl::init(false), 96 cl::desc("Enable control flow (and PHI) hoisting in LICM")); 97 98 static cl::opt<uint32_t> MaxNumUsesTraversed( 99 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), 100 cl::desc("Max num uses visited for identifying load " 101 "invariance in loop using invariant start (default = 8)")); 102 103 // Default value of zero implies we use the regular alias set tracker mechanism 104 // instead of the cross product using AA to identify aliasing of the memory 105 // location we are interested in. 106 static cl::opt<int> 107 LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0), 108 cl::desc("How many instruction to cross product using AA")); 109 110 // Experimental option to allow imprecision in LICM in pathological cases, in 111 // exchange for faster compile. This is to be removed if MemorySSA starts to 112 // address the same issue. This flag applies only when LICM uses MemorySSA 113 // instead on AliasSetTracker. LICM calls MemorySSAWalker's 114 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect 115 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, 116 // which may not be precise, since optimizeUses is capped. The result is 117 // correct, but we may not get as "far up" as possible to get which access is 118 // clobbering the one queried. 119 cl::opt<unsigned> llvm::SetLicmMssaOptCap( 120 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, 121 cl::desc("Enable imprecision in LICM in pathological cases, in exchange " 122 "for faster compile. Caps the MemorySSA clobbering calls.")); 123 124 // Experimentally, memory promotion carries less importance than sinking and 125 // hoisting. Limit when we do promotion when using MemorySSA, in order to save 126 // compile time. 127 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( 128 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, 129 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " 130 "effect. When MSSA in LICM is enabled, then this is the maximum " 131 "number of accesses allowed to be present in a loop in order to " 132 "enable memory promotion.")); 133 134 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); 135 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 136 const LoopSafetyInfo *SafetyInfo, 137 TargetTransformInfo *TTI, bool &FreeInLoop); 138 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 139 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 140 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE); 141 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 142 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 143 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE); 144 static bool isSafeToExecuteUnconditionally(Instruction &Inst, 145 const DominatorTree *DT, 146 const Loop *CurLoop, 147 const LoopSafetyInfo *SafetyInfo, 148 OptimizationRemarkEmitter *ORE, 149 const Instruction *CtxI = nullptr); 150 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, 151 AliasSetTracker *CurAST, Loop *CurLoop, 152 AliasAnalysis *AA); 153 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, 154 Loop *CurLoop, 155 SinkAndHoistLICMFlags &Flags); 156 static Instruction *CloneInstructionInExitBlock( 157 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 158 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU); 159 160 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 161 AliasSetTracker *AST, MemorySSAUpdater *MSSAU); 162 163 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 164 ICFLoopSafetyInfo &SafetyInfo, 165 MemorySSAUpdater *MSSAU); 166 167 namespace { 168 struct LoopInvariantCodeMotion { 169 using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>; 170 bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, 171 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, 172 ScalarEvolution *SE, MemorySSA *MSSA, 173 OptimizationRemarkEmitter *ORE, bool DeleteAST); 174 175 ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; } 176 LoopInvariantCodeMotion(unsigned LicmMssaOptCap, 177 unsigned LicmMssaNoAccForPromotionCap) 178 : LicmMssaOptCap(LicmMssaOptCap), 179 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {} 180 181 private: 182 ASTrackerMapTy LoopToAliasSetMap; 183 unsigned LicmMssaOptCap; 184 unsigned LicmMssaNoAccForPromotionCap; 185 186 std::unique_ptr<AliasSetTracker> 187 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA); 188 std::unique_ptr<AliasSetTracker> 189 collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA, 190 MemorySSAUpdater *MSSAU); 191 }; 192 193 struct LegacyLICMPass : public LoopPass { 194 static char ID; // Pass identification, replacement for typeid 195 LegacyLICMPass( 196 unsigned LicmMssaOptCap = SetLicmMssaOptCap, 197 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap) 198 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) { 199 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); 200 } 201 202 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 203 if (skipLoop(L)) { 204 // If we have run LICM on a previous loop but now we are skipping 205 // (because we've hit the opt-bisect limit), we need to clear the 206 // loop alias information. 207 LICM.getLoopToAliasSetMap().clear(); 208 return false; 209 } 210 211 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 212 MemorySSA *MSSA = EnableMSSALoopDependency 213 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA()) 214 : nullptr; 215 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 216 // pass. Function analyses need to be preserved across loop transformations 217 // but ORE cannot be preserved (see comment before the pass definition). 218 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 219 return LICM.runOnLoop(L, 220 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 221 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 222 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 223 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 224 *L->getHeader()->getParent()), 225 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 226 *L->getHeader()->getParent()), 227 SE ? &SE->getSE() : nullptr, MSSA, &ORE, false); 228 } 229 230 /// This transformation requires natural loop information & requires that 231 /// loop preheaders be inserted into the CFG... 232 /// 233 void getAnalysisUsage(AnalysisUsage &AU) const override { 234 AU.addPreserved<DominatorTreeWrapperPass>(); 235 AU.addPreserved<LoopInfoWrapperPass>(); 236 AU.addRequired<TargetLibraryInfoWrapperPass>(); 237 if (EnableMSSALoopDependency) { 238 AU.addRequired<MemorySSAWrapperPass>(); 239 AU.addPreserved<MemorySSAWrapperPass>(); 240 } 241 AU.addRequired<TargetTransformInfoWrapperPass>(); 242 getLoopAnalysisUsage(AU); 243 } 244 245 using llvm::Pass::doFinalization; 246 247 bool doFinalization() override { 248 auto &AliasSetMap = LICM.getLoopToAliasSetMap(); 249 // All loops in the AliasSetMap should be cleaned up already. The only case 250 // where we fail to do so is if an outer loop gets deleted before LICM 251 // visits it. 252 assert(all_of(AliasSetMap, 253 [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) { 254 return !KV.first->getParentLoop(); 255 }) && 256 "Didn't free loop alias sets"); 257 AliasSetMap.clear(); 258 return false; 259 } 260 261 private: 262 LoopInvariantCodeMotion LICM; 263 264 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. 265 void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, 266 Loop *L) override; 267 268 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias 269 /// set. 270 void deleteAnalysisValue(Value *V, Loop *L) override; 271 272 /// Simple Analysis hook. Delete loop L from alias set map. 273 void deleteAnalysisLoop(Loop *L) override; 274 }; 275 } // namespace 276 277 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, 278 LoopStandardAnalysisResults &AR, LPMUpdater &) { 279 const auto &FAM = 280 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 281 Function *F = L.getHeader()->getParent(); 282 283 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 284 // FIXME: This should probably be optional rather than required. 285 if (!ORE) 286 report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not " 287 "cached at a higher level"); 288 289 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 290 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE, 291 AR.MSSA, ORE, true)) 292 return PreservedAnalyses::all(); 293 294 auto PA = getLoopPassPreservedAnalyses(); 295 296 PA.preserve<DominatorTreeAnalysis>(); 297 PA.preserve<LoopAnalysis>(); 298 if (AR.MSSA) 299 PA.preserve<MemorySSAAnalysis>(); 300 301 return PA; 302 } 303 304 char LegacyLICMPass::ID = 0; 305 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", 306 false, false) 307 INITIALIZE_PASS_DEPENDENCY(LoopPass) 308 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 309 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 310 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 311 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, 312 false) 313 314 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } 315 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap, 316 unsigned LicmMssaNoAccForPromotionCap) { 317 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 318 } 319 320 /// Hoist expressions out of the specified loop. Note, alias info for inner 321 /// loop is not preserved so it is not a good idea to run LICM multiple 322 /// times on one loop. 323 /// We should delete AST for inner loops in the new pass manager to avoid 324 /// memory leak. 325 /// 326 bool LoopInvariantCodeMotion::runOnLoop( 327 Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, 328 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE, 329 MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) { 330 bool Changed = false; 331 332 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); 333 334 // If this loop has metadata indicating that LICM is not to be performed then 335 // just exit. 336 if (hasDisableLICMTransformsHint(L)) { 337 return false; 338 } 339 340 std::unique_ptr<AliasSetTracker> CurAST; 341 std::unique_ptr<MemorySSAUpdater> MSSAU; 342 bool NoOfMemAccTooLarge = false; 343 unsigned LicmMssaOptCounter = 0; 344 345 if (!MSSA) { 346 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n"); 347 CurAST = collectAliasInfoForLoop(L, LI, AA); 348 } else { 349 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n"); 350 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 351 352 unsigned AccessCapCount = 0; 353 for (auto *BB : L->getBlocks()) { 354 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 355 for (const auto &MA : *Accesses) { 356 (void)MA; 357 AccessCapCount++; 358 if (AccessCapCount > LicmMssaNoAccForPromotionCap) { 359 NoOfMemAccTooLarge = true; 360 break; 361 } 362 } 363 } 364 if (NoOfMemAccTooLarge) 365 break; 366 } 367 } 368 369 // Get the preheader block to move instructions into... 370 BasicBlock *Preheader = L->getLoopPreheader(); 371 372 // Compute loop safety information. 373 ICFLoopSafetyInfo SafetyInfo(DT); 374 SafetyInfo.computeLoopSafetyInfo(L); 375 376 // We want to visit all of the instructions in this loop... that are not parts 377 // of our subloops (they have already had their invariants hoisted out of 378 // their loop, into this loop, so there is no need to process the BODIES of 379 // the subloops). 