1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion, attempting to remove as much 10 // code from the body of a loop as possible. It does this by either hoisting 11 // code into the preheader block, or by sinking code to the exit blocks if it is 12 // safe. This pass also promotes must-aliased memory locations in the loop to 13 // live in registers, thus hoisting and sinking "invariant" loads and stores. 14 // 15 // Hoisting operations out of loops is a canonicalization transform. It 16 // enables and simplifies subsequent optimizations in the middle-end. 17 // Rematerialization of hoisted instructions to reduce register pressure is the 18 // responsibility of the back-end, which has more accurate information about 19 // register pressure and also handles other optimizations than LICM that 20 // increase live-ranges. 21 // 22 // This pass uses alias analysis for two purposes: 23 // 24 // 1. Moving loop invariant loads and calls out of loops. If we can determine 25 // that a load or call inside of a loop never aliases anything stored to, 26 // we can hoist it or sink it like any other instruction. 27 // 2. Scalar Promotion of Memory - If there is a store instruction inside of 28 // the loop, we try to move the store to happen AFTER the loop instead of 29 // inside of the loop. This can only happen if a few conditions are true: 30 // A. The pointer stored through is loop invariant 31 // B. There are no stores or loads in the loop which _may_ alias the 32 // pointer. There are no calls in the loop which mod/ref the pointer. 33 // If these conditions are true, we can promote the loads and stores in the 34 // loop of the pointer to use a temporary alloca'd variable. We then use 35 // the SSAUpdater to construct the appropriate SSA form for the value. 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LICM.h" 40 #include "llvm/ADT/SetOperations.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AliasSetTracker.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/BlockFrequencyInfo.h" 46 #include "llvm/Analysis/CaptureTracking.h" 47 #include "llvm/Analysis/ConstantFolding.h" 48 #include "llvm/Analysis/GlobalsModRef.h" 49 #include "llvm/Analysis/GuardUtils.h" 50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 51 #include "llvm/Analysis/Loads.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopIterator.h" 54 #include "llvm/Analysis/LoopPass.h" 55 #include "llvm/Analysis/MemoryBuiltins.h" 56 #include "llvm/Analysis/MemorySSA.h" 57 #include "llvm/Analysis/MemorySSAUpdater.h" 58 #include "llvm/Analysis/MustExecute.h" 59 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 62 #include "llvm/Analysis/TargetLibraryInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/IR/LLVMContext.h" 73 #include "llvm/IR/Metadata.h" 74 #include "llvm/IR/PatternMatch.h" 75 #include "llvm/IR/PredIteratorCache.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Scalar/LoopPassManager.h" 82 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 83 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 84 #include "llvm/Transforms/Utils/Local.h" 85 #include "llvm/Transforms/Utils/LoopUtils.h" 86 #include "llvm/Transforms/Utils/SSAUpdater.h" 87 #include <algorithm> 88 #include <utility> 89 using namespace llvm; 90 91 #define DEBUG_TYPE "licm" 92 93 STATISTIC(NumCreatedBlocks, "Number of blocks created"); 94 STATISTIC(NumClonedBranches, "Number of branches cloned"); 95 STATISTIC(NumSunk, "Number of instructions sunk out of loop"); 96 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); 97 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); 98 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); 99 STATISTIC(NumPromoted, "Number of memory locations promoted to registers"); 100 101 /// Memory promotion is enabled by default. 102 static cl::opt<bool> 103 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), 104 cl::desc("Disable memory promotion in LICM pass")); 105 106 static cl::opt<bool> ControlFlowHoisting( 107 "licm-control-flow-hoisting", cl::Hidden, cl::init(false), 108 cl::desc("Enable control flow (and PHI) hoisting in LICM")); 109 110 static cl::opt<unsigned> HoistSinkColdnessThreshold( 111 "licm-coldness-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Relative coldness Threshold of hoisting/sinking destination " 113 "block for LICM to be considered beneficial")); 114 115 static cl::opt<uint32_t> MaxNumUsesTraversed( 116 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), 117 cl::desc("Max num uses visited for identifying load " 118 "invariance in loop using invariant start (default = 8)")); 119 120 // Experimental option to allow imprecision in LICM in pathological cases, in 121 // exchange for faster compile. This is to be removed if MemorySSA starts to 122 // address the same issue. This flag applies only when LICM uses MemorySSA 123 // instead on AliasSetTracker. LICM calls MemorySSAWalker's 124 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect 125 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, 126 // which may not be precise, since optimizeUses is capped. The result is 127 // correct, but we may not get as "far up" as possible to get which access is 128 // clobbering the one queried. 129 cl::opt<unsigned> llvm::SetLicmMssaOptCap( 130 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, 131 cl::desc("Enable imprecision in LICM in pathological cases, in exchange " 132 "for faster compile. Caps the MemorySSA clobbering calls.")); 133 134 // Experimentally, memory promotion carries less importance than sinking and 135 // hoisting. Limit when we do promotion when using MemorySSA, in order to save 136 // compile time. 137 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( 138 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, 139 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " 140 "effect. When MSSA in LICM is enabled, then this is the maximum " 141 "number of accesses allowed to be present in a loop in order to " 142 "enable memory promotion.")); 143 144 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); 145 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 146 const LoopSafetyInfo *SafetyInfo, 147 TargetTransformInfo *TTI, bool &FreeInLoop, 148 bool LoopNestMode); 149 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 150 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 151 MemorySSAUpdater *MSSAU, ScalarEvolution *SE, 152 OptimizationRemarkEmitter *ORE); 153 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 154 BlockFrequencyInfo *BFI, const Loop *CurLoop, 155 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU, 156 OptimizationRemarkEmitter *ORE); 157 static bool isSafeToExecuteUnconditionally(Instruction &Inst, 158 const DominatorTree *DT, 159 const TargetLibraryInfo *TLI, 160 const Loop *CurLoop, 161 const LoopSafetyInfo *SafetyInfo, 162 OptimizationRemarkEmitter *ORE, 163 const Instruction *CtxI = nullptr); 164 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, 165 AliasSetTracker *CurAST, Loop *CurLoop, 166 AAResults *AA); 167 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, 168 Loop *CurLoop, Instruction &I, 169 SinkAndHoistLICMFlags &Flags); 170 static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA, 171 MemoryUse &MU); 172 static Instruction *cloneInstructionInExitBlock( 173 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 174 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU); 175 176 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 177 MemorySSAUpdater *MSSAU); 178 179 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 180 ICFLoopSafetyInfo &SafetyInfo, 181 MemorySSAUpdater *MSSAU, ScalarEvolution *SE); 182 183 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, 184 function_ref<void(Instruction *)> Fn); 185 static SmallVector<SmallSetVector<Value *, 8>, 0> 186 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L); 187 188 namespace { 189 struct LoopInvariantCodeMotion { 190 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, 191 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, 192 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, 193 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false); 194 195 LoopInvariantCodeMotion(unsigned LicmMssaOptCap, 196 unsigned LicmMssaNoAccForPromotionCap) 197 : LicmMssaOptCap(LicmMssaOptCap), 198 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {} 199 200 private: 201 unsigned LicmMssaOptCap; 202 unsigned LicmMssaNoAccForPromotionCap; 203 }; 204 205 struct LegacyLICMPass : public LoopPass { 206 static char ID; // Pass identification, replacement for typeid 207 LegacyLICMPass( 208 unsigned LicmMssaOptCap = SetLicmMssaOptCap, 209 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap) 210 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) { 211 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); 212 } 213 214 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 215 if (skipLoop(L)) 216 return false; 217 218 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block " 219 << L->getHeader()->getNameOrAsOperand() << "\n"); 220 221 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 222 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 223 bool hasProfileData = L->getHeader()->getParent()->hasProfileData(); 224 BlockFrequencyInfo *BFI = 225 hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() 226 : nullptr; 227 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 228 // pass. Function analyses need to be preserved across loop transformations 229 // but ORE cannot be preserved (see comment before the pass definition). 230 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 231 return LICM.runOnLoop( 232 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(), 233 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 234 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI, 235 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 236 *L->getHeader()->getParent()), 237 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 238 *L->getHeader()->getParent()), 239 SE ? &SE->getSE() : nullptr, MSSA, &ORE); 240 } 241 242 /// This transformation requires natural loop information & requires that 243 /// loop preheaders be inserted into the CFG... 244 /// 245 void getAnalysisUsage(AnalysisUsage &AU) const override { 246 AU.addPreserved<DominatorTreeWrapperPass>(); 247 AU.addPreserved<LoopInfoWrapperPass>(); 248 AU.addRequired<TargetLibraryInfoWrapperPass>(); 249 AU.addRequired<MemorySSAWrapperPass>(); 250 AU.addPreserved<MemorySSAWrapperPass>(); 251 AU.addRequired<TargetTransformInfoWrapperPass>(); 252 getLoopAnalysisUsage(AU); 253 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 254 AU.addPreserved<LazyBlockFrequencyInfoPass>(); 255 AU.addPreserved<LazyBranchProbabilityInfoPass>(); 256 } 257 258 private: 259 LoopInvariantCodeMotion LICM; 260 }; 261 } // namespace 262 263 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, 264 LoopStandardAnalysisResults &AR, LPMUpdater &) { 265 if (!AR.MSSA) 266 report_fatal_error("LICM requires MemorySSA (loop-mssa)"); 267 268 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 269 // pass. Function analyses need to be preserved across loop transformations 270 // but ORE cannot be preserved (see comment before the pass definition). 271 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 272 273 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 274 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI, 275 &AR.SE, AR.MSSA, &ORE)) 276 return PreservedAnalyses::all(); 277 278 auto PA = getLoopPassPreservedAnalyses(); 279 280 PA.preserve<DominatorTreeAnalysis>(); 281 PA.preserve<LoopAnalysis>(); 282 PA.preserve<MemorySSAAnalysis>(); 283 284 return PA; 285 } 286 287 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM, 288 LoopStandardAnalysisResults &AR, 289 LPMUpdater &) { 290 if (!AR.MSSA) 291 report_fatal_error("LNICM requires MemorySSA (loop-mssa)"); 292 293 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 294 // pass. Function analyses need to be preserved across loop transformations 295 // but ORE cannot be preserved (see comment before the pass definition). 