xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/LICM.cpp (revision 4f5890a0fb086324a657f3cd7ba1abc57274e0db)
1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible.  It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe.  This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
14 //
15 // Hoisting operations out of loops is a canonicalization transform.  It
16 // enables and simplifies subsequent optimizations in the middle-end.
17 // Rematerialization of hoisted instructions to reduce register pressure is the
18 // responsibility of the back-end, which has more accurate information about
19 // register pressure and also handles other optimizations than LICM that
20 // increase live-ranges.
21 //
22 // This pass uses alias analysis for two purposes:
23 //
24 //  1. Moving loop invariant loads and calls out of loops.  If we can determine
25 //     that a load or call inside of a loop never aliases anything stored to,
26 //     we can hoist it or sink it like any other instruction.
27 //  2. Scalar Promotion of Memory - If there is a store instruction inside of
28 //     the loop, we try to move the store to happen AFTER the loop instead of
29 //     inside of the loop.  This can only happen if a few conditions are true:
30 //       A. The pointer stored through is loop invariant
31 //       B. There are no stores or loads in the loop which _may_ alias the
32 //          pointer.  There are no calls in the loop which mod/ref the pointer.
33 //     If these conditions are true, we can promote the loads and stores in the
34 //     loop of the pointer to use a temporary alloca'd variable.  We then use
35 //     the SSAUpdater to construct the appropriate SSA form for the value.
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LICM.h"
40 #include "llvm/ADT/SetOperations.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AliasSetTracker.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/BlockFrequencyInfo.h"
46 #include "llvm/Analysis/CaptureTracking.h"
47 #include "llvm/Analysis/ConstantFolding.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/GuardUtils.h"
50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51 #include "llvm/Analysis/Loads.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopIterator.h"
54 #include "llvm/Analysis/LoopPass.h"
55 #include "llvm/Analysis/MemoryBuiltins.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/MustExecute.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
62 #include "llvm/Analysis/TargetLibraryInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/LLVMContext.h"
73 #include "llvm/IR/Metadata.h"
74 #include "llvm/IR/PatternMatch.h"
75 #include "llvm/IR/PredIteratorCache.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
83 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
84 #include "llvm/Transforms/Utils/Local.h"
85 #include "llvm/Transforms/Utils/LoopUtils.h"
86 #include "llvm/Transforms/Utils/SSAUpdater.h"
87 #include <algorithm>
88 #include <utility>
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "licm"
92 
93 STATISTIC(NumCreatedBlocks, "Number of blocks created");
94 STATISTIC(NumClonedBranches, "Number of branches cloned");
95 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
96 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
97 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
98 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
99 STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
100 
101 /// Memory promotion is enabled by default.
102 static cl::opt<bool>
103     DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
104                      cl::desc("Disable memory promotion in LICM pass"));
105 
106 static cl::opt<bool> ControlFlowHoisting(
107     "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
108     cl::desc("Enable control flow (and PHI) hoisting in LICM"));
109 
110 static cl::opt<uint32_t> MaxNumUsesTraversed(
111     "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
112     cl::desc("Max num uses visited for identifying load "
113              "invariance in loop using invariant start (default = 8)"));
114 
115 // Experimental option to allow imprecision in LICM in pathological cases, in
116 // exchange for faster compile. This is to be removed if MemorySSA starts to
117 // address the same issue. This flag applies only when LICM uses MemorySSA
118 // instead on AliasSetTracker. LICM calls MemorySSAWalker's
119 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
120 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
121 // which may not be precise, since optimizeUses is capped. The result is
122 // correct, but we may not get as "far up" as possible to get which access is
123 // clobbering the one queried.
124 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
125     "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
126     cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
127              "for faster compile. Caps the MemorySSA clobbering calls."));
128 
129 // Experimentally, memory promotion carries less importance than sinking and
130 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
131 // compile time.
132 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
133     "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
134     cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
135              "effect. When MSSA in LICM is enabled, then this is the maximum "
136              "number of accesses allowed to be present in a loop in order to "
137              "enable memory promotion."));
138 
139 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
140 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
141                                   const LoopSafetyInfo *SafetyInfo,
142                                   TargetTransformInfo *TTI, bool &FreeInLoop,
143                                   bool LoopNestMode);
144 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
145                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
146                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
147                   OptimizationRemarkEmitter *ORE);
148 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
149                  BlockFrequencyInfo *BFI, const Loop *CurLoop,
150                  ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
151                  OptimizationRemarkEmitter *ORE);
152 static bool isSafeToExecuteUnconditionally(
153     Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
154     const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
155     OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
156     bool AllowSpeculation);
157 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
158                                      AliasSetTracker *CurAST, Loop *CurLoop,
159                                      AAResults *AA);
160 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
161                                              Loop *CurLoop, Instruction &I,
162                                              SinkAndHoistLICMFlags &Flags);
163 static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
164                                               MemoryUse &MU);
165 static Instruction *cloneInstructionInExitBlock(
166     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
167     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
168 
169 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
170                              MemorySSAUpdater *MSSAU);
171 
172 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
173                                   ICFLoopSafetyInfo &SafetyInfo,
174                                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
175 
176 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
177                                 function_ref<void(Instruction *)> Fn);
178 static SmallVector<SmallSetVector<Value *, 8>, 0>
179 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
180 
181 namespace {
182 struct LoopInvariantCodeMotion {
183   bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
184                  BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
185                  TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
186                  OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
187 
188   LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
189                           unsigned LicmMssaNoAccForPromotionCap,
190                           bool LicmAllowSpeculation)
191       : LicmMssaOptCap(LicmMssaOptCap),
192         LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
193         LicmAllowSpeculation(LicmAllowSpeculation) {}
194 
195 private:
196   unsigned LicmMssaOptCap;
197   unsigned LicmMssaNoAccForPromotionCap;
198   bool LicmAllowSpeculation;
199 };
200 
201 struct LegacyLICMPass : public LoopPass {
202   static char ID; // Pass identification, replacement for typeid
203   LegacyLICMPass(
204       unsigned LicmMssaOptCap = SetLicmMssaOptCap,
205       unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap,
206       bool LicmAllowSpeculation = true)
207       : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
208                            LicmAllowSpeculation) {
209     initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
210   }
211 
212   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
213     if (skipLoop(L))
214       return false;
215 
216     LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
217                       << L->getHeader()->getNameOrAsOperand() << "\n");
218 
219     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
220     MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
221     bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
222     BlockFrequencyInfo *BFI =
223         hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
224                        : nullptr;
225     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
226     // pass. Function analyses need to be preserved across loop transformations
227     // but ORE cannot be preserved (see comment before the pass definition).
