1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion, attempting to remove as much 10 // code from the body of a loop as possible. It does this by either hoisting 11 // code into the preheader block, or by sinking code to the exit blocks if it is 12 // safe. This pass also promotes must-aliased memory locations in the loop to 13 // live in registers, thus hoisting and sinking "invariant" loads and stores. 14 // 15 // Hoisting operations out of loops is a canonicalization transform. It 16 // enables and simplifies subsequent optimizations in the middle-end. 17 // Rematerialization of hoisted instructions to reduce register pressure is the 18 // responsibility of the back-end, which has more accurate information about 19 // register pressure and also handles other optimizations than LICM that 20 // increase live-ranges. 21 // 22 // This pass uses alias analysis for two purposes: 23 // 24 // 1. Moving loop invariant loads and calls out of loops. If we can determine 25 // that a load or call inside of a loop never aliases anything stored to, 26 // we can hoist it or sink it like any other instruction. 27 // 2. Scalar Promotion of Memory - If there is a store instruction inside of 28 // the loop, we try to move the store to happen AFTER the loop instead of 29 // inside of the loop. This can only happen if a few conditions are true: 30 // A. The pointer stored through is loop invariant 31 // B. There are no stores or loads in the loop which _may_ alias the 32 // pointer. There are no calls in the loop which mod/ref the pointer. 33 // If these conditions are true, we can promote the loads and stores in the 34 // loop of the pointer to use a temporary alloca'd variable. We then use 35 // the SSAUpdater to construct the appropriate SSA form for the value. 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LICM.h" 40 #include "llvm/ADT/PriorityWorklist.h" 41 #include "llvm/ADT/SetOperations.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/AliasSetTracker.h" 45 #include "llvm/Analysis/AssumptionCache.h" 46 #include "llvm/Analysis/CaptureTracking.h" 47 #include "llvm/Analysis/GuardUtils.h" 48 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 49 #include "llvm/Analysis/Loads.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/LoopIterator.h" 52 #include "llvm/Analysis/LoopNestAnalysis.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemorySSA.h" 55 #include "llvm/Analysis/MemorySSAUpdater.h" 56 #include "llvm/Analysis/MustExecute.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/TargetLibraryInfo.h" 60 #include "llvm/Analysis/TargetTransformInfo.h" 61 #include "llvm/Analysis/ValueTracking.h" 62 #include "llvm/IR/CFG.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DebugInfoMetadata.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/IntrinsicInst.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/LLVMContext.h" 72 #include "llvm/IR/Metadata.h" 73 #include "llvm/IR/PatternMatch.h" 74 #include "llvm/IR/PredIteratorCache.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Target/TargetOptions.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/LoopUtils.h" 85 #include "llvm/Transforms/Utils/SSAUpdater.h" 86 #include <algorithm> 87 #include <utility> 88 using namespace llvm; 89 90 namespace llvm { 91 class LPMUpdater; 92 } // namespace llvm 93 94 #define DEBUG_TYPE "licm" 95 96 STATISTIC(NumCreatedBlocks, "Number of blocks created"); 97 STATISTIC(NumClonedBranches, "Number of branches cloned"); 98 STATISTIC(NumSunk, "Number of instructions sunk out of loop"); 99 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); 100 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); 101 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); 102 STATISTIC(NumPromotionCandidates, "Number of promotion candidates"); 103 STATISTIC(NumLoadPromoted, "Number of load-only promotions"); 104 STATISTIC(NumLoadStorePromoted, "Number of load and store promotions"); 105 STATISTIC(NumMinMaxHoisted, 106 "Number of min/max expressions hoisted out of the loop"); 107 STATISTIC(NumGEPsHoisted, 108 "Number of geps reassociated and hoisted out of the loop"); 109 STATISTIC(NumAddSubHoisted, "Number of add/subtract expressions reassociated " 110 "and hoisted out of the loop"); 111 112 /// Memory promotion is enabled by default. 113 static cl::opt<bool> 114 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), 115 cl::desc("Disable memory promotion in LICM pass")); 116 117 static cl::opt<bool> ControlFlowHoisting( 118 "licm-control-flow-hoisting", cl::Hidden, cl::init(false), 119 cl::desc("Enable control flow (and PHI) hoisting in LICM")); 120 121 static cl::opt<bool> 122 SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false), 123 cl::desc("Force thread model single in LICM pass")); 124 125 static cl::opt<uint32_t> MaxNumUsesTraversed( 126 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), 127 cl::desc("Max num uses visited for identifying load " 128 "invariance in loop using invariant start (default = 8)")); 129 130 // Experimental option to allow imprecision in LICM in pathological cases, in 131 // exchange for faster compile. This is to be removed if MemorySSA starts to 132 // address the same issue. LICM calls MemorySSAWalker's 133 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect 134 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, 135 // which may not be precise, since optimizeUses is capped. The result is 136 // correct, but we may not get as "far up" as possible to get which access is 137 // clobbering the one queried. 138 cl::opt<unsigned> llvm::SetLicmMssaOptCap( 139 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, 140 cl::desc("Enable imprecision in LICM in pathological cases, in exchange " 141 "for faster compile. Caps the MemorySSA clobbering calls.")); 142 143 // Experimentally, memory promotion carries less importance than sinking and 144 // hoisting. Limit when we do promotion when using MemorySSA, in order to save 145 // compile time. 146 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( 147 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, 148 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " 149 "effect. When MSSA in LICM is enabled, then this is the maximum " 150 "number of accesses allowed to be present in a loop in order to " 151 "enable memory promotion.")); 152 153 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); 154 static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, 155 const LoopSafetyInfo *SafetyInfo, 156 TargetTransformInfo *TTI, 157 bool &FoldableInLoop, bool LoopNestMode); 158 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 159 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 160 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 161 OptimizationRemarkEmitter *ORE); 162 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 163 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 164 MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE); 165 static bool isSafeToExecuteUnconditionally( 166 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, 167 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, 168 OptimizationRemarkEmitter *ORE, const Instruction *CtxI, 169 AssumptionCache *AC, bool AllowSpeculation); 170 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, 171 Loop *CurLoop, Instruction &I, 172 SinkAndHoistLICMFlags &Flags, 173 bool InvariantGroup); 174 static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, 175 MemoryUse &MU); 176 /// Aggregates various functions for hoisting computations out of loop. 177 static bool hoistArithmetics(Instruction &I, Loop &L, 178 ICFLoopSafetyInfo &SafetyInfo, 179 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 180 DominatorTree *DT); 181 static Instruction *cloneInstructionInExitBlock( 182 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 183 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU); 184 185 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 186 MemorySSAUpdater &MSSAU); 187 188 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 189 ICFLoopSafetyInfo &SafetyInfo, 190 MemorySSAUpdater &MSSAU, ScalarEvolution *SE); 191 192 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, 193 function_ref<void(Instruction *)> Fn); 194 using PointersAndHasReadsOutsideSet = 195 std::pair<SmallSetVector<Value *, 8>, bool>; 196 static SmallVector<PointersAndHasReadsOutsideSet, 0> 197 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L); 198 199 namespace { 200 struct LoopInvariantCodeMotion { 201 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, 202 AssumptionCache *AC, TargetLibraryInfo *TLI, 203 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, 204 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false); 205 206 LoopInvariantCodeMotion(unsigned LicmMssaOptCap, 207 unsigned LicmMssaNoAccForPromotionCap, 208 bool LicmAllowSpeculation) 209 : LicmMssaOptCap(LicmMssaOptCap), 210 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), 211 LicmAllowSpeculation(LicmAllowSpeculation) {} 212 213 private: 214 unsigned LicmMssaOptCap; 215 unsigned LicmMssaNoAccForPromotionCap; 216 bool LicmAllowSpeculation; 217 }; 218 219 struct LegacyLICMPass : public LoopPass { 220 static char ID; // Pass identification, replacement for typeid 221 LegacyLICMPass( 222 unsigned LicmMssaOptCap = SetLicmMssaOptCap, 223 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap, 224 bool LicmAllowSpeculation = true) 225 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 226 LicmAllowSpeculation) { 227 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); 228 } 229 230 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 231 if (skipLoop(L)) 232 return false; 233 234 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block " 235 << L->getHeader()->getNameOrAsOperand() << "\n"); 236 237 Function *F = L->getHeader()->getParent(); 238 239 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 240 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 241 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 242 // pass. Function analyses need to be preserved across loop transformations 243 // but ORE cannot be preserved (see comment before the pass definition). 244 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 245 return LICM.runOnLoop( 246 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(), 247 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 248 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 249 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F), 250 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*F), 251 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*F), 252 SE ? &SE->getSE() : nullptr, MSSA, &ORE); 253 } 254 255 /// This transformation requires natural loop information & requires that 256 /// loop preheaders be inserted into the CFG... 257 /// 258 void getAnalysisUsage(AnalysisUsage &AU) const override { 259 AU.addPreserved<DominatorTreeWrapperPass>(); 260 AU.addPreserved<LoopInfoWrapperPass>(); 261 AU.addRequired<TargetLibraryInfoWrapperPass>(); 262 AU.addRequired<MemorySSAWrapperPass>(); 263 AU.addPreserved<MemorySSAWrapperPass>(); 264 AU.addRequired<TargetTransformInfoWrapperPass>(); 265 AU.addRequired<AssumptionCacheTracker>(); 266 getLoopAnalysisUsage(AU); 267 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 268 AU.addPreserved<LazyBlockFrequencyInfoPass>(); 269 AU.addPreserved<LazyBranchProbabilityInfoPass>(); 270 } 271 272 private: 273 LoopInvariantCodeMotion LICM; 274 }; 275 } // namespace 276 277 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, 278 LoopStandardAnalysisResults &AR, LPMUpdater &) { 279 if (!AR.MSSA) 280 report_fatal_error("LICM requires MemorySSA (loop-mssa)", 281 /*GenCrashDiag*/false); 282 283 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 284 // pass. Function analyses need to be preserved across loop transformations 285 // but ORE cannot be preserved (see comment before the pass definition). 286 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 287 288 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, 289 Opts.AllowSpeculation); 290 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI, 291 &AR.SE, AR.MSSA, &ORE)) 292 return PreservedAnalyses::all(); 293 294 auto PA = getLoopPassPreservedAnalyses(); 295 PA.preserve<MemorySSAAnalysis>(); 296 297 return PA; 298 } 299 300 void LICMPass::printPipeline( 301 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 302 static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline( 303 OS, MapClassName2PassName); 304 305 OS << '<'; 306 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; 307 OS << '>'; 308 } 309 310 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM, 311 LoopStandardAnalysisResults &AR, 312 LPMUpdater &) { 313 if (!AR.MSSA) 314 report_fatal_error("LNICM requires MemorySSA (loop-mssa)", 315 /*GenCrashDiag*/false); 316 317 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 318 // pass. Function analyses need to be preserved across loop transformations 319 // but ORE cannot be preserved (see comment before the pass definition). 