296 OptimizationRemarkEmitter ORE(LN.getParent()); 297 298 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 299 300 Loop &OutermostLoop = LN.getOutermostLoop(); 301 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI, 302 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true); 303 304 if (!Changed) 305 return PreservedAnalyses::all(); 306 307 auto PA = getLoopPassPreservedAnalyses(); 308 309 PA.preserve<DominatorTreeAnalysis>(); 310 PA.preserve<LoopAnalysis>(); 311 PA.preserve<MemorySSAAnalysis>(); 312 313 return PA; 314 } 315 316 char LegacyLICMPass::ID = 0; 317 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", 318 false, false) 319 INITIALIZE_PASS_DEPENDENCY(LoopPass) 320 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 321 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 322 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 323 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) 324 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, 325 false) 326 327 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } 328 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap, 329 unsigned LicmMssaNoAccForPromotionCap) { 330 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 331 } 332 333 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L, 334 MemorySSA *MSSA) 335 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, 336 IsSink, L, MSSA) {} 337 338 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( 339 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, 340 Loop *L, MemorySSA *MSSA) 341 : LicmMssaOptCap(LicmMssaOptCap), 342 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), 343 IsSink(IsSink) { 344 assert(((L != nullptr) == (MSSA != nullptr)) && 345 "Unexpected values for SinkAndHoistLICMFlags"); 346 if (!MSSA) 347 return; 348 349 unsigned AccessCapCount = 0; 350 for (auto *BB : L->getBlocks()) 351 if (const auto *Accesses = MSSA->getBlockAccesses(BB)) 352 for (const auto &MA : *Accesses) { 353 (void)MA; 354 ++AccessCapCount; 355 if (AccessCapCount > LicmMssaNoAccForPromotionCap) { 356 NoOfMemAccTooLarge = true; 357 return; 358 } 359 } 360 } 361 362 /// Hoist expressions out of the specified loop. Note, alias info for inner 363 /// loop is not preserved so it is not a good idea to run LICM multiple 364 /// times on one loop. 365 bool LoopInvariantCodeMotion::runOnLoop( 366 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, 367 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, 368 ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, 369 bool LoopNestMode) { 370 bool Changed = false; 371 372 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); 373 374 // If this loop has metadata indicating that LICM is not to be performed then 375 // just exit. 376 if (hasDisableLICMTransformsHint(L)) { 377 return false; 378 } 379 380 // Don't sink stores from loops with coroutine suspend instructions. 381 // LICM would sink instructions into the default destination of 382 // the coroutine switch. The default destination of the switch is to 383 // handle the case where the coroutine is suspended, by which point the 384 // coroutine frame may have been destroyed. No instruction can be sunk there. 385 // FIXME: This would unfortunately hurt the performance of coroutines, however 386 // there is currently no general solution for this. Similar issues could also 387 // potentially happen in other passes where instructions are being moved 388 // across that edge. 389 bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) { 390 return llvm::any_of(*BB, [](Instruction &I) { 391 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 392 return II && II->getIntrinsicID() == Intrinsic::coro_suspend; 393 }); 394 }); 395 396 MemorySSAUpdater MSSAU(MSSA); 397 SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 398 /*IsSink=*/true, L, MSSA); 399 400 // Get the preheader block to move instructions into... 401 BasicBlock *Preheader = L->getLoopPreheader(); 402 403 // Compute loop safety information. 404 ICFLoopSafetyInfo SafetyInfo; 405 SafetyInfo.computeLoopSafetyInfo(L); 406 407 // We want to visit all of the instructions in this loop... that are not parts 408 // of our subloops (they have already had their invariants hoisted out of 409 // their loop, into this loop, so there is no need to process the BODIES of 410 // the subloops). 411 // 412 // Traverse the body of the loop in depth first order on the dominator tree so 413 // that we are guaranteed to see definitions before we see uses. This allows 414 // us to sink instructions in one pass, without iteration. After sinking 415 // instructions, we perform another pass to hoist them out of the loop. 416 if (L->hasDedicatedExits()) 417 Changed |= LoopNestMode 418 ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, 419 DT, BFI, TLI, TTI, L, &MSSAU, 420 &SafetyInfo, Flags, ORE) 421 : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, 422 TLI, TTI, L, &MSSAU, &SafetyInfo, Flags, ORE); 423 Flags.setIsSink(false); 424 if (Preheader) 425 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L, 426 &MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode); 427 428 // Now that all loop invariants have been removed from the loop, promote any 429 // memory references to scalars that we can. 430 // Don't sink stores from loops without dedicated block exits. Exits 431 // containing indirect branches are not transformed by loop simplify, 432 // make sure we catch that. An additional load may be generated in the 433 // preheader for SSA updater, so also avoid sinking when no preheader 434 // is available. 435 if (!DisablePromotion && Preheader && L->hasDedicatedExits() && 436 !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) { 437 // Figure out the loop exits and their insertion points 438 SmallVector<BasicBlock *, 8> ExitBlocks; 439 L->getUniqueExitBlocks(ExitBlocks); 440 441 // We can't insert into a catchswitch. 442 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { 443 return isa<CatchSwitchInst>(Exit->getTerminator()); 444 }); 445 446 if (!HasCatchSwitch) { 447 SmallVector<Instruction *, 8> InsertPts; 448 SmallVector<MemoryAccess *, 8> MSSAInsertPts; 449 InsertPts.reserve(ExitBlocks.size()); 450 MSSAInsertPts.reserve(ExitBlocks.size()); 451 for (BasicBlock *ExitBlock : ExitBlocks) { 452 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 453 MSSAInsertPts.push_back(nullptr); 454 } 455 456 PredIteratorCache PIC; 457 458 // Promoting one set of accesses may make the pointers for another set 459 // loop invariant, so run this in a loop (with the MaybePromotable set 460 // decreasing in size over time). 461 bool Promoted = false; 462 bool LocalPromoted; 463 do { 464 LocalPromoted = false; 465 for (const SmallSetVector<Value *, 8> &PointerMustAliases : 466 collectPromotionCandidates(MSSA, AA, L)) { 467 LocalPromoted |= promoteLoopAccessesToScalars( 468 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, 469 LI, DT, TLI, L, &MSSAU, &SafetyInfo, ORE); 470 } 471 Promoted |= LocalPromoted; 472 } while (LocalPromoted); 473 474 // Once we have promoted values across the loop body we have to 475 // recursively reform LCSSA as any nested loop may now have values defined 476 // within the loop used in the outer loop. 477 // FIXME: This is really heavy handed. It would be a bit better to use an 478 // SSAUpdater strategy during promotion that was LCSSA aware and reformed 479 // it as it went. 480 if (Promoted) 481 formLCSSARecursively(*L, *DT, LI, SE); 482 483 Changed |= Promoted; 484 } 485 } 486 487 // Check that neither this loop nor its parent have had LCSSA broken. LICM is 488 // specifically moving instructions across the loop boundary and so it is 489 // especially in need of sanity checking here. 490 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); 491 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && 492 "Parent loop not left in LCSSA form after LICM!"); 493 494 if (VerifyMemorySSA) 495 MSSA->verifyMemorySSA(); 496 497 if (Changed && SE) 498 SE->forgetLoopDispositions(L); 499 return Changed; 500 } 501 502 /// Walk the specified region of the CFG (defined by all blocks dominated by 503 /// the specified block, and that are in the current loop) in reverse depth 504 /// first order w.r.t the DominatorTree. This allows us to visit uses before 505 /// definitions, allowing us to sink a loop body in one pass without iteration. 506 /// 507 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 508 DominatorTree *DT, BlockFrequencyInfo *BFI, 509 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, 510 Loop *CurLoop, MemorySSAUpdater *MSSAU, 511 ICFLoopSafetyInfo *SafetyInfo, 512 SinkAndHoistLICMFlags &Flags, 513 OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) { 514 515 // Verify inputs. 516 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 517 CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr && 518 "Unexpected input to sinkRegion."); 519 520 // We want to visit children before parents. We will enque all the parents 521 // before their children in the worklist and process the worklist in reverse 522 // order. 523 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); 524 525 bool Changed = false; 526 for (DomTreeNode *DTN : reverse(Worklist)) { 527 BasicBlock *BB = DTN->getBlock(); 528 // Only need to process the contents of this block if it is not part of a 529 // subloop (which would already have been processed). 530 if (inSubLoop(BB, CurLoop, LI)) 531 continue; 532 533 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { 534 Instruction &I = *--II; 535 536 // The instruction is not used in the loop if it is dead. In this case, 537 // we just delete it instead of sinking it. 538 if (isInstructionTriviallyDead(&I, TLI)) { 539 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); 540 salvageKnowledge(&I); 541 salvageDebugInfo(I); 542 ++II; 543 eraseInstruction(I, *SafetyInfo, MSSAU); 544 Changed = true; 545 continue; 546 } 547 548 // Check to see if we can sink this instruction to the exit blocks 549 // of the loop. We can do this if the all users of the instruction are 550 // outside of the loop. In this case, it doesn't even matter if the 551 // operands of the instruction are loop invariant. 552 // 553 bool FreeInLoop = false; 554 bool LoopNestMode = OutermostLoop != nullptr; 555 if (!I.mayHaveSideEffects() && 556 isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop, 557 SafetyInfo, TTI, FreeInLoop, LoopNestMode) && 558 canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/nullptr, MSSAU, true, 559 &Flags, ORE)) { 560 if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) { 561 if (!FreeInLoop) { 562 ++II; 563 salvageDebugInfo(I); 564 eraseInstruction(I, *SafetyInfo, MSSAU); 565 } 566 Changed = true; 567 } 568 } 569 } 570 } 571 if (VerifyMemorySSA) 572 MSSAU->getMemorySSA()->verifyMemorySSA(); 573 return Changed; 574 } 575 576 bool llvm::sinkRegionForLoopNest( 577 DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT, 578 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, 579 Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo, 580 SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) { 581 582 bool Changed = false; 583 SmallPriorityWorklist<Loop *, 4> Worklist; 584 Worklist.insert(CurLoop); 585 appendLoopsToWorklist(*CurLoop, Worklist); 586 while (!Worklist.empty()) { 587 Loop *L = Worklist.pop_back_val(); 588 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, 589 TTI, L, MSSAU, SafetyInfo, Flags, ORE, CurLoop); 590 } 591 return Changed; 592 } 593 594 namespace { 595 // This is a helper class for hoistRegion to make it able to hoist control flow 596 // in order to be able to hoist phis. The way this works is that we initially 597 // start hoisting to the loop preheader, and when we see a loop invariant branch 598 // we make note of this. When we then come to hoist an instruction that's 599 // conditional on such a branch we duplicate the branch and the relevant control 600 // flow, then hoist the instruction into the block corresponding to its original 601 // block in the duplicated control flow. 602 class ControlFlowHoister { 603 private: 604 // Information about the loop we are hoisting from 605 LoopInfo *LI; 606 DominatorTree *DT; 607 Loop *CurLoop; 608 MemorySSAUpdater *MSSAU; 609 610 // A map of blocks in the loop to the block their instructions will be hoisted 611 // to. 612 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; 613 614 // The branches that we can hoist, mapped to the block that marks a 615 // convergence point of their control flow. 616 DenseMap<BranchInst *, BasicBlock *> HoistableBranches; 617 618 public: 619 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, 620 MemorySSAUpdater *MSSAU) 621 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} 622 623 void registerPossiblyHoistableBranch(BranchInst *BI) { 624 // We can only hoist conditional branches with loop invariant operands. 