380 // 381 // Traverse the body of the loop in depth first order on the dominator tree so 382 // that we are guaranteed to see definitions before we see uses. This allows 383 // us to sink instructions in one pass, without iteration. After sinking 384 // instructions, we perform another pass to hoist them out of the loop. 385 SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter, 386 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 387 /*IsSink=*/true}; 388 if (L->hasDedicatedExits()) 389 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 390 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE); 391 Flags.IsSink = false; 392 if (Preheader) 393 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L, 394 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE); 395 396 // Now that all loop invariants have been removed from the loop, promote any 397 // memory references to scalars that we can. 398 // Don't sink stores from loops without dedicated block exits. Exits 399 // containing indirect branches are not transformed by loop simplify, 400 // make sure we catch that. An additional load may be generated in the 401 // preheader for SSA updater, so also avoid sinking when no preheader 402 // is available. 403 if (!DisablePromotion && Preheader && L->hasDedicatedExits() && 404 !NoOfMemAccTooLarge) { 405 // Figure out the loop exits and their insertion points 406 SmallVector<BasicBlock *, 8> ExitBlocks; 407 L->getUniqueExitBlocks(ExitBlocks); 408 409 // We can't insert into a catchswitch. 410 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { 411 return isa<CatchSwitchInst>(Exit->getTerminator()); 412 }); 413 414 if (!HasCatchSwitch) { 415 SmallVector<Instruction *, 8> InsertPts; 416 SmallVector<MemoryAccess *, 8> MSSAInsertPts; 417 InsertPts.reserve(ExitBlocks.size()); 418 if (MSSAU) 419 MSSAInsertPts.reserve(ExitBlocks.size()); 420 for (BasicBlock *ExitBlock : ExitBlocks) { 421 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 422 if (MSSAU) 423 MSSAInsertPts.push_back(nullptr); 424 } 425 426 PredIteratorCache PIC; 427 428 bool Promoted = false; 429 430 // Build an AST using MSSA. 431 if (!CurAST.get()) 432 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get()); 433 434 // Loop over all of the alias sets in the tracker object. 435 for (AliasSet &AS : *CurAST) { 436 // We can promote this alias set if it has a store, if it is a "Must" 437 // alias set, if the pointer is loop invariant, and if we are not 438 // eliminating any volatile loads or stores. 439 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || 440 !L->isLoopInvariant(AS.begin()->getValue())) 441 continue; 442 443 assert( 444 !AS.empty() && 445 "Must alias set should have at least one pointer element in it!"); 446 447 SmallSetVector<Value *, 8> PointerMustAliases; 448 for (const auto &ASI : AS) 449 PointerMustAliases.insert(ASI.getValue()); 450 451 Promoted |= promoteLoopAccessesToScalars( 452 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, 453 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE); 454 } 455 456 // Once we have promoted values across the loop body we have to 457 // recursively reform LCSSA as any nested loop may now have values defined 458 // within the loop used in the outer loop. 459 // FIXME: This is really heavy handed. It would be a bit better to use an 460 // SSAUpdater strategy during promotion that was LCSSA aware and reformed 461 // it as it went. 462 if (Promoted) 463 formLCSSARecursively(*L, *DT, LI, SE); 464 465 Changed |= Promoted; 466 } 467 } 468 469 // Check that neither this loop nor its parent have had LCSSA broken. LICM is 470 // specifically moving instructions across the loop boundary and so it is 471 // especially in need of sanity checking here. 472 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); 473 assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && 474 "Parent loop not left in LCSSA form after LICM!"); 475 476 // If this loop is nested inside of another one, save the alias information 477 // for when we process the outer loop. 478 if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST) 479 LoopToAliasSetMap[L] = std::move(CurAST); 480 481 if (MSSAU.get() && VerifyMemorySSA) 482 MSSAU->getMemorySSA()->verifyMemorySSA(); 483 484 if (Changed && SE) 485 SE->forgetLoopDispositions(L); 486 return Changed; 487 } 488 489 /// Walk the specified region of the CFG (defined by all blocks dominated by 490 /// the specified block, and that are in the current loop) in reverse depth 491 /// first order w.r.t the DominatorTree. This allows us to visit uses before 492 /// definitions, allowing us to sink a loop body in one pass without iteration. 493 /// 494 bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, 495 DominatorTree *DT, TargetLibraryInfo *TLI, 496 TargetTransformInfo *TTI, Loop *CurLoop, 497 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 498 ICFLoopSafetyInfo *SafetyInfo, 499 SinkAndHoistLICMFlags &Flags, 500 OptimizationRemarkEmitter *ORE) { 501 502 // Verify inputs. 503 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 504 CurLoop != nullptr && SafetyInfo != nullptr && 505 "Unexpected input to sinkRegion."); 506 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && 507 "Either AliasSetTracker or MemorySSA should be initialized."); 508 509 // We want to visit children before parents. We will enque all the parents 510 // before their children in the worklist and process the worklist in reverse 511 // order. 512 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); 513 514 bool Changed = false; 515 for (DomTreeNode *DTN : reverse(Worklist)) { 516 BasicBlock *BB = DTN->getBlock(); 517 // Only need to process the contents of this block if it is not part of a 518 // subloop (which would already have been processed). 519 if (inSubLoop(BB, CurLoop, LI)) 520 continue; 521 522 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { 523 Instruction &I = *--II; 524 525 // If the instruction is dead, we would try to sink it because it isn't 526 // used in the loop, instead, just delete it. 527 if (isInstructionTriviallyDead(&I, TLI)) { 528 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); 529 salvageDebugInfo(I); 530 ++II; 531 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 532 Changed = true; 533 continue; 534 } 535 536 // Check to see if we can sink this instruction to the exit blocks 537 // of the loop. We can do this if the all users of the instruction are 538 // outside of the loop. In this case, it doesn't even matter if the 539 // operands of the instruction are loop invariant. 540 // 541 bool FreeInLoop = false; 542 if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) && 543 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, 544 ORE) && 545 !I.mayHaveSideEffects()) { 546 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { 547 if (!FreeInLoop) { 548 ++II; 549 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 550 } 551 Changed = true; 552 } 553 } 554 } 555 } 556 if (MSSAU && VerifyMemorySSA) 557 MSSAU->getMemorySSA()->verifyMemorySSA(); 558 return Changed; 559 } 560 561 namespace { 562 // This is a helper class for hoistRegion to make it able to hoist control flow 563 // in order to be able to hoist phis. The way this works is that we initially 564 // start hoisting to the loop preheader, and when we see a loop invariant branch 565 // we make note of this. When we then come to hoist an instruction that's 566 // conditional on such a branch we duplicate the branch and the relevant control 567 // flow, then hoist the instruction into the block corresponding to its original 568 // block in the duplicated control flow. 569 class ControlFlowHoister { 570 private: 571 // Information about the loop we are hoisting from 572 LoopInfo *LI; 573 DominatorTree *DT; 574 Loop *CurLoop; 575 MemorySSAUpdater *MSSAU; 576 577 // A map of blocks in the loop to the block their instructions will be hoisted 578 // to. 579 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; 580 581 // The branches that we can hoist, mapped to the block that marks a 582 // convergence point of their control flow. 583 DenseMap<BranchInst *, BasicBlock *> HoistableBranches; 584 585 public: 586 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, 587 MemorySSAUpdater *MSSAU) 588 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} 589 590 void registerPossiblyHoistableBranch(BranchInst *BI) { 591 // We can only hoist conditional branches with loop invariant operands. 592 if (!ControlFlowHoisting || !BI->isConditional() || 593 !CurLoop->hasLoopInvariantOperands(BI)) 594 return; 595 596 // The branch destinations need to be in the loop, and we don't gain 597 // anything by duplicating conditional branches with duplicate successors, 598 // as it's essentially the same as an unconditional branch. 599 BasicBlock *TrueDest = BI->getSuccessor(0); 600 BasicBlock *FalseDest = BI->getSuccessor(1); 601 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || 602 TrueDest == FalseDest) 603 return; 604 605 // We can hoist BI if one branch destination is the successor of the other, 606 // or both have common successor which we check by seeing if the 607 // intersection of their successors is non-empty. 608 // TODO: This could be expanded to allowing branches where both ends 609 // eventually converge to a single block. 610 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; 611 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); 612 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); 613 BasicBlock *CommonSucc = nullptr; 614 if (TrueDestSucc.count(FalseDest)) { 615 CommonSucc = FalseDest; 616 } else if (FalseDestSucc.count(TrueDest)) { 617 CommonSucc = TrueDest; 618 } else { 619 set_intersect(TrueDestSucc, FalseDestSucc); 620 // If there's one common successor use that. 621 if (TrueDestSucc.size() == 1) 622 CommonSucc = *TrueDestSucc.begin(); 623 // If there's more than one pick whichever appears first in the block list 624 // (we can't use the value returned by TrueDestSucc.begin() as it's 625 // unpredicatable which element gets returned). 626 else if (!TrueDestSucc.empty()) { 627 Function *F = TrueDest->getParent(); 628 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; 629 auto It = std::find_if(F->begin(), F->end(), IsSucc); 630 assert(It != F->end() && "Could not find successor in function"); 631 CommonSucc = &*It; 632 } 633 } 634 // The common successor has to be dominated by the branch, as otherwise 635 // there will be some other path to the successor that will not be 636 // controlled by this branch so any phi we hoist would be controlled by the 637 // wrong condition. This also takes care of avoiding hoisting of loop back 638 // edges. 639 // TODO: In some cases this could be relaxed if the successor is dominated 640 // by another block that's been hoisted and we can guarantee that the 641 // control flow has been replicated exactly. 642 if (CommonSucc && DT->dominates(BI, CommonSucc)) 643 HoistableBranches[BI] = CommonSucc; 644 } 645 646 bool canHoistPHI(PHINode *PN) { 647 // The phi must have loop invariant operands. 