320 OptimizationRemarkEmitter ORE(LN.getParent()); 321 322 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, 323 Opts.AllowSpeculation); 324 325 Loop &OutermostLoop = LN.getOutermostLoop(); 326 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, &AR.AC, 327 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true); 328 329 if (!Changed) 330 return PreservedAnalyses::all(); 331 332 auto PA = getLoopPassPreservedAnalyses(); 333 334 PA.preserve<DominatorTreeAnalysis>(); 335 PA.preserve<LoopAnalysis>(); 336 PA.preserve<MemorySSAAnalysis>(); 337 338 return PA; 339 } 340 341 void LNICMPass::printPipeline( 342 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 343 static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline( 344 OS, MapClassName2PassName); 345 346 OS << '<'; 347 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; 348 OS << '>'; 349 } 350 351 char LegacyLICMPass::ID = 0; 352 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", 353 false, false) 354 INITIALIZE_PASS_DEPENDENCY(LoopPass) 355 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 356 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 357 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 358 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) 359 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, 360 false) 361 362 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } 363 364 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop &L, 365 MemorySSA &MSSA) 366 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, 367 IsSink, L, MSSA) {} 368 369 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( 370 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, 371 Loop &L, MemorySSA &MSSA) 372 : LicmMssaOptCap(LicmMssaOptCap), 373 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), 374 IsSink(IsSink) { 375 unsigned AccessCapCount = 0; 376 for (auto *BB : L.getBlocks()) 377 if (const auto *Accesses = MSSA.getBlockAccesses(BB)) 378 for (const auto &MA : *Accesses) { 379 (void)MA; 380 ++AccessCapCount; 381 if (AccessCapCount > LicmMssaNoAccForPromotionCap) { 382 NoOfMemAccTooLarge = true; 383 return; 384 } 385 } 386 } 387 388 /// Hoist expressions out of the specified loop. Note, alias info for inner 389 /// loop is not preserved so it is not a good idea to run LICM multiple 390 /// times on one loop. 391 bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, 392 DominatorTree *DT, AssumptionCache *AC, 393 TargetLibraryInfo *TLI, 394 TargetTransformInfo *TTI, 395 ScalarEvolution *SE, MemorySSA *MSSA, 396 OptimizationRemarkEmitter *ORE, 397 bool LoopNestMode) { 398 bool Changed = false; 399 400 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); 401 402 // If this loop has metadata indicating that LICM is not to be performed then 403 // just exit. 404 if (hasDisableLICMTransformsHint(L)) { 405 return false; 406 } 407 408 // Don't sink stores from loops with coroutine suspend instructions. 409 // LICM would sink instructions into the default destination of 410 // the coroutine switch. The default destination of the switch is to 411 // handle the case where the coroutine is suspended, by which point the 412 // coroutine frame may have been destroyed. No instruction can be sunk there. 413 // FIXME: This would unfortunately hurt the performance of coroutines, however 414 // there is currently no general solution for this. Similar issues could also 415 // potentially happen in other passes where instructions are being moved 416 // across that edge. 417 bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) { 418 return llvm::any_of(*BB, [](Instruction &I) { 419 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 420 return II && II->getIntrinsicID() == Intrinsic::coro_suspend; 421 }); 422 }); 423 424 MemorySSAUpdater MSSAU(MSSA); 425 SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 426 /*IsSink=*/true, *L, *MSSA); 427 428 // Get the preheader block to move instructions into... 429 BasicBlock *Preheader = L->getLoopPreheader(); 430 431 // Compute loop safety information. 432 ICFLoopSafetyInfo SafetyInfo; 433 SafetyInfo.computeLoopSafetyInfo(L); 434 435 // We want to visit all of the instructions in this loop... that are not parts 436 // of our subloops (they have already had their invariants hoisted out of 437 // their loop, into this loop, so there is no need to process the BODIES of 438 // the subloops). 439 // 440 // Traverse the body of the loop in depth first order on the dominator tree so 441 // that we are guaranteed to see definitions before we see uses. This allows 442 // us to sink instructions in one pass, without iteration. After sinking 443 // instructions, we perform another pass to hoist them out of the loop. 444 if (L->hasDedicatedExits()) 445 Changed |= 446 LoopNestMode 447 ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, DT, 448 TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE) 449 : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 450 MSSAU, &SafetyInfo, Flags, ORE); 451 Flags.setIsSink(false); 452 if (Preheader) 453 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, AC, TLI, L, 454 MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode, 455 LicmAllowSpeculation); 456 457 // Now that all loop invariants have been removed from the loop, promote any 458 // memory references to scalars that we can. 459 // Don't sink stores from loops without dedicated block exits. Exits 460 // containing indirect branches are not transformed by loop simplify, 461 // make sure we catch that. An additional load may be generated in the 462 // preheader for SSA updater, so also avoid sinking when no preheader 463 // is available. 464 if (!DisablePromotion && Preheader && L->hasDedicatedExits() && 465 !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) { 466 // Figure out the loop exits and their insertion points 467 SmallVector<BasicBlock *, 8> ExitBlocks; 468 L->getUniqueExitBlocks(ExitBlocks); 469 470 // We can't insert into a catchswitch. 471 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { 472 return isa<CatchSwitchInst>(Exit->getTerminator()); 473 }); 474 475 if (!HasCatchSwitch) { 476 SmallVector<Instruction *, 8> InsertPts; 477 SmallVector<MemoryAccess *, 8> MSSAInsertPts; 478 InsertPts.reserve(ExitBlocks.size()); 479 MSSAInsertPts.reserve(ExitBlocks.size()); 480 for (BasicBlock *ExitBlock : ExitBlocks) { 481 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 482 MSSAInsertPts.push_back(nullptr); 483 } 484 485 PredIteratorCache PIC; 486 487 // Promoting one set of accesses may make the pointers for another set 488 // loop invariant, so run this in a loop. 489 bool Promoted = false; 490 bool LocalPromoted; 491 do { 492 LocalPromoted = false; 493 for (auto [PointerMustAliases, HasReadsOutsideSet] : 494 collectPromotionCandidates(MSSA, AA, L)) { 495 LocalPromoted |= promoteLoopAccessesToScalars( 496 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, 497 DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE, 498 LicmAllowSpeculation, HasReadsOutsideSet); 499 } 500 Promoted |= LocalPromoted; 501 } while (LocalPromoted); 502 503 // Once we have promoted values across the loop body we have to 504 // recursively reform LCSSA as any nested loop may now have values defined 505 // within the loop used in the outer loop. 506 // FIXME: This is really heavy handed. It would be a bit better to use an 507 // SSAUpdater strategy during promotion that was LCSSA aware and reformed 508 // it as it went. 509 if (Promoted) 510 formLCSSARecursively(*L, *DT, LI, SE); 511 512 Changed |= Promoted; 513 } 514 } 515 516 // Check that neither this loop nor its parent have had LCSSA broken. LICM is 517 // specifically moving instructions across the loop boundary and so it is 518 // especially in need of basic functional correctness checking here. 519 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); 520 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && 521 "Parent loop not left in LCSSA form after LICM!"); 522 523 if (VerifyMemorySSA) 524 MSSA->verifyMemorySSA(); 525 526 if (Changed && SE) 527 SE->forgetLoopDispositions(); 528 return Changed; 529 } 530 531 /// Walk the specified region of the CFG (defined by all blocks dominated by 532 /// the specified block, and that are in the current loop) in reverse depth 533 /// first order w.r.t the DominatorTree. This allows us to visit uses before 534 /// definitions, allowing us to sink a loop body in one pass without iteration. 535 /// 536 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 537 DominatorTree *DT, TargetLibraryInfo *TLI, 538 TargetTransformInfo *TTI, Loop *CurLoop, 539 MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, 540 SinkAndHoistLICMFlags &Flags, 541 OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) { 542 543 // Verify inputs. 544 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 545 CurLoop != nullptr && SafetyInfo != nullptr && 546 "Unexpected input to sinkRegion."); 547 548 // We want to visit children before parents. We will enqueue all the parents 549 // before their children in the worklist and process the worklist in reverse 550 // order. 551 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); 552 553 bool Changed = false; 554 for (DomTreeNode *DTN : reverse(Worklist)) { 555 BasicBlock *BB = DTN->getBlock(); 556 // Only need to process the contents of this block if it is not part of a 557 // subloop (which would already have been processed). 558 if (inSubLoop(BB, CurLoop, LI)) 559 continue; 560 561 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { 562 Instruction &I = *--II; 563 564 // The instruction is not used in the loop if it is dead. In this case, 565 // we just delete it instead of sinking it. 566 if (isInstructionTriviallyDead(&I, TLI)) { 567 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); 568 salvageKnowledge(&I); 569 salvageDebugInfo(I); 570 ++II; 571 eraseInstruction(I, *SafetyInfo, MSSAU); 572 Changed = true; 573 continue; 574 } 575 576 // Check to see if we can sink this instruction to the exit blocks 577 // of the loop. We can do this if the all users of the instruction are 578 // outside of the loop. In this case, it doesn't even matter if the 579 // operands of the instruction are loop invariant. 580 // 581 bool FoldableInLoop = false; 582 bool LoopNestMode = OutermostLoop != nullptr; 583 if (!I.mayHaveSideEffects() && 584 isNotUsedOrFoldableInLoop(I, LoopNestMode ? OutermostLoop : CurLoop, 585 SafetyInfo, TTI, FoldableInLoop, 586 LoopNestMode) && 587 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) { 588 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { 589 if (!FoldableInLoop) { 590 ++II; 591 salvageDebugInfo(I); 592 eraseInstruction(I, *SafetyInfo, MSSAU); 593 } 594 Changed = true; 595 } 596 } 597 } 598 } 599 if (VerifyMemorySSA) 600 MSSAU.getMemorySSA()->verifyMemorySSA(); 601 return Changed; 602 } 603 604 bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 605 DominatorTree *DT, TargetLibraryInfo *TLI, 606 TargetTransformInfo *TTI, Loop *CurLoop, 607 MemorySSAUpdater &MSSAU, 608 ICFLoopSafetyInfo *SafetyInfo, 609 SinkAndHoistLICMFlags &Flags, 610 OptimizationRemarkEmitter *ORE) { 611 612 bool Changed = false; 613 SmallPriorityWorklist<Loop *, 4> Worklist; 614 Worklist.insert(CurLoop); 615 appendLoopsToWorklist(*CurLoop, Worklist); 616 while (!Worklist.empty()) { 617 Loop *L = Worklist.pop_back_val(); 618 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 619 MSSAU, SafetyInfo, Flags, ORE, CurLoop); 620 } 621 return Changed; 622 } 623 624 namespace { 625 // This is a helper class for hoistRegion to make it able to hoist control flow 626 // in order to be able to hoist phis. The way this works is that we initially 627 // start hoisting to the loop preheader, and when we see a loop invariant branch 628 // we make note of this. When we then come to hoist an instruction that's 629 // conditional on such a branch we duplicate the branch and the relevant control 630 // flow, then hoist the instruction into the block corresponding to its original 631 // block in the duplicated control flow. 632 class ControlFlowHoister { 633 private: 634 // Information about the loop we are hoisting from 635 LoopInfo *LI; 636 DominatorTree *DT; 637 Loop *CurLoop; 638 MemorySSAUpdater &MSSAU; 639 640 // A map of blocks in the loop to the block their instructions will be hoisted 641 // to. 642 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; 643 644 // The branches that we can hoist, mapped to the block that marks a 645 // convergence point of their control flow. 646 DenseMap<BranchInst *, BasicBlock *> HoistableBranches; 647 648 public: 649 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, 650 MemorySSAUpdater &MSSAU) 651 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} 652 653 void registerPossiblyHoistableBranch(BranchInst *BI) { 654 // We can only hoist conditional branches with loop invariant operands. 655 if (!ControlFlowHoisting || !BI->isConditional() || 656 !CurLoop->hasLoopInvariantOperands(BI)) 657 return; 658 659 // The branch destinations need to be in the loop, and we don't gain 660 // anything by duplicating conditional branches with duplicate successors, 661 // as it's essentially the same as an unconditional branch. 662 BasicBlock *TrueDest = BI->getSuccessor(0); 663 BasicBlock *FalseDest = BI->getSuccessor(1); 664 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || 665 TrueDest == FalseDest) 666 return; 667 668 // We can hoist BI if one branch destination is the successor of the other, 669 // or both have common successor which we check by seeing if the 670 // intersection of their successors is non-empty. 671 // TODO: This could be expanded to allowing branches where both ends 672 // eventually converge to a single block. 673 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; 674 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); 675 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); 676 BasicBlock *CommonSucc = nullptr; 677 if (TrueDestSucc.count(FalseDest)) { 678 CommonSucc = FalseDest; 679 } else if (FalseDestSucc.count(TrueDest)) { 680 CommonSucc = TrueDest; 681 } else { 682 set_intersect(TrueDestSucc, FalseDestSucc); 683 // If there's one common successor use that. 684 if (TrueDestSucc.size() == 1) 685 CommonSucc = *TrueDestSucc.begin(); 686 // If there's more than one pick whichever appears first in the block list 687 // (we can't use the value returned by TrueDestSucc.begin() as it's 688 // unpredicatable which element gets returned). 