625 if (!ControlFlowHoisting || !BI->isConditional() || 626 !CurLoop->hasLoopInvariantOperands(BI)) 627 return; 628 629 // The branch destinations need to be in the loop, and we don't gain 630 // anything by duplicating conditional branches with duplicate successors, 631 // as it's essentially the same as an unconditional branch. 632 BasicBlock *TrueDest = BI->getSuccessor(0); 633 BasicBlock *FalseDest = BI->getSuccessor(1); 634 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || 635 TrueDest == FalseDest) 636 return; 637 638 // We can hoist BI if one branch destination is the successor of the other, 639 // or both have common successor which we check by seeing if the 640 // intersection of their successors is non-empty. 641 // TODO: This could be expanded to allowing branches where both ends 642 // eventually converge to a single block. 643 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; 644 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); 645 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); 646 BasicBlock *CommonSucc = nullptr; 647 if (TrueDestSucc.count(FalseDest)) { 648 CommonSucc = FalseDest; 649 } else if (FalseDestSucc.count(TrueDest)) { 650 CommonSucc = TrueDest; 651 } else { 652 set_intersect(TrueDestSucc, FalseDestSucc); 653 // If there's one common successor use that. 654 if (TrueDestSucc.size() == 1) 655 CommonSucc = *TrueDestSucc.begin(); 656 // If there's more than one pick whichever appears first in the block list 657 // (we can't use the value returned by TrueDestSucc.begin() as it's 658 // unpredicatable which element gets returned). 659 else if (!TrueDestSucc.empty()) { 660 Function *F = TrueDest->getParent(); 661 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; 662 auto It = llvm::find_if(*F, IsSucc); 663 assert(It != F->end() && "Could not find successor in function"); 664 CommonSucc = &*It; 665 } 666 } 667 // The common successor has to be dominated by the branch, as otherwise 668 // there will be some other path to the successor that will not be 669 // controlled by this branch so any phi we hoist would be controlled by the 670 // wrong condition. This also takes care of avoiding hoisting of loop back 671 // edges. 672 // TODO: In some cases this could be relaxed if the successor is dominated 673 // by another block that's been hoisted and we can guarantee that the 674 // control flow has been replicated exactly. 675 if (CommonSucc && DT->dominates(BI, CommonSucc)) 676 HoistableBranches[BI] = CommonSucc; 677 } 678 679 bool canHoistPHI(PHINode *PN) { 680 // The phi must have loop invariant operands. 681 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) 682 return false; 683 // We can hoist phis if the block they are in is the target of hoistable 684 // branches which cover all of the predecessors of the block. 685 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; 686 BasicBlock *BB = PN->getParent(); 687 for (BasicBlock *PredBB : predecessors(BB)) 688 PredecessorBlocks.insert(PredBB); 689 // If we have less predecessor blocks than predecessors then the phi will 690 // have more than one incoming value for the same block which we can't 691 // handle. 692 // TODO: This could be handled be erasing some of the duplicate incoming 693 // values. 694 if (PredecessorBlocks.size() != pred_size(BB)) 695 return false; 696 for (auto &Pair : HoistableBranches) { 697 if (Pair.second == BB) { 698 // Which blocks are predecessors via this branch depends on if the 699 // branch is triangle-like or diamond-like. 700 if (Pair.first->getSuccessor(0) == BB) { 701 PredecessorBlocks.erase(Pair.first->getParent()); 702 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 703 } else if (Pair.first->getSuccessor(1) == BB) { 704 PredecessorBlocks.erase(Pair.first->getParent()); 705 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 706 } else { 707 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 708 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 709 } 710 } 711 } 712 // PredecessorBlocks will now be empty if for every predecessor of BB we 713 // found a hoistable branch source. 714 return PredecessorBlocks.empty(); 715 } 716 717 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { 718 if (!ControlFlowHoisting) 719 return CurLoop->getLoopPreheader(); 720 // If BB has already been hoisted, return that 721 if (HoistDestinationMap.count(BB)) 722 return HoistDestinationMap[BB]; 723 724 // Check if this block is conditional based on a pending branch 725 auto HasBBAsSuccessor = 726 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { 727 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || 728 Pair.first->getSuccessor(1) == BB); 729 }; 730 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor); 731 732 // If not involved in a pending branch, hoist to preheader 733 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); 734 if (It == HoistableBranches.end()) { 735 LLVM_DEBUG(dbgs() << "LICM using " 736 << InitialPreheader->getNameOrAsOperand() 737 << " as hoist destination for " 738 << BB->getNameOrAsOperand() << "\n"); 739 HoistDestinationMap[BB] = InitialPreheader; 740 return InitialPreheader; 741 } 742 BranchInst *BI = It->first; 743 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == 744 HoistableBranches.end() && 745 "BB is expected to be the target of at most one branch"); 746 747 LLVMContext &C = BB->getContext(); 748 BasicBlock *TrueDest = BI->getSuccessor(0); 749 BasicBlock *FalseDest = BI->getSuccessor(1); 750 BasicBlock *CommonSucc = HoistableBranches[BI]; 751 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); 752 753 // Create hoisted versions of blocks that currently don't have them 754 auto CreateHoistedBlock = [&](BasicBlock *Orig) { 755 if (HoistDestinationMap.count(Orig)) 756 return HoistDestinationMap[Orig]; 757 BasicBlock *New = 758 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); 759 HoistDestinationMap[Orig] = New; 760 DT->addNewBlock(New, HoistTarget); 761 if (CurLoop->getParentLoop()) 762 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); 763 ++NumCreatedBlocks; 764 LLVM_DEBUG(dbgs() << "LICM created " << New->getName() 765 << " as hoist destination for " << Orig->getName() 766 << "\n"); 767 return New; 768 }; 769 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); 770 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); 771 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); 772 773 // Link up these blocks with branches. 774 if (!HoistCommonSucc->getTerminator()) { 775 // The new common successor we've generated will branch to whatever that 776 // hoist target branched to. 777 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); 778 assert(TargetSucc && "Expected hoist target to have a single successor"); 779 HoistCommonSucc->moveBefore(TargetSucc); 780 BranchInst::Create(TargetSucc, HoistCommonSucc); 781 } 782 if (!HoistTrueDest->getTerminator()) { 783 HoistTrueDest->moveBefore(HoistCommonSucc); 784 BranchInst::Create(HoistCommonSucc, HoistTrueDest); 785 } 786 if (!HoistFalseDest->getTerminator()) { 787 HoistFalseDest->moveBefore(HoistCommonSucc); 788 BranchInst::Create(HoistCommonSucc, HoistFalseDest); 789 } 790 791 // If BI is being cloned to what was originally the preheader then 792 // HoistCommonSucc will now be the new preheader. 793 if (HoistTarget == InitialPreheader) { 794 // Phis in the loop header now need to use the new preheader. 795 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); 796 MSSAU->wireOldPredecessorsToNewImmediatePredecessor( 797 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); 798 // The new preheader dominates the loop header. 799 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); 800 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); 801 DT->changeImmediateDominator(HeaderNode, PreheaderNode); 802 // The preheader hoist destination is now the new preheader, with the 803 // exception of the hoist destination of this branch. 804 for (auto &Pair : HoistDestinationMap) 805 if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) 806 Pair.second = HoistCommonSucc; 807 } 808 809 // Now finally clone BI. 810 ReplaceInstWithInst( 811 HoistTarget->getTerminator(), 812 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); 813 ++NumClonedBranches; 814 815 assert(CurLoop->getLoopPreheader() && 816 "Hoisting blocks should not have destroyed preheader"); 817 return HoistDestinationMap[BB]; 818 } 819 }; 820 } // namespace 821 822 // Hoisting/sinking instruction out of a loop isn't always beneficial. It's only 823 // only worthwhile if the destination block is actually colder than current 824 // block. 825 static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock, 826 OptimizationRemarkEmitter *ORE, 827 BlockFrequencyInfo *BFI) { 828 // Check block frequency only when runtime profile is available 829 // to avoid pathological cases. With static profile, lean towards 830 // hosting because it helps canonicalize the loop for vectorizer. 831 if (!DstBlock->getParent()->hasProfileData()) 832 return true; 833 834 if (!HoistSinkColdnessThreshold || !BFI) 835 return true; 836 837 BasicBlock *SrcBlock = I.getParent(); 838 if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold > 839 BFI->getBlockFreq(SrcBlock).getFrequency()) { 840 ORE->emit([&]() { 841 return OptimizationRemarkMissed(DEBUG_TYPE, "SinkHoistInst", &I) 842 << "failed to sink or hoist instruction because containing block " 843 "has lower frequency than destination block"; 844 }); 845 return false; 846 } 847 848 return true; 849 } 850 851 /// Walk the specified region of the CFG (defined by all blocks dominated by 852 /// the specified block, and that are in the current loop) in depth first 853 /// order w.r.t the DominatorTree. This allows us to visit definitions before 854 /// uses, allowing us to hoist a loop body in one pass without iteration. 855 /// 856 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 857 DominatorTree *DT, BlockFrequencyInfo *BFI, 858 TargetLibraryInfo *TLI, Loop *CurLoop, 859 MemorySSAUpdater *MSSAU, ScalarEvolution *SE, 860 ICFLoopSafetyInfo *SafetyInfo, 861 SinkAndHoistLICMFlags &Flags, 862 OptimizationRemarkEmitter *ORE, bool LoopNestMode) { 863 // Verify inputs. 864 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 865 CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr && 866 "Unexpected input to hoistRegion."); 867 868 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); 869 870 // Keep track of instructions that have been hoisted, as they may need to be 871 // re-hoisted if they end up not dominating all of their uses. 872 SmallVector<Instruction *, 16> HoistedInstructions; 873 874 // For PHI hoisting to work we need to hoist blocks before their successors. 875 // We can do this by iterating through the blocks in the loop in reverse 876 // post-order. 