228     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
229     return LICM.runOnLoop(
230         L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
231         &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
232         &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
233         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
234             *L->getHeader()->getParent()),
235         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
236             *L->getHeader()->getParent()),
237         SE ? &SE->getSE() : nullptr, MSSA, &ORE);
238   }
239 
240   /// This transformation requires natural loop information & requires that
241   /// loop preheaders be inserted into the CFG...
242   ///
243   void getAnalysisUsage(AnalysisUsage &AU) const override {
244     AU.addPreserved<DominatorTreeWrapperPass>();
245     AU.addPreserved<LoopInfoWrapperPass>();
246     AU.addRequired<TargetLibraryInfoWrapperPass>();
247     AU.addRequired<MemorySSAWrapperPass>();
248     AU.addPreserved<MemorySSAWrapperPass>();
249     AU.addRequired<TargetTransformInfoWrapperPass>();
250     getLoopAnalysisUsage(AU);
251     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
252     AU.addPreserved<LazyBlockFrequencyInfoPass>();
253     AU.addPreserved<LazyBranchProbabilityInfoPass>();
254   }
255 
256 private:
257   LoopInvariantCodeMotion LICM;
258 };
259 } // namespace
260 
261 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
262                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
263   if (!AR.MSSA)
264     report_fatal_error("LICM requires MemorySSA (loop-mssa)");
265 
266   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
267   // pass.  Function analyses need to be preserved across loop transformations
268   // but ORE cannot be preserved (see comment before the pass definition).
269   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
270 
271   LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
272                                LicmAllowSpeculation);
273   if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
274                       &AR.SE, AR.MSSA, &ORE))
275     return PreservedAnalyses::all();
276 
277   auto PA = getLoopPassPreservedAnalyses();
278 
279   PA.preserve<DominatorTreeAnalysis>();
280   PA.preserve<LoopAnalysis>();
281   PA.preserve<MemorySSAAnalysis>();
282 
283   return PA;
284 }
285 
286 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
287                                  LoopStandardAnalysisResults &AR,
288                                  LPMUpdater &) {
289   if (!AR.MSSA)
290     report_fatal_error("LNICM requires MemorySSA (loop-mssa)");
291 
292   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
293   // pass.  Function analyses need to be preserved across loop transformations
294   // but ORE cannot be preserved (see comment before the pass definition).
295   OptimizationRemarkEmitter ORE(LN.getParent());
296 
297   LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
298                                LicmAllowSpeculation);
299 
300   Loop &OutermostLoop = LN.getOutermostLoop();
301   bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI,
302                                 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
303 
304   if (!Changed)
305     return PreservedAnalyses::all();
306 
307   auto PA = getLoopPassPreservedAnalyses();
308 
309   PA.preserve<DominatorTreeAnalysis>();
310   PA.preserve<LoopAnalysis>();
311   PA.preserve<MemorySSAAnalysis>();
312 
313   return PA;
314 }
315 
316 char LegacyLICMPass::ID = 0;
317 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
318                       false, false)
319 INITIALIZE_PASS_DEPENDENCY(LoopPass)
320 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
321 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
322 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
323 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
324 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
325                     false)
326 
327 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
328 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
329                            unsigned LicmMssaNoAccForPromotionCap,
330                            bool LicmAllowSpeculation) {
331   return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
332                             LicmAllowSpeculation);
333 }
334 
335 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
336                                                    MemorySSA *MSSA)
337     : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
338                             IsSink, L, MSSA) {}
339 
340 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
341     unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
342     Loop *L, MemorySSA *MSSA)
343     : LicmMssaOptCap(LicmMssaOptCap),
344       LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
345       IsSink(IsSink) {
346   assert(((L != nullptr) == (MSSA != nullptr)) &&
347          "Unexpected values for SinkAndHoistLICMFlags");
348   if (!MSSA)
349     return;
350 
351   unsigned AccessCapCount = 0;
352   for (auto *BB : L->getBlocks())
353     if (const auto *Accesses = MSSA->getBlockAccesses(BB))
354       for (const auto &MA : *Accesses) {
355         (void)MA;
356         ++AccessCapCount;
357         if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
358           NoOfMemAccTooLarge = true;
359           return;
360         }
361       }
362 }
363 
364 /// Hoist expressions out of the specified loop. Note, alias info for inner
365 /// loop is not preserved so it is not a good idea to run LICM multiple
366 /// times on one loop.
367 bool LoopInvariantCodeMotion::runOnLoop(
368     Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
369     BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
370     ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE,
371     bool LoopNestMode) {
372   bool Changed = false;
373 
374   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
375 
376   // If this loop has metadata indicating that LICM is not to be performed then
377   // just exit.
378   if (hasDisableLICMTransformsHint(L)) {
379     return false;
380   }
381 
382   // Don't sink stores from loops with coroutine suspend instructions.