689 else if (!TrueDestSucc.empty()) { 690 Function *F = TrueDest->getParent(); 691 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; 692 auto It = llvm::find_if(*F, IsSucc); 693 assert(It != F->end() && "Could not find successor in function"); 694 CommonSucc = &*It; 695 } 696 } 697 // The common successor has to be dominated by the branch, as otherwise 698 // there will be some other path to the successor that will not be 699 // controlled by this branch so any phi we hoist would be controlled by the 700 // wrong condition. This also takes care of avoiding hoisting of loop back 701 // edges. 702 // TODO: In some cases this could be relaxed if the successor is dominated 703 // by another block that's been hoisted and we can guarantee that the 704 // control flow has been replicated exactly. 705 if (CommonSucc && DT->dominates(BI, CommonSucc)) 706 HoistableBranches[BI] = CommonSucc; 707 } 708 709 bool canHoistPHI(PHINode *PN) { 710 // The phi must have loop invariant operands. 711 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) 712 return false; 713 // We can hoist phis if the block they are in is the target of hoistable 714 // branches which cover all of the predecessors of the block. 715 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; 716 BasicBlock *BB = PN->getParent(); 717 for (BasicBlock *PredBB : predecessors(BB)) 718 PredecessorBlocks.insert(PredBB); 719 // If we have less predecessor blocks than predecessors then the phi will 720 // have more than one incoming value for the same block which we can't 721 // handle. 722 // TODO: This could be handled be erasing some of the duplicate incoming 723 // values. 724 if (PredecessorBlocks.size() != pred_size(BB)) 725 return false; 726 for (auto &Pair : HoistableBranches) { 727 if (Pair.second == BB) { 728 // Which blocks are predecessors via this branch depends on if the 729 // branch is triangle-like or diamond-like. 730 if (Pair.first->getSuccessor(0) == BB) { 731 PredecessorBlocks.erase(Pair.first->getParent()); 732 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 733 } else if (Pair.first->getSuccessor(1) == BB) { 734 PredecessorBlocks.erase(Pair.first->getParent()); 735 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 736 } else { 737 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 738 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 739 } 740 } 741 } 742 // PredecessorBlocks will now be empty if for every predecessor of BB we 743 // found a hoistable branch source. 744 return PredecessorBlocks.empty(); 745 } 746 747 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { 748 if (!ControlFlowHoisting) 749 return CurLoop->getLoopPreheader(); 750 // If BB has already been hoisted, return that 751 if (HoistDestinationMap.count(BB)) 752 return HoistDestinationMap[BB]; 753 754 // Check if this block is conditional based on a pending branch 755 auto HasBBAsSuccessor = 756 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { 757 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || 758 Pair.first->getSuccessor(1) == BB); 759 }; 760 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor); 761 762 // If not involved in a pending branch, hoist to preheader 763 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); 764 if (It == HoistableBranches.end()) { 765 LLVM_DEBUG(dbgs() << "LICM using " 766 << InitialPreheader->getNameOrAsOperand() 767 << " as hoist destination for " 768 << BB->getNameOrAsOperand() << "\n"); 769 HoistDestinationMap[BB] = InitialPreheader; 770 return InitialPreheader; 771 } 772 BranchInst *BI = It->first; 773 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == 774 HoistableBranches.end() && 775 "BB is expected to be the target of at most one branch"); 776 777 LLVMContext &C = BB->getContext(); 778 BasicBlock *TrueDest = BI->getSuccessor(0); 779 BasicBlock *FalseDest = BI->getSuccessor(1); 780 BasicBlock *CommonSucc = HoistableBranches[BI]; 781 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); 782 783 // Create hoisted versions of blocks that currently don't have them 784 auto CreateHoistedBlock = [&](BasicBlock *Orig) { 785 if (HoistDestinationMap.count(Orig)) 786 return HoistDestinationMap[Orig]; 787 BasicBlock *New = 788 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); 789 HoistDestinationMap[Orig] = New; 790 DT->addNewBlock(New, HoistTarget); 791 if (CurLoop->getParentLoop()) 792 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); 793 ++NumCreatedBlocks; 794 LLVM_DEBUG(dbgs() << "LICM created " << New->getName() 795 << " as hoist destination for " << Orig->getName() 796 << "\n"); 797 return New; 798 }; 799 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); 800 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); 801 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); 802 803 // Link up these blocks with branches. 804 if (!HoistCommonSucc->getTerminator()) { 805 // The new common successor we've generated will branch to whatever that 806 // hoist target branched to. 807 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); 808 assert(TargetSucc && "Expected hoist target to have a single successor"); 809 HoistCommonSucc->moveBefore(TargetSucc); 810 BranchInst::Create(TargetSucc, HoistCommonSucc); 811 } 812 if (!HoistTrueDest->getTerminator()) { 813 HoistTrueDest->moveBefore(HoistCommonSucc); 814 BranchInst::Create(HoistCommonSucc, HoistTrueDest); 815 } 816 if (!HoistFalseDest->getTerminator()) { 817 HoistFalseDest->moveBefore(HoistCommonSucc); 818 BranchInst::Create(HoistCommonSucc, HoistFalseDest); 819 } 820 821 // If BI is being cloned to what was originally the preheader then 822 // HoistCommonSucc will now be the new preheader. 823 if (HoistTarget == InitialPreheader) { 824 // Phis in the loop header now need to use the new preheader. 825 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); 826 MSSAU.wireOldPredecessorsToNewImmediatePredecessor( 827 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); 828 // The new preheader dominates the loop header. 829 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); 830 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); 831 DT->changeImmediateDominator(HeaderNode, PreheaderNode); 832 // The preheader hoist destination is now the new preheader, with the 833 // exception of the hoist destination of this branch. 834 for (auto &Pair : HoistDestinationMap) 835 if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) 836 Pair.second = HoistCommonSucc; 837 } 838 839 // Now finally clone BI. 840 ReplaceInstWithInst( 841 HoistTarget->getTerminator(), 842 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); 843 ++NumClonedBranches; 844 845 assert(CurLoop->getLoopPreheader() && 846 "Hoisting blocks should not have destroyed preheader"); 847 return HoistDestinationMap[BB]; 848 } 849 }; 850 } // namespace 851 852 /// Walk the specified region of the CFG (defined by all blocks dominated by 853 /// the specified block, and that are in the current loop) in depth first 854 /// order w.r.t the DominatorTree. This allows us to visit definitions before 855 /// uses, allowing us to hoist a loop body in one pass without iteration. 856 /// 857 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 858 DominatorTree *DT, AssumptionCache *AC, 859 TargetLibraryInfo *TLI, Loop *CurLoop, 860 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 861 ICFLoopSafetyInfo *SafetyInfo, 862 SinkAndHoistLICMFlags &Flags, 863 OptimizationRemarkEmitter *ORE, bool LoopNestMode, 864 bool AllowSpeculation) { 865 // Verify inputs. 866 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 867 CurLoop != nullptr && SafetyInfo != nullptr && 868 "Unexpected input to hoistRegion."); 869 870 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); 871 872 // Keep track of instructions that have been hoisted, as they may need to be 873 // re-hoisted if they end up not dominating all of their uses. 874 SmallVector<Instruction *, 16> HoistedInstructions; 875 876 // For PHI hoisting to work we need to hoist blocks before their successors. 877 // We can do this by iterating through the blocks in the loop in reverse 878 // post-order. 879 LoopBlocksRPO Worklist(CurLoop); 880 Worklist.perform(LI); 881 bool Changed = false; 882 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 883 for (BasicBlock *BB : Worklist) { 884 // Only need to process the contents of this block if it is not part of a 885 // subloop (which would already have been processed). 886 if (!LoopNestMode && inSubLoop(BB, CurLoop, LI)) 887 continue; 888 889 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 890 // Try hoisting the instruction out to the preheader. We can only do 891 // this if all of the operands of the instruction are loop invariant and 892 // if it is safe to hoist the instruction. We also check block frequency 893 // to make sure instruction only gets hoisted into colder blocks. 894 // TODO: It may be safe to hoist if we are hoisting to a conditional block 895 // and we have accurately duplicated the control flow from the loop header 896 // to that block. 897 if (CurLoop->hasLoopInvariantOperands(&I) && 898 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) && 899 isSafeToExecuteUnconditionally( 900 I, DT, TLI, CurLoop, SafetyInfo, ORE, 901 Preheader->getTerminator(), AC, AllowSpeculation)) { 902 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 903 MSSAU, SE, ORE); 904 HoistedInstructions.push_back(&I); 905 Changed = true; 906 continue; 907 } 908 909 // Attempt to remove floating point division out of the loop by 910 // converting it to a reciprocal multiplication. 911 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && 912 CurLoop->isLoopInvariant(I.getOperand(1))) { 913 auto Divisor = I.getOperand(1); 914 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); 915 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); 916 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); 917 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); 918 ReciprocalDivisor->insertBefore(&I); 919 920 auto Product = 921 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); 922 Product->setFastMathFlags(I.getFastMathFlags()); 923 SafetyInfo->insertInstructionTo(Product, I.getParent()); 924 Product->insertAfter(&I); 925 I.replaceAllUsesWith(Product); 926 eraseInstruction(I, *SafetyInfo, MSSAU); 927 928 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), 929 SafetyInfo, MSSAU, SE, ORE); 930 HoistedInstructions.push_back(ReciprocalDivisor); 931 Changed = true; 932 continue; 933 } 934 935 auto IsInvariantStart = [&](Instruction &I) { 936 using namespace PatternMatch; 937 return I.use_empty() && 938 match(&I, m_Intrinsic<Intrinsic::invariant_start>()); 939 }; 940 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { 941 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && 942 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); 943 }; 944 if ((IsInvariantStart(I) || isGuard(&I)) && 945 CurLoop->hasLoopInvariantOperands(&I) && 946 MustExecuteWithoutWritesBefore(I)) { 947 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 948 MSSAU, SE, ORE); 949 HoistedInstructions.push_back(&I); 950 Changed = true; 951 continue; 952 } 953 954 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 955 if (CFH.canHoistPHI(PN)) { 956 // Redirect incoming blocks first to ensure that we create hoisted 957 // versions of those blocks before we hoist the phi. 958 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) 959 PN->setIncomingBlock( 960 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); 961 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 962 MSSAU, SE, ORE); 963 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); 964 Changed = true; 965 continue; 966 } 967 } 968 969 // Try to reassociate instructions so that part of computations can be 970 // done out of loop. 971 if (hoistArithmetics(I, *CurLoop, *SafetyInfo, MSSAU, AC, DT)) { 972 Changed = true; 973 continue; 974 } 975 976 // Remember possibly hoistable branches so we can actually hoist them 977 // later if needed. 978 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 979 CFH.registerPossiblyHoistableBranch(BI); 980 } 981 } 982 983 // If we hoisted instructions to a conditional block they may not dominate 984 // their uses that weren't hoisted (such as phis where some operands are not 985 // loop invariant). If so make them unconditional by moving them to their 986 // immediate dominator. We iterate through the instructions in reverse order 987 // which ensures that when we rehoist an instruction we rehoist its operands, 988 // and also keep track of where in the block we are rehoisting to to make sure 989 // that we rehoist instructions before the instructions that use them. 990 Instruction *HoistPoint = nullptr; 991 if (ControlFlowHoisting) { 992 for (Instruction *I : reverse(HoistedInstructions)) { 993 if (!llvm::all_of(I->uses(), 994 [&](Use &U) { return DT->dominates(I, U); })) { 995 BasicBlock *Dominator = 996 DT->getNode(I->getParent())->getIDom()->getBlock(); 997 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { 998 if (HoistPoint) 999 assert(DT->dominates(Dominator, HoistPoint->getParent()) && 1000 "New hoist point expected to dominate old hoist point"); 1001 HoistPoint = Dominator->getTerminator(); 1002 } 1003 LLVM_DEBUG(dbgs() << "LICM rehoisting to " 1004 << HoistPoint->getParent()->getNameOrAsOperand() 1005 << ": " << *I << "\n"); 1006 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE); 1007 HoistPoint = I; 1008 Changed = true; 1009 } 1010 } 1011 } 1012 if (VerifyMemorySSA) 1013 MSSAU.getMemorySSA()->verifyMemorySSA(); 1014 1015 // Now that we've finished hoisting make sure that LI and DT are still 1016 // valid. 