877 LoopBlocksRPO Worklist(CurLoop); 878 Worklist.perform(LI); 879 bool Changed = false; 880 for (BasicBlock *BB : Worklist) { 881 // Only need to process the contents of this block if it is not part of a 882 // subloop (which would already have been processed). 883 if (!LoopNestMode && inSubLoop(BB, CurLoop, LI)) 884 continue; 885 886 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 887 // Try constant folding this instruction. If all the operands are 888 // constants, it is technically hoistable, but it would be better to 889 // just fold it. 890 if (Constant *C = ConstantFoldInstruction( 891 &I, I.getModule()->getDataLayout(), TLI)) { 892 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C 893 << '\n'); 894 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960). 895 I.replaceAllUsesWith(C); 896 if (isInstructionTriviallyDead(&I, TLI)) 897 eraseInstruction(I, *SafetyInfo, MSSAU); 898 Changed = true; 899 continue; 900 } 901 902 // Try hoisting the instruction out to the preheader. We can only do 903 // this if all of the operands of the instruction are loop invariant and 904 // if it is safe to hoist the instruction. We also check block frequency 905 // to make sure instruction only gets hoisted into colder blocks. 906 // TODO: It may be safe to hoist if we are hoisting to a conditional block 907 // and we have accurately duplicated the control flow from the loop header 908 // to that block. 909 if (CurLoop->hasLoopInvariantOperands(&I) && 910 canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/ nullptr, MSSAU, 911 true, &Flags, ORE) && 912 worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) && 913 isSafeToExecuteUnconditionally( 914 I, DT, TLI, CurLoop, SafetyInfo, ORE, 915 CurLoop->getLoopPreheader()->getTerminator())) { 916 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 917 MSSAU, SE, ORE); 918 HoistedInstructions.push_back(&I); 919 Changed = true; 920 continue; 921 } 922 923 // Attempt to remove floating point division out of the loop by 924 // converting it to a reciprocal multiplication. 925 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && 926 CurLoop->isLoopInvariant(I.getOperand(1))) { 927 auto Divisor = I.getOperand(1); 928 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); 929 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); 930 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); 931 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); 932 ReciprocalDivisor->insertBefore(&I); 933 934 auto Product = 935 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); 936 Product->setFastMathFlags(I.getFastMathFlags()); 937 SafetyInfo->insertInstructionTo(Product, I.getParent()); 938 Product->insertAfter(&I); 939 I.replaceAllUsesWith(Product); 940 eraseInstruction(I, *SafetyInfo, MSSAU); 941 942 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), 943 SafetyInfo, MSSAU, SE, ORE); 944 HoistedInstructions.push_back(ReciprocalDivisor); 945 Changed = true; 946 continue; 947 } 948 949 auto IsInvariantStart = [&](Instruction &I) { 950 using namespace PatternMatch; 951 return I.use_empty() && 952 match(&I, m_Intrinsic<Intrinsic::invariant_start>()); 953 }; 954 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { 955 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && 956 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); 957 }; 958 if ((IsInvariantStart(I) || isGuard(&I)) && 959 CurLoop->hasLoopInvariantOperands(&I) && 960 MustExecuteWithoutWritesBefore(I)) { 961 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 962 MSSAU, SE, ORE); 963 HoistedInstructions.push_back(&I); 964 Changed = true; 965 continue; 966 } 967 968 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 969 if (CFH.canHoistPHI(PN)) { 970 // Redirect incoming blocks first to ensure that we create hoisted 971 // versions of those blocks before we hoist the phi. 972 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) 973 PN->setIncomingBlock( 974 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); 975 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 976 MSSAU, SE, ORE); 977 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); 978 Changed = true; 979 continue; 980 } 981 } 982 983 // Remember possibly hoistable branches so we can actually hoist them 984 // later if needed. 985 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 986 CFH.registerPossiblyHoistableBranch(BI); 987 } 988 } 989 990 // If we hoisted instructions to a conditional block they may not dominate 991 // their uses that weren't hoisted (such as phis where some operands are not 992 // loop invariant). If so make them unconditional by moving them to their 993 // immediate dominator. We iterate through the instructions in reverse order 994 // which ensures that when we rehoist an instruction we rehoist its operands, 995 // and also keep track of where in the block we are rehoisting to to make sure 996 // that we rehoist instructions before the instructions that use them. 997 Instruction *HoistPoint = nullptr; 998 if (ControlFlowHoisting) { 999 for (Instruction *I : reverse(HoistedInstructions)) { 1000 if (!llvm::all_of(I->uses(), 1001 [&](Use &U) { return DT->dominates(I, U); })) { 1002 BasicBlock *Dominator = 1003 DT->getNode(I->getParent())->getIDom()->getBlock(); 1004 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { 1005 if (HoistPoint) 1006 assert(DT->dominates(Dominator, HoistPoint->getParent()) && 1007 "New hoist point expected to dominate old hoist point"); 1008 HoistPoint = Dominator->getTerminator(); 1009 } 1010 LLVM_DEBUG(dbgs() << "LICM rehoisting to " 1011 << HoistPoint->getParent()->getNameOrAsOperand() 1012 << ": " << *I << "\n"); 1013 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE); 1014 HoistPoint = I; 1015 Changed = true; 1016 } 1017 } 1018 } 1019 if (VerifyMemorySSA) 1020 MSSAU->getMemorySSA()->verifyMemorySSA(); 1021 1022 // Now that we've finished hoisting make sure that LI and DT are still 1023 // valid. 1024 #ifdef EXPENSIVE_CHECKS 1025 if (Changed) { 1026 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 1027 "Dominator tree verification failed"); 1028 LI->verify(*DT); 1029 } 1030 #endif 1031 1032 return Changed; 1033 } 1034 1035 // Return true if LI is invariant within scope of the loop. LI is invariant if 1036 // CurLoop is dominated by an invariant.start representing the same memory 1037 // location and size as the memory location LI loads from, and also the 1038 // invariant.start has no uses. 1039 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, 1040 Loop *CurLoop) { 1041 Value *Addr = LI->getOperand(0); 1042 const DataLayout &DL = LI->getModule()->getDataLayout(); 1043 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); 1044 1045 // It is not currently possible for clang to generate an invariant.start 1046 // intrinsic with scalable vector types because we don't support thread local 1047 // sizeless types and we don't permit sizeless types in structs or classes. 1048 // Furthermore, even if support is added for this in future the intrinsic 1049 // itself is defined to have a size of -1 for variable sized objects. This 1050 // makes it impossible to verify if the intrinsic envelops our region of 1051 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8> 1052 // types would have a -1 parameter, but the former is clearly double the size 1053 // of the latter. 1054 if (LocSizeInBits.isScalable()) 1055 return false; 1056 1057 // if the type is i8 addrspace(x)*, we know this is the type of 1058 // llvm.invariant.start operand 1059 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), 1060 LI->getPointerAddressSpace()); 1061 unsigned BitcastsVisited = 0; 1062 // Look through bitcasts until we reach the i8* type (this is invariant.start 1063 // operand type). 1064 while (Addr->getType() != PtrInt8Ty) { 1065 auto *BC = dyn_cast<BitCastInst>(Addr); 1066 // Avoid traversing high number of bitcast uses. 1067 if (++BitcastsVisited > MaxNumUsesTraversed || !BC) 1068 return false; 1069 Addr = BC->getOperand(0); 1070 } 1071 // If we've ended up at a global/constant, bail. We shouldn't be looking at 1072 // uselists for non-local Values in a loop pass. 1073 if (isa<Constant>(Addr)) 1074 return false; 1075 1076 unsigned UsesVisited = 0; 1077 // Traverse all uses of the load operand value, to see if invariant.start is 1078 // one of the uses, and whether it dominates the load instruction. 1079 for (auto *U : Addr->users()) { 1080 // Avoid traversing for Load operand with high number of users. 1081 if (++UsesVisited > MaxNumUsesTraversed) 1082 return false; 1083 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1084 // If there are escaping uses of invariant.start instruction, the load maybe 1085 // non-invariant. 1086 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || 1087 !II->use_empty()) 1088 continue; 1089 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0)); 1090 // The intrinsic supports having a -1 argument for variable sized objects 1091 // so we should check for that here. 1092 if (InvariantSize->isNegative()) 1093 continue; 1094 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; 1095 // Confirm the invariant.start location size contains the load operand size 1096 // in bits. Also, the invariant.start should dominate the load, and we 1097 // should not hoist the load out of a loop that contains this dominating 1098 // invariant.start. 1099 if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits && 1100 DT->properlyDominates(II->getParent(), CurLoop->getHeader())) 1101 return true; 1102 } 1103 1104 return false; 1105 } 1106 1107 namespace { 1108 /// Return true if-and-only-if we know how to (mechanically) both hoist and 1109 /// sink a given instruction out of a loop. Does not address legality 1110 /// concerns such as aliasing or speculation safety. 1111 bool isHoistableAndSinkableInst(Instruction &I) { 1112 // Only these instructions are hoistable/sinkable. 1113 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 1114 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) || 1115 isa<BinaryOperator>(I) || isa<SelectInst>(I) || 1116 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || 1117 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 1118 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || 1119 isa<InsertValueInst>(I) || isa<FreezeInst>(I)); 1120 } 1121 /// Return true if all of the alias sets within this AST are known not to 1122 /// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop. 1123 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU, 1124 const Loop *L) { 1125 if (CurAST) { 1126 for (AliasSet &AS : *CurAST) { 1127 if (!AS.isForwardingAliasSet() && AS.isMod()) { 1128 return false; 1129 } 1130 } 1131 return true; 1132 } else { /*MSSAU*/ 1133 for (auto *BB : L->getBlocks()) 1134 if (MSSAU->getMemorySSA()->getBlockDefs(BB)) 1135 return false; 1136 return true; 1137 } 1138 } 1139 1140 /// Return true if I is the only Instruction with a MemoryAccess in L. 1141 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, 1142 const MemorySSAUpdater *MSSAU) { 1143 for (auto *BB : L->getBlocks()) 1144 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) { 1145 int NotAPhi = 0; 1146 for (const auto &Acc : *Accs) { 1147 if (isa<MemoryPhi>(&Acc)) 1148 continue; 1149 const auto *MUD = cast<MemoryUseOrDef>(&Acc); 1150 if (MUD->getMemoryInst() != I || NotAPhi++ == 1) 1151 return false; 1152 } 1153 } 1154 return true; 1155 } 1156 } 1157 1158 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, 1159 Loop *CurLoop, AliasSetTracker *CurAST, 1160 MemorySSAUpdater *MSSAU, 1161 bool TargetExecutesOncePerLoop, 1162 SinkAndHoistLICMFlags *Flags, 1163 OptimizationRemarkEmitter *ORE) { 1164 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && 1165 "Either AliasSetTracker or MemorySSA should be initialized."); 1166 1167 // If we don't understand the instruction, bail early. 