648 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) 649 return false; 650 // We can hoist phis if the block they are in is the target of hoistable 651 // branches which cover all of the predecessors of the block. 652 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; 653 BasicBlock *BB = PN->getParent(); 654 for (BasicBlock *PredBB : predecessors(BB)) 655 PredecessorBlocks.insert(PredBB); 656 // If we have less predecessor blocks than predecessors then the phi will 657 // have more than one incoming value for the same block which we can't 658 // handle. 659 // TODO: This could be handled be erasing some of the duplicate incoming 660 // values. 661 if (PredecessorBlocks.size() != pred_size(BB)) 662 return false; 663 for (auto &Pair : HoistableBranches) { 664 if (Pair.second == BB) { 665 // Which blocks are predecessors via this branch depends on if the 666 // branch is triangle-like or diamond-like. 667 if (Pair.first->getSuccessor(0) == BB) { 668 PredecessorBlocks.erase(Pair.first->getParent()); 669 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 670 } else if (Pair.first->getSuccessor(1) == BB) { 671 PredecessorBlocks.erase(Pair.first->getParent()); 672 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 673 } else { 674 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 675 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 676 } 677 } 678 } 679 // PredecessorBlocks will now be empty if for every predecessor of BB we 680 // found a hoistable branch source. 681 return PredecessorBlocks.empty(); 682 } 683 684 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { 685 if (!ControlFlowHoisting) 686 return CurLoop->getLoopPreheader(); 687 // If BB has already been hoisted, return that 688 if (HoistDestinationMap.count(BB)) 689 return HoistDestinationMap[BB]; 690 691 // Check if this block is conditional based on a pending branch 692 auto HasBBAsSuccessor = 693 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { 694 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || 695 Pair.first->getSuccessor(1) == BB); 696 }; 697 auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(), 698 HasBBAsSuccessor); 699 700 // If not involved in a pending branch, hoist to preheader 701 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); 702 if (It == HoistableBranches.end()) { 703 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName() 704 << " as hoist destination for " << BB->getName() 705 << "\n"); 706 HoistDestinationMap[BB] = InitialPreheader; 707 return InitialPreheader; 708 } 709 BranchInst *BI = It->first; 710 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == 711 HoistableBranches.end() && 712 "BB is expected to be the target of at most one branch"); 713 714 LLVMContext &C = BB->getContext(); 715 BasicBlock *TrueDest = BI->getSuccessor(0); 716 BasicBlock *FalseDest = BI->getSuccessor(1); 717 BasicBlock *CommonSucc = HoistableBranches[BI]; 718 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); 719 720 // Create hoisted versions of blocks that currently don't have them 721 auto CreateHoistedBlock = [&](BasicBlock *Orig) { 722 if (HoistDestinationMap.count(Orig)) 723 return HoistDestinationMap[Orig]; 724 BasicBlock *New = 725 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); 726 HoistDestinationMap[Orig] = New; 727 DT->addNewBlock(New, HoistTarget); 728 if (CurLoop->getParentLoop()) 729 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); 730 ++NumCreatedBlocks; 731 LLVM_DEBUG(dbgs() << "LICM created " << New->getName() 732 << " as hoist destination for " << Orig->getName() 733 << "\n"); 734 return New; 735 }; 736 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); 737 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); 738 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); 739 740 // Link up these blocks with branches. 741 if (!HoistCommonSucc->getTerminator()) { 742 // The new common successor we've generated will branch to whatever that 743 // hoist target branched to. 744 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); 745 assert(TargetSucc && "Expected hoist target to have a single successor"); 746 HoistCommonSucc->moveBefore(TargetSucc); 747 BranchInst::Create(TargetSucc, HoistCommonSucc); 748 } 749 if (!HoistTrueDest->getTerminator()) { 750 HoistTrueDest->moveBefore(HoistCommonSucc); 751 BranchInst::Create(HoistCommonSucc, HoistTrueDest); 752 } 753 if (!HoistFalseDest->getTerminator()) { 754 HoistFalseDest->moveBefore(HoistCommonSucc); 755 BranchInst::Create(HoistCommonSucc, HoistFalseDest); 756 } 757 758 // If BI is being cloned to what was originally the preheader then 759 // HoistCommonSucc will now be the new preheader. 760 if (HoistTarget == InitialPreheader) { 761 // Phis in the loop header now need to use the new preheader. 762 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); 763 if (MSSAU) 764 MSSAU->wireOldPredecessorsToNewImmediatePredecessor( 765 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); 766 // The new preheader dominates the loop header. 767 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); 768 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); 769 DT->changeImmediateDominator(HeaderNode, PreheaderNode); 770 // The preheader hoist destination is now the new preheader, with the 771 // exception of the hoist destination of this branch. 772 for (auto &Pair : HoistDestinationMap) 773 if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) 774 Pair.second = HoistCommonSucc; 775 } 776 777 // Now finally clone BI. 778 ReplaceInstWithInst( 779 HoistTarget->getTerminator(), 780 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); 781 ++NumClonedBranches; 782 783 assert(CurLoop->getLoopPreheader() && 784 "Hoisting blocks should not have destroyed preheader"); 785 return HoistDestinationMap[BB]; 786 } 787 }; 788 } // namespace 789 790 /// Walk the specified region of the CFG (defined by all blocks dominated by 791 /// the specified block, and that are in the current loop) in depth first 792 /// order w.r.t the DominatorTree. This allows us to visit definitions before 793 /// uses, allowing us to hoist a loop body in one pass without iteration. 794 /// 795 bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, 796 DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop, 797 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 798 ICFLoopSafetyInfo *SafetyInfo, 799 SinkAndHoistLICMFlags &Flags, 800 OptimizationRemarkEmitter *ORE) { 801 // Verify inputs. 802 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 803 CurLoop != nullptr && SafetyInfo != nullptr && 804 "Unexpected input to hoistRegion."); 805 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && 806 "Either AliasSetTracker or MemorySSA should be initialized."); 807 808 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); 809 810 // Keep track of instructions that have been hoisted, as they may need to be 811 // re-hoisted if they end up not dominating all of their uses. 812 SmallVector<Instruction *, 16> HoistedInstructions; 813 814 // For PHI hoisting to work we need to hoist blocks before their successors. 815 // We can do this by iterating through the blocks in the loop in reverse 816 // post-order. 817 LoopBlocksRPO Worklist(CurLoop); 818 Worklist.perform(LI); 819 bool Changed = false; 820 for (BasicBlock *BB : Worklist) { 821 // Only need to process the contents of this block if it is not part of a 822 // subloop (which would already have been processed). 823 if (inSubLoop(BB, CurLoop, LI)) 824 continue; 825 826 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) { 827 Instruction &I = *II++; 828 // Try constant folding this instruction. If all the operands are 829 // constants, it is technically hoistable, but it would be better to 830 // just fold it. 831 if (Constant *C = ConstantFoldInstruction( 832 &I, I.getModule()->getDataLayout(), TLI)) { 833 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C 834 << '\n'); 835 if (CurAST) 836 CurAST->copyValue(&I, C); 837 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960). 838 I.replaceAllUsesWith(C); 839 if (isInstructionTriviallyDead(&I, TLI)) 840 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 841 Changed = true; 842 continue; 843 } 844 845 // Try hoisting the instruction out to the preheader. We can only do 846 // this if all of the operands of the instruction are loop invariant and 847 // if it is safe to hoist the instruction. 848 // TODO: It may be safe to hoist if we are hoisting to a conditional block 849 // and we have accurately duplicated the control flow from the loop header 850 // to that block. 851 if (CurLoop->hasLoopInvariantOperands(&I) && 852 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, 853 ORE) && 854 isSafeToExecuteUnconditionally( 855 I, DT, CurLoop, SafetyInfo, ORE, 856 CurLoop->getLoopPreheader()->getTerminator())) { 857 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 858 MSSAU, ORE); 859 HoistedInstructions.push_back(&I); 860 Changed = true; 861 continue; 862 } 863 864 // Attempt to remove floating point division out of the loop by 865 // converting it to a reciprocal multiplication. 866 if (I.getOpcode() == Instruction::FDiv && 867 CurLoop->isLoopInvariant(I.getOperand(1)) && 868 I.hasAllowReciprocal()) { 869 auto Divisor = I.getOperand(1); 870 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); 871 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); 872 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); 873 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); 874 ReciprocalDivisor->insertBefore(&I); 875 876 auto Product = 877 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); 878 Product->setFastMathFlags(I.getFastMathFlags()); 879 SafetyInfo->insertInstructionTo(Product, I.getParent()); 880 Product->insertAfter(&I); 881 I.replaceAllUsesWith(Product); 882 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 883 884 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), 885 SafetyInfo, MSSAU, ORE); 886 HoistedInstructions.push_back(ReciprocalDivisor); 887 Changed = true; 888 continue; 889 } 890 891 auto IsInvariantStart = [&](Instruction &I) { 892 using namespace PatternMatch; 893 return I.use_empty() && 894 match(&I, m_Intrinsic<Intrinsic::invariant_start>()); 895 }; 896 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { 897 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && 898 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); 899 }; 900 if ((IsInvariantStart(I) || isGuard(&I)) && 901 CurLoop->hasLoopInvariantOperands(&I) && 902 MustExecuteWithoutWritesBefore(I)) { 903 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 904 MSSAU, ORE); 905 HoistedInstructions.push_back(&I); 906 Changed = true; 907 continue; 908 } 909 910 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 911 if (CFH.canHoistPHI(PN)) { 912 // Redirect incoming blocks first to ensure that we create hoisted 913 // versions of those blocks before we hoist the phi. 914 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) 915 PN->setIncomingBlock( 916 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); 917 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 918 MSSAU, ORE); 919 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); 920 Changed = true; 921 continue; 922 } 923 } 924 925 // Remember possibly hoistable branches so we can actually hoist them 926 // later if needed. 