1017 #ifdef EXPENSIVE_CHECKS 1018 if (Changed) { 1019 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 1020 "Dominator tree verification failed"); 1021 LI->verify(*DT); 1022 } 1023 #endif 1024 1025 return Changed; 1026 } 1027 1028 // Return true if LI is invariant within scope of the loop. LI is invariant if 1029 // CurLoop is dominated by an invariant.start representing the same memory 1030 // location and size as the memory location LI loads from, and also the 1031 // invariant.start has no uses. 1032 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, 1033 Loop *CurLoop) { 1034 Value *Addr = LI->getOperand(0); 1035 const DataLayout &DL = LI->getModule()->getDataLayout(); 1036 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); 1037 1038 // It is not currently possible for clang to generate an invariant.start 1039 // intrinsic with scalable vector types because we don't support thread local 1040 // sizeless types and we don't permit sizeless types in structs or classes. 1041 // Furthermore, even if support is added for this in future the intrinsic 1042 // itself is defined to have a size of -1 for variable sized objects. This 1043 // makes it impossible to verify if the intrinsic envelops our region of 1044 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8> 1045 // types would have a -1 parameter, but the former is clearly double the size 1046 // of the latter. 1047 if (LocSizeInBits.isScalable()) 1048 return false; 1049 1050 // if the type is i8 addrspace(x)*, we know this is the type of 1051 // llvm.invariant.start operand 1052 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), 1053 LI->getPointerAddressSpace()); 1054 unsigned BitcastsVisited = 0; 1055 // Look through bitcasts until we reach the i8* type (this is invariant.start 1056 // operand type). 1057 while (Addr->getType() != PtrInt8Ty) { 1058 auto *BC = dyn_cast<BitCastInst>(Addr); 1059 // Avoid traversing high number of bitcast uses. 1060 if (++BitcastsVisited > MaxNumUsesTraversed || !BC) 1061 return false; 1062 Addr = BC->getOperand(0); 1063 } 1064 // If we've ended up at a global/constant, bail. We shouldn't be looking at 1065 // uselists for non-local Values in a loop pass. 1066 if (isa<Constant>(Addr)) 1067 return false; 1068 1069 unsigned UsesVisited = 0; 1070 // Traverse all uses of the load operand value, to see if invariant.start is 1071 // one of the uses, and whether it dominates the load instruction. 1072 for (auto *U : Addr->users()) { 1073 // Avoid traversing for Load operand with high number of users. 1074 if (++UsesVisited > MaxNumUsesTraversed) 1075 return false; 1076 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1077 // If there are escaping uses of invariant.start instruction, the load maybe 1078 // non-invariant. 1079 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || 1080 !II->use_empty()) 1081 continue; 1082 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0)); 1083 // The intrinsic supports having a -1 argument for variable sized objects 1084 // so we should check for that here. 1085 if (InvariantSize->isNegative()) 1086 continue; 1087 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; 1088 // Confirm the invariant.start location size contains the load operand size 1089 // in bits. Also, the invariant.start should dominate the load, and we 1090 // should not hoist the load out of a loop that contains this dominating 1091 // invariant.start. 1092 if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits && 1093 DT->properlyDominates(II->getParent(), CurLoop->getHeader())) 1094 return true; 1095 } 1096 1097 return false; 1098 } 1099 1100 namespace { 1101 /// Return true if-and-only-if we know how to (mechanically) both hoist and 1102 /// sink a given instruction out of a loop. Does not address legality 1103 /// concerns such as aliasing or speculation safety. 1104 bool isHoistableAndSinkableInst(Instruction &I) { 1105 // Only these instructions are hoistable/sinkable. 1106 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 1107 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) || 1108 isa<BinaryOperator>(I) || isa<SelectInst>(I) || 1109 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || 1110 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 1111 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || 1112 isa<InsertValueInst>(I) || isa<FreezeInst>(I)); 1113 } 1114 /// Return true if MSSA knows there are no MemoryDefs in the loop. 1115 bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) { 1116 for (auto *BB : L->getBlocks()) 1117 if (MSSAU.getMemorySSA()->getBlockDefs(BB)) 1118 return false; 1119 return true; 1120 } 1121 1122 /// Return true if I is the only Instruction with a MemoryAccess in L. 1123 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, 1124 const MemorySSAUpdater &MSSAU) { 1125 for (auto *BB : L->getBlocks()) 1126 if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) { 1127 int NotAPhi = 0; 1128 for (const auto &Acc : *Accs) { 1129 if (isa<MemoryPhi>(&Acc)) 1130 continue; 1131 const auto *MUD = cast<MemoryUseOrDef>(&Acc); 1132 if (MUD->getMemoryInst() != I || NotAPhi++ == 1) 1133 return false; 1134 } 1135 } 1136 return true; 1137 } 1138 } 1139 1140 static MemoryAccess *getClobberingMemoryAccess(MemorySSA &MSSA, 1141 BatchAAResults &BAA, 1142 SinkAndHoistLICMFlags &Flags, 1143 MemoryUseOrDef *MA) { 1144 // See declaration of SetLicmMssaOptCap for usage details. 1145 if (Flags.tooManyClobberingCalls()) 1146 return MA->getDefiningAccess(); 1147 1148 MemoryAccess *Source = 1149 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(MA, BAA); 1150 Flags.incrementClobberingCalls(); 1151 return Source; 1152 } 1153 1154 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, 1155 Loop *CurLoop, MemorySSAUpdater &MSSAU, 1156 bool TargetExecutesOncePerLoop, 1157 SinkAndHoistLICMFlags &Flags, 1158 OptimizationRemarkEmitter *ORE) { 1159 // If we don't understand the instruction, bail early. 1160 if (!isHoistableAndSinkableInst(I)) 1161 return false; 1162 1163 MemorySSA *MSSA = MSSAU.getMemorySSA(); 1164 // Loads have extra constraints we have to verify before we can hoist them. 1165 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 1166 if (!LI->isUnordered()) 1167 return false; // Don't sink/hoist volatile or ordered atomic loads! 1168 1169 // Loads from constant memory are always safe to move, even if they end up 1170 // in the same alias set as something that ends up being modified. 1171 if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0)))) 1172 return true; 1173 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1174 return true; 1175 1176 if (LI->isAtomic() && !TargetExecutesOncePerLoop) 1177 return false; // Don't risk duplicating unordered loads 1178 1179 // This checks for an invariant.start dominating the load. 1180 if (isLoadInvariantInLoop(LI, DT, CurLoop)) 1181 return true; 1182 1183 auto MU = cast<MemoryUse>(MSSA->getMemoryAccess(LI)); 1184 1185 bool InvariantGroup = LI->hasMetadata(LLVMContext::MD_invariant_group); 1186 1187 bool Invalidated = pointerInvalidatedByLoop( 1188 MSSA, MU, CurLoop, I, Flags, InvariantGroup); 1189 // Check loop-invariant address because this may also be a sinkable load 1190 // whose address is not necessarily loop-invariant. 1191 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1192 ORE->emit([&]() { 1193 return OptimizationRemarkMissed( 1194 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) 1195 << "failed to move load with loop-invariant address " 1196 "because the loop may invalidate its value"; 1197 }); 1198 1199 return !Invalidated; 1200 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1201 // Don't sink or hoist dbg info; it's legal, but not useful. 1202 if (isa<DbgInfoIntrinsic>(I)) 1203 return false; 1204 1205 // Don't sink calls which can throw. 1206 if (CI->mayThrow()) 1207 return false; 1208 1209 // Convergent attribute has been used on operations that involve 1210 // inter-thread communication which results are implicitly affected by the 1211 // enclosing control flows. It is not safe to hoist or sink such operations 1212 // across control flow. 1213 if (CI->isConvergent()) 1214 return false; 1215 1216 using namespace PatternMatch; 1217 if (match(CI, m_Intrinsic<Intrinsic::assume>())) 1218 // Assumes don't actually alias anything or throw 1219 return true; 1220 1221 // Handle simple cases by querying alias analysis. 1222 MemoryEffects Behavior = AA->getMemoryEffects(CI); 1223 1224 // FIXME: we don't handle the semantics of thread local well. So that the 1225 // address of thread locals are fake constants in coroutines. So We forbid 1226 // to treat onlyReadsMemory call in coroutines as constants now. Note that 1227 // it is possible to hide a thread local access in a onlyReadsMemory call. 1228 // Remove this check after we handle the semantics of thread locals well. 1229 if (Behavior.onlyReadsMemory() && CI->getFunction()->isPresplitCoroutine()) 1230 return false; 1231 1232 if (Behavior.doesNotAccessMemory()) 1233 return true; 1234 if (Behavior.onlyReadsMemory()) { 1235 // A readonly argmemonly function only reads from memory pointed to by 1236 // it's arguments with arbitrary offsets. If we can prove there are no 1237 // writes to this memory in the loop, we can hoist or sink. 1238 if (Behavior.onlyAccessesArgPointees()) { 1239 // TODO: expand to writeable arguments 1240 for (Value *Op : CI->args()) 1241 if (Op->getType()->isPointerTy() && 1242 pointerInvalidatedByLoop( 1243 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I, 1244 Flags, /*InvariantGroup=*/false)) 1245 return false; 1246 return true; 1247 } 1248 1249 // If this call only reads from memory and there are no writes to memory 1250 // in the loop, we can hoist or sink the call as appropriate. 1251 if (isReadOnly(MSSAU, CurLoop)) 1252 return true; 1253 } 1254 1255 // FIXME: This should use mod/ref information to see if we can hoist or 1256 // sink the call. 1257 1258 return false; 1259 } else if (auto *FI = dyn_cast<FenceInst>(&I)) { 1260 // Fences alias (most) everything to provide ordering. For the moment, 1261 // just give up if there are any other memory operations in the loop. 1262 return isOnlyMemoryAccess(FI, CurLoop, MSSAU); 1263 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 1264 if (!SI->isUnordered()) 1265 return false; // Don't sink/hoist volatile or ordered atomic store! 1266 1267 // We can only hoist a store that we can prove writes a value which is not 1268 // read or overwritten within the loop. For those cases, we fallback to 1269 // load store promotion instead. TODO: We can extend this to cases where 1270 // there is exactly one write to the location and that write dominates an 1271 // arbitrary number of reads in the loop. 1272 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) 1273 return true; 1274 // If there are more accesses than the Promotion cap, then give up as we're 1275 // not walking a list that long. 1276 if (Flags.tooManyMemoryAccesses()) 1277 return false; 1278 1279 auto *SIMD = MSSA->getMemoryAccess(SI); 1280 BatchAAResults BAA(*AA); 1281 auto *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, SIMD); 1282 // Make sure there are no clobbers inside the loop. 1283 if (!MSSA->isLiveOnEntryDef(Source) && 1284 CurLoop->contains(Source->getBlock())) 1285 return false; 1286 1287 // If there are interfering Uses (i.e. their defining access is in the 1288 // loop), or ordered loads (stored as Defs!), don't move this store. 1289 // Could do better here, but this is conservatively correct. 1290 // TODO: Cache set of Uses on the first walk in runOnLoop, update when 1291 // moving accesses. Can also extend to dominating uses. 1292 for (auto *BB : CurLoop->getBlocks()) 1293 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 1294 for (const auto &MA : *Accesses) 1295 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { 1296 auto *MD = getClobberingMemoryAccess(*MSSA, BAA, Flags, 1297 const_cast<MemoryUse *>(MU)); 1298 if (!MSSA->isLiveOnEntryDef(MD) && 1299 CurLoop->contains(MD->getBlock())) 1300 return false; 1301 // Disable hoisting past potentially interfering loads. Optimized 1302 // Uses may point to an access outside the loop, as getClobbering 1303 // checks the previous iteration when walking the backedge. 1304 // FIXME: More precise: no Uses that alias SI. 1305 if (!Flags.getIsSink() && !MSSA->dominates(SIMD, MU)) 1306 return false; 1307 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { 1308 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { 1309 (void)LI; // Silence warning. 1310 assert(!LI->isUnordered() && "Expected unordered load"); 1311 return false; 1312 } 1313 // Any call, while it may not be clobbering SI, it may be a use. 1314 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { 1315 // Check if the call may read from the memory location written 1316 // to by SI. Check CI's attributes and arguments; the number of 1317 // such checks performed is limited above by NoOfMemAccTooLarge. 1318 ModRefInfo MRI = BAA.getModRefInfo(CI, MemoryLocation::get(SI)); 1319 if (isModOrRefSet(MRI)) 1320 return false; 1321 } 1322 } 1323 } 1324 return true; 1325 } 1326 1327 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); 1328 1329 // We've established mechanical ability and aliasing, it's up to the caller 1330 // to check fault safety 1331 return true; 1332 } 1333 1334 /// Returns true if a PHINode is a trivially replaceable with an 1335 /// Instruction. 