1168 if (!isHoistableAndSinkableInst(I)) 1169 return false; 1170 1171 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr; 1172 if (MSSA) 1173 assert(Flags != nullptr && "Flags cannot be null."); 1174 1175 // Loads have extra constraints we have to verify before we can hoist them. 1176 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 1177 if (!LI->isUnordered()) 1178 return false; // Don't sink/hoist volatile or ordered atomic loads! 1179 1180 // Loads from constant memory are always safe to move, even if they end up 1181 // in the same alias set as something that ends up being modified. 1182 if (AA->pointsToConstantMemory(LI->getOperand(0))) 1183 return true; 1184 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1185 return true; 1186 1187 if (LI->isAtomic() && !TargetExecutesOncePerLoop) 1188 return false; // Don't risk duplicating unordered loads 1189 1190 // This checks for an invariant.start dominating the load. 1191 if (isLoadInvariantInLoop(LI, DT, CurLoop)) 1192 return true; 1193 1194 bool Invalidated; 1195 if (CurAST) 1196 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST, 1197 CurLoop, AA); 1198 else 1199 Invalidated = pointerInvalidatedByLoopWithMSSA( 1200 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags); 1201 // Check loop-invariant address because this may also be a sinkable load 1202 // whose address is not necessarily loop-invariant. 1203 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1204 ORE->emit([&]() { 1205 return OptimizationRemarkMissed( 1206 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) 1207 << "failed to move load with loop-invariant address " 1208 "because the loop may invalidate its value"; 1209 }); 1210 1211 return !Invalidated; 1212 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1213 // Don't sink or hoist dbg info; it's legal, but not useful. 1214 if (isa<DbgInfoIntrinsic>(I)) 1215 return false; 1216 1217 // Don't sink calls which can throw. 1218 if (CI->mayThrow()) 1219 return false; 1220 1221 // Convergent attribute has been used on operations that involve 1222 // inter-thread communication which results are implicitly affected by the 1223 // enclosing control flows. It is not safe to hoist or sink such operations 1224 // across control flow. 1225 if (CI->isConvergent()) 1226 return false; 1227 1228 using namespace PatternMatch; 1229 if (match(CI, m_Intrinsic<Intrinsic::assume>())) 1230 // Assumes don't actually alias anything or throw 1231 return true; 1232 1233 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>())) 1234 // Widenable conditions don't actually alias anything or throw 1235 return true; 1236 1237 // Handle simple cases by querying alias analysis. 1238 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI); 1239 if (Behavior == FMRB_DoesNotAccessMemory) 1240 return true; 1241 if (AAResults::onlyReadsMemory(Behavior)) { 1242 // A readonly argmemonly function only reads from memory pointed to by 1243 // it's arguments with arbitrary offsets. If we can prove there are no 1244 // writes to this memory in the loop, we can hoist or sink. 1245 if (AAResults::onlyAccessesArgPointees(Behavior)) { 1246 // TODO: expand to writeable arguments 1247 for (Value *Op : CI->args()) 1248 if (Op->getType()->isPointerTy()) { 1249 bool Invalidated; 1250 if (CurAST) 1251 Invalidated = pointerInvalidatedByLoop( 1252 MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA); 1253 else 1254 Invalidated = pointerInvalidatedByLoopWithMSSA( 1255 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I, 1256 *Flags); 1257 if (Invalidated) 1258 return false; 1259 } 1260 return true; 1261 } 1262 1263 // If this call only reads from memory and there are no writes to memory 1264 // in the loop, we can hoist or sink the call as appropriate. 1265 if (isReadOnly(CurAST, MSSAU, CurLoop)) 1266 return true; 1267 } 1268 1269 // FIXME: This should use mod/ref information to see if we can hoist or 1270 // sink the call. 1271 1272 return false; 1273 } else if (auto *FI = dyn_cast<FenceInst>(&I)) { 1274 // Fences alias (most) everything to provide ordering. For the moment, 1275 // just give up if there are any other memory operations in the loop. 1276 if (CurAST) { 1277 auto Begin = CurAST->begin(); 1278 assert(Begin != CurAST->end() && "must contain FI"); 1279 if (std::next(Begin) != CurAST->end()) 1280 // constant memory for instance, TODO: handle better 1281 return false; 1282 auto *UniqueI = Begin->getUniqueInstruction(); 1283 if (!UniqueI) 1284 // other memory op, give up 1285 return false; 1286 (void)FI; // suppress unused variable warning 1287 assert(UniqueI == FI && "AS must contain FI"); 1288 return true; 1289 } else // MSSAU 1290 return isOnlyMemoryAccess(FI, CurLoop, MSSAU); 1291 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 1292 if (!SI->isUnordered()) 1293 return false; // Don't sink/hoist volatile or ordered atomic store! 1294 1295 // We can only hoist a store that we can prove writes a value which is not 1296 // read or overwritten within the loop. For those cases, we fallback to 1297 // load store promotion instead. TODO: We can extend this to cases where 1298 // there is exactly one write to the location and that write dominates an 1299 // arbitrary number of reads in the loop. 1300 if (CurAST) { 1301 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI)); 1302 1303 if (AS.isRef() || !AS.isMustAlias()) 1304 // Quick exit test, handled by the full path below as well. 1305 return false; 1306 auto *UniqueI = AS.getUniqueInstruction(); 1307 if (!UniqueI) 1308 // other memory op, give up 1309 return false; 1310 assert(UniqueI == SI && "AS must contain SI"); 1311 return true; 1312 } else { // MSSAU 1313 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) 1314 return true; 1315 // If there are more accesses than the Promotion cap or no "quota" to 1316 // check clobber, then give up as we're not walking a list that long. 1317 if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls()) 1318 return false; 1319 // If there are interfering Uses (i.e. their defining access is in the 1320 // loop), or ordered loads (stored as Defs!), don't move this store. 1321 // Could do better here, but this is conservatively correct. 1322 // TODO: Cache set of Uses on the first walk in runOnLoop, update when 1323 // moving accesses. Can also extend to dominating uses. 1324 auto *SIMD = MSSA->getMemoryAccess(SI); 1325 for (auto *BB : CurLoop->getBlocks()) 1326 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 1327 for (const auto &MA : *Accesses) 1328 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { 1329 auto *MD = MU->getDefiningAccess(); 1330 if (!MSSA->isLiveOnEntryDef(MD) && 1331 CurLoop->contains(MD->getBlock())) 1332 return false; 1333 // Disable hoisting past potentially interfering loads. Optimized 1334 // Uses may point to an access outside the loop, as getClobbering 1335 // checks the previous iteration when walking the backedge. 1336 // FIXME: More precise: no Uses that alias SI. 1337 if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU)) 1338 return false; 1339 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { 1340 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { 1341 (void)LI; // Silence warning. 1342 assert(!LI->isUnordered() && "Expected unordered load"); 1343 return false; 1344 } 1345 // Any call, while it may not be clobbering SI, it may be a use. 1346 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { 1347 // Check if the call may read from the memory location written 1348 // to by SI. Check CI's attributes and arguments; the number of 1349 // such checks performed is limited above by NoOfMemAccTooLarge. 1350 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI)); 1351 if (isModOrRefSet(MRI)) 1352 return false; 1353 } 1354 } 1355 } 1356 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI); 1357 Flags->incrementClobberingCalls(); 1358 // If there are no clobbering Defs in the loop, store is safe to hoist. 1359 return MSSA->isLiveOnEntryDef(Source) || 1360 !CurLoop->contains(Source->getBlock()); 1361 } 1362 } 1363 1364 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); 1365 1366 // We've established mechanical ability and aliasing, it's up to the caller 1367 // to check fault safety 1368 return true; 1369 } 1370 1371 /// Returns true if a PHINode is a trivially replaceable with an 1372 /// Instruction. 1373 /// This is true when all incoming values are that instruction. 1374 /// This pattern occurs most often with LCSSA PHI nodes. 1375 /// 1376 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { 1377 for (const Value *IncValue : PN.incoming_values()) 1378 if (IncValue != &I) 1379 return false; 1380 1381 return true; 1382 } 1383 1384 /// Return true if the instruction is free in the loop. 1385 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, 1386 const TargetTransformInfo *TTI) { 1387 1388 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1389 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) != 1390 TargetTransformInfo::TCC_Free) 1391 return false; 1392 // For a GEP, we cannot simply use getUserCost because currently it 1393 // optimistically assume that a GEP will fold into addressing mode 1394 // regardless of its users. 1395 const BasicBlock *BB = GEP->getParent(); 1396 for (const User *U : GEP->users()) { 1397 const Instruction *UI = cast<Instruction>(U); 1398 if (CurLoop->contains(UI) && 1399 (BB != UI->getParent() || 1400 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) 1401 return false; 1402 } 1403 return true; 1404 } else 1405 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1406 TargetTransformInfo::TCC_Free; 1407 } 1408 1409 /// Return true if the only users of this instruction are outside of 1410 /// the loop. If this is true, we can sink the instruction to the exit 1411 /// blocks of the loop. 1412 /// 1413 /// We also return true if the instruction could be folded away in lowering. 1414 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). 1415 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 1416 const LoopSafetyInfo *SafetyInfo, 1417 TargetTransformInfo *TTI, bool &FreeInLoop, 1418 bool LoopNestMode) { 1419 const auto &BlockColors = SafetyInfo->getBlockColors(); 1420 bool IsFree = isFreeInLoop(I, CurLoop, TTI); 1421 for (const User *U : I.users()) { 1422 const Instruction *UI = cast<Instruction>(U); 1423 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1424 const BasicBlock *BB = PN->getParent(); 1425 // We cannot sink uses in catchswitches. 1426 if (isa<CatchSwitchInst>(BB->getTerminator())) 1427 return false; 1428 1429 // We need to sink a callsite to a unique funclet. Avoid sinking if the 1430 // phi use is too muddled. 1431 if (isa<CallInst>(I)) 1432 if (!BlockColors.empty() && 1433 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) 1434 return false; 1435 1436 if (LoopNestMode) { 1437 while (isa<PHINode>(UI) && UI->hasOneUser() && 1438 UI->getNumOperands() == 1) { 1439 if (!CurLoop->contains(UI)) 1440 break; 1441 UI = cast<Instruction>(UI->user_back()); 1442 } 1443 } 1444 } 1445 1446 if (CurLoop->contains(UI)) { 1447 if (IsFree) { 1448 FreeInLoop = true; 1449 continue; 1450 } 1451 return false; 1452 } 1453 } 1454 return true; 1455 } 1456 1457 static Instruction *cloneInstructionInExitBlock( 1458 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 1459 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) { 1460 Instruction *New; 1461 if (auto *CI = dyn_cast<CallInst>(&I)) { 1462 const auto &BlockColors = SafetyInfo->getBlockColors(); 1463 1464 // Sinking call-sites need to be handled differently from other 1465 // instructions. The cloned call-site needs a funclet bundle operand 1466 // appropriate for its location in the CFG. 1467 SmallVector<OperandBundleDef, 1> OpBundles; 1468 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); 1469 BundleIdx != BundleEnd; ++BundleIdx) { 1470 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); 1471 if (Bundle.getTagID() == LLVMContext::OB_funclet) 1472 continue; 1473 1474 OpBundles.emplace_back(Bundle); 1475 } 1476 1477 if (!BlockColors.empty()) { 1478 const ColorVector &CV = BlockColors.find(&ExitBlock)->second; 1479 assert(CV.size() == 1 && "non-unique color for exit block!"); 1480 BasicBlock *BBColor = CV.front(); 1481 Instruction *EHPad = BBColor->getFirstNonPHI(); 1482 if (EHPad->isEHPad()) 1483 OpBundles.emplace_back("funclet", EHPad); 1484 } 1485 1486 New = CallInst::Create(CI, OpBundles); 1487 } else { 1488 New = I.clone(); 1489 } 1490 1491 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New); 1492 if (!I.getName().empty()) 1493 New->setName(I.getName() + ".le"); 1494 1495 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 1496 // Create a new MemoryAccess and let MemorySSA set its defining access. 