383   // LICM would sink instructions into the default destination of
384   // the coroutine switch. The default destination of the switch is to
385   // handle the case where the coroutine is suspended, by which point the
386   // coroutine frame may have been destroyed. No instruction can be sunk there.
387   // FIXME: This would unfortunately hurt the performance of coroutines, however
388   // there is currently no general solution for this. Similar issues could also
389   // potentially happen in other passes where instructions are being moved
390   // across that edge.
391   bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
392     return llvm::any_of(*BB, [](Instruction &I) {
393       IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
394       return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
395     });
396   });
397 
398   MemorySSAUpdater MSSAU(MSSA);
399   SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
400                               /*IsSink=*/true, L, MSSA);
401 
402   // Get the preheader block to move instructions into...
403   BasicBlock *Preheader = L->getLoopPreheader();
404 
405   // Compute loop safety information.
406   ICFLoopSafetyInfo SafetyInfo;
407   SafetyInfo.computeLoopSafetyInfo(L);
408 
409   // We want to visit all of the instructions in this loop... that are not parts
410   // of our subloops (they have already had their invariants hoisted out of
411   // their loop, into this loop, so there is no need to process the BODIES of
412   // the subloops).
413   //
414   // Traverse the body of the loop in depth first order on the dominator tree so
415   // that we are guaranteed to see definitions before we see uses.  This allows
416   // us to sink instructions in one pass, without iteration.  After sinking
417   // instructions, we perform another pass to hoist them out of the loop.
418   if (L->hasDedicatedExits())
419     Changed |= LoopNestMode
420                    ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI,
421                                            DT, BFI, TLI, TTI, L, &MSSAU,
422                                            &SafetyInfo, Flags, ORE)
423                    : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI,
424                                 TLI, TTI, L, &MSSAU, &SafetyInfo, Flags, ORE);
425   Flags.setIsSink(false);
426   if (Preheader)
427     Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
428                            &MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
429                            LicmAllowSpeculation);
430 
431   // Now that all loop invariants have been removed from the loop, promote any
432   // memory references to scalars that we can.
433   // Don't sink stores from loops without dedicated block exits. Exits
434   // containing indirect branches are not transformed by loop simplify,
435   // make sure we catch that. An additional load may be generated in the
436   // preheader for SSA updater, so also avoid sinking when no preheader
437   // is available.
438   if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
439       !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
440     // Figure out the loop exits and their insertion points
441     SmallVector<BasicBlock *, 8> ExitBlocks;
442     L->getUniqueExitBlocks(ExitBlocks);
443 
444     // We can't insert into a catchswitch.
445     bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
446       return isa<CatchSwitchInst>(Exit->getTerminator());
447     });
448 
449     if (!HasCatchSwitch) {
450       SmallVector<Instruction *, 8> InsertPts;
451       SmallVector<MemoryAccess *, 8> MSSAInsertPts;
452       InsertPts.reserve(ExitBlocks.size());
453       MSSAInsertPts.reserve(ExitBlocks.size());
454       for (BasicBlock *ExitBlock : ExitBlocks) {
455         InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
456         MSSAInsertPts.push_back(nullptr);
457       }
458 
459       PredIteratorCache PIC;
460 
461       // Promoting one set of accesses may make the pointers for another set
462       // loop invariant, so run this in a loop (with the MaybePromotable set
463       // decreasing in size over time).
464       bool Promoted = false;
465       bool LocalPromoted;
466       do {
467         LocalPromoted = false;
468         for (const SmallSetVector<Value *, 8> &PointerMustAliases :
469              collectPromotionCandidates(MSSA, AA, L)) {
470           LocalPromoted |= promoteLoopAccessesToScalars(
471               PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
472               DT, TLI, L, &MSSAU, &SafetyInfo, ORE, LicmAllowSpeculation);
473         }
474         Promoted |= LocalPromoted;
475       } while (LocalPromoted);
476 
477       // Once we have promoted values across the loop body we have to
478       // recursively reform LCSSA as any nested loop may now have values defined
479       // within the loop used in the outer loop.
480       // FIXME: This is really heavy handed. It would be a bit better to use an
481       // SSAUpdater strategy during promotion that was LCSSA aware and reformed
482       // it as it went.
483       if (Promoted)
484         formLCSSARecursively(*L, *DT, LI, SE);
485 
486       Changed |= Promoted;
487     }
488   }
489 
490   // Check that neither this loop nor its parent have had LCSSA broken. LICM is
491   // specifically moving instructions across the loop boundary and so it is
492   // especially in need of basic functional correctness checking here.
493   assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
494   assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
495          "Parent loop not left in LCSSA form after LICM!");
496 
497   if (VerifyMemorySSA)
498     MSSA->verifyMemorySSA();
499 
500   if (Changed && SE)
501     SE->forgetLoopDispositions(L);
502   return Changed;
503 }
504 
505 /// Walk the specified region of the CFG (defined by all blocks dominated by
506 /// the specified block, and that are in the current loop) in reverse depth
507 /// first order w.r.t the DominatorTree.  This allows us to visit uses before
508 /// definitions, allowing us to sink a loop body in one pass without iteration.
509 ///
510 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
511                       DominatorTree *DT, BlockFrequencyInfo *BFI,
512                       TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
513                       Loop *CurLoop, MemorySSAUpdater *MSSAU,
514                       ICFLoopSafetyInfo *SafetyInfo,
515                       SinkAndHoistLICMFlags &Flags,
516                       OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
517 
518   // Verify inputs.
519   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
520          CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&
521          "Unexpected input to sinkRegion.");
522 
523   // We want to visit children before parents. We will enque all the parents
524   // before their children in the worklist and process the worklist in reverse
525   // order.