1336 /// This is true when all incoming values are that instruction. 1337 /// This pattern occurs most often with LCSSA PHI nodes. 1338 /// 1339 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { 1340 for (const Value *IncValue : PN.incoming_values()) 1341 if (IncValue != &I) 1342 return false; 1343 1344 return true; 1345 } 1346 1347 /// Return true if the instruction is foldable in the loop. 1348 static bool isFoldableInLoop(const Instruction &I, const Loop *CurLoop, 1349 const TargetTransformInfo *TTI) { 1350 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1351 InstructionCost CostI = 1352 TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1353 if (CostI != TargetTransformInfo::TCC_Free) 1354 return false; 1355 // For a GEP, we cannot simply use getInstructionCost because currently 1356 // it optimistically assumes that a GEP will fold into addressing mode 1357 // regardless of its users. 1358 const BasicBlock *BB = GEP->getParent(); 1359 for (const User *U : GEP->users()) { 1360 const Instruction *UI = cast<Instruction>(U); 1361 if (CurLoop->contains(UI) && 1362 (BB != UI->getParent() || 1363 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) 1364 return false; 1365 } 1366 return true; 1367 } 1368 1369 return false; 1370 } 1371 1372 /// Return true if the only users of this instruction are outside of 1373 /// the loop. If this is true, we can sink the instruction to the exit 1374 /// blocks of the loop. 1375 /// 1376 /// We also return true if the instruction could be folded away in lowering. 1377 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). 1378 static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, 1379 const LoopSafetyInfo *SafetyInfo, 1380 TargetTransformInfo *TTI, 1381 bool &FoldableInLoop, bool LoopNestMode) { 1382 const auto &BlockColors = SafetyInfo->getBlockColors(); 1383 bool IsFoldable = isFoldableInLoop(I, CurLoop, TTI); 1384 for (const User *U : I.users()) { 1385 const Instruction *UI = cast<Instruction>(U); 1386 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1387 const BasicBlock *BB = PN->getParent(); 1388 // We cannot sink uses in catchswitches. 1389 if (isa<CatchSwitchInst>(BB->getTerminator())) 1390 return false; 1391 1392 // We need to sink a callsite to a unique funclet. Avoid sinking if the 1393 // phi use is too muddled. 1394 if (isa<CallInst>(I)) 1395 if (!BlockColors.empty() && 1396 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) 1397 return false; 1398 1399 if (LoopNestMode) { 1400 while (isa<PHINode>(UI) && UI->hasOneUser() && 1401 UI->getNumOperands() == 1) { 1402 if (!CurLoop->contains(UI)) 1403 break; 1404 UI = cast<Instruction>(UI->user_back()); 1405 } 1406 } 1407 } 1408 1409 if (CurLoop->contains(UI)) { 1410 if (IsFoldable) { 1411 FoldableInLoop = true; 1412 continue; 1413 } 1414 return false; 1415 } 1416 } 1417 return true; 1418 } 1419 1420 static Instruction *cloneInstructionInExitBlock( 1421 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 1422 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) { 1423 Instruction *New; 1424 if (auto *CI = dyn_cast<CallInst>(&I)) { 1425 const auto &BlockColors = SafetyInfo->getBlockColors(); 1426 1427 // Sinking call-sites need to be handled differently from other 1428 // instructions. The cloned call-site needs a funclet bundle operand 1429 // appropriate for its location in the CFG. 1430 SmallVector<OperandBundleDef, 1> OpBundles; 1431 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); 1432 BundleIdx != BundleEnd; ++BundleIdx) { 1433 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); 1434 if (Bundle.getTagID() == LLVMContext::OB_funclet) 1435 continue; 1436 1437 OpBundles.emplace_back(Bundle); 1438 } 1439 1440 if (!BlockColors.empty()) { 1441 const ColorVector &CV = BlockColors.find(&ExitBlock)->second; 1442 assert(CV.size() == 1 && "non-unique color for exit block!"); 1443 BasicBlock *BBColor = CV.front(); 1444 Instruction *EHPad = BBColor->getFirstNonPHI(); 1445 if (EHPad->isEHPad()) 1446 OpBundles.emplace_back("funclet", EHPad); 1447 } 1448 1449 New = CallInst::Create(CI, OpBundles); 1450 } else { 1451 New = I.clone(); 1452 } 1453 1454 New->insertInto(&ExitBlock, ExitBlock.getFirstInsertionPt()); 1455 if (!I.getName().empty()) 1456 New->setName(I.getName() + ".le"); 1457 1458 if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) { 1459 // Create a new MemoryAccess and let MemorySSA set its defining access. 1460 MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB( 1461 New, nullptr, New->getParent(), MemorySSA::Beginning); 1462 if (NewMemAcc) { 1463 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 1464 MSSAU.insertDef(MemDef, /*RenameUses=*/true); 1465 else { 1466 auto *MemUse = cast<MemoryUse>(NewMemAcc); 1467 MSSAU.insertUse(MemUse, /*RenameUses=*/true); 1468 } 1469 } 1470 } 1471 1472 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that 1473 // this is particularly cheap because we can rip off the PHI node that we're 1474 // replacing for the number and blocks of the predecessors. 1475 // OPT: If this shows up in a profile, we can instead finish sinking all 1476 // invariant instructions, and then walk their operands to re-establish 1477 // LCSSA. That will eliminate creating PHI nodes just to nuke them when 1478 // sinking bottom-up. 1479 for (Use &Op : New->operands()) 1480 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) { 1481 auto *OInst = cast<Instruction>(Op.get()); 1482 PHINode *OpPN = 1483 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), 1484 OInst->getName() + ".lcssa", &ExitBlock.front()); 1485 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1486 OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); 1487 Op = OpPN; 1488 } 1489 return New; 1490 } 1491 1492 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 1493 MemorySSAUpdater &MSSAU) { 1494 MSSAU.removeMemoryAccess(&I); 1495 SafetyInfo.removeInstruction(&I); 1496 I.eraseFromParent(); 1497 } 1498 1499 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 1500 ICFLoopSafetyInfo &SafetyInfo, 1501 MemorySSAUpdater &MSSAU, 1502 ScalarEvolution *SE) { 1503 SafetyInfo.removeInstruction(&I); 1504 SafetyInfo.insertInstructionTo(&I, Dest.getParent()); 1505 I.moveBefore(&Dest); 1506 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 1507 MSSAU.getMemorySSA()->getMemoryAccess(&I))) 1508 MSSAU.moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::BeforeTerminator); 1509 if (SE) 1510 SE->forgetBlockAndLoopDispositions(&I); 1511 } 1512 1513 static Instruction *sinkThroughTriviallyReplaceablePHI( 1514 PHINode *TPN, Instruction *I, LoopInfo *LI, 1515 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, 1516 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, 1517 MemorySSAUpdater &MSSAU) { 1518 assert(isTriviallyReplaceablePHI(*TPN, *I) && 1519 "Expect only trivially replaceable PHI"); 1520 BasicBlock *ExitBlock = TPN->getParent(); 1521 Instruction *New; 1522 auto It = SunkCopies.find(ExitBlock); 1523 if (It != SunkCopies.end()) 1524 New = It->second; 1525 else 1526 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock( 1527 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); 1528 return New; 1529 } 1530 1531 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { 1532 BasicBlock *BB = PN->getParent(); 1533 if (!BB->canSplitPredecessors()) 1534 return false; 1535 // It's not impossible to split EHPad blocks, but if BlockColors already exist 1536 // it require updating BlockColors for all offspring blocks accordingly. By 1537 // skipping such corner case, we can make updating BlockColors after splitting 1538 // predecessor fairly simple. 1539 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) 1540 return false; 1541 for (BasicBlock *BBPred : predecessors(BB)) { 1542 if (isa<IndirectBrInst>(BBPred->getTerminator())) 1543 return false; 1544 } 1545 return true; 1546 } 1547 1548 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, 1549 LoopInfo *LI, const Loop *CurLoop, 1550 LoopSafetyInfo *SafetyInfo, 1551 MemorySSAUpdater *MSSAU) { 1552 #ifndef NDEBUG 1553 SmallVector<BasicBlock *, 32> ExitBlocks; 1554 CurLoop->getUniqueExitBlocks(ExitBlocks); 1555 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1556 ExitBlocks.end()); 1557 #endif 1558 BasicBlock *ExitBB = PN->getParent(); 1559 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); 1560 1561 // Split predecessors of the loop exit to make instructions in the loop are 1562 // exposed to exit blocks through trivially replaceable PHIs while keeping the 1563 // loop in the canonical form where each predecessor of each exit block should 1564 // be contained within the loop. For example, this will convert the loop below 1565 // from 1566 // 1567 // LB1: 1568 // %v1 = 1569 // br %LE, %LB2 1570 // LB2: 1571 // %v2 = 1572 // br %LE, %LB1 1573 // LE: 1574 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable 1575 // 1576 // to 1577 // 1578 // LB1: 1579 // %v1 = 1580 // br %LE.split, %LB2 1581 // LB2: 1582 // %v2 = 1583 // br %LE.split2, %LB1 1584 // LE.split: 1585 // %p1 = phi [%v1, %LB1] <-- trivially replaceable 1586 // br %LE 1587 // LE.split2: 1588 // %p2 = phi [%v2, %LB2] <-- trivially replaceable 1589 // br %LE 1590 // LE: 1591 // %p = phi [%p1, %LE.split], [%p2, %LE.split2] 1592 // 1593 const auto &BlockColors = SafetyInfo->getBlockColors(); 1594 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); 1595 while (!PredBBs.empty()) { 1596 BasicBlock *PredBB = *PredBBs.begin(); 1597 assert(CurLoop->contains(PredBB) && 1598 "Expect all predecessors are in the loop"); 1599 if (PN->getBasicBlockIndex(PredBB) >= 0) { 1600 BasicBlock *NewPred = SplitBlockPredecessors( 1601 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); 1602 // Since we do not allow splitting EH-block with BlockColors in 1603 // canSplitPredecessors(), we can simply assign predecessor's color to 1604 // the new block. 1605 if (!BlockColors.empty()) 1606 // Grab a reference to the ColorVector to be inserted before getting the 1607 // reference to the vector we are copying because inserting the new 1608 // element in BlockColors might cause the map to be reallocated. 1609 SafetyInfo->copyColors(NewPred, PredBB); 1610 } 1611 PredBBs.remove(PredBB); 1612 } 1613 } 1614 1615 /// When an instruction is found to only be used outside of the loop, this 1616 /// function moves it to the exit blocks and patches up SSA form as needed. 1617 /// This method is guaranteed to remove the original instruction from its 1618 /// position, and may either delete it or move it to outside of the loop. 1619 /// 1620 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 1621 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 1622 MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) { 1623 bool Changed = false; 1624 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); 1625 1626 // Iterate over users to be ready for actual sinking. Replace users via 1627 // unreachable blocks with undef and make all user PHIs trivially replaceable. 1628 SmallPtrSet<Instruction *, 8> VisitedUsers; 1629 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { 1630 auto *User = cast<Instruction>(*UI); 1631 Use &U = UI.getUse(); 1632 ++UI; 1633 1634 if (VisitedUsers.count(User) || CurLoop->contains(User)) 1635 continue; 1636 1637 if (!DT->isReachableFromEntry(User->getParent())) { 1638 U = PoisonValue::get(I.getType()); 1639 Changed = true; 1640 continue; 1641 } 1642 1643 // The user must be a PHI node. 1644 PHINode *PN = cast<PHINode>(User); 1645 1646 // Surprisingly, instructions can be used outside of loops without any 1647 // exits. This can only happen in PHI nodes if the incoming block is 1648 // unreachable. 1649 BasicBlock *BB = PN->getIncomingBlock(U); 1650 if (!DT->isReachableFromEntry(BB)) { 1651 U = PoisonValue::get(I.getType()); 1652 Changed = true; 1653 continue; 1654 } 1655 1656 VisitedUsers.insert(PN); 1657 if (isTriviallyReplaceablePHI(*PN, I)) 1658 continue; 1659 1660 if (!canSplitPredecessors(PN, SafetyInfo)) 1661 return Changed; 1662 1663 // Split predecessors of the PHI so that we can make users trivially 1664 // replaceable. 1665 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU); 1666 1667 // Should rebuild the iterators, as they may be invalidated by 1668 // splitPredecessorsOfLoopExit(). 1669 UI = I.user_begin(); 1670 UE = I.user_end(); 1671 } 1672 1673 if (VisitedUsers.empty()) 1674 return Changed; 1675 1676 ORE->emit([&]() { 1677 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) 1678 << "sinking " << ore::NV("Inst", &I); 1679 }); 1680 if (isa<LoadInst>(I)) 1681 ++NumMovedLoads; 1682 else if (isa<CallInst>(I)) 1683 ++NumMovedCalls; 1684 ++NumSunk; 1685 1686 #ifndef NDEBUG 1687 SmallVector<BasicBlock *, 32> ExitBlocks; 1688 CurLoop->getUniqueExitBlocks(ExitBlocks); 1689 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1690 ExitBlocks.end()); 1691 #endif 1692 1693 // Clones of this instruction. Don't create more than one per exit block! 1694 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; 1695 1696 // If this instruction is only used outside of the loop, then all users are 1697 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of 1698 // the instruction. 1699 // First check if I is worth sinking for all uses. Sink only when it is worth 1700 // across all uses. 1701 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); 1702 for (auto *UI : Users) { 1703 auto *User = cast<Instruction>(UI); 1704 1705 if (CurLoop->contains(User)) 1706 continue; 1707 1708 PHINode *PN = cast<PHINode>(User); 1709 assert(ExitBlockSet.count(PN->getParent()) && 1710 "The LCSSA PHI is not in an exit block!"); 1711 1712 // The PHI must be trivially replaceable. 