1497 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1498 New, nullptr, New->getParent(), MemorySSA::Beginning); 1499 if (NewMemAcc) { 1500 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 1501 MSSAU->insertDef(MemDef, /*RenameUses=*/true); 1502 else { 1503 auto *MemUse = cast<MemoryUse>(NewMemAcc); 1504 MSSAU->insertUse(MemUse, /*RenameUses=*/true); 1505 } 1506 } 1507 } 1508 1509 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that 1510 // this is particularly cheap because we can rip off the PHI node that we're 1511 // replacing for the number and blocks of the predecessors. 1512 // OPT: If this shows up in a profile, we can instead finish sinking all 1513 // invariant instructions, and then walk their operands to re-establish 1514 // LCSSA. That will eliminate creating PHI nodes just to nuke them when 1515 // sinking bottom-up. 1516 for (Use &Op : New->operands()) 1517 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) { 1518 auto *OInst = cast<Instruction>(Op.get()); 1519 PHINode *OpPN = 1520 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), 1521 OInst->getName() + ".lcssa", &ExitBlock.front()); 1522 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1523 OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); 1524 Op = OpPN; 1525 } 1526 return New; 1527 } 1528 1529 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 1530 MemorySSAUpdater *MSSAU) { 1531 if (MSSAU) 1532 MSSAU->removeMemoryAccess(&I); 1533 SafetyInfo.removeInstruction(&I); 1534 I.eraseFromParent(); 1535 } 1536 1537 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 1538 ICFLoopSafetyInfo &SafetyInfo, 1539 MemorySSAUpdater *MSSAU, 1540 ScalarEvolution *SE) { 1541 SafetyInfo.removeInstruction(&I); 1542 SafetyInfo.insertInstructionTo(&I, Dest.getParent()); 1543 I.moveBefore(&Dest); 1544 if (MSSAU) 1545 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 1546 MSSAU->getMemorySSA()->getMemoryAccess(&I))) 1547 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), 1548 MemorySSA::BeforeTerminator); 1549 if (SE) 1550 SE->forgetValue(&I); 1551 } 1552 1553 static Instruction *sinkThroughTriviallyReplaceablePHI( 1554 PHINode *TPN, Instruction *I, LoopInfo *LI, 1555 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, 1556 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, 1557 MemorySSAUpdater *MSSAU) { 1558 assert(isTriviallyReplaceablePHI(*TPN, *I) && 1559 "Expect only trivially replaceable PHI"); 1560 BasicBlock *ExitBlock = TPN->getParent(); 1561 Instruction *New; 1562 auto It = SunkCopies.find(ExitBlock); 1563 if (It != SunkCopies.end()) 1564 New = It->second; 1565 else 1566 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock( 1567 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); 1568 return New; 1569 } 1570 1571 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { 1572 BasicBlock *BB = PN->getParent(); 1573 if (!BB->canSplitPredecessors()) 1574 return false; 1575 // It's not impossible to split EHPad blocks, but if BlockColors already exist 1576 // it require updating BlockColors for all offspring blocks accordingly. By 1577 // skipping such corner case, we can make updating BlockColors after splitting 1578 // predecessor fairly simple. 1579 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) 1580 return false; 1581 for (BasicBlock *BBPred : predecessors(BB)) { 1582 if (isa<IndirectBrInst>(BBPred->getTerminator()) || 1583 isa<CallBrInst>(BBPred->getTerminator())) 1584 return false; 1585 } 1586 return true; 1587 } 1588 1589 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, 1590 LoopInfo *LI, const Loop *CurLoop, 1591 LoopSafetyInfo *SafetyInfo, 1592 MemorySSAUpdater *MSSAU) { 1593 #ifndef NDEBUG 1594 SmallVector<BasicBlock *, 32> ExitBlocks; 1595 CurLoop->getUniqueExitBlocks(ExitBlocks); 1596 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1597 ExitBlocks.end()); 1598 #endif 1599 BasicBlock *ExitBB = PN->getParent(); 1600 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); 1601 1602 // Split predecessors of the loop exit to make instructions in the loop are 1603 // exposed to exit blocks through trivially replaceable PHIs while keeping the 1604 // loop in the canonical form where each predecessor of each exit block should 1605 // be contained within the loop. For example, this will convert the loop below 1606 // from 1607 // 1608 // LB1: 1609 // %v1 = 1610 // br %LE, %LB2 1611 // LB2: 1612 // %v2 = 1613 // br %LE, %LB1 1614 // LE: 1615 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable 1616 // 1617 // to 1618 // 1619 // LB1: 1620 // %v1 = 1621 // br %LE.split, %LB2 1622 // LB2: 1623 // %v2 = 1624 // br %LE.split2, %LB1 1625 // LE.split: 1626 // %p1 = phi [%v1, %LB1] <-- trivially replaceable 1627 // br %LE 1628 // LE.split2: 1629 // %p2 = phi [%v2, %LB2] <-- trivially replaceable 1630 // br %LE 1631 // LE: 1632 // %p = phi [%p1, %LE.split], [%p2, %LE.split2] 1633 // 1634 const auto &BlockColors = SafetyInfo->getBlockColors(); 1635 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); 1636 while (!PredBBs.empty()) { 1637 BasicBlock *PredBB = *PredBBs.begin(); 1638 assert(CurLoop->contains(PredBB) && 1639 "Expect all predecessors are in the loop"); 1640 if (PN->getBasicBlockIndex(PredBB) >= 0) { 1641 BasicBlock *NewPred = SplitBlockPredecessors( 1642 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); 1643 // Since we do not allow splitting EH-block with BlockColors in 1644 // canSplitPredecessors(), we can simply assign predecessor's color to 1645 // the new block. 1646 if (!BlockColors.empty()) 1647 // Grab a reference to the ColorVector to be inserted before getting the 1648 // reference to the vector we are copying because inserting the new 1649 // element in BlockColors might cause the map to be reallocated. 1650 SafetyInfo->copyColors(NewPred, PredBB); 1651 } 1652 PredBBs.remove(PredBB); 1653 } 1654 } 1655 1656 /// When an instruction is found to only be used outside of the loop, this 1657 /// function moves it to the exit blocks and patches up SSA form as needed. 1658 /// This method is guaranteed to remove the original instruction from its 1659 /// position, and may either delete it or move it to outside of the loop. 1660 /// 1661 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 1662 BlockFrequencyInfo *BFI, const Loop *CurLoop, 1663 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU, 1664 OptimizationRemarkEmitter *ORE) { 1665 bool Changed = false; 1666 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); 1667 1668 // Iterate over users to be ready for actual sinking. Replace users via 1669 // unreachable blocks with undef and make all user PHIs trivially replaceable. 1670 SmallPtrSet<Instruction *, 8> VisitedUsers; 1671 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { 1672 auto *User = cast<Instruction>(*UI); 1673 Use &U = UI.getUse(); 1674 ++UI; 1675 1676 if (VisitedUsers.count(User) || CurLoop->contains(User)) 1677 continue; 1678 1679 if (!DT->isReachableFromEntry(User->getParent())) { 1680 U = UndefValue::get(I.getType()); 1681 Changed = true; 1682 continue; 1683 } 1684 1685 // The user must be a PHI node. 1686 PHINode *PN = cast<PHINode>(User); 1687 1688 // Surprisingly, instructions can be used outside of loops without any 1689 // exits. This can only happen in PHI nodes if the incoming block is 1690 // unreachable. 1691 BasicBlock *BB = PN->getIncomingBlock(U); 1692 if (!DT->isReachableFromEntry(BB)) { 1693 U = UndefValue::get(I.getType()); 1694 Changed = true; 1695 continue; 1696 } 1697 1698 VisitedUsers.insert(PN); 1699 if (isTriviallyReplaceablePHI(*PN, I)) 1700 continue; 1701 1702 if (!canSplitPredecessors(PN, SafetyInfo)) 1703 return Changed; 1704 1705 // Split predecessors of the PHI so that we can make users trivially 1706 // replaceable. 1707 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU); 1708 1709 // Should rebuild the iterators, as they may be invalidated by 1710 // splitPredecessorsOfLoopExit(). 1711 UI = I.user_begin(); 1712 UE = I.user_end(); 1713 } 1714 1715 if (VisitedUsers.empty()) 1716 return Changed; 1717 1718 ORE->emit([&]() { 1719 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) 1720 << "sinking " << ore::NV("Inst", &I); 1721 }); 1722 if (isa<LoadInst>(I)) 1723 ++NumMovedLoads; 1724 else if (isa<CallInst>(I)) 1725 ++NumMovedCalls; 1726 ++NumSunk; 1727 1728 #ifndef NDEBUG 1729 SmallVector<BasicBlock *, 32> ExitBlocks; 1730 CurLoop->getUniqueExitBlocks(ExitBlocks); 1731 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1732 ExitBlocks.end()); 1733 #endif 1734 1735 // Clones of this instruction. Don't create more than one per exit block! 1736 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; 1737 1738 // If this instruction is only used outside of the loop, then all users are 1739 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of 1740 // the instruction. 1741 // First check if I is worth sinking for all uses. Sink only when it is worth 1742 // across all uses. 1743 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); 1744 SmallVector<PHINode *, 8> ExitPNs; 1745 for (auto *UI : Users) { 1746 auto *User = cast<Instruction>(UI); 1747 1748 if (CurLoop->contains(User)) 1749 continue; 1750 1751 PHINode *PN = cast<PHINode>(User); 1752 assert(ExitBlockSet.count(PN->getParent()) && 1753 "The LCSSA PHI is not in an exit block!"); 1754 if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) { 1755 return Changed; 1756 } 1757 1758 ExitPNs.push_back(PN); 1759 } 1760 1761 for (auto *PN : ExitPNs) { 1762 1763 // The PHI must be trivially replaceable. 1764 Instruction *New = sinkThroughTriviallyReplaceablePHI( 1765 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); 1766 PN->replaceAllUsesWith(New); 1767 eraseInstruction(*PN, *SafetyInfo, nullptr); 1768 Changed = true; 1769 } 1770 return Changed; 1771 } 1772 1773 /// When an instruction is found to only use loop invariant operands that 1774 /// is safe to hoist, this instruction is called to do the dirty work. 1775 /// 1776 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 1777 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 1778 MemorySSAUpdater *MSSAU, ScalarEvolution *SE, 1779 OptimizationRemarkEmitter *ORE) { 1780 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": " 1781 << I << "\n"); 1782 ORE->emit([&]() { 1783 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " 1784 << ore::NV("Inst", &I); 1785 }); 1786 1787 // Metadata can be dependent on conditions we are hoisting above. 1788 // Conservatively strip all metadata on the instruction unless we were 1789 // guaranteed to execute I if we entered the loop, in which case the metadata 1790 // is valid in the loop preheader. 1791 // Similarly, If I is a call and it is not guaranteed to execute in the loop, 1792 // then moving to the preheader means we should strip attributes on the call 1793 // that can cause UB since we may be hoisting above conditions that allowed 1794 // inferring those attributes. They may not be valid at the preheader. 1795 if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) && 1796 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning 1797 // time in isGuaranteedToExecute if we don't actually have anything to 1798 // drop. It is a compile time optimization, not required for correctness. 1799 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) 1800 I.dropUndefImplyingAttrsAndUnknownMetadata(); 1801 1802 if (isa<PHINode>(I)) 1803 // Move the new node to the end of the phi list in the destination block. 