927 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 928 CFH.registerPossiblyHoistableBranch(BI); 929 } 930 } 931 932 // If we hoisted instructions to a conditional block they may not dominate 933 // their uses that weren't hoisted (such as phis where some operands are not 934 // loop invariant). If so make them unconditional by moving them to their 935 // immediate dominator. We iterate through the instructions in reverse order 936 // which ensures that when we rehoist an instruction we rehoist its operands, 937 // and also keep track of where in the block we are rehoisting to to make sure 938 // that we rehoist instructions before the instructions that use them. 939 Instruction *HoistPoint = nullptr; 940 if (ControlFlowHoisting) { 941 for (Instruction *I : reverse(HoistedInstructions)) { 942 if (!llvm::all_of(I->uses(), 943 [&](Use &U) { return DT->dominates(I, U); })) { 944 BasicBlock *Dominator = 945 DT->getNode(I->getParent())->getIDom()->getBlock(); 946 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { 947 if (HoistPoint) 948 assert(DT->dominates(Dominator, HoistPoint->getParent()) && 949 "New hoist point expected to dominate old hoist point"); 950 HoistPoint = Dominator->getTerminator(); 951 } 952 LLVM_DEBUG(dbgs() << "LICM rehoisting to " 953 << HoistPoint->getParent()->getName() 954 << ": " << *I << "\n"); 955 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU); 956 HoistPoint = I; 957 Changed = true; 958 } 959 } 960 } 961 if (MSSAU && VerifyMemorySSA) 962 MSSAU->getMemorySSA()->verifyMemorySSA(); 963 964 // Now that we've finished hoisting make sure that LI and DT are still 965 // valid. 966 #ifdef EXPENSIVE_CHECKS 967 if (Changed) { 968 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 969 "Dominator tree verification failed"); 970 LI->verify(*DT); 971 } 972 #endif 973 974 return Changed; 975 } 976 977 // Return true if LI is invariant within scope of the loop. LI is invariant if 978 // CurLoop is dominated by an invariant.start representing the same memory 979 // location and size as the memory location LI loads from, and also the 980 // invariant.start has no uses. 981 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, 982 Loop *CurLoop) { 983 Value *Addr = LI->getOperand(0); 984 const DataLayout &DL = LI->getModule()->getDataLayout(); 985 const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); 986 987 // if the type is i8 addrspace(x)*, we know this is the type of 988 // llvm.invariant.start operand 989 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), 990 LI->getPointerAddressSpace()); 991 unsigned BitcastsVisited = 0; 992 // Look through bitcasts until we reach the i8* type (this is invariant.start 993 // operand type). 994 while (Addr->getType() != PtrInt8Ty) { 995 auto *BC = dyn_cast<BitCastInst>(Addr); 996 // Avoid traversing high number of bitcast uses. 997 if (++BitcastsVisited > MaxNumUsesTraversed || !BC) 998 return false; 999 Addr = BC->getOperand(0); 1000 } 1001 1002 unsigned UsesVisited = 0; 1003 // Traverse all uses of the load operand value, to see if invariant.start is 1004 // one of the uses, and whether it dominates the load instruction. 1005 for (auto *U : Addr->users()) { 1006 // Avoid traversing for Load operand with high number of users. 1007 if (++UsesVisited > MaxNumUsesTraversed) 1008 return false; 1009 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1010 // If there are escaping uses of invariant.start instruction, the load maybe 1011 // non-invariant. 1012 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || 1013 !II->use_empty()) 1014 continue; 1015 unsigned InvariantSizeInBits = 1016 cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8; 1017 // Confirm the invariant.start location size contains the load operand size 1018 // in bits. Also, the invariant.start should dominate the load, and we 1019 // should not hoist the load out of a loop that contains this dominating 1020 // invariant.start. 1021 if (LocSizeInBits <= InvariantSizeInBits && 1022 DT->properlyDominates(II->getParent(), CurLoop->getHeader())) 1023 return true; 1024 } 1025 1026 return false; 1027 } 1028 1029 namespace { 1030 /// Return true if-and-only-if we know how to (mechanically) both hoist and 1031 /// sink a given instruction out of a loop. Does not address legality 1032 /// concerns such as aliasing or speculation safety. 1033 bool isHoistableAndSinkableInst(Instruction &I) { 1034 // Only these instructions are hoistable/sinkable. 1035 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 1036 isa<FenceInst>(I) || isa<CastInst>(I) || 1037 isa<UnaryOperator>(I) || isa<BinaryOperator>(I) || 1038 isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || 1039 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 1040 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || 1041 isa<InsertValueInst>(I)); 1042 } 1043 /// Return true if all of the alias sets within this AST are known not to 1044 /// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop. 1045 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU, 1046 const Loop *L) { 1047 if (CurAST) { 1048 for (AliasSet &AS : *CurAST) { 1049 if (!AS.isForwardingAliasSet() && AS.isMod()) { 1050 return false; 1051 } 1052 } 1053 return true; 1054 } else { /*MSSAU*/ 1055 for (auto *BB : L->getBlocks()) 1056 if (MSSAU->getMemorySSA()->getBlockDefs(BB)) 1057 return false; 1058 return true; 1059 } 1060 } 1061 1062 /// Return true if I is the only Instruction with a MemoryAccess in L. 1063 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, 1064 const MemorySSAUpdater *MSSAU) { 1065 for (auto *BB : L->getBlocks()) 1066 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) { 1067 int NotAPhi = 0; 1068 for (const auto &Acc : *Accs) { 1069 if (isa<MemoryPhi>(&Acc)) 1070 continue; 1071 const auto *MUD = cast<MemoryUseOrDef>(&Acc); 1072 if (MUD->getMemoryInst() != I || NotAPhi++ == 1) 1073 return false; 1074 } 1075 } 1076 return true; 1077 } 1078 } 1079 1080 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, 1081 Loop *CurLoop, AliasSetTracker *CurAST, 1082 MemorySSAUpdater *MSSAU, 1083 bool TargetExecutesOncePerLoop, 1084 SinkAndHoistLICMFlags *Flags, 1085 OptimizationRemarkEmitter *ORE) { 1086 // If we don't understand the instruction, bail early. 1087 if (!isHoistableAndSinkableInst(I)) 1088 return false; 1089 1090 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr; 1091 if (MSSA) 1092 assert(Flags != nullptr && "Flags cannot be null."); 1093 1094 // Loads have extra constraints we have to verify before we can hoist them. 1095 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 1096 if (!LI->isUnordered()) 1097 return false; // Don't sink/hoist volatile or ordered atomic loads! 1098 1099 // Loads from constant memory are always safe to move, even if they end up 1100 // in the same alias set as something that ends up being modified. 1101 if (AA->pointsToConstantMemory(LI->getOperand(0))) 1102 return true; 1103 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1104 return true; 1105 1106 if (LI->isAtomic() && !TargetExecutesOncePerLoop) 1107 return false; // Don't risk duplicating unordered loads 1108 1109 // This checks for an invariant.start dominating the load. 1110 if (isLoadInvariantInLoop(LI, DT, CurLoop)) 1111 return true; 1112 1113 bool Invalidated; 1114 if (CurAST) 1115 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST, 1116 CurLoop, AA); 1117 else 1118 Invalidated = pointerInvalidatedByLoopWithMSSA( 1119 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags); 1120 // Check loop-invariant address because this may also be a sinkable load 1121 // whose address is not necessarily loop-invariant. 1122 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1123 ORE->emit([&]() { 1124 return OptimizationRemarkMissed( 1125 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) 1126 << "failed to move load with loop-invariant address " 1127 "because the loop may invalidate its value"; 1128 }); 1129 1130 return !Invalidated; 1131 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1132 // Don't sink or hoist dbg info; it's legal, but not useful. 1133 if (isa<DbgInfoIntrinsic>(I)) 1134 return false; 1135 1136 // Don't sink calls which can throw. 1137 if (CI->mayThrow()) 1138 return false; 1139 1140 using namespace PatternMatch; 1141 if (match(CI, m_Intrinsic<Intrinsic::assume>())) 1142 // Assumes don't actually alias anything or throw 1143 return true; 1144 1145 // Handle simple cases by querying alias analysis. 1146 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI); 1147 if (Behavior == FMRB_DoesNotAccessMemory) 1148 return true; 1149 if (AliasAnalysis::onlyReadsMemory(Behavior)) { 1150 // A readonly argmemonly function only reads from memory pointed to by 1151 // it's arguments with arbitrary offsets. If we can prove there are no 1152 // writes to this memory in the loop, we can hoist or sink. 1153 if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) { 1154 // TODO: expand to writeable arguments 1155 for (Value *Op : CI->arg_operands()) 1156 if (Op->getType()->isPointerTy()) { 1157 bool Invalidated; 1158 if (CurAST) 1159 Invalidated = pointerInvalidatedByLoop( 1160 MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()), 1161 CurAST, CurLoop, AA); 1162 else 1163 Invalidated = pointerInvalidatedByLoopWithMSSA( 1164 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, 1165 *Flags); 1166 if (Invalidated) 1167 return false; 1168 } 1169 return true; 1170 } 1171 1172 // If this call only reads from memory and there are no writes to memory 1173 // in the loop, we can hoist or sink the call as appropriate. 1174 if (isReadOnly(CurAST, MSSAU, CurLoop)) 1175 return true; 1176 } 1177 1178 // FIXME: This should use mod/ref information to see if we can hoist or 1179 // sink the call. 1180 1181 return false; 1182 } else if (auto *FI = dyn_cast<FenceInst>(&I)) { 1183 // Fences alias (most) everything to provide ordering. For the moment, 1184 // just give up if there are any other memory operations in the loop. 1185 if (CurAST) { 1186 auto Begin = CurAST->begin(); 1187 assert(Begin != CurAST->end() && "must contain FI"); 1188 if (std::next(Begin) != CurAST->end()) 1189 // constant memory for instance, TODO: handle better 1190 return false; 1191 auto *UniqueI = Begin->getUniqueInstruction(); 1192 if (!UniqueI) 1193 // other memory op, give up 1194 return false; 1195 (void)FI; // suppress unused variable warning 1196 assert(UniqueI == FI && "AS must contain FI"); 1197 return true; 1198 } else // MSSAU 1199 return isOnlyMemoryAccess(FI, CurLoop, MSSAU); 1200 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 1201 if (!SI->isUnordered()) 1202 return false; // Don't sink/hoist volatile or ordered atomic store! 