1713 Instruction *New = sinkThroughTriviallyReplaceablePHI( 1714 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); 1715 // As we sink the instruction out of the BB, drop its debug location. 1716 New->dropLocation(); 1717 PN->replaceAllUsesWith(New); 1718 eraseInstruction(*PN, *SafetyInfo, MSSAU); 1719 Changed = true; 1720 } 1721 return Changed; 1722 } 1723 1724 /// When an instruction is found to only use loop invariant operands that 1725 /// is safe to hoist, this instruction is called to do the dirty work. 1726 /// 1727 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 1728 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 1729 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 1730 OptimizationRemarkEmitter *ORE) { 1731 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": " 1732 << I << "\n"); 1733 ORE->emit([&]() { 1734 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " 1735 << ore::NV("Inst", &I); 1736 }); 1737 1738 // Metadata can be dependent on conditions we are hoisting above. 1739 // Conservatively strip all metadata on the instruction unless we were 1740 // guaranteed to execute I if we entered the loop, in which case the metadata 1741 // is valid in the loop preheader. 1742 // Similarly, If I is a call and it is not guaranteed to execute in the loop, 1743 // then moving to the preheader means we should strip attributes on the call 1744 // that can cause UB since we may be hoisting above conditions that allowed 1745 // inferring those attributes. They may not be valid at the preheader. 1746 if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) && 1747 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning 1748 // time in isGuaranteedToExecute if we don't actually have anything to 1749 // drop. It is a compile time optimization, not required for correctness. 1750 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) 1751 I.dropUBImplyingAttrsAndMetadata(); 1752 1753 if (isa<PHINode>(I)) 1754 // Move the new node to the end of the phi list in the destination block. 1755 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE); 1756 else 1757 // Move the new node to the destination block, before its terminator. 1758 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE); 1759 1760 I.updateLocationAfterHoist(); 1761 1762 if (isa<LoadInst>(I)) 1763 ++NumMovedLoads; 1764 else if (isa<CallInst>(I)) 1765 ++NumMovedCalls; 1766 ++NumHoisted; 1767 } 1768 1769 /// Only sink or hoist an instruction if it is not a trapping instruction, 1770 /// or if the instruction is known not to trap when moved to the preheader. 1771 /// or if it is a trapping instruction and is guaranteed to execute. 1772 static bool isSafeToExecuteUnconditionally( 1773 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, 1774 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, 1775 OptimizationRemarkEmitter *ORE, const Instruction *CtxI, 1776 AssumptionCache *AC, bool AllowSpeculation) { 1777 if (AllowSpeculation && 1778 isSafeToSpeculativelyExecute(&Inst, CtxI, AC, DT, TLI)) 1779 return true; 1780 1781 bool GuaranteedToExecute = 1782 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); 1783 1784 if (!GuaranteedToExecute) { 1785 auto *LI = dyn_cast<LoadInst>(&Inst); 1786 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1787 ORE->emit([&]() { 1788 return OptimizationRemarkMissed( 1789 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) 1790 << "failed to hoist load with loop-invariant address " 1791 "because load is conditionally executed"; 1792 }); 1793 } 1794 1795 return GuaranteedToExecute; 1796 } 1797 1798 namespace { 1799 class LoopPromoter : public LoadAndStorePromoter { 1800 Value *SomePtr; // Designated pointer to store to. 1801 SmallVectorImpl<BasicBlock *> &LoopExitBlocks; 1802 SmallVectorImpl<Instruction *> &LoopInsertPts; 1803 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; 1804 PredIteratorCache &PredCache; 1805 MemorySSAUpdater &MSSAU; 1806 LoopInfo &LI; 1807 DebugLoc DL; 1808 Align Alignment; 1809 bool UnorderedAtomic; 1810 AAMDNodes AATags; 1811 ICFLoopSafetyInfo &SafetyInfo; 1812 bool CanInsertStoresInExitBlocks; 1813 ArrayRef<const Instruction *> Uses; 1814 1815 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi 1816 // (if legal) if doing so would add an out-of-loop use to an instruction 1817 // defined in-loop. 1818 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { 1819 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB)) 1820 return V; 1821 1822 Instruction *I = cast<Instruction>(V); 1823 // We need to create an LCSSA PHI node for the incoming value and 1824 // store that. 1825 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), 1826 I->getName() + ".lcssa", &BB->front()); 1827 for (BasicBlock *Pred : PredCache.get(BB)) 1828 PN->addIncoming(I, Pred); 1829 return PN; 1830 } 1831 1832 public: 1833 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, 1834 SmallVectorImpl<BasicBlock *> &LEB, 1835 SmallVectorImpl<Instruction *> &LIP, 1836 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, 1837 MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl, 1838 Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags, 1839 ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks) 1840 : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB), 1841 LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU), 1842 LI(li), DL(std::move(dl)), Alignment(Alignment), 1843 UnorderedAtomic(UnorderedAtomic), AATags(AATags), 1844 SafetyInfo(SafetyInfo), 1845 CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {} 1846 1847 void insertStoresInLoopExitBlocks() { 1848 // Insert stores after in the loop exit blocks. Each exit block gets a 1849 // store of the live-out values that feed them. Since we've already told 1850 // the SSA updater about the defs in the loop and the preheader 1851 // definition, it is all set and we can start using it. 1852 DIAssignID *NewID = nullptr; 1853 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { 1854 BasicBlock *ExitBlock = LoopExitBlocks[i]; 1855 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 1856 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); 1857 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); 1858 Instruction *InsertPos = LoopInsertPts[i]; 1859 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); 1860 if (UnorderedAtomic) 1861 NewSI->setOrdering(AtomicOrdering::Unordered); 1862 NewSI->setAlignment(Alignment); 1863 NewSI->setDebugLoc(DL); 1864 // Attach DIAssignID metadata to the new store, generating it on the 1865 // first loop iteration. 1866 if (i == 0) { 1867 // NewSI will have its DIAssignID set here if there are any stores in 1868 // Uses with a DIAssignID attachment. This merged ID will then be 1869 // attached to the other inserted stores (in the branch below). 1870 NewSI->mergeDIAssignID(Uses); 1871 NewID = cast_or_null<DIAssignID>( 1872 NewSI->getMetadata(LLVMContext::MD_DIAssignID)); 1873 } else { 1874 // Attach the DIAssignID (or nullptr) merged from Uses in the branch 1875 // above. 1876 NewSI->setMetadata(LLVMContext::MD_DIAssignID, NewID); 1877 } 1878 1879 if (AATags) 1880 NewSI->setAAMetadata(AATags); 1881 1882 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; 1883 MemoryAccess *NewMemAcc; 1884 if (!MSSAInsertPoint) { 1885 NewMemAcc = MSSAU.createMemoryAccessInBB( 1886 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); 1887 } else { 1888 NewMemAcc = 1889 MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); 1890 } 1891 MSSAInsertPts[i] = NewMemAcc; 1892 MSSAU.insertDef(cast<MemoryDef>(NewMemAcc), true); 1893 // FIXME: true for safety, false may still be correct. 1894 } 1895 } 1896 1897 void doExtraRewritesBeforeFinalDeletion() override { 1898 if (CanInsertStoresInExitBlocks) 1899 insertStoresInLoopExitBlocks(); 1900 } 1901 1902 void instructionDeleted(Instruction *I) const override { 1903 SafetyInfo.removeInstruction(I); 1904 MSSAU.removeMemoryAccess(I); 1905 } 1906 1907 bool shouldDelete(Instruction *I) const override { 1908 if (isa<StoreInst>(I)) 1909 return CanInsertStoresInExitBlocks; 1910 return true; 1911 } 1912 }; 1913 1914 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L, 1915 DominatorTree *DT) { 1916 // We can perform the captured-before check against any instruction in the 1917 // loop header, as the loop header is reachable from any instruction inside 1918 // the loop. 1919 // TODO: ReturnCaptures=true shouldn't be necessary here. 1920 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true, 1921 /* StoreCaptures */ true, 1922 L->getHeader()->getTerminator(), DT); 1923 } 1924 1925 /// Return true if we can prove that a caller cannot inspect the object if an 1926 /// unwind occurs inside the loop. 1927 bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L, 1928 DominatorTree *DT) { 1929 bool RequiresNoCaptureBeforeUnwind; 1930 if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind)) 1931 return false; 1932 1933 return !RequiresNoCaptureBeforeUnwind || 1934 isNotCapturedBeforeOrInLoop(Object, L, DT); 1935 } 1936 1937 // We don't consider globals as writable: While the physical memory is writable, 1938 // we may not have provenance to perform the write. 1939 bool isWritableObject(const Value *Object) { 1940 // TODO: Alloca might not be writable after its lifetime ends. 1941 // See https://github.com/llvm/llvm-project/issues/51838. 1942 if (isa<AllocaInst>(Object)) 1943 return true; 1944 1945 // TODO: Also handle sret. 1946 if (auto *A = dyn_cast<Argument>(Object)) 1947 return A->hasByValAttr(); 1948 1949 // TODO: Noalias has nothing to do with writability, this should check for 1950 // an allocator function. 1951 return isNoAliasCall(Object); 1952 } 1953 1954 bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT, 1955 TargetTransformInfo *TTI) { 1956 // The object must be function-local to start with, and then not captured 1957 // before/in the loop. 1958 return (isIdentifiedFunctionLocal(Object) && 1959 isNotCapturedBeforeOrInLoop(Object, L, DT)) || 1960 (TTI->isSingleThreaded() || SingleThread); 1961 } 1962 1963 } // namespace 1964 1965 /// Try to promote memory values to scalars by sinking stores out of the 1966 /// loop and moving loads to before the loop. We do this by looping over 1967 /// the stores in the loop, looking for stores to Must pointers which are 1968 /// loop invariant. 1969 /// 1970 bool llvm::promoteLoopAccessesToScalars( 1971 const SmallSetVector<Value *, 8> &PointerMustAliases, 1972 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1973 SmallVectorImpl<Instruction *> &InsertPts, 1974 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, 1975 LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, 1976 const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, 1977 MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, 1978 OptimizationRemarkEmitter *ORE, bool AllowSpeculation, 1979 bool HasReadsOutsideSet) { 1980 // Verify inputs. 1981 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && 1982 SafetyInfo != nullptr && 1983 "Unexpected Input to promoteLoopAccessesToScalars"); 1984 1985 LLVM_DEBUG({ 1986 dbgs() << "Trying to promote set of must-aliased pointers:\n"; 1987 for (Value *Ptr : PointerMustAliases) 1988 dbgs() << " " << *Ptr << "\n"; 1989 }); 1990 ++NumPromotionCandidates; 1991 1992 Value *SomePtr = *PointerMustAliases.begin(); 1993 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1994 1995 // It is not safe to promote a load/store from the loop if the load/store is 1996 // conditional. For example, turning: 1997 // 1998 // for () { if (c) *P += 1; } 1999 // 2000 // into: 2001 // 2002 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; 2003 // 2004 // is not safe, because *P may only be valid to access if 'c' is true. 2005 // 2006 // The safety property divides into two parts: 2007 // p1) The memory may not be dereferenceable on entry to the loop. In this 2008 // case, we can't insert the required load in the preheader. 2009 // p2) The memory model does not allow us to insert a store along any dynamic 2010 // path which did not originally have one. 2011 // 2012 // If at least one store is guaranteed to execute, both properties are 2013 // satisfied, and promotion is legal. 2014 // 2015 // This, however, is not a necessary condition. Even if no store/load is 2016 // guaranteed to execute, we can still establish these properties. 2017 // We can establish (p1) by proving that hoisting the load into the preheader 2018 // is safe (i.e. proving dereferenceability on all paths through the loop). We 2019 // can use any access within the alias set to prove dereferenceability, 2020 // since they're all must alias. 2021 // 2022 // There are two ways establish (p2): 2023 // a) Prove the location is thread-local. In this case the memory model 2024 // requirement does not apply, and stores are safe to insert. 2025 // b) Prove a store dominates every exit block. In this case, if an exit 2026 // blocks is reached, the original dynamic path would have taken us through 2027 // the store, so inserting a store into the exit block is safe. Note that this 2028 // is different from the store being guaranteed to execute. For instance, 2029 // if an exception is thrown on the first iteration of the loop, the original 2030 // store is never executed, but the exit blocks are not executed either. 2031 2032 bool DereferenceableInPH = false; 2033 bool StoreIsGuanteedToExecute = false; 2034 bool FoundLoadToPromote = false; 2035 // Goes from Unknown to either Safe or Unsafe, but can't switch between them. 2036 enum { 2037 StoreSafe, 2038 StoreUnsafe, 2039 StoreSafetyUnknown, 2040 } StoreSafety = StoreSafetyUnknown; 2041 2042 SmallVector<Instruction *, 64> LoopUses; 2043 2044 // We start with an alignment of one and try to find instructions that allow 2045 // us to prove better alignment. 