1804 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE); 1805 else 1806 // Move the new node to the destination block, before its terminator. 1807 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE); 1808 1809 I.updateLocationAfterHoist(); 1810 1811 if (isa<LoadInst>(I)) 1812 ++NumMovedLoads; 1813 else if (isa<CallInst>(I)) 1814 ++NumMovedCalls; 1815 ++NumHoisted; 1816 } 1817 1818 /// Only sink or hoist an instruction if it is not a trapping instruction, 1819 /// or if the instruction is known not to trap when moved to the preheader. 1820 /// or if it is a trapping instruction and is guaranteed to execute. 1821 static bool isSafeToExecuteUnconditionally(Instruction &Inst, 1822 const DominatorTree *DT, 1823 const TargetLibraryInfo *TLI, 1824 const Loop *CurLoop, 1825 const LoopSafetyInfo *SafetyInfo, 1826 OptimizationRemarkEmitter *ORE, 1827 const Instruction *CtxI) { 1828 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI)) 1829 return true; 1830 1831 bool GuaranteedToExecute = 1832 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); 1833 1834 if (!GuaranteedToExecute) { 1835 auto *LI = dyn_cast<LoadInst>(&Inst); 1836 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1837 ORE->emit([&]() { 1838 return OptimizationRemarkMissed( 1839 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) 1840 << "failed to hoist load with loop-invariant address " 1841 "because load is conditionally executed"; 1842 }); 1843 } 1844 1845 return GuaranteedToExecute; 1846 } 1847 1848 namespace { 1849 class LoopPromoter : public LoadAndStorePromoter { 1850 Value *SomePtr; // Designated pointer to store to. 1851 const SmallSetVector<Value *, 8> &PointerMustAliases; 1852 SmallVectorImpl<BasicBlock *> &LoopExitBlocks; 1853 SmallVectorImpl<Instruction *> &LoopInsertPts; 1854 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; 1855 PredIteratorCache &PredCache; 1856 MemorySSAUpdater *MSSAU; 1857 LoopInfo &LI; 1858 DebugLoc DL; 1859 Align Alignment; 1860 bool UnorderedAtomic; 1861 AAMDNodes AATags; 1862 ICFLoopSafetyInfo &SafetyInfo; 1863 1864 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi 1865 // (if legal) if doing so would add an out-of-loop use to an instruction 1866 // defined in-loop. 1867 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { 1868 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB)) 1869 return V; 1870 1871 Instruction *I = cast<Instruction>(V); 1872 // We need to create an LCSSA PHI node for the incoming value and 1873 // store that. 1874 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), 1875 I->getName() + ".lcssa", &BB->front()); 1876 for (BasicBlock *Pred : PredCache.get(BB)) 1877 PN->addIncoming(I, Pred); 1878 return PN; 1879 } 1880 1881 public: 1882 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, 1883 const SmallSetVector<Value *, 8> &PMA, 1884 SmallVectorImpl<BasicBlock *> &LEB, 1885 SmallVectorImpl<Instruction *> &LIP, 1886 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, 1887 MemorySSAUpdater *MSSAU, LoopInfo &li, DebugLoc dl, 1888 Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags, 1889 ICFLoopSafetyInfo &SafetyInfo) 1890 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA), 1891 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), 1892 PredCache(PIC), MSSAU(MSSAU), LI(li), DL(std::move(dl)), 1893 Alignment(Alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags), 1894 SafetyInfo(SafetyInfo) {} 1895 1896 bool isInstInList(Instruction *I, 1897 const SmallVectorImpl<Instruction *> &) const override { 1898 Value *Ptr; 1899 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1900 Ptr = LI->getOperand(0); 1901 else 1902 Ptr = cast<StoreInst>(I)->getPointerOperand(); 1903 return PointerMustAliases.count(Ptr); 1904 } 1905 1906 void doExtraRewritesBeforeFinalDeletion() override { 1907 // Insert stores after in the loop exit blocks. Each exit block gets a 1908 // store of the live-out values that feed them. Since we've already told 1909 // the SSA updater about the defs in the loop and the preheader 1910 // definition, it is all set and we can start using it. 1911 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { 1912 BasicBlock *ExitBlock = LoopExitBlocks[i]; 1913 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 1914 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); 1915 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); 1916 Instruction *InsertPos = LoopInsertPts[i]; 1917 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); 1918 if (UnorderedAtomic) 1919 NewSI->setOrdering(AtomicOrdering::Unordered); 1920 NewSI->setAlignment(Alignment); 1921 NewSI->setDebugLoc(DL); 1922 if (AATags) 1923 NewSI->setAAMetadata(AATags); 1924 1925 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; 1926 MemoryAccess *NewMemAcc; 1927 if (!MSSAInsertPoint) { 1928 NewMemAcc = MSSAU->createMemoryAccessInBB( 1929 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); 1930 } else { 1931 NewMemAcc = 1932 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); 1933 } 1934 MSSAInsertPts[i] = NewMemAcc; 1935 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1936 // FIXME: true for safety, false may still be correct. 1937 } 1938 } 1939 1940 void instructionDeleted(Instruction *I) const override { 1941 SafetyInfo.removeInstruction(I); 1942 MSSAU->removeMemoryAccess(I); 1943 } 1944 }; 1945 1946 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L, 1947 DominatorTree *DT) { 1948 // We can perform the captured-before check against any instruction in the 1949 // loop header, as the loop header is reachable from any instruction inside 1950 // the loop. 1951 // TODO: ReturnCaptures=true shouldn't be necessary here. 1952 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true, 1953 /* StoreCaptures */ true, 1954 L->getHeader()->getTerminator(), DT); 1955 } 1956 1957 /// Return true iff we can prove that a caller of this function can not inspect 1958 /// the contents of the provided object in a well defined program. 1959 bool isKnownNonEscaping(Value *Object, const Loop *L, 1960 const TargetLibraryInfo *TLI, DominatorTree *DT) { 1961 if (isa<AllocaInst>(Object)) 1962 // Since the alloca goes out of scope, we know the caller can't retain a 1963 // reference to it and be well defined. Thus, we don't need to check for 1964 // capture. 1965 return true; 1966 1967 // For all other objects we need to know that the caller can't possibly 1968 // have gotten a reference to the object. There are two components of 1969 // that: 1970 // 1) Object can't be escaped by this function. This is what 1971 // PointerMayBeCaptured checks. 1972 // 2) Object can't have been captured at definition site. For this, we 1973 // need to know the return value is noalias. At the moment, we use a 1974 // weaker condition and handle only AllocLikeFunctions (which are 1975 // known to be noalias). TODO 1976 return isAllocLikeFn(Object, TLI) && 1977 isNotCapturedBeforeOrInLoop(Object, L, DT); 1978 } 1979 1980 } // namespace 1981 1982 /// Try to promote memory values to scalars by sinking stores out of the 1983 /// loop and moving loads to before the loop. We do this by looping over 1984 /// the stores in the loop, looking for stores to Must pointers which are 1985 /// loop invariant. 1986 /// 1987 bool llvm::promoteLoopAccessesToScalars( 1988 const SmallSetVector<Value *, 8> &PointerMustAliases, 1989 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1990 SmallVectorImpl<Instruction *> &InsertPts, 1991 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, 1992 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, 1993 Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo, 1994 OptimizationRemarkEmitter *ORE) { 1995 // Verify inputs. 1996 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && 1997 SafetyInfo != nullptr && 1998 "Unexpected Input to promoteLoopAccessesToScalars"); 1999 2000 Value *SomePtr = *PointerMustAliases.begin(); 2001 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 2002 2003 // It is not safe to promote a load/store from the loop if the load/store is 2004 // conditional. For example, turning: 2005 // 2006 // for () { if (c) *P += 1; } 2007 // 2008 // into: 2009 // 2010 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; 2011 // 2012 // is not safe, because *P may only be valid to access if 'c' is true. 2013 // 2014 // The safety property divides into two parts: 2015 // p1) The memory may not be dereferenceable on entry to the loop. In this 2016 // case, we can't insert the required load in the preheader. 2017 // p2) The memory model does not allow us to insert a store along any dynamic 2018 // path which did not originally have one. 2019 // 2020 // If at least one store is guaranteed to execute, both properties are 2021 // satisfied, and promotion is legal. 2022 // 2023 // This, however, is not a necessary condition. Even if no store/load is 2024 // guaranteed to execute, we can still establish these properties. 2025 // We can establish (p1) by proving that hoisting the load into the preheader 2026 // is safe (i.e. proving dereferenceability on all paths through the loop). We 2027 // can use any access within the alias set to prove dereferenceability, 2028 // since they're all must alias. 2029 // 2030 // There are two ways establish (p2): 2031 // a) Prove the location is thread-local. In this case the memory model 2032 // requirement does not apply, and stores are safe to insert. 2033 // b) Prove a store dominates every exit block. In this case, if an exit 2034 // blocks is reached, the original dynamic path would have taken us through 2035 // the store, so inserting a store into the exit block is safe. Note that this 2036 // is different from the store being guaranteed to execute. For instance, 2037 // if an exception is thrown on the first iteration of the loop, the original 2038 // store is never executed, but the exit blocks are not executed either. 2039 2040 bool DereferenceableInPH = false; 2041 bool SafeToInsertStore = false; 2042 2043 SmallVector<Instruction *, 64> LoopUses; 2044 2045 // We start with an alignment of one and try to find instructions that allow 2046 // us to prove better alignment. 2047 Align Alignment; 2048 // Keep track of which types of access we see 2049 bool SawUnorderedAtomic = false; 2050 bool SawNotAtomic = false; 2051 AAMDNodes AATags; 2052 2053 const DataLayout &MDL = Preheader->getModule()->getDataLayout(); 2054 2055 bool IsKnownThreadLocalObject = false; 2056 if (SafetyInfo->anyBlockMayThrow()) { 2057 // If a loop can throw, we have to insert a store along each unwind edge. 2058 // That said, we can't actually make the unwind edge explicit. Therefore, 2059 // we have to prove that the store is dead along the unwind edge. We do 2060 // this by proving that the caller can't have a reference to the object 2061 // after return and thus can't possibly load from the object. 2062 Value *Object = getUnderlyingObject(SomePtr); 2063 if (!isKnownNonEscaping(Object, CurLoop, TLI, DT)) 2064 return false; 2065 // Subtlety: Alloca's aren't visible to callers, but *are* potentially 2066 // visible to other threads if captured and used during their lifetimes. 2067 IsKnownThreadLocalObject = !isa<AllocaInst>(Object); 2068 } 2069 2070 // Check that all of the pointers in the alias set have the same type. We 2071 // cannot (yet) promote a memory location that is loaded and stored in 2072 // different sizes. While we are at it, collect alignment and AA info. 2073 for (Value *ASIV : PointerMustAliases) { 2074 // Check that all of the pointers in the alias set have the same type. We 2075 // cannot (yet) promote a memory location that is loaded and stored in 2076 // different sizes. 