526   SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
527 
528   bool Changed = false;
529   for (DomTreeNode *DTN : reverse(Worklist)) {
530     BasicBlock *BB = DTN->getBlock();
531     // Only need to process the contents of this block if it is not part of a
532     // subloop (which would already have been processed).
533     if (inSubLoop(BB, CurLoop, LI))
534       continue;
535 
536     for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
537       Instruction &I = *--II;
538 
539       // The instruction is not used in the loop if it is dead.  In this case,
540       // we just delete it instead of sinking it.
541       if (isInstructionTriviallyDead(&I, TLI)) {
542         LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
543         salvageKnowledge(&I);
544         salvageDebugInfo(I);
545         ++II;
546         eraseInstruction(I, *SafetyInfo, MSSAU);
547         Changed = true;
548         continue;
549       }
550 
551       // Check to see if we can sink this instruction to the exit blocks
552       // of the loop.  We can do this if the all users of the instruction are
553       // outside of the loop.  In this case, it doesn't even matter if the
554       // operands of the instruction are loop invariant.
555       //
556       bool FreeInLoop = false;
557       bool LoopNestMode = OutermostLoop != nullptr;
558       if (!I.mayHaveSideEffects() &&
559           isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
560                                 SafetyInfo, TTI, FreeInLoop, LoopNestMode) &&
561           canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/nullptr, MSSAU, true,
562                              &Flags, ORE)) {
563         if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
564           if (!FreeInLoop) {
565             ++II;
566             salvageDebugInfo(I);
567             eraseInstruction(I, *SafetyInfo, MSSAU);
568           }
569           Changed = true;
570         }
571       }
572     }
573   }
574   if (VerifyMemorySSA)
575     MSSAU->getMemorySSA()->verifyMemorySSA();
576   return Changed;
577 }
578 
579 bool llvm::sinkRegionForLoopNest(
580     DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
581     BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
582     Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
583     SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) {
584 
585   bool Changed = false;
586   SmallPriorityWorklist<Loop *, 4> Worklist;
587   Worklist.insert(CurLoop);
588   appendLoopsToWorklist(*CurLoop, Worklist);
589   while (!Worklist.empty()) {
590     Loop *L = Worklist.pop_back_val();
591     Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI,
592                           TTI, L, MSSAU, SafetyInfo, Flags, ORE, CurLoop);
593   }
594   return Changed;
595 }
596 
597 namespace {
598 // This is a helper class for hoistRegion to make it able to hoist control flow
599 // in order to be able to hoist phis. The way this works is that we initially
600 // start hoisting to the loop preheader, and when we see a loop invariant branch
601 // we make note of this. When we then come to hoist an instruction that's
602 // conditional on such a branch we duplicate the branch and the relevant control
603 // flow, then hoist the instruction into the block corresponding to its original
604 // block in the duplicated control flow.
605 class ControlFlowHoister {
606 private:
607   // Information about the loop we are hoisting from
608   LoopInfo *LI;
609   DominatorTree *DT;
610   Loop *CurLoop;
611   MemorySSAUpdater *MSSAU;
612 
613   // A map of blocks in the loop to the block their instructions will be hoisted
614   // to.
615   DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
616 
617   // The branches that we can hoist, mapped to the block that marks a
618   // convergence point of their control flow.
619   DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
620 
621 public:
622   ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
623                      MemorySSAUpdater *MSSAU)
624       : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
625 
626   void registerPossiblyHoistableBranch(BranchInst *BI) {
627     // We can only hoist conditional branches with loop invariant operands.
628     if (!ControlFlowHoisting || !BI->isConditional() ||
629         !CurLoop->hasLoopInvariantOperands(BI))
630       return;
631 
632     // The branch destinations need to be in the loop, and we don't gain
633     // anything by duplicating conditional branches with duplicate successors,
634     // as it's essentially the same as an unconditional branch.
635     BasicBlock *TrueDest = BI->getSuccessor(0);
636     BasicBlock *FalseDest = BI->getSuccessor(1);
637     if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
638         TrueDest == FalseDest)
639       return;
640 
641     // We can hoist BI if one branch destination is the successor of the other,
642     // or both have common successor which we check by seeing if the
643     // intersection of their successors is non-empty.
644     // TODO: This could be expanded to allowing branches where both ends
645     // eventually converge to a single block.
646     SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
647     TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
648     FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
649     BasicBlock *CommonSucc = nullptr;
650     if (TrueDestSucc.count(FalseDest)) {
651       CommonSucc = FalseDest;
652     } else if (FalseDestSucc.count(TrueDest)) {
653       CommonSucc = TrueDest;
654     } else {
655       set_intersect(TrueDestSucc, FalseDestSucc);
656       // If there's one common successor use that.
657       if (TrueDestSucc.size() == 1)
658         CommonSucc = *TrueDestSucc.begin();
659       // If there's more than one pick whichever appears first in the block list
660       // (we can't use the value returned by TrueDestSucc.begin() as it's
661       // unpredicatable which element gets returned).
662       else if (!TrueDestSucc.empty()) {
663         Function *F = TrueDest->getParent();
664         auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
665         auto It = llvm::find_if(*F, IsSucc);
666         assert(It != F->end() && "Could not find successor in function");
667         CommonSucc = &*It;
668       }
669     }
670     // The common successor has to be dominated by the branch, as otherwise
671     // there will be some other path to the successor that will not be
672     // controlled by this branch so any phi we hoist would be controlled by the
673     // wrong condition. This also takes care of avoiding hoisting of loop back
674     // edges.
675     // TODO: In some cases this could be relaxed if the successor is dominated
676     // by another block that's been hoisted and we can guarantee that the
677     // control flow has been replicated exactly.