1203 1204 // We can only hoist a store that we can prove writes a value which is not 1205 // read or overwritten within the loop. For those cases, we fallback to 1206 // load store promotion instead. TODO: We can extend this to cases where 1207 // there is exactly one write to the location and that write dominates an 1208 // arbitrary number of reads in the loop. 1209 if (CurAST) { 1210 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI)); 1211 1212 if (AS.isRef() || !AS.isMustAlias()) 1213 // Quick exit test, handled by the full path below as well. 1214 return false; 1215 auto *UniqueI = AS.getUniqueInstruction(); 1216 if (!UniqueI) 1217 // other memory op, give up 1218 return false; 1219 assert(UniqueI == SI && "AS must contain SI"); 1220 return true; 1221 } else { // MSSAU 1222 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) 1223 return true; 1224 // If there are more accesses than the Promotion cap, give up, we're not 1225 // walking a list that long. 1226 if (Flags->NoOfMemAccTooLarge) 1227 return false; 1228 // Check store only if there's still "quota" to check clobber. 1229 if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap) 1230 return false; 1231 // If there are interfering Uses (i.e. their defining access is in the 1232 // loop), or ordered loads (stored as Defs!), don't move this store. 1233 // Could do better here, but this is conservatively correct. 1234 // TODO: Cache set of Uses on the first walk in runOnLoop, update when 1235 // moving accesses. Can also extend to dominating uses. 1236 auto *SIMD = MSSA->getMemoryAccess(SI); 1237 for (auto *BB : CurLoop->getBlocks()) 1238 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 1239 for (const auto &MA : *Accesses) 1240 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { 1241 auto *MD = MU->getDefiningAccess(); 1242 if (!MSSA->isLiveOnEntryDef(MD) && 1243 CurLoop->contains(MD->getBlock())) 1244 return false; 1245 // Disable hoisting past potentially interfering loads. Optimized 1246 // Uses may point to an access outside the loop, as getClobbering 1247 // checks the previous iteration when walking the backedge. 1248 // FIXME: More precise: no Uses that alias SI. 1249 if (!Flags->IsSink && !MSSA->dominates(SIMD, MU)) 1250 return false; 1251 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { 1252 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { 1253 (void)LI; // Silence warning. 1254 assert(!LI->isUnordered() && "Expected unordered load"); 1255 return false; 1256 } 1257 // Any call, while it may not be clobbering SI, it may be a use. 1258 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { 1259 // Check if the call may read from the memory locattion written 1260 // to by SI. Check CI's attributes and arguments; the number of 1261 // such checks performed is limited above by NoOfMemAccTooLarge. 1262 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI)); 1263 if (isModOrRefSet(MRI)) 1264 return false; 1265 } 1266 } 1267 } 1268 1269 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI); 1270 Flags->LicmMssaOptCounter++; 1271 // If there are no clobbering Defs in the loop, store is safe to hoist. 1272 return MSSA->isLiveOnEntryDef(Source) || 1273 !CurLoop->contains(Source->getBlock()); 1274 } 1275 } 1276 1277 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); 1278 1279 // We've established mechanical ability and aliasing, it's up to the caller 1280 // to check fault safety 1281 return true; 1282 } 1283 1284 /// Returns true if a PHINode is a trivially replaceable with an 1285 /// Instruction. 1286 /// This is true when all incoming values are that instruction. 1287 /// This pattern occurs most often with LCSSA PHI nodes. 1288 /// 1289 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { 1290 for (const Value *IncValue : PN.incoming_values()) 1291 if (IncValue != &I) 1292 return false; 1293 1294 return true; 1295 } 1296 1297 /// Return true if the instruction is free in the loop. 1298 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, 1299 const TargetTransformInfo *TTI) { 1300 1301 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1302 if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free) 1303 return false; 1304 // For a GEP, we cannot simply use getUserCost because currently it 1305 // optimistically assume that a GEP will fold into addressing mode 1306 // regardless of its users. 1307 const BasicBlock *BB = GEP->getParent(); 1308 for (const User *U : GEP->users()) { 1309 const Instruction *UI = cast<Instruction>(U); 1310 if (CurLoop->contains(UI) && 1311 (BB != UI->getParent() || 1312 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) 1313 return false; 1314 } 1315 return true; 1316 } else 1317 return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free; 1318 } 1319 1320 /// Return true if the only users of this instruction are outside of 1321 /// the loop. If this is true, we can sink the instruction to the exit 1322 /// blocks of the loop. 1323 /// 1324 /// We also return true if the instruction could be folded away in lowering. 1325 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). 1326 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 1327 const LoopSafetyInfo *SafetyInfo, 1328 TargetTransformInfo *TTI, bool &FreeInLoop) { 1329 const auto &BlockColors = SafetyInfo->getBlockColors(); 1330 bool IsFree = isFreeInLoop(I, CurLoop, TTI); 1331 for (const User *U : I.users()) { 1332 const Instruction *UI = cast<Instruction>(U); 1333 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1334 const BasicBlock *BB = PN->getParent(); 1335 // We cannot sink uses in catchswitches. 1336 if (isa<CatchSwitchInst>(BB->getTerminator())) 1337 return false; 1338 1339 // We need to sink a callsite to a unique funclet. Avoid sinking if the 1340 // phi use is too muddled. 1341 if (isa<CallInst>(I)) 1342 if (!BlockColors.empty() && 1343 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) 1344 return false; 1345 } 1346 1347 if (CurLoop->contains(UI)) { 1348 if (IsFree) { 1349 FreeInLoop = true; 1350 continue; 1351 } 1352 return false; 1353 } 1354 } 1355 return true; 1356 } 1357 1358 static Instruction *CloneInstructionInExitBlock( 1359 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 1360 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) { 1361 Instruction *New; 1362 if (auto *CI = dyn_cast<CallInst>(&I)) { 1363 const auto &BlockColors = SafetyInfo->getBlockColors(); 1364 1365 // Sinking call-sites need to be handled differently from other 1366 // instructions. The cloned call-site needs a funclet bundle operand 1367 // appropriate for its location in the CFG. 1368 SmallVector<OperandBundleDef, 1> OpBundles; 1369 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); 1370 BundleIdx != BundleEnd; ++BundleIdx) { 1371 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); 1372 if (Bundle.getTagID() == LLVMContext::OB_funclet) 1373 continue; 1374 1375 OpBundles.emplace_back(Bundle); 1376 } 1377 1378 if (!BlockColors.empty()) { 1379 const ColorVector &CV = BlockColors.find(&ExitBlock)->second; 1380 assert(CV.size() == 1 && "non-unique color for exit block!"); 1381 BasicBlock *BBColor = CV.front(); 1382 Instruction *EHPad = BBColor->getFirstNonPHI(); 1383 if (EHPad->isEHPad()) 1384 OpBundles.emplace_back("funclet", EHPad); 1385 } 1386 1387 New = CallInst::Create(CI, OpBundles); 1388 } else { 1389 New = I.clone(); 1390 } 1391 1392 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New); 1393 if (!I.getName().empty()) 1394 New->setName(I.getName() + ".le"); 1395 1396 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 1397 // Create a new MemoryAccess and let MemorySSA set its defining access. 1398 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1399 New, nullptr, New->getParent(), MemorySSA::Beginning); 1400 if (NewMemAcc) { 1401 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 1402 MSSAU->insertDef(MemDef, /*RenameUses=*/true); 1403 else { 1404 auto *MemUse = cast<MemoryUse>(NewMemAcc); 1405 MSSAU->insertUse(MemUse, /*RenameUses=*/true); 1406 } 1407 } 1408 } 1409 1410 // Build LCSSA PHI nodes for any in-loop operands. Note that this is 1411 // particularly cheap because we can rip off the PHI node that we're 1412 // replacing for the number and blocks of the predecessors. 1413 // OPT: If this shows up in a profile, we can instead finish sinking all 1414 // invariant instructions, and then walk their operands to re-establish 1415 // LCSSA. That will eliminate creating PHI nodes just to nuke them when 1416 // sinking bottom-up. 1417 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE; 1418 ++OI) 1419 if (Instruction *OInst = dyn_cast<Instruction>(*OI)) 1420 if (Loop *OLoop = LI->getLoopFor(OInst->getParent())) 1421 if (!OLoop->contains(&PN)) { 1422 PHINode *OpPN = 1423 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), 1424 OInst->getName() + ".lcssa", &ExitBlock.front()); 1425 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1426 OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); 1427 *OI = OpPN; 1428 } 1429 return New; 1430 } 1431 1432 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 1433 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) { 1434 if (AST) 1435 AST->deleteValue(&I); 1436 if (MSSAU) 1437 MSSAU->removeMemoryAccess(&I); 1438 SafetyInfo.removeInstruction(&I); 1439 I.eraseFromParent(); 1440 } 1441 1442 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 1443 ICFLoopSafetyInfo &SafetyInfo, 1444 MemorySSAUpdater *MSSAU) { 1445 SafetyInfo.removeInstruction(&I); 1446 SafetyInfo.insertInstructionTo(&I, Dest.getParent()); 1447 I.moveBefore(&Dest); 1448 if (MSSAU) 1449 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 1450 MSSAU->getMemorySSA()->getMemoryAccess(&I))) 1451 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::End); 1452 } 1453 1454 static Instruction *sinkThroughTriviallyReplaceablePHI( 1455 PHINode *TPN, Instruction *I, LoopInfo *LI, 1456 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, 1457 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, 1458 MemorySSAUpdater *MSSAU) { 1459 assert(isTriviallyReplaceablePHI(*TPN, *I) && 1460 "Expect only trivially replaceable PHI"); 1461 BasicBlock *ExitBlock = TPN->getParent(); 1462 Instruction *New; 1463 auto It = SunkCopies.find(ExitBlock); 1464 if (It != SunkCopies.end()) 1465 New = It->second; 1466 else 1467 New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock( 1468 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); 1469 return New; 1470 } 1471 1472 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { 1473 BasicBlock *BB = PN->getParent(); 1474 if (!BB->canSplitPredecessors()) 1475 return false; 1476 // It's not impossible to split EHPad blocks, but if BlockColors already exist 1477 // it require updating BlockColors for all offspring blocks accordingly. By 1478 // skipping such corner case, we can make updating BlockColors after splitting 1479 // predecessor fairly simple. 