2046 Align Alignment; 2047 // Keep track of which types of access we see 2048 bool SawUnorderedAtomic = false; 2049 bool SawNotAtomic = false; 2050 AAMDNodes AATags; 2051 2052 const DataLayout &MDL = Preheader->getModule()->getDataLayout(); 2053 2054 // If there are reads outside the promoted set, then promoting stores is 2055 // definitely not safe. 2056 if (HasReadsOutsideSet) 2057 StoreSafety = StoreUnsafe; 2058 2059 if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) { 2060 // If a loop can throw, we have to insert a store along each unwind edge. 2061 // That said, we can't actually make the unwind edge explicit. Therefore, 2062 // we have to prove that the store is dead along the unwind edge. We do 2063 // this by proving that the caller can't have a reference to the object 2064 // after return and thus can't possibly load from the object. 2065 Value *Object = getUnderlyingObject(SomePtr); 2066 if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT)) 2067 StoreSafety = StoreUnsafe; 2068 } 2069 2070 // Check that all accesses to pointers in the alias set use the same type. 2071 // We cannot (yet) promote a memory location that is loaded and stored in 2072 // different sizes. While we are at it, collect alignment and AA info. 2073 Type *AccessTy = nullptr; 2074 for (Value *ASIV : PointerMustAliases) { 2075 for (Use &U : ASIV->uses()) { 2076 // Ignore instructions that are outside the loop. 2077 Instruction *UI = dyn_cast<Instruction>(U.getUser()); 2078 if (!UI || !CurLoop->contains(UI)) 2079 continue; 2080 2081 // If there is an non-load/store instruction in the loop, we can't promote 2082 // it. 2083 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { 2084 if (!Load->isUnordered()) 2085 return false; 2086 2087 SawUnorderedAtomic |= Load->isAtomic(); 2088 SawNotAtomic |= !Load->isAtomic(); 2089 FoundLoadToPromote = true; 2090 2091 Align InstAlignment = Load->getAlign(); 2092 2093 // Note that proving a load safe to speculate requires proving 2094 // sufficient alignment at the target location. Proving it guaranteed 2095 // to execute does as well. Thus we can increase our guaranteed 2096 // alignment as well. 2097 if (!DereferenceableInPH || (InstAlignment > Alignment)) 2098 if (isSafeToExecuteUnconditionally( 2099 *Load, DT, TLI, CurLoop, SafetyInfo, ORE, 2100 Preheader->getTerminator(), AC, AllowSpeculation)) { 2101 DereferenceableInPH = true; 2102 Alignment = std::max(Alignment, InstAlignment); 2103 } 2104 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { 2105 // Stores *of* the pointer are not interesting, only stores *to* the 2106 // pointer. 2107 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 2108 continue; 2109 if (!Store->isUnordered()) 2110 return false; 2111 2112 SawUnorderedAtomic |= Store->isAtomic(); 2113 SawNotAtomic |= !Store->isAtomic(); 2114 2115 // If the store is guaranteed to execute, both properties are satisfied. 2116 // We may want to check if a store is guaranteed to execute even if we 2117 // already know that promotion is safe, since it may have higher 2118 // alignment than any other guaranteed stores, in which case we can 2119 // raise the alignment on the promoted store. 2120 Align InstAlignment = Store->getAlign(); 2121 bool GuaranteedToExecute = 2122 SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop); 2123 StoreIsGuanteedToExecute |= GuaranteedToExecute; 2124 if (GuaranteedToExecute) { 2125 DereferenceableInPH = true; 2126 if (StoreSafety == StoreSafetyUnknown) 2127 StoreSafety = StoreSafe; 2128 Alignment = std::max(Alignment, InstAlignment); 2129 } 2130 2131 // If a store dominates all exit blocks, it is safe to sink. 2132 // As explained above, if an exit block was executed, a dominating 2133 // store must have been executed at least once, so we are not 2134 // introducing stores on paths that did not have them. 2135 // Note that this only looks at explicit exit blocks. If we ever 2136 // start sinking stores into unwind edges (see above), this will break. 2137 if (StoreSafety == StoreSafetyUnknown && 2138 llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { 2139 return DT->dominates(Store->getParent(), Exit); 2140 })) 2141 StoreSafety = StoreSafe; 2142 2143 // If the store is not guaranteed to execute, we may still get 2144 // deref info through it. 2145 if (!DereferenceableInPH) { 2146 DereferenceableInPH = isDereferenceableAndAlignedPointer( 2147 Store->getPointerOperand(), Store->getValueOperand()->getType(), 2148 Store->getAlign(), MDL, Preheader->getTerminator(), AC, DT, TLI); 2149 } 2150 } else 2151 continue; // Not a load or store. 2152 2153 if (!AccessTy) 2154 AccessTy = getLoadStoreType(UI); 2155 else if (AccessTy != getLoadStoreType(UI)) 2156 return false; 2157 2158 // Merge the AA tags. 2159 if (LoopUses.empty()) { 2160 // On the first load/store, just take its AA tags. 2161 AATags = UI->getAAMetadata(); 2162 } else if (AATags) { 2163 AATags = AATags.merge(UI->getAAMetadata()); 2164 } 2165 2166 LoopUses.push_back(UI); 2167 } 2168 } 2169 2170 // If we found both an unordered atomic instruction and a non-atomic memory 2171 // access, bail. We can't blindly promote non-atomic to atomic since we 2172 // might not be able to lower the result. We can't downgrade since that 2173 // would violate memory model. Also, align 0 is an error for atomics. 2174 if (SawUnorderedAtomic && SawNotAtomic) 2175 return false; 2176 2177 // If we're inserting an atomic load in the preheader, we must be able to 2178 // lower it. We're only guaranteed to be able to lower naturally aligned 2179 // atomics. 2180 if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy)) 2181 return false; 2182 2183 // If we couldn't prove we can hoist the load, bail. 2184 if (!DereferenceableInPH) { 2185 LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n"); 2186 return false; 2187 } 2188 2189 // We know we can hoist the load, but don't have a guaranteed store. 2190 // Check whether the location is writable and thread-local. If it is, then we 2191 // can insert stores along paths which originally didn't have them without 2192 // violating the memory model. 2193 if (StoreSafety == StoreSafetyUnknown) { 2194 Value *Object = getUnderlyingObject(SomePtr); 2195 if (isWritableObject(Object) && 2196 isThreadLocalObject(Object, CurLoop, DT, TTI)) 2197 StoreSafety = StoreSafe; 2198 } 2199 2200 // If we've still failed to prove we can sink the store, hoist the load 2201 // only, if possible. 2202 if (StoreSafety != StoreSafe && !FoundLoadToPromote) 2203 // If we cannot hoist the load either, give up. 2204 return false; 2205 2206 // Lets do the promotion! 2207 if (StoreSafety == StoreSafe) { 2208 LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr 2209 << '\n'); 2210 ++NumLoadStorePromoted; 2211 } else { 2212 LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr 2213 << '\n'); 2214 ++NumLoadPromoted; 2215 } 2216 2217 ORE->emit([&]() { 2218 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", 2219 LoopUses[0]) 2220 << "Moving accesses to memory location out of the loop"; 2221 }); 2222 2223 // Look at all the loop uses, and try to merge their locations. 2224 std::vector<DILocation *> LoopUsesLocs; 2225 for (auto *U : LoopUses) 2226 LoopUsesLocs.push_back(U->getDebugLoc().get()); 2227 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs)); 2228 2229 // We use the SSAUpdater interface to insert phi nodes as required. 2230 SmallVector<PHINode *, 16> NewPHIs; 2231 SSAUpdater SSA(&NewPHIs); 2232 LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts, 2233 MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment, 2234 SawUnorderedAtomic, AATags, *SafetyInfo, 2235 StoreSafety == StoreSafe); 2236 2237 // Set up the preheader to have a definition of the value. It is the live-out 2238 // value from the preheader that uses in the loop will use. 2239 LoadInst *PreheaderLoad = nullptr; 2240 if (FoundLoadToPromote || !StoreIsGuanteedToExecute) { 2241 PreheaderLoad = 2242 new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted", 2243 Preheader->getTerminator()); 2244 if (SawUnorderedAtomic) 2245 PreheaderLoad->setOrdering(AtomicOrdering::Unordered); 2246 PreheaderLoad->setAlignment(Alignment); 2247 PreheaderLoad->setDebugLoc(DebugLoc()); 2248 if (AATags) 2249 PreheaderLoad->setAAMetadata(AATags); 2250 2251 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB( 2252 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); 2253 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); 2254 MSSAU.insertUse(NewMemUse, /*RenameUses=*/true); 2255 SSA.AddAvailableValue(Preheader, PreheaderLoad); 2256 } else { 2257 SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy)); 2258 } 2259 2260 if (VerifyMemorySSA) 2261 MSSAU.getMemorySSA()->verifyMemorySSA(); 2262 // Rewrite all the loads in the loop and remember all the definitions from 2263 // stores in the loop. 2264 Promoter.run(LoopUses); 2265 2266 if (VerifyMemorySSA) 2267 MSSAU.getMemorySSA()->verifyMemorySSA(); 2268 // If the SSAUpdater didn't use the load in the preheader, just zap it now. 2269 if (PreheaderLoad && PreheaderLoad->use_empty()) 2270 eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU); 2271 2272 return true; 2273 } 2274 2275 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, 2276 function_ref<void(Instruction *)> Fn) { 2277 for (const BasicBlock *BB : L->blocks()) 2278 if (const auto *Accesses = MSSA->getBlockAccesses(BB)) 2279 for (const auto &Access : *Accesses) 2280 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access)) 2281 Fn(MUD->getMemoryInst()); 2282 } 2283 2284 // The bool indicates whether there might be reads outside the set, in which 2285 // case only loads may be promoted. 2286 static SmallVector<PointersAndHasReadsOutsideSet, 0> 2287 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) { 2288 BatchAAResults BatchAA(*AA); 2289 AliasSetTracker AST(BatchAA); 2290 2291 auto IsPotentiallyPromotable = [L](const Instruction *I) { 2292 if (const auto *SI = dyn_cast<StoreInst>(I)) 2293 return L->isLoopInvariant(SI->getPointerOperand()); 2294 if (const auto *LI = dyn_cast<LoadInst>(I)) 2295 return L->isLoopInvariant(LI->getPointerOperand()); 2296 return false; 2297 }; 2298 2299 // Populate AST with potentially promotable accesses. 2300 SmallPtrSet<Value *, 16> AttemptingPromotion; 2301 foreachMemoryAccess(MSSA, L, [&](Instruction *I) { 2302 if (IsPotentiallyPromotable(I)) { 2303 AttemptingPromotion.insert(I); 2304 AST.add(I); 2305 } 2306 }); 2307 2308 // We're only interested in must-alias sets that contain a mod. 2309 SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets; 2310 for (AliasSet &AS : AST) 2311 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias()) 2312 Sets.push_back({&AS, false}); 2313 2314 if (Sets.empty()) 2315 return {}; // Nothing to promote... 2316 2317 // Discard any sets for which there is an aliasing non-promotable access. 2318 foreachMemoryAccess(MSSA, L, [&](Instruction *I) { 2319 if (AttemptingPromotion.contains(I)) 2320 return; 2321 2322 llvm::erase_if(Sets, [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) { 2323 ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA); 2324 // Cannot promote if there are writes outside the set. 2325 if (isModSet(MR)) 2326 return true; 2327 if (isRefSet(MR)) { 2328 // Remember reads outside the set. 2329 Pair.setInt(true); 2330 // If this is a mod-only set and there are reads outside the set, 2331 // we will not be able to promote, so bail out early. 2332 return !Pair.getPointer()->isRef(); 2333 } 2334 return false; 2335 }); 2336 }); 2337 2338 SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result; 2339 for (auto [Set, HasReadsOutsideSet] : Sets) { 2340 SmallSetVector<Value *, 8> PointerMustAliases; 2341 for (const auto &ASI : *Set) 2342 PointerMustAliases.insert(ASI.getValue()); 2343 Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet); 2344 } 2345 2346 return Result; 2347 } 2348 2349 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, 2350 Loop *CurLoop, Instruction &I, 2351 SinkAndHoistLICMFlags &Flags, 2352 bool InvariantGroup) { 2353 // For hoisting, use the walker to determine safety 2354 if (!Flags.getIsSink()) { 2355 // If hoisting an invariant group, we only need to check that there 2356 // is no store to the loaded pointer between the start of the loop, 2357 // and the load (since all values must be the same). 2358 2359 // This can be checked in two conditions: 2360 // 1) if the memoryaccess is outside the loop 2361 // 2) the earliest access is at the loop header, 2362 // if the memory loaded is the phi node 2363 2364 BatchAAResults BAA(MSSA->getAA()); 2365 MemoryAccess *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, MU); 2366 return !MSSA->isLiveOnEntryDef(Source) && 2367 CurLoop->contains(Source->getBlock()) && 2368 !(InvariantGroup && Source->getBlock() == CurLoop->getHeader() && isa<MemoryPhi>(Source)); 2369 } 2370 2371 // For sinking, we'd need to check all Defs below this use. The getClobbering 2372 // call will look on the backedge of the loop, but will check aliasing with 2373 // the instructions on the previous iteration. 2374 // For example: 2375 // for (i ... ) 2376 // load a[i] ( Use (LoE) 2377 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. 2378 // i++; 2379 // The load sees no clobbering inside the loop, as the backedge alias check 2380 // does phi translation, and will check aliasing against store a[i-1]. 2381 // However sinking the load outside the loop, below the store is incorrect. 2382 2383 // For now, only sink if there are no Defs in the loop, and the existing ones 2384 // precede the use and are in the same block. 