678     if (CommonSucc && DT->dominates(BI, CommonSucc))
679       HoistableBranches[BI] = CommonSucc;
680   }
681 
682   bool canHoistPHI(PHINode *PN) {
683     // The phi must have loop invariant operands.
684     if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
685       return false;
686     // We can hoist phis if the block they are in is the target of hoistable
687     // branches which cover all of the predecessors of the block.
688     SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
689     BasicBlock *BB = PN->getParent();
690     for (BasicBlock *PredBB : predecessors(BB))
691       PredecessorBlocks.insert(PredBB);
692     // If we have less predecessor blocks than predecessors then the phi will
693     // have more than one incoming value for the same block which we can't
694     // handle.
695     // TODO: This could be handled be erasing some of the duplicate incoming
696     // values.
697     if (PredecessorBlocks.size() != pred_size(BB))
698       return false;
699     for (auto &Pair : HoistableBranches) {
700       if (Pair.second == BB) {
701         // Which blocks are predecessors via this branch depends on if the
702         // branch is triangle-like or diamond-like.
703         if (Pair.first->getSuccessor(0) == BB) {
704           PredecessorBlocks.erase(Pair.first->getParent());
705           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
706         } else if (Pair.first->getSuccessor(1) == BB) {
707           PredecessorBlocks.erase(Pair.first->getParent());
708           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
709         } else {
710           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
711           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
712         }
713       }
714     }
715     // PredecessorBlocks will now be empty if for every predecessor of BB we
716     // found a hoistable branch source.
717     return PredecessorBlocks.empty();
718   }
719 
720   BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
721     if (!ControlFlowHoisting)
722       return CurLoop->getLoopPreheader();
723     // If BB has already been hoisted, return that
724     if (HoistDestinationMap.count(BB))
725       return HoistDestinationMap[BB];
726 
727     // Check if this block is conditional based on a pending branch
728     auto HasBBAsSuccessor =
729         [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
730           return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
731                                        Pair.first->getSuccessor(1) == BB);
732         };
733     auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
734 
735     // If not involved in a pending branch, hoist to preheader
736     BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
737     if (It == HoistableBranches.end()) {
738       LLVM_DEBUG(dbgs() << "LICM using "
739                         << InitialPreheader->getNameOrAsOperand()
740                         << " as hoist destination for "
741                         << BB->getNameOrAsOperand() << "\n");
742       HoistDestinationMap[BB] = InitialPreheader;
743       return InitialPreheader;
744     }
745     BranchInst *BI = It->first;
746     assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
747                HoistableBranches.end() &&
748            "BB is expected to be the target of at most one branch");
749 
750     LLVMContext &C = BB->getContext();
751     BasicBlock *TrueDest = BI->getSuccessor(0);
752     BasicBlock *FalseDest = BI->getSuccessor(1);
753     BasicBlock *CommonSucc = HoistableBranches[BI];
754     BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
755 
756     // Create hoisted versions of blocks that currently don't have them
757     auto CreateHoistedBlock = [&](BasicBlock *Orig) {
758       if (HoistDestinationMap.count(Orig))
759         return HoistDestinationMap[Orig];
760       BasicBlock *New =
761           BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
762       HoistDestinationMap[Orig] = New;
763       DT->addNewBlock(New, HoistTarget);
764       if (CurLoop->getParentLoop())
765         CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
766       ++NumCreatedBlocks;
767       LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
768                         << " as hoist destination for " << Orig->getName()
769                         << "\n");
770       return New;
771     };
772     BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
773     BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
774     BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
775 
776     // Link up these blocks with branches.
777     if (!HoistCommonSucc->getTerminator()) {
778       // The new common successor we've generated will branch to whatever that
779       // hoist target branched to.
780       BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
781       assert(TargetSucc && "Expected hoist target to have a single successor");
782       HoistCommonSucc->moveBefore(TargetSucc);
783       BranchInst::Create(TargetSucc, HoistCommonSucc);
784     }
785     if (!HoistTrueDest->getTerminator()) {
786       HoistTrueDest->moveBefore(HoistCommonSucc);
787       BranchInst::Create(HoistCommonSucc, HoistTrueDest);
788     }
789     if (!HoistFalseDest->getTerminator()) {
790       HoistFalseDest->moveBefore(HoistCommonSucc);
791       BranchInst::Create(HoistCommonSucc, HoistFalseDest);
792     }
793 
794     // If BI is being cloned to what was originally the preheader then
795     // HoistCommonSucc will now be the new preheader.
796     if (HoistTarget == InitialPreheader) {
797       // Phis in the loop header now need to use the new preheader.
798       InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
799       MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
800           HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
801       // The new preheader dominates the loop header.
802       DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
803       DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
804       DT->changeImmediateDominator(HeaderNode, PreheaderNode);
805       // The preheader hoist destination is now the new preheader, with the
806       // exception of the hoist destination of this branch.
807       for (auto &Pair : HoistDestinationMap)
808         if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
809           Pair.second = HoistCommonSucc;
810     }
811 
812     // Now finally clone BI.
813     ReplaceInstWithInst(
814         HoistTarget->getTerminator(),
815         BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
816     ++NumClonedBranches;
817 
818     assert(CurLoop->getLoopPreheader() &&
819            "Hoisting blocks should not have destroyed preheader");
820     return HoistDestinationMap[BB];
821   }
822 };
823 } // namespace
824 
825 /// Walk the specified region of the CFG (defined by all blocks dominated by
826 /// the specified block, and that are in the current loop) in depth first
827 /// order w.r.t the DominatorTree.  This allows us to visit definitions before
828 /// uses, allowing us to hoist a loop body in one pass without iteration.