1480 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) 1481 return false; 1482 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1483 BasicBlock *BBPred = *PI; 1484 if (isa<IndirectBrInst>(BBPred->getTerminator())) 1485 return false; 1486 } 1487 return true; 1488 } 1489 1490 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, 1491 LoopInfo *LI, const Loop *CurLoop, 1492 LoopSafetyInfo *SafetyInfo, 1493 MemorySSAUpdater *MSSAU) { 1494 #ifndef NDEBUG 1495 SmallVector<BasicBlock *, 32> ExitBlocks; 1496 CurLoop->getUniqueExitBlocks(ExitBlocks); 1497 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1498 ExitBlocks.end()); 1499 #endif 1500 BasicBlock *ExitBB = PN->getParent(); 1501 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); 1502 1503 // Split predecessors of the loop exit to make instructions in the loop are 1504 // exposed to exit blocks through trivially replaceable PHIs while keeping the 1505 // loop in the canonical form where each predecessor of each exit block should 1506 // be contained within the loop. For example, this will convert the loop below 1507 // from 1508 // 1509 // LB1: 1510 // %v1 = 1511 // br %LE, %LB2 1512 // LB2: 1513 // %v2 = 1514 // br %LE, %LB1 1515 // LE: 1516 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable 1517 // 1518 // to 1519 // 1520 // LB1: 1521 // %v1 = 1522 // br %LE.split, %LB2 1523 // LB2: 1524 // %v2 = 1525 // br %LE.split2, %LB1 1526 // LE.split: 1527 // %p1 = phi [%v1, %LB1] <-- trivially replaceable 1528 // br %LE 1529 // LE.split2: 1530 // %p2 = phi [%v2, %LB2] <-- trivially replaceable 1531 // br %LE 1532 // LE: 1533 // %p = phi [%p1, %LE.split], [%p2, %LE.split2] 1534 // 1535 const auto &BlockColors = SafetyInfo->getBlockColors(); 1536 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); 1537 while (!PredBBs.empty()) { 1538 BasicBlock *PredBB = *PredBBs.begin(); 1539 assert(CurLoop->contains(PredBB) && 1540 "Expect all predecessors are in the loop"); 1541 if (PN->getBasicBlockIndex(PredBB) >= 0) { 1542 BasicBlock *NewPred = SplitBlockPredecessors( 1543 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); 1544 // Since we do not allow splitting EH-block with BlockColors in 1545 // canSplitPredecessors(), we can simply assign predecessor's color to 1546 // the new block. 1547 if (!BlockColors.empty()) 1548 // Grab a reference to the ColorVector to be inserted before getting the 1549 // reference to the vector we are copying because inserting the new 1550 // element in BlockColors might cause the map to be reallocated. 1551 SafetyInfo->copyColors(NewPred, PredBB); 1552 } 1553 PredBBs.remove(PredBB); 1554 } 1555 } 1556 1557 /// When an instruction is found to only be used outside of the loop, this 1558 /// function moves it to the exit blocks and patches up SSA form as needed. 1559 /// This method is guaranteed to remove the original instruction from its 1560 /// position, and may either delete it or move it to outside of the loop. 1561 /// 1562 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 1563 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 1564 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) { 1565 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); 1566 ORE->emit([&]() { 1567 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) 1568 << "sinking " << ore::NV("Inst", &I); 1569 }); 1570 bool Changed = false; 1571 if (isa<LoadInst>(I)) 1572 ++NumMovedLoads; 1573 else if (isa<CallInst>(I)) 1574 ++NumMovedCalls; 1575 ++NumSunk; 1576 1577 // Iterate over users to be ready for actual sinking. Replace users via 1578 // unreachable blocks with undef and make all user PHIs trivially replaceable. 1579 SmallPtrSet<Instruction *, 8> VisitedUsers; 1580 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { 1581 auto *User = cast<Instruction>(*UI); 1582 Use &U = UI.getUse(); 1583 ++UI; 1584 1585 if (VisitedUsers.count(User) || CurLoop->contains(User)) 1586 continue; 1587 1588 if (!DT->isReachableFromEntry(User->getParent())) { 1589 U = UndefValue::get(I.getType()); 1590 Changed = true; 1591 continue; 1592 } 1593 1594 // The user must be a PHI node. 1595 PHINode *PN = cast<PHINode>(User); 1596 1597 // Surprisingly, instructions can be used outside of loops without any 1598 // exits. This can only happen in PHI nodes if the incoming block is 1599 // unreachable. 1600 BasicBlock *BB = PN->getIncomingBlock(U); 1601 if (!DT->isReachableFromEntry(BB)) { 1602 U = UndefValue::get(I.getType()); 1603 Changed = true; 1604 continue; 1605 } 1606 1607 VisitedUsers.insert(PN); 1608 if (isTriviallyReplaceablePHI(*PN, I)) 1609 continue; 1610 1611 if (!canSplitPredecessors(PN, SafetyInfo)) 1612 return Changed; 1613 1614 // Split predecessors of the PHI so that we can make users trivially 1615 // replaceable. 1616 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU); 1617 1618 // Should rebuild the iterators, as they may be invalidated by 1619 // splitPredecessorsOfLoopExit(). 1620 UI = I.user_begin(); 1621 UE = I.user_end(); 1622 } 1623 1624 if (VisitedUsers.empty()) 1625 return Changed; 1626 1627 #ifndef NDEBUG 1628 SmallVector<BasicBlock *, 32> ExitBlocks; 1629 CurLoop->getUniqueExitBlocks(ExitBlocks); 1630 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1631 ExitBlocks.end()); 1632 #endif 1633 1634 // Clones of this instruction. Don't create more than one per exit block! 1635 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; 1636 1637 // If this instruction is only used outside of the loop, then all users are 1638 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of 1639 // the instruction. 1640 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); 1641 for (auto *UI : Users) { 1642 auto *User = cast<Instruction>(UI); 1643 1644 if (CurLoop->contains(User)) 1645 continue; 1646 1647 PHINode *PN = cast<PHINode>(User); 1648 assert(ExitBlockSet.count(PN->getParent()) && 1649 "The LCSSA PHI is not in an exit block!"); 1650 // The PHI must be trivially replaceable. 1651 Instruction *New = sinkThroughTriviallyReplaceablePHI( 1652 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); 1653 PN->replaceAllUsesWith(New); 1654 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr); 1655 Changed = true; 1656 } 1657 return Changed; 1658 } 1659 1660 /// When an instruction is found to only use loop invariant operands that 1661 /// is safe to hoist, this instruction is called to do the dirty work. 1662 /// 1663 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 1664 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 1665 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) { 1666 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I 1667 << "\n"); 1668 ORE->emit([&]() { 1669 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " 1670 << ore::NV("Inst", &I); 1671 }); 1672 1673 // Metadata can be dependent on conditions we are hoisting above. 1674 // Conservatively strip all metadata on the instruction unless we were 1675 // guaranteed to execute I if we entered the loop, in which case the metadata 1676 // is valid in the loop preheader. 1677 if (I.hasMetadataOtherThanDebugLoc() && 1678 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning 1679 // time in isGuaranteedToExecute if we don't actually have anything to 1680 // drop. It is a compile time optimization, not required for correctness. 1681 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) 1682 I.dropUnknownNonDebugMetadata(); 1683 1684 if (isa<PHINode>(I)) 1685 // Move the new node to the end of the phi list in the destination block. 1686 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU); 1687 else 1688 // Move the new node to the destination block, before its terminator. 1689 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU); 1690 1691 // Apply line 0 debug locations when we are moving instructions to different 1692 // basic blocks because we want to avoid jumpy line tables. 1693 if (const DebugLoc &DL = I.getDebugLoc()) 1694 I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 1695 1696 if (isa<LoadInst>(I)) 1697 ++NumMovedLoads; 1698 else if (isa<CallInst>(I)) 1699 ++NumMovedCalls; 1700 ++NumHoisted; 1701 } 1702 1703 /// Only sink or hoist an instruction if it is not a trapping instruction, 1704 /// or if the instruction is known not to trap when moved to the preheader. 1705 /// or if it is a trapping instruction and is guaranteed to execute. 1706 static bool isSafeToExecuteUnconditionally(Instruction &Inst, 1707 const DominatorTree *DT, 1708 const Loop *CurLoop, 1709 const LoopSafetyInfo *SafetyInfo, 1710 OptimizationRemarkEmitter *ORE, 1711 const Instruction *CtxI) { 1712 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT)) 1713 return true; 1714 1715 bool GuaranteedToExecute = 1716 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); 1717 1718 if (!GuaranteedToExecute) { 1719 auto *LI = dyn_cast<LoadInst>(&Inst); 1720 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1721 ORE->emit([&]() { 1722 return OptimizationRemarkMissed( 1723 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) 1724 << "failed to hoist load with loop-invariant address " 1725 "because load is conditionally executed"; 1726 }); 1727 } 1728 1729 return GuaranteedToExecute; 1730 } 1731 1732 namespace { 1733 class LoopPromoter : public LoadAndStorePromoter { 1734 Value *SomePtr; // Designated pointer to store to. 1735 const SmallSetVector<Value *, 8> &PointerMustAliases; 1736 SmallVectorImpl<BasicBlock *> &LoopExitBlocks; 1737 SmallVectorImpl<Instruction *> &LoopInsertPts; 1738 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; 1739 PredIteratorCache &PredCache; 1740 AliasSetTracker &AST; 1741 MemorySSAUpdater *MSSAU; 1742 LoopInfo &LI; 1743 DebugLoc DL; 1744 int Alignment; 1745 bool UnorderedAtomic; 1746 AAMDNodes AATags; 1747 ICFLoopSafetyInfo &SafetyInfo; 1748 1749 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { 1750 if (Instruction *I = dyn_cast<Instruction>(V)) 1751 if (Loop *L = LI.getLoopFor(I->getParent())) 1752 if (!L->contains(BB)) { 1753 // We need to create an LCSSA PHI node for the incoming value and 1754 // store that. 1755 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), 1756 I->getName() + ".lcssa", &BB->front()); 1757 for (BasicBlock *Pred : PredCache.get(BB)) 1758 PN->addIncoming(I, Pred); 1759 return PN; 1760 } 1761 return V; 1762 } 1763 1764 public: 1765 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, 1766 const SmallSetVector<Value *, 8> &PMA, 1767 SmallVectorImpl<BasicBlock *> &LEB, 1768 SmallVectorImpl<Instruction *> &LIP, 1769 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, 1770 AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li, 1771 DebugLoc dl, int alignment, bool UnorderedAtomic, 1772 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo) 1773 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA), 1774 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), 1775 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)), 1776 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags), 1777 SafetyInfo(SafetyInfo) {} 1778 1779 bool isInstInList(Instruction *I, 1780 const SmallVectorImpl<Instruction *> &) const override { 1781 Value *Ptr; 1782 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1783 Ptr = LI->getOperand(0); 1784 else 1785 Ptr = cast<StoreInst>(I)->getPointerOperand(); 1786 return PointerMustAliases.count(Ptr); 1787 } 1788 1789 void doExtraRewritesBeforeFinalDeletion() override { 1790 // Insert stores after in the loop exit blocks. Each exit block gets a 1791 // store of the live-out values that feed them. Since we've already told 1792 // the SSA updater about the defs in the loop and the preheader 1793 // definition, it is all set and we can start using it. 1794 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { 1795 BasicBlock *ExitBlock = LoopExitBlocks[i]; 1796 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 1797 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); 1798 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); 1799 Instruction *InsertPos = LoopInsertPts[i]; 1800 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); 1801 if (UnorderedAtomic) 1802 NewSI->setOrdering(AtomicOrdering::Unordered); 1803 NewSI->setAlignment(MaybeAlign(Alignment)); 1804 NewSI->setDebugLoc(DL); 1805 if (AATags) 1806 NewSI->setAAMetadata(AATags); 1807 1808 if (MSSAU) { 1809 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; 1810 MemoryAccess *NewMemAcc; 1811 if (!MSSAInsertPoint) { 1812 NewMemAcc = MSSAU->createMemoryAccessInBB( 1813 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); 1814 } else { 1815 NewMemAcc = 1816 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); 1817 } 1818 MSSAInsertPts[i] = NewMemAcc; 1819 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1820 // FIXME: true for safety, false may still be correct. 