2385 // FIXME: Increase precision: Safe to sink if Use post dominates the Def; 2386 // needs PostDominatorTreeAnalysis. 2387 // FIXME: More precise: no Defs that alias this Use. 2388 if (Flags.tooManyMemoryAccesses()) 2389 return true; 2390 for (auto *BB : CurLoop->getBlocks()) 2391 if (pointerInvalidatedByBlock(*BB, *MSSA, *MU)) 2392 return true; 2393 // When sinking, the source block may not be part of the loop so check it. 2394 if (!CurLoop->contains(&I)) 2395 return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU); 2396 2397 return false; 2398 } 2399 2400 bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) { 2401 if (const auto *Accesses = MSSA.getBlockDefs(&BB)) 2402 for (const auto &MA : *Accesses) 2403 if (const auto *MD = dyn_cast<MemoryDef>(&MA)) 2404 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU)) 2405 return true; 2406 return false; 2407 } 2408 2409 /// Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A < 2410 /// min(INV_1, INV_2)), if INV_1 and INV_2 are both loop invariants and their 2411 /// minimun can be computed outside of loop, and X is not a loop-invariant. 2412 static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, 2413 MemorySSAUpdater &MSSAU) { 2414 bool Inverse = false; 2415 using namespace PatternMatch; 2416 Value *Cond1, *Cond2; 2417 if (match(&I, m_LogicalOr(m_Value(Cond1), m_Value(Cond2)))) { 2418 Inverse = true; 2419 } else if (match(&I, m_LogicalAnd(m_Value(Cond1), m_Value(Cond2)))) { 2420 // Do nothing 2421 } else 2422 return false; 2423 2424 auto MatchICmpAgainstInvariant = [&](Value *C, ICmpInst::Predicate &P, 2425 Value *&LHS, Value *&RHS) { 2426 if (!match(C, m_OneUse(m_ICmp(P, m_Value(LHS), m_Value(RHS))))) 2427 return false; 2428 if (!LHS->getType()->isIntegerTy()) 2429 return false; 2430 if (!ICmpInst::isRelational(P)) 2431 return false; 2432 if (L.isLoopInvariant(LHS)) { 2433 std::swap(LHS, RHS); 2434 P = ICmpInst::getSwappedPredicate(P); 2435 } 2436 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS)) 2437 return false; 2438 if (Inverse) 2439 P = ICmpInst::getInversePredicate(P); 2440 return true; 2441 }; 2442 ICmpInst::Predicate P1, P2; 2443 Value *LHS1, *LHS2, *RHS1, *RHS2; 2444 if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) || 2445 !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2)) 2446 return false; 2447 if (P1 != P2 || LHS1 != LHS2) 2448 return false; 2449 2450 // Everything is fine, we can do the transform. 2451 bool UseMin = ICmpInst::isLT(P1) || ICmpInst::isLE(P1); 2452 assert( 2453 (UseMin || ICmpInst::isGT(P1) || ICmpInst::isGE(P1)) && 2454 "Relational predicate is either less (or equal) or greater (or equal)!"); 2455 Intrinsic::ID id = ICmpInst::isSigned(P1) 2456 ? (UseMin ? Intrinsic::smin : Intrinsic::smax) 2457 : (UseMin ? Intrinsic::umin : Intrinsic::umax); 2458 auto *Preheader = L.getLoopPreheader(); 2459 assert(Preheader && "Loop is not in simplify form?"); 2460 IRBuilder<> Builder(Preheader->getTerminator()); 2461 // We are about to create a new guaranteed use for RHS2 which might not exist 2462 // before (if it was a non-taken input of logical and/or instruction). If it 2463 // was poison, we need to freeze it. Note that no new use for LHS and RHS1 are 2464 // introduced, so they don't need this. 2465 if (isa<SelectInst>(I)) 2466 RHS2 = Builder.CreateFreeze(RHS2, RHS2->getName() + ".fr"); 2467 Value *NewRHS = Builder.CreateBinaryIntrinsic( 2468 id, RHS1, RHS2, nullptr, StringRef("invariant.") + 2469 (ICmpInst::isSigned(P1) ? "s" : "u") + 2470 (UseMin ? "min" : "max")); 2471 Builder.SetInsertPoint(&I); 2472 ICmpInst::Predicate P = P1; 2473 if (Inverse) 2474 P = ICmpInst::getInversePredicate(P); 2475 Value *NewCond = Builder.CreateICmp(P, LHS1, NewRHS); 2476 NewCond->takeName(&I); 2477 I.replaceAllUsesWith(NewCond); 2478 eraseInstruction(I, SafetyInfo, MSSAU); 2479 eraseInstruction(*cast<Instruction>(Cond1), SafetyInfo, MSSAU); 2480 eraseInstruction(*cast<Instruction>(Cond2), SafetyInfo, MSSAU); 2481 return true; 2482 } 2483 2484 /// Reassociate gep (gep ptr, idx1), idx2 to gep (gep ptr, idx2), idx1 if 2485 /// this allows hoisting the inner GEP. 2486 static bool hoistGEP(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, 2487 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2488 DominatorTree *DT) { 2489 auto *GEP = dyn_cast<GetElementPtrInst>(&I); 2490 if (!GEP) 2491 return false; 2492 2493 auto *Src = dyn_cast<GetElementPtrInst>(GEP->getPointerOperand()); 2494 if (!Src || !Src->hasOneUse() || !L.contains(Src)) 2495 return false; 2496 2497 Value *SrcPtr = Src->getPointerOperand(); 2498 auto LoopInvariant = [&](Value *V) { return L.isLoopInvariant(V); }; 2499 if (!L.isLoopInvariant(SrcPtr) || !all_of(GEP->indices(), LoopInvariant)) 2500 return false; 2501 2502 // This can only happen if !AllowSpeculation, otherwise this would already be 2503 // handled. 2504 // FIXME: Should we respect AllowSpeculation in these reassociation folds? 2505 // The flag exists to prevent metadata dropping, which is not relevant here. 2506 if (all_of(Src->indices(), LoopInvariant)) 2507 return false; 2508 2509 // The swapped GEPs are inbounds if both original GEPs are inbounds 2510 // and the sign of the offsets is the same. For simplicity, only 2511 // handle both offsets being non-negative. 2512 const DataLayout &DL = GEP->getModule()->getDataLayout(); 2513 auto NonNegative = [&](Value *V) { 2514 return isKnownNonNegative(V, DL, 0, AC, GEP, DT); 2515 }; 2516 bool IsInBounds = Src->isInBounds() && GEP->isInBounds() && 2517 all_of(Src->indices(), NonNegative) && 2518 all_of(GEP->indices(), NonNegative); 2519 2520 BasicBlock *Preheader = L.getLoopPreheader(); 2521 IRBuilder<> Builder(Preheader->getTerminator()); 2522 Value *NewSrc = Builder.CreateGEP(GEP->getSourceElementType(), SrcPtr, 2523 SmallVector<Value *>(GEP->indices()), 2524 "invariant.gep", IsInBounds); 2525 Builder.SetInsertPoint(GEP); 2526 Value *NewGEP = Builder.CreateGEP(Src->getSourceElementType(), NewSrc, 2527 SmallVector<Value *>(Src->indices()), "gep", 2528 IsInBounds); 2529 GEP->replaceAllUsesWith(NewGEP); 2530 eraseInstruction(*GEP, SafetyInfo, MSSAU); 2531 eraseInstruction(*Src, SafetyInfo, MSSAU); 2532 return true; 2533 } 2534 2535 /// Try to turn things like "LV + C1 < C2" into "LV < C2 - C1". Here 2536 /// C1 and C2 are loop invariants and LV is a loop-variant. 2537 static bool hoistAdd(ICmpInst::Predicate Pred, Value *VariantLHS, 2538 Value *InvariantRHS, ICmpInst &ICmp, Loop &L, 2539 ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, 2540 AssumptionCache *AC, DominatorTree *DT) { 2541 assert(ICmpInst::isSigned(Pred) && "Not supported yet!"); 2542 assert(!L.isLoopInvariant(VariantLHS) && "Precondition."); 2543 assert(L.isLoopInvariant(InvariantRHS) && "Precondition."); 2544 2545 // Try to represent VariantLHS as sum of invariant and variant operands. 2546 using namespace PatternMatch; 2547 Value *VariantOp, *InvariantOp; 2548 if (!match(VariantLHS, m_NSWAdd(m_Value(VariantOp), m_Value(InvariantOp)))) 2549 return false; 2550 2551 // LHS itself is a loop-variant, try to represent it in the form: 2552 // "VariantOp + InvariantOp". If it is possible, then we can reassociate. 2553 if (L.isLoopInvariant(VariantOp)) 2554 std::swap(VariantOp, InvariantOp); 2555 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) 2556 return false; 2557 2558 // In order to turn "LV + C1 < C2" into "LV < C2 - C1", we need to be able to 2559 // freely move values from left side of inequality to right side (just as in 2560 // normal linear arithmetics). Overflows make things much more complicated, so 2561 // we want to avoid this. 2562 auto &DL = L.getHeader()->getModule()->getDataLayout(); 2563 bool ProvedNoOverflowAfterReassociate = 2564 computeOverflowForSignedSub(InvariantRHS, InvariantOp, DL, AC, &ICmp, 2565 DT) == llvm::OverflowResult::NeverOverflows; 2566 if (!ProvedNoOverflowAfterReassociate) 2567 return false; 2568 auto *Preheader = L.getLoopPreheader(); 2569 assert(Preheader && "Loop is not in simplify form?"); 2570 IRBuilder<> Builder(Preheader->getTerminator()); 2571 Value *NewCmpOp = Builder.CreateSub(InvariantRHS, InvariantOp, "invariant.op", 2572 /*HasNUW*/ false, /*HasNSW*/ true); 2573 ICmp.setPredicate(Pred); 2574 ICmp.setOperand(0, VariantOp); 2575 ICmp.setOperand(1, NewCmpOp); 2576 eraseInstruction(cast<Instruction>(*VariantLHS), SafetyInfo, MSSAU); 2577 return true; 2578 } 2579 2580 /// Try to reassociate and hoist the following two patterns: 2581 /// LV - C1 < C2 --> LV < C1 + C2, 2582 /// C1 - LV < C2 --> LV > C1 - C2. 2583 static bool hoistSub(ICmpInst::Predicate Pred, Value *VariantLHS, 2584 Value *InvariantRHS, ICmpInst &ICmp, Loop &L, 2585 ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, 2586 AssumptionCache *AC, DominatorTree *DT) { 2587 assert(ICmpInst::isSigned(Pred) && "Not supported yet!"); 2588 assert(!L.isLoopInvariant(VariantLHS) && "Precondition."); 2589 assert(L.isLoopInvariant(InvariantRHS) && "Precondition."); 2590 2591 // Try to represent VariantLHS as sum of invariant and variant operands. 2592 using namespace PatternMatch; 2593 Value *VariantOp, *InvariantOp; 2594 if (!match(VariantLHS, m_NSWSub(m_Value(VariantOp), m_Value(InvariantOp)))) 2595 return false; 2596 2597 bool VariantSubtracted = false; 2598 // LHS itself is a loop-variant, try to represent it in the form: 2599 // "VariantOp + InvariantOp". If it is possible, then we can reassociate. If 2600 // the variant operand goes with minus, we use a slightly different scheme. 2601 if (L.isLoopInvariant(VariantOp)) { 2602 std::swap(VariantOp, InvariantOp); 2603 VariantSubtracted = true; 2604 Pred = ICmpInst::getSwappedPredicate(Pred); 2605 } 2606 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) 2607 return false; 2608 2609 // In order to turn "LV - C1 < C2" into "LV < C2 + C1", we need to be able to 2610 // freely move values from left side of inequality to right side (just as in 2611 // normal linear arithmetics). Overflows make things much more complicated, so 2612 // we want to avoid this. Likewise, for "C1 - LV < C2" we need to prove that 2613 // "C1 - C2" does not overflow. 2614 auto &DL = L.getHeader()->getModule()->getDataLayout(); 2615 if (VariantSubtracted) { 2616 // C1 - LV < C2 --> LV > C1 - C2 2617 if (computeOverflowForSignedSub(InvariantOp, InvariantRHS, DL, AC, &ICmp, 2618 DT) != llvm::OverflowResult::NeverOverflows) 2619 return false; 2620 } else { 2621 // LV - C1 < C2 --> LV < C1 + C2 2622 if (computeOverflowForSignedAdd(InvariantOp, InvariantRHS, DL, AC, &ICmp, 2623 DT) != llvm::OverflowResult::NeverOverflows) 2624 return false; 2625 } 2626 auto *Preheader = L.getLoopPreheader(); 2627 assert(Preheader && "Loop is not in simplify form?"); 2628 IRBuilder<> Builder(Preheader->getTerminator()); 2629 Value *NewCmpOp = 2630 VariantSubtracted 2631 ? Builder.CreateSub(InvariantOp, InvariantRHS, "invariant.op", 2632 /*HasNUW*/ false, /*HasNSW*/ true) 2633 : Builder.CreateAdd(InvariantOp, InvariantRHS, "invariant.op", 2634 /*HasNUW*/ false, /*HasNSW*/ true); 2635 ICmp.setPredicate(Pred); 2636 ICmp.setOperand(0, VariantOp); 2637 ICmp.setOperand(1, NewCmpOp); 2638 eraseInstruction(cast<Instruction>(*VariantLHS), SafetyInfo, MSSAU); 2639 return true; 2640 } 2641 2642 /// Reassociate and hoist add/sub expressions. 2643 static bool hoistAddSub(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, 2644 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2645 DominatorTree *DT) { 2646 using namespace PatternMatch; 2647 ICmpInst::Predicate Pred; 2648 Value *LHS, *RHS; 2649 if (!match(&I, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) 2650 return false; 2651 2652 // TODO: Support unsigned predicates? 2653 if (!ICmpInst::isSigned(Pred)) 2654 return false; 2655 2656 // Put variant operand to LHS position. 2657 if (L.isLoopInvariant(LHS)) { 2658 std::swap(LHS, RHS); 2659 Pred = ICmpInst::getSwappedPredicate(Pred); 2660 } 2661 // We want to delete the initial operation after reassociation, so only do it 2662 // if it has no other uses. 2663 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS) || !LHS->hasOneUse()) 2664 return false; 2665 2666 // TODO: We could go with smarter context, taking common dominator of all I's 2667 // users instead of I itself. 2668 if (hoistAdd(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT)) 2669 return true; 2670 2671 if (hoistSub(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT)) 2672 return true; 2673 2674 return false; 2675 } 2676 2677 static bool hoistArithmetics(Instruction &I, Loop &L, 2678 ICFLoopSafetyInfo &SafetyInfo, 2679 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2680 DominatorTree *DT) { 2681 // Optimize complex patterns, such as (x < INV1 && x < INV2), turning them 2682 // into (x < min(INV1, INV2)), and hoisting the invariant part of this 2683 // expression out of the loop. 2684 if (hoistMinMax(I, L, SafetyInfo, MSSAU)) { 2685 ++NumHoisted; 2686 ++NumMinMaxHoisted; 2687 return true; 2688 } 2689 2690 // Try to hoist GEPs by reassociation. 2691 if (hoistGEP(I, L, SafetyInfo, MSSAU, AC, DT)) { 2692 ++NumHoisted; 2693 ++NumGEPsHoisted; 2694 return true; 2695 } 2696 2697 // Try to hoist add/sub's by reassociation. 2698 if (hoistAddSub(I, L, SafetyInfo, MSSAU, AC, DT)) { 2699 ++NumHoisted; 2700 ++NumAddSubHoisted; 2701 return true; 2702 } 2703 2704 return false; 2705 } 2706 2707 /// Little predicate that returns true if the specified basic block is in 2708 /// a subloop of the current one, not the current one itself. 2709 /// 2710 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { 2711 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); 2712 return LI->getLoopFor(BB) != CurLoop; 2713 } 2714