829 ///
830 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
831                        DominatorTree *DT, BlockFrequencyInfo *BFI,
832                        TargetLibraryInfo *TLI, Loop *CurLoop,
833                        MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
834                        ICFLoopSafetyInfo *SafetyInfo,
835                        SinkAndHoistLICMFlags &Flags,
836                        OptimizationRemarkEmitter *ORE, bool LoopNestMode,
837                        bool AllowSpeculation) {
838   // Verify inputs.
839   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
840          CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&
841          "Unexpected input to hoistRegion.");
842 
843   ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
844 
845   // Keep track of instructions that have been hoisted, as they may need to be
846   // re-hoisted if they end up not dominating all of their uses.
847   SmallVector<Instruction *, 16> HoistedInstructions;
848 
849   // For PHI hoisting to work we need to hoist blocks before their successors.
850   // We can do this by iterating through the blocks in the loop in reverse
851   // post-order.
852   LoopBlocksRPO Worklist(CurLoop);
853   Worklist.perform(LI);
854   bool Changed = false;
855   for (BasicBlock *BB : Worklist) {
856     // Only need to process the contents of this block if it is not part of a
857     // subloop (which would already have been processed).
858     if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
859       continue;
860 
861     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
862       // Try constant folding this instruction.  If all the operands are
863       // constants, it is technically hoistable, but it would be better to
864       // just fold it.
865       if (Constant *C = ConstantFoldInstruction(
866               &I, I.getModule()->getDataLayout(), TLI)) {
867         LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
868                           << '\n');
869         // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
870         I.replaceAllUsesWith(C);
871         if (isInstructionTriviallyDead(&I, TLI))
872           eraseInstruction(I, *SafetyInfo, MSSAU);
873         Changed = true;
874         continue;
875       }
876 
877       // Try hoisting the instruction out to the preheader.  We can only do
878       // this if all of the operands of the instruction are loop invariant and
879       // if it is safe to hoist the instruction. We also check block frequency
880       // to make sure instruction only gets hoisted into colder blocks.
881       // TODO: It may be safe to hoist if we are hoisting to a conditional block
882       // and we have accurately duplicated the control flow from the loop header
883       // to that block.
884       if (CurLoop->hasLoopInvariantOperands(&I) &&
885           canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/ nullptr, MSSAU,
886                              true, &Flags, ORE) &&
887           isSafeToExecuteUnconditionally(
888               I, DT, TLI, CurLoop, SafetyInfo, ORE,
889               CurLoop->getLoopPreheader()->getTerminator(), AllowSpeculation)) {
890         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
891               MSSAU, SE, ORE);
892         HoistedInstructions.push_back(&I);
893         Changed = true;
894         continue;
895       }
896 
897       // Attempt to remove floating point division out of the loop by
898       // converting it to a reciprocal multiplication.
899       if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
900           CurLoop->isLoopInvariant(I.getOperand(1))) {
901         auto Divisor = I.getOperand(1);
902         auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
903         auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
904         ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
905         SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
906         ReciprocalDivisor->insertBefore(&I);
907 
908         auto Product =
909             BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
910         Product->setFastMathFlags(I.getFastMathFlags());
911         SafetyInfo->insertInstructionTo(Product, I.getParent());
912         Product->insertAfter(&I);
913         I.replaceAllUsesWith(Product);
914         eraseInstruction(I, *SafetyInfo, MSSAU);
915 
916         hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
917               SafetyInfo, MSSAU, SE, ORE);
918         HoistedInstructions.push_back(ReciprocalDivisor);
919         Changed = true;
920         continue;
921       }
922 
923       auto IsInvariantStart = [&](Instruction &I) {
924         using namespace PatternMatch;
925         return I.use_empty() &&
926                match(&I, m_Intrinsic<Intrinsic::invariant_start>());
927       };
928       auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
929         return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
930                SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
931       };
932       if ((IsInvariantStart(I) || isGuard(&I)) &&
933           CurLoop->hasLoopInvariantOperands(&I) &&
934           MustExecuteWithoutWritesBefore(I)) {
935         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
936               MSSAU, SE, ORE);
937         HoistedInstructions.push_back(&I);
938         Changed = true;
939         continue;
940       }
941 
942       if (PHINode *PN = dyn_cast<PHINode>(&I)) {
943         if (CFH.canHoistPHI(PN)) {
944           // Redirect incoming blocks first to ensure that we create hoisted
945           // versions of those blocks before we hoist the phi.
946           for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
947             PN->setIncomingBlock(
948                 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
949           hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
950                 MSSAU, SE, ORE);
951           assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
952           Changed = true;
953           continue;
954         }
955       }
956 
957       // Remember possibly hoistable branches so we can actually hoist them
958       // later if needed.
959       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
960         CFH.registerPossiblyHoistableBranch(BI);
961     }
962   }
963 
964   // If we hoisted instructions to a conditional block they may not dominate
965   // their uses that weren't hoisted (such as phis where some operands are not
966   // loop invariant). If so make them unconditional by moving them to their
967   // immediate dominator. We iterate through the instructions in reverse order
968   // which ensures that when we rehoist an instruction we rehoist its operands,
969   // and also keep track of where in the block we are rehoisting to to make sure
970   // that we rehoist instructions before the instructions that use them.
971   Instruction *HoistPoint = nullptr;
972   if (ControlFlowHoisting) {
973     for (Instruction *I : reverse(HoistedInstructions)) {
974       if (!llvm::all_of(I->uses(),
975                         [&](Use &U) { return DT->dominates(I, U); })) {
976         BasicBlock *Dominator =
977             DT->getNode(I->getParent())->getIDom()->getBlock();
978         if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
979           if (HoistPoint)
980             assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
981                    "New hoist point expected to dominate old hoist point");
982           HoistPoint = Dominator->getTerminator();
983         }
984         LLVM_DEBUG(dbgs() << "LICM rehoisting to "
985                           << HoistPoint->getParent()->getNameOrAsOperand()
986                           << ": " << *I << "\n");
987         moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
988         HoistPoint = I;
989         Changed = true;
990       }
991     }
992   }
993   if (VerifyMemorySSA)
994     MSSAU->getMemorySSA()->verifyMemorySSA();
995 
996     // Now that we've finished hoisting make sure that LI and DT are still
997     // valid.