1821 } 1822 } 1823 } 1824 1825 void replaceLoadWithValue(LoadInst *LI, Value *V) const override { 1826 // Update alias analysis. 1827 AST.copyValue(LI, V); 1828 } 1829 void instructionDeleted(Instruction *I) const override { 1830 SafetyInfo.removeInstruction(I); 1831 AST.deleteValue(I); 1832 if (MSSAU) 1833 MSSAU->removeMemoryAccess(I); 1834 } 1835 }; 1836 1837 1838 /// Return true iff we can prove that a caller of this function can not inspect 1839 /// the contents of the provided object in a well defined program. 1840 bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) { 1841 if (isa<AllocaInst>(Object)) 1842 // Since the alloca goes out of scope, we know the caller can't retain a 1843 // reference to it and be well defined. Thus, we don't need to check for 1844 // capture. 1845 return true; 1846 1847 // For all other objects we need to know that the caller can't possibly 1848 // have gotten a reference to the object. There are two components of 1849 // that: 1850 // 1) Object can't be escaped by this function. This is what 1851 // PointerMayBeCaptured checks. 1852 // 2) Object can't have been captured at definition site. For this, we 1853 // need to know the return value is noalias. At the moment, we use a 1854 // weaker condition and handle only AllocLikeFunctions (which are 1855 // known to be noalias). TODO 1856 return isAllocLikeFn(Object, TLI) && 1857 !PointerMayBeCaptured(Object, true, true); 1858 } 1859 1860 } // namespace 1861 1862 /// Try to promote memory values to scalars by sinking stores out of the 1863 /// loop and moving loads to before the loop. We do this by looping over 1864 /// the stores in the loop, looking for stores to Must pointers which are 1865 /// loop invariant. 1866 /// 1867 bool llvm::promoteLoopAccessesToScalars( 1868 const SmallSetVector<Value *, 8> &PointerMustAliases, 1869 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1870 SmallVectorImpl<Instruction *> &InsertPts, 1871 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, 1872 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, 1873 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 1874 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) { 1875 // Verify inputs. 1876 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && 1877 CurAST != nullptr && SafetyInfo != nullptr && 1878 "Unexpected Input to promoteLoopAccessesToScalars"); 1879 1880 Value *SomePtr = *PointerMustAliases.begin(); 1881 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1882 1883 // It is not safe to promote a load/store from the loop if the load/store is 1884 // conditional. For example, turning: 1885 // 1886 // for () { if (c) *P += 1; } 1887 // 1888 // into: 1889 // 1890 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; 1891 // 1892 // is not safe, because *P may only be valid to access if 'c' is true. 1893 // 1894 // The safety property divides into two parts: 1895 // p1) The memory may not be dereferenceable on entry to the loop. In this 1896 // case, we can't insert the required load in the preheader. 1897 // p2) The memory model does not allow us to insert a store along any dynamic 1898 // path which did not originally have one. 1899 // 1900 // If at least one store is guaranteed to execute, both properties are 1901 // satisfied, and promotion is legal. 1902 // 1903 // This, however, is not a necessary condition. Even if no store/load is 1904 // guaranteed to execute, we can still establish these properties. 1905 // We can establish (p1) by proving that hoisting the load into the preheader 1906 // is safe (i.e. proving dereferenceability on all paths through the loop). We 1907 // can use any access within the alias set to prove dereferenceability, 1908 // since they're all must alias. 1909 // 1910 // There are two ways establish (p2): 1911 // a) Prove the location is thread-local. In this case the memory model 1912 // requirement does not apply, and stores are safe to insert. 1913 // b) Prove a store dominates every exit block. In this case, if an exit 1914 // blocks is reached, the original dynamic path would have taken us through 1915 // the store, so inserting a store into the exit block is safe. Note that this 1916 // is different from the store being guaranteed to execute. For instance, 1917 // if an exception is thrown on the first iteration of the loop, the original 1918 // store is never executed, but the exit blocks are not executed either. 1919 1920 bool DereferenceableInPH = false; 1921 bool SafeToInsertStore = false; 1922 1923 SmallVector<Instruction *, 64> LoopUses; 1924 1925 // We start with an alignment of one and try to find instructions that allow 1926 // us to prove better alignment. 1927 unsigned Alignment = 1; 1928 // Keep track of which types of access we see 1929 bool SawUnorderedAtomic = false; 1930 bool SawNotAtomic = false; 1931 AAMDNodes AATags; 1932 1933 const DataLayout &MDL = Preheader->getModule()->getDataLayout(); 1934 1935 bool IsKnownThreadLocalObject = false; 1936 if (SafetyInfo->anyBlockMayThrow()) { 1937 // If a loop can throw, we have to insert a store along each unwind edge. 1938 // That said, we can't actually make the unwind edge explicit. Therefore, 1939 // we have to prove that the store is dead along the unwind edge. We do 1940 // this by proving that the caller can't have a reference to the object 1941 // after return and thus can't possibly load from the object. 1942 Value *Object = GetUnderlyingObject(SomePtr, MDL); 1943 if (!isKnownNonEscaping(Object, TLI)) 1944 return false; 1945 // Subtlety: Alloca's aren't visible to callers, but *are* potentially 1946 // visible to other threads if captured and used during their lifetimes. 1947 IsKnownThreadLocalObject = !isa<AllocaInst>(Object); 1948 } 1949 1950 // Check that all of the pointers in the alias set have the same type. We 1951 // cannot (yet) promote a memory location that is loaded and stored in 1952 // different sizes. While we are at it, collect alignment and AA info. 1953 for (Value *ASIV : PointerMustAliases) { 1954 // Check that all of the pointers in the alias set have the same type. We 1955 // cannot (yet) promote a memory location that is loaded and stored in 1956 // different sizes. 1957 if (SomePtr->getType() != ASIV->getType()) 1958 return false; 1959 1960 for (User *U : ASIV->users()) { 1961 // Ignore instructions that are outside the loop. 1962 Instruction *UI = dyn_cast<Instruction>(U); 1963 if (!UI || !CurLoop->contains(UI)) 1964 continue; 1965 1966 // If there is an non-load/store instruction in the loop, we can't promote 1967 // it. 1968 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { 1969 if (!Load->isUnordered()) 1970 return false; 1971 1972 SawUnorderedAtomic |= Load->isAtomic(); 1973 SawNotAtomic |= !Load->isAtomic(); 1974 1975 unsigned InstAlignment = Load->getAlignment(); 1976 if (!InstAlignment) 1977 InstAlignment = 1978 MDL.getABITypeAlignment(Load->getType()); 1979 1980 // Note that proving a load safe to speculate requires proving 1981 // sufficient alignment at the target location. Proving it guaranteed 1982 // to execute does as well. Thus we can increase our guaranteed 1983 // alignment as well. 1984 if (!DereferenceableInPH || (InstAlignment > Alignment)) 1985 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo, 1986 ORE, Preheader->getTerminator())) { 1987 DereferenceableInPH = true; 1988 Alignment = std::max(Alignment, InstAlignment); 1989 } 1990 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { 1991 // Stores *of* the pointer are not interesting, only stores *to* the 1992 // pointer. 1993 if (UI->getOperand(1) != ASIV) 1994 continue; 1995 if (!Store->isUnordered()) 1996 return false; 1997 1998 SawUnorderedAtomic |= Store->isAtomic(); 1999 SawNotAtomic |= !Store->isAtomic(); 2000 2001 // If the store is guaranteed to execute, both properties are satisfied. 2002 // We may want to check if a store is guaranteed to execute even if we 2003 // already know that promotion is safe, since it may have higher 2004 // alignment than any other guaranteed stores, in which case we can 2005 // raise the alignment on the promoted store. 2006 unsigned InstAlignment = Store->getAlignment(); 2007 if (!InstAlignment) 2008 InstAlignment = 2009 MDL.getABITypeAlignment(Store->getValueOperand()->getType()); 2010 2011 if (!DereferenceableInPH || !SafeToInsertStore || 2012 (InstAlignment > Alignment)) { 2013 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) { 2014 DereferenceableInPH = true; 2015 SafeToInsertStore = true; 2016 Alignment = std::max(Alignment, InstAlignment); 2017 } 2018 } 2019 2020 // If a store dominates all exit blocks, it is safe to sink. 2021 // As explained above, if an exit block was executed, a dominating 2022 // store must have been executed at least once, so we are not 2023 // introducing stores on paths that did not have them. 2024 // Note that this only looks at explicit exit blocks. If we ever 2025 // start sinking stores into unwind edges (see above), this will break. 2026 if (!SafeToInsertStore) 2027 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { 2028 return DT->dominates(Store->getParent(), Exit); 2029 }); 2030 2031 // If the store is not guaranteed to execute, we may still get 2032 // deref info through it. 2033 if (!DereferenceableInPH) { 2034 DereferenceableInPH = isDereferenceableAndAlignedPointer( 2035 Store->getPointerOperand(), Store->getValueOperand()->getType(), 2036 MaybeAlign(Store->getAlignment()), MDL, 2037 Preheader->getTerminator(), DT); 2038 } 2039 } else 2040 return false; // Not a load or store. 2041 2042 // Merge the AA tags. 2043 if (LoopUses.empty()) { 2044 // On the first load/store, just take its AA tags. 2045 UI->getAAMetadata(AATags); 2046 } else if (AATags) { 2047 UI->getAAMetadata(AATags, /* Merge = */ true); 2048 } 2049 2050 LoopUses.push_back(UI); 2051 } 2052 } 2053 2054 // If we found both an unordered atomic instruction and a non-atomic memory 2055 // access, bail. We can't blindly promote non-atomic to atomic since we 2056 // might not be able to lower the result. We can't downgrade since that 2057 // would violate memory model. Also, align 0 is an error for atomics. 