2077 if (SomePtr->getType() != ASIV->getType()) 2078 return false; 2079 2080 for (User *U : ASIV->users()) { 2081 // Ignore instructions that are outside the loop. 2082 Instruction *UI = dyn_cast<Instruction>(U); 2083 if (!UI || !CurLoop->contains(UI)) 2084 continue; 2085 2086 // If there is an non-load/store instruction in the loop, we can't promote 2087 // it. 2088 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { 2089 if (!Load->isUnordered()) 2090 return false; 2091 2092 SawUnorderedAtomic |= Load->isAtomic(); 2093 SawNotAtomic |= !Load->isAtomic(); 2094 2095 Align InstAlignment = Load->getAlign(); 2096 2097 // Note that proving a load safe to speculate requires proving 2098 // sufficient alignment at the target location. Proving it guaranteed 2099 // to execute does as well. Thus we can increase our guaranteed 2100 // alignment as well. 2101 if (!DereferenceableInPH || (InstAlignment > Alignment)) 2102 if (isSafeToExecuteUnconditionally(*Load, DT, TLI, CurLoop, 2103 SafetyInfo, ORE, 2104 Preheader->getTerminator())) { 2105 DereferenceableInPH = true; 2106 Alignment = std::max(Alignment, InstAlignment); 2107 } 2108 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { 2109 // Stores *of* the pointer are not interesting, only stores *to* the 2110 // pointer. 2111 if (UI->getOperand(1) != ASIV) 2112 continue; 2113 if (!Store->isUnordered()) 2114 return false; 2115 2116 SawUnorderedAtomic |= Store->isAtomic(); 2117 SawNotAtomic |= !Store->isAtomic(); 2118 2119 // If the store is guaranteed to execute, both properties are satisfied. 2120 // We may want to check if a store is guaranteed to execute even if we 2121 // already know that promotion is safe, since it may have higher 2122 // alignment than any other guaranteed stores, in which case we can 2123 // raise the alignment on the promoted store. 2124 Align InstAlignment = Store->getAlign(); 2125 2126 if (!DereferenceableInPH || !SafeToInsertStore || 2127 (InstAlignment > Alignment)) { 2128 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) { 2129 DereferenceableInPH = true; 2130 SafeToInsertStore = true; 2131 Alignment = std::max(Alignment, InstAlignment); 2132 } 2133 } 2134 2135 // If a store dominates all exit blocks, it is safe to sink. 2136 // As explained above, if an exit block was executed, a dominating 2137 // store must have been executed at least once, so we are not 2138 // introducing stores on paths that did not have them. 2139 // Note that this only looks at explicit exit blocks. If we ever 2140 // start sinking stores into unwind edges (see above), this will break. 2141 if (!SafeToInsertStore) 2142 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { 2143 return DT->dominates(Store->getParent(), Exit); 2144 }); 2145 2146 // If the store is not guaranteed to execute, we may still get 2147 // deref info through it. 2148 if (!DereferenceableInPH) { 2149 DereferenceableInPH = isDereferenceableAndAlignedPointer( 2150 Store->getPointerOperand(), Store->getValueOperand()->getType(), 2151 Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI); 2152 } 2153 } else 2154 return false; // Not a load or store. 2155 2156 // Merge the AA tags. 2157 if (LoopUses.empty()) { 2158 // On the first load/store, just take its AA tags. 2159 AATags = UI->getAAMetadata(); 2160 } else if (AATags) { 2161 AATags = AATags.merge(UI->getAAMetadata()); 2162 } 2163 2164 LoopUses.push_back(UI); 2165 } 2166 } 2167 2168 // If we found both an unordered atomic instruction and a non-atomic memory 2169 // access, bail. We can't blindly promote non-atomic to atomic since we 2170 // might not be able to lower the result. We can't downgrade since that 2171 // would violate memory model. Also, align 0 is an error for atomics. 2172 if (SawUnorderedAtomic && SawNotAtomic) 2173 return false; 2174 2175 // If we're inserting an atomic load in the preheader, we must be able to 2176 // lower it. We're only guaranteed to be able to lower naturally aligned 2177 // atomics. 2178 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType(); 2179 if (SawUnorderedAtomic && 2180 Alignment < MDL.getTypeStoreSize(SomePtrElemType)) 2181 return false; 2182 2183 // If we couldn't prove we can hoist the load, bail. 2184 if (!DereferenceableInPH) 2185 return false; 2186 2187 // We know we can hoist the load, but don't have a guaranteed store. 2188 // Check whether the location is thread-local. If it is, then we can insert 2189 // stores along paths which originally didn't have them without violating the 2190 // memory model. 2191 if (!SafeToInsertStore) { 2192 if (IsKnownThreadLocalObject) 2193 SafeToInsertStore = true; 2194 else { 2195 Value *Object = getUnderlyingObject(SomePtr); 2196 SafeToInsertStore = 2197 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) && 2198 isNotCapturedBeforeOrInLoop(Object, CurLoop, DT); 2199 } 2200 } 2201 2202 // If we've still failed to prove we can sink the store, give up. 2203 if (!SafeToInsertStore) 2204 return false; 2205 2206 // Otherwise, this is safe to promote, lets do it! 2207 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr 2208 << '\n'); 2209 ORE->emit([&]() { 2210 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", 2211 LoopUses[0]) 2212 << "Moving accesses to memory location out of the loop"; 2213 }); 2214 ++NumPromoted; 2215 2216 // Look at all the loop uses, and try to merge their locations. 2217 std::vector<const DILocation *> LoopUsesLocs; 2218 for (auto U : LoopUses) 2219 LoopUsesLocs.push_back(U->getDebugLoc().get()); 2220 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs)); 2221 2222 // We use the SSAUpdater interface to insert phi nodes as required. 2223 SmallVector<PHINode *, 16> NewPHIs; 2224 SSAUpdater SSA(&NewPHIs); 2225 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, 2226 InsertPts, MSSAInsertPts, PIC, MSSAU, *LI, DL, 2227 Alignment, SawUnorderedAtomic, AATags, *SafetyInfo); 2228 2229 // Set up the preheader to have a definition of the value. It is the live-out 2230 // value from the preheader that uses in the loop will use. 2231 LoadInst *PreheaderLoad = new LoadInst( 2232 SomePtr->getType()->getPointerElementType(), SomePtr, 2233 SomePtr->getName() + ".promoted", Preheader->getTerminator()); 2234 if (SawUnorderedAtomic) 2235 PreheaderLoad->setOrdering(AtomicOrdering::Unordered); 2236 PreheaderLoad->setAlignment(Alignment); 2237 PreheaderLoad->setDebugLoc(DebugLoc()); 2238 if (AATags) 2239 PreheaderLoad->setAAMetadata(AATags); 2240 SSA.AddAvailableValue(Preheader, PreheaderLoad); 2241 2242 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB( 2243 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); 2244 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); 2245 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true); 2246 2247 if (VerifyMemorySSA) 2248 MSSAU->getMemorySSA()->verifyMemorySSA(); 2249 // Rewrite all the loads in the loop and remember all the definitions from 2250 // stores in the loop. 2251 Promoter.run(LoopUses); 2252 2253 if (VerifyMemorySSA) 2254 MSSAU->getMemorySSA()->verifyMemorySSA(); 2255 // If the SSAUpdater didn't use the load in the preheader, just zap it now. 2256 if (PreheaderLoad->use_empty()) 2257 eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU); 2258 2259 return true; 2260 } 2261 2262 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, 2263 function_ref<void(Instruction *)> Fn) { 2264 for (const BasicBlock *BB : L->blocks()) 2265 if (const auto *Accesses = MSSA->getBlockAccesses(BB)) 2266 for (const auto &Access : *Accesses) 2267 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access)) 2268 Fn(MUD->getMemoryInst()); 2269 } 2270 2271 static SmallVector<SmallSetVector<Value *, 8>, 0> 2272 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) { 2273 AliasSetTracker AST(*AA); 2274 2275 auto IsPotentiallyPromotable = [L](const Instruction *I) { 2276 if (const auto *SI = dyn_cast<StoreInst>(I)) 2277 return L->isLoopInvariant(SI->getPointerOperand()); 2278 if (const auto *LI = dyn_cast<LoadInst>(I)) 2279 return L->isLoopInvariant(LI->getPointerOperand()); 2280 return false; 2281 }; 2282 2283 // Populate AST with potentially promotable accesses and remove them from 2284 // MaybePromotable, so they will not be checked again on the next iteration. 2285 SmallPtrSet<Value *, 16> AttemptingPromotion; 2286 foreachMemoryAccess(MSSA, L, [&](Instruction *I) { 2287 if (IsPotentiallyPromotable(I)) { 2288 AttemptingPromotion.insert(I); 2289 AST.add(I); 2290 } 2291 }); 2292 2293 // We're only interested in must-alias sets that contain a mod. 2294 SmallVector<const AliasSet *, 8> Sets; 2295 for (AliasSet &AS : AST) 2296 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias()) 2297 Sets.push_back(&AS); 2298 2299 if (Sets.empty()) 2300 return {}; // Nothing to promote... 2301 2302 // Discard any sets for which there is an aliasing non-promotable access. 2303 foreachMemoryAccess(MSSA, L, [&](Instruction *I) { 2304 if (AttemptingPromotion.contains(I)) 2305 return; 2306 2307 llvm::erase_if(Sets, [&](const AliasSet *AS) { 2308 return AS->aliasesUnknownInst(I, *AA); 2309 }); 2310 }); 2311 2312 SmallVector<SmallSetVector<Value *, 8>, 0> Result; 2313 for (const AliasSet *Set : Sets) { 2314 SmallSetVector<Value *, 8> PointerMustAliases; 2315 for (const auto &ASI : *Set) 2316 PointerMustAliases.insert(ASI.getValue()); 2317 Result.push_back(std::move(PointerMustAliases)); 2318 } 2319 2320 return Result; 2321 } 2322 2323 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, 2324 AliasSetTracker *CurAST, Loop *CurLoop, 2325 AAResults *AA) { 2326 return CurAST->getAliasSetFor(MemLoc).isMod(); 2327 } 2328 2329 bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, 2330 Loop *CurLoop, Instruction &I, 2331 SinkAndHoistLICMFlags &Flags) { 2332 // For hoisting, use the walker to determine safety 2333 if (!Flags.getIsSink()) { 2334 MemoryAccess *Source; 2335 // See declaration of SetLicmMssaOptCap for usage details. 2336 if (Flags.tooManyClobberingCalls()) 2337 Source = MU->getDefiningAccess(); 2338 else { 2339 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU); 2340 Flags.incrementClobberingCalls(); 2341 } 2342 return !MSSA->isLiveOnEntryDef(Source) && 2343 CurLoop->contains(Source->getBlock()); 2344 } 2345 2346 // For sinking, we'd need to check all Defs below this use. The getClobbering 2347 // call will look on the backedge of the loop, but will check aliasing with 2348 // the instructions on the previous iteration. 2349 // For example: 2350 // for (i ... ) 2351 // load a[i] ( Use (LoE) 2352 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. 2353 // i++; 2354 // The load sees no clobbering inside the loop, as the backedge alias check 2355 // does phi translation, and will check aliasing against store a[i-1]. 2356 // However sinking the load outside the loop, below the store is incorrect. 2357 2358 // For now, only sink if there are no Defs in the loop, and the existing ones 2359 // precede the use and are in the same block. 2360 // FIXME: Increase precision: Safe to sink if Use post dominates the Def; 2361 // needs PostDominatorTreeAnalysis. 2362 // FIXME: More precise: no Defs that alias this Use. 2363 if (Flags.tooManyMemoryAccesses()) 2364 return true; 2365 for (auto *BB : CurLoop->getBlocks()) 2366 if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU)) 2367 return true; 2368 // When sinking, the source block may not be part of the loop so check it. 2369 if (!CurLoop->contains(&I)) 2370 return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU); 2371 2372 return false; 2373 } 2374 2375 bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA, 2376 MemoryUse &MU) { 2377 if (const auto *Accesses = MSSA.getBlockDefs(&BB)) 2378 for (const auto &MA : *Accesses) 2379 if (const auto *MD = dyn_cast<MemoryDef>(&MA)) 2380 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU)) 2381 return true; 2382 return false; 2383 } 2384 2385 /// Little predicate that returns true if the specified basic block is in 2386 /// a subloop of the current one, not the current one itself. 2387 /// 2388 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { 2389 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); 2390 return LI->getLoopFor(BB) != CurLoop; 2391 } 2392