998 #ifdef EXPENSIVE_CHECKS
999   if (Changed) {
1000     assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
1001            "Dominator tree verification failed");
1002     LI->verify(*DT);
1003   }
1004 #endif
1005 
1006   return Changed;
1007 }
1008 
1009 // Return true if LI is invariant within scope of the loop. LI is invariant if
1010 // CurLoop is dominated by an invariant.start representing the same memory
1011 // location and size as the memory location LI loads from, and also the
1012 // invariant.start has no uses.
1013 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1014                                   Loop *CurLoop) {
1015   Value *Addr = LI->getOperand(0);
1016   const DataLayout &DL = LI->getModule()->getDataLayout();
1017   const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1018 
1019   // It is not currently possible for clang to generate an invariant.start
1020   // intrinsic with scalable vector types because we don't support thread local
1021   // sizeless types and we don't permit sizeless types in structs or classes.
1022   // Furthermore, even if support is added for this in future the intrinsic
1023   // itself is defined to have a size of -1 for variable sized objects. This
1024   // makes it impossible to verify if the intrinsic envelops our region of
1025   // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1026   // types would have a -1 parameter, but the former is clearly double the size
1027   // of the latter.
1028   if (LocSizeInBits.isScalable())
1029     return false;
1030 
1031   // if the type is i8 addrspace(x)*, we know this is the type of
1032   // llvm.invariant.start operand
1033   auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1034                                      LI->getPointerAddressSpace());
1035   unsigned BitcastsVisited = 0;
1036   // Look through bitcasts until we reach the i8* type (this is invariant.start
1037   // operand type).
1038   while (Addr->getType() != PtrInt8Ty) {
1039     auto *BC = dyn_cast<BitCastInst>(Addr);
1040     // Avoid traversing high number of bitcast uses.
1041     if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1042       return false;
1043     Addr = BC->getOperand(0);
1044   }
1045   // If we've ended up at a global/constant, bail. We shouldn't be looking at
1046   // uselists for non-local Values in a loop pass.
1047   if (isa<Constant>(Addr))
1048     return false;
1049 
1050   unsigned UsesVisited = 0;
1051   // Traverse all uses of the load operand value, to see if invariant.start is
1052   // one of the uses, and whether it dominates the load instruction.
1053   for (auto *U : Addr->users()) {
1054     // Avoid traversing for Load operand with high number of users.
1055     if (++UsesVisited > MaxNumUsesTraversed)
1056       return false;
1057     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1058     // If there are escaping uses of invariant.start instruction, the load maybe
1059     // non-invariant.
1060     if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1061         !II->use_empty())
1062       continue;
1063     ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1064     // The intrinsic supports having a -1 argument for variable sized objects
1065     // so we should check for that here.
1066     if (InvariantSize->isNegative())
1067       continue;
1068     uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1069     // Confirm the invariant.start location size contains the load operand size
1070     // in bits. Also, the invariant.start should dominate the load, and we
1071     // should not hoist the load out of a loop that contains this dominating
1072     // invariant.start.
1073     if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1074         DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1075       return true;
1076   }
1077 
1078   return false;
1079 }
1080 
1081 namespace {
1082 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1083 /// sink a given instruction out of a loop.  Does not address legality
1084 /// concerns such as aliasing or speculation safety.
1085 bool isHoistableAndSinkableInst(Instruction &I) {
1086   // Only these instructions are hoistable/sinkable.
1087   return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1088           isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1089           isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1090           isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1091           isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1092           isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1093           isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1094 }
1095 /// Return true if all of the alias sets within this AST are known not to
1096 /// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop.
1097 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1098                 const Loop *L) {
1099   if (CurAST) {
1100     for (AliasSet &AS : *CurAST) {
1101       if (!AS.isForwardingAliasSet() && AS.isMod()) {
1102         return false;
1103       }
1104     }
1105     return true;
1106   } else { /*MSSAU*/
1107     for (auto *BB : L->getBlocks())
1108       if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1109         return false;
1110     return true;
1111   }
1112 }
1113 
1114 /// Return true if I is the only Instruction with a MemoryAccess in L.
1115 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1116                         const MemorySSAUpdater *MSSAU) {
1117   for (auto *BB : L->getBlocks())
1118     if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1119       int NotAPhi = 0;
1120       for (const auto &Acc : *Accs) {
1121         if (isa<MemoryPhi>(&Acc))
1122           continue;
1123         const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1124         if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1125           return false;
1126       }
1127     }
1128   return true;
1129 }
1130 }
1131 
1132 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1133                               Loop *CurLoop, AliasSetTracker *CurAST,
1134                               MemorySSAUpdater *MSSAU,
1135                               bool TargetExecutesOncePerLoop,
1136                               SinkAndHoistLICMFlags *Flags,
1137                               OptimizationRemarkEmitter *ORE) {
1138   assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
1139          "Either AliasSetTracker or MemorySSA should be initialized.");
1140 
1141   // If we don't understand the instruction, bail early.
1142   if (!isHoistableAndSinkableInst(I))
1143     return false;
1144 
1145   MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
1146   if (MSSA)
1147     assert(Flags != nullptr && "Flags cannot be null.");
1148 
1149   // Loads have extra constraints we have to verify before we can hoist them.
1150   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1151     if (!LI->isUnordered())
1152       return false; // Don't sink/hoist volatile or ordered atomic loads!