2058 if (SawUnorderedAtomic && SawNotAtomic) 2059 return false; 2060 2061 // If we're inserting an atomic load in the preheader, we must be able to 2062 // lower it. We're only guaranteed to be able to lower naturally aligned 2063 // atomics. 2064 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType(); 2065 if (SawUnorderedAtomic && 2066 Alignment < MDL.getTypeStoreSize(SomePtrElemType)) 2067 return false; 2068 2069 // If we couldn't prove we can hoist the load, bail. 2070 if (!DereferenceableInPH) 2071 return false; 2072 2073 // We know we can hoist the load, but don't have a guaranteed store. 2074 // Check whether the location is thread-local. If it is, then we can insert 2075 // stores along paths which originally didn't have them without violating the 2076 // memory model. 2077 if (!SafeToInsertStore) { 2078 if (IsKnownThreadLocalObject) 2079 SafeToInsertStore = true; 2080 else { 2081 Value *Object = GetUnderlyingObject(SomePtr, MDL); 2082 SafeToInsertStore = 2083 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) && 2084 !PointerMayBeCaptured(Object, true, true); 2085 } 2086 } 2087 2088 // If we've still failed to prove we can sink the store, give up. 2089 if (!SafeToInsertStore) 2090 return false; 2091 2092 // Otherwise, this is safe to promote, lets do it! 2093 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr 2094 << '\n'); 2095 ORE->emit([&]() { 2096 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", 2097 LoopUses[0]) 2098 << "Moving accesses to memory location out of the loop"; 2099 }); 2100 ++NumPromoted; 2101 2102 // Grab a debug location for the inserted loads/stores; given that the 2103 // inserted loads/stores have little relation to the original loads/stores, 2104 // this code just arbitrarily picks a location from one, since any debug 2105 // location is better than none. 2106 DebugLoc DL = LoopUses[0]->getDebugLoc(); 2107 2108 // We use the SSAUpdater interface to insert phi nodes as required. 2109 SmallVector<PHINode *, 16> NewPHIs; 2110 SSAUpdater SSA(&NewPHIs); 2111 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, 2112 InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL, 2113 Alignment, SawUnorderedAtomic, AATags, *SafetyInfo); 2114 2115 // Set up the preheader to have a definition of the value. It is the live-out 2116 // value from the preheader that uses in the loop will use. 2117 LoadInst *PreheaderLoad = new LoadInst( 2118 SomePtr->getType()->getPointerElementType(), SomePtr, 2119 SomePtr->getName() + ".promoted", Preheader->getTerminator()); 2120 if (SawUnorderedAtomic) 2121 PreheaderLoad->setOrdering(AtomicOrdering::Unordered); 2122 PreheaderLoad->setAlignment(MaybeAlign(Alignment)); 2123 PreheaderLoad->setDebugLoc(DL); 2124 if (AATags) 2125 PreheaderLoad->setAAMetadata(AATags); 2126 SSA.AddAvailableValue(Preheader, PreheaderLoad); 2127 2128 if (MSSAU) { 2129 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB( 2130 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); 2131 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); 2132 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true); 2133 } 2134 2135 if (MSSAU && VerifyMemorySSA) 2136 MSSAU->getMemorySSA()->verifyMemorySSA(); 2137 // Rewrite all the loads in the loop and remember all the definitions from 2138 // stores in the loop. 2139 Promoter.run(LoopUses); 2140 2141 if (MSSAU && VerifyMemorySSA) 2142 MSSAU->getMemorySSA()->verifyMemorySSA(); 2143 // If the SSAUpdater didn't use the load in the preheader, just zap it now. 2144 if (PreheaderLoad->use_empty()) 2145 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU); 2146 2147 return true; 2148 } 2149 2150 /// Returns an owning pointer to an alias set which incorporates aliasing info 2151 /// from L and all subloops of L. 2152 /// FIXME: In new pass manager, there is no helper function to handle loop 2153 /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed 2154 /// from scratch for every loop. Hook up with the helper functions when 2155 /// available in the new pass manager to avoid redundant computation. 2156 std::unique_ptr<AliasSetTracker> 2157 LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI, 2158 AliasAnalysis *AA) { 2159 std::unique_ptr<AliasSetTracker> CurAST; 2160 SmallVector<Loop *, 4> RecomputeLoops; 2161 for (Loop *InnerL : L->getSubLoops()) { 2162 auto MapI = LoopToAliasSetMap.find(InnerL); 2163 // If the AST for this inner loop is missing it may have been merged into 2164 // some other loop's AST and then that loop unrolled, and so we need to 2165 // recompute it. 2166 if (MapI == LoopToAliasSetMap.end()) { 2167 RecomputeLoops.push_back(InnerL); 2168 continue; 2169 } 2170 std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second); 2171 2172 if (CurAST) { 2173 // What if InnerLoop was modified by other passes ? 2174 // Once we've incorporated the inner loop's AST into ours, we don't need 2175 // the subloop's anymore. 2176 CurAST->add(*InnerAST); 2177 } else { 2178 CurAST = std::move(InnerAST); 2179 } 2180 LoopToAliasSetMap.erase(MapI); 2181 } 2182 if (!CurAST) 2183 CurAST = std::make_unique<AliasSetTracker>(*AA); 2184 2185 // Add everything from the sub loops that are no longer directly available. 2186 for (Loop *InnerL : RecomputeLoops) 2187 for (BasicBlock *BB : InnerL->blocks()) 2188 CurAST->add(*BB); 2189 2190 // And merge in this loop (without anything from inner loops). 2191 for (BasicBlock *BB : L->blocks()) 2192 if (LI->getLoopFor(BB) == L) 2193 CurAST->add(*BB); 2194 2195 return CurAST; 2196 } 2197 2198 std::unique_ptr<AliasSetTracker> 2199 LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA( 2200 Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) { 2201 auto *MSSA = MSSAU->getMemorySSA(); 2202 auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L); 2203 CurAST->addAllInstructionsInLoopUsingMSSA(); 2204 return CurAST; 2205 } 2206 2207 /// Simple analysis hook. Clone alias set info. 2208 /// 2209 void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, 2210 Loop *L) { 2211 auto ASTIt = LICM.getLoopToAliasSetMap().find(L); 2212 if (ASTIt == LICM.getLoopToAliasSetMap().end()) 2213 return; 2214 2215 ASTIt->second->copyValue(From, To); 2216 } 2217 2218 /// Simple Analysis hook. Delete value V from alias set 2219 /// 2220 void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) { 2221 auto ASTIt = LICM.getLoopToAliasSetMap().find(L); 2222 if (ASTIt == LICM.getLoopToAliasSetMap().end()) 2223 return; 2224 2225 ASTIt->second->deleteValue(V); 2226 } 2227 2228 /// Simple Analysis hook. Delete value L from alias set map. 2229 /// 2230 void LegacyLICMPass::deleteAnalysisLoop(Loop *L) { 2231 if (!LICM.getLoopToAliasSetMap().count(L)) 2232 return; 2233 2234 LICM.getLoopToAliasSetMap().erase(L); 2235 } 2236 2237 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, 2238 AliasSetTracker *CurAST, Loop *CurLoop, 2239 AliasAnalysis *AA) { 2240 // First check to see if any of the basic blocks in CurLoop invalidate *V. 2241 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod(); 2242 2243 if (!isInvalidatedAccordingToAST || !LICMN2Theshold) 2244 return isInvalidatedAccordingToAST; 2245 2246 // Check with a diagnostic analysis if we can refine the information above. 2247 // This is to identify the limitations of using the AST. 2248 // The alias set mechanism used by LICM has a major weakness in that it 2249 // combines all things which may alias into a single set *before* asking 2250 // modref questions. As a result, a single readonly call within a loop will 2251 // collapse all loads and stores into a single alias set and report 2252 // invalidation if the loop contains any store. For example, readonly calls 2253 // with deopt states have this form and create a general alias set with all 2254 // loads and stores. In order to get any LICM in loops containing possible 2255 // deopt states we need a more precise invalidation of checking the mod ref 2256 // info of each instruction within the loop and LI. This has a complexity of 2257 // O(N^2), so currently, it is used only as a diagnostic tool since the 2258 // default value of LICMN2Threshold is zero. 2259 2260 // Don't look at nested loops. 2261 if (CurLoop->begin() != CurLoop->end()) 2262 return true; 2263 2264 int N = 0; 2265 for (BasicBlock *BB : CurLoop->getBlocks()) 2266 for (Instruction &I : *BB) { 2267 if (N >= LICMN2Theshold) { 2268 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for " 2269 << *(MemLoc.Ptr) << "\n"); 2270 return true; 2271 } 2272 N++; 2273 auto Res = AA->getModRefInfo(&I, MemLoc); 2274 if (isModSet(Res)) { 2275 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for " 2276 << *(MemLoc.Ptr) << "\n"); 2277 return true; 2278 } 2279 } 2280 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n"); 2281 return false; 2282 } 2283 2284 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, 2285 Loop *CurLoop, 2286 SinkAndHoistLICMFlags &Flags) { 2287 // For hoisting, use the walker to determine safety 2288 if (!Flags.IsSink) { 2289 MemoryAccess *Source; 2290 // See declaration of SetLicmMssaOptCap for usage details. 2291 if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap) 2292 Source = MU->getDefiningAccess(); 2293 else { 2294 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU); 2295 Flags.LicmMssaOptCounter++; 2296 } 2297 return !MSSA->isLiveOnEntryDef(Source) && 2298 CurLoop->contains(Source->getBlock()); 2299 } 2300 2301 // For sinking, we'd need to check all Defs below this use. The getClobbering 2302 // call will look on the backedge of the loop, but will check aliasing with 2303 // the instructions on the previous iteration. 2304 // For example: 2305 // for (i ... ) 2306 // load a[i] ( Use (LoE) 2307 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. 2308 // i++; 2309 // The load sees no clobbering inside the loop, as the backedge alias check 2310 // does phi translation, and will check aliasing against store a[i-1]. 2311 // However sinking the load outside the loop, below the store is incorrect. 2312 2313 // For now, only sink if there are no Defs in the loop, and the existing ones 2314 // precede the use and are in the same block. 2315 // FIXME: Increase precision: Safe to sink if Use post dominates the Def; 2316 // needs PostDominatorTreeAnalysis. 2317 // FIXME: More precise: no Defs that alias this Use. 2318 if (Flags.NoOfMemAccTooLarge) 2319 return true; 2320 for (auto *BB : CurLoop->getBlocks()) 2321 if (auto *Accesses = MSSA->getBlockDefs(BB)) 2322 for (const auto &MA : *Accesses) 2323 if (const auto *MD = dyn_cast<MemoryDef>(&MA)) 2324 if (MU->getBlock() != MD->getBlock() || 2325 !MSSA->locallyDominates(MD, MU)) 2326 return true; 2327 return false; 2328 } 2329 2330 /// Little predicate that returns true if the specified basic block is in 2331 /// a subloop of the current one, not the current one itself. 2332 /// 2333 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { 2334 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); 2335 return LI->getLoopFor(BB) != CurLoop; 2336 } 2337