1153 
1154     // Loads from constant memory are always safe to move, even if they end up
1155     // in the same alias set as something that ends up being modified.
1156     if (AA->pointsToConstantMemory(LI->getOperand(0)))
1157       return true;
1158     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1159       return true;
1160 
1161     if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1162       return false; // Don't risk duplicating unordered loads
1163 
1164     // This checks for an invariant.start dominating the load.
1165     if (isLoadInvariantInLoop(LI, DT, CurLoop))
1166       return true;
1167 
1168     bool Invalidated;
1169     if (CurAST)
1170       Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1171                                              CurLoop, AA);
1172     else
1173       Invalidated = pointerInvalidatedByLoopWithMSSA(
1174           MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
1175     // Check loop-invariant address because this may also be a sinkable load
1176     // whose address is not necessarily loop-invariant.
1177     if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1178       ORE->emit([&]() {
1179         return OptimizationRemarkMissed(
1180                    DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1181                << "failed to move load with loop-invariant address "
1182                   "because the loop may invalidate its value";
1183       });
1184 
1185     return !Invalidated;
1186   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1187     // Don't sink or hoist dbg info; it's legal, but not useful.
1188     if (isa<DbgInfoIntrinsic>(I))
1189       return false;
1190 
1191     // Don't sink calls which can throw.
1192     if (CI->mayThrow())
1193       return false;
1194 
1195     // Convergent attribute has been used on operations that involve
1196     // inter-thread communication which results are implicitly affected by the
1197     // enclosing control flows. It is not safe to hoist or sink such operations
1198     // across control flow.
1199     if (CI->isConvergent())
1200       return false;
1201 
1202     using namespace PatternMatch;
1203     if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1204       // Assumes don't actually alias anything or throw
1205       return true;
1206 
1207     if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1208       // Widenable conditions don't actually alias anything or throw
1209       return true;
1210 
1211     // Handle simple cases by querying alias analysis.
1212     FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1213     if (Behavior == FMRB_DoesNotAccessMemory)
1214       return true;
1215     if (AAResults::onlyReadsMemory(Behavior)) {
1216       // A readonly argmemonly function only reads from memory pointed to by
1217       // it's arguments with arbitrary offsets.  If we can prove there are no
1218       // writes to this memory in the loop, we can hoist or sink.
1219       if (AAResults::onlyAccessesArgPointees(Behavior)) {
1220         // TODO: expand to writeable arguments
1221         for (Value *Op : CI->args())
1222           if (Op->getType()->isPointerTy()) {
1223             bool Invalidated;
1224             if (CurAST)
1225               Invalidated = pointerInvalidatedByLoop(
1226                   MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
1227             else
1228               Invalidated = pointerInvalidatedByLoopWithMSSA(
1229                   MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1230                   *Flags);
1231             if (Invalidated)
1232               return false;
1233           }
1234         return true;
1235       }
1236 
1237       // If this call only reads from memory and there are no writes to memory
1238       // in the loop, we can hoist or sink the call as appropriate.
1239       if (isReadOnly(CurAST, MSSAU, CurLoop))
1240         return true;
1241     }
1242 
1243     // FIXME: This should use mod/ref information to see if we can hoist or
1244     // sink the call.
1245 
1246     return false;
1247   } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1248     // Fences alias (most) everything to provide ordering.  For the moment,
1249     // just give up if there are any other memory operations in the loop.
1250     if (CurAST) {
1251       auto Begin = CurAST->begin();
1252       assert(Begin != CurAST->end() && "must contain FI");
1253       if (std::next(Begin) != CurAST->end())
1254         // constant memory for instance, TODO: handle better
1255         return false;
1256       auto *UniqueI = Begin->getUniqueInstruction();
1257       if (!UniqueI)
1258         // other memory op, give up
1259         return false;
1260       (void)FI; // suppress unused variable warning
1261       assert(UniqueI == FI && "AS must contain FI");
1262       return true;
1263     } else // MSSAU
1264       return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1265   } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1266     if (!SI->isUnordered())
1267       return false; // Don't sink/hoist volatile or ordered atomic store!
1268 
1269     // We can only hoist a store that we can prove writes a value which is not
1270     // read or overwritten within the loop.  For those cases, we fallback to
1271     // load store promotion instead.  TODO: We can extend this to cases where
1272     // there is exactly one write to the location and that write dominates an
1273     // arbitrary number of reads in the loop.
1274     if (CurAST) {
1275       auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1276 
1277       if (AS.isRef() || !AS.isMustAlias())
1278         // Quick exit test, handled by the full path below as well.
1279         return false;
1280       auto *UniqueI = AS.getUniqueInstruction();
1281       if (!UniqueI)
1282         // other memory op, give up
1283         return false;
1284       assert(UniqueI == SI && "AS must contain SI");
1285       return true;
1286     } else { // MSSAU
1287       if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1288         return true;
1289       // If there are more accesses than the Promotion cap or no "quota" to
1290       // check clobber, then give up as we're not walking a list that long.
1291       if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
1292         return false;
1293       // If there are interfering Uses (i.e. their defining access is in the
1294       // loop), or ordered loads (stored as Defs!), don't move this store.
1295       // Could do better here, but this is conservatively correct.
1296       // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1297       // moving accesses. Can also extend to dominating uses.
1298       auto *SIMD = MSSA->getMemoryAccess(SI);
1299       for (auto *BB : CurLoop->getBlocks())
1300         if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1301           for (const auto &MA : *Accesses)
1302             if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1303               auto *MD = MU->getDefiningAccess();
1304               if (!MSSA->isLiveOnEntryDef(MD) &&
1305                   CurLoop->contains(MD->getBlock()))
1306                 return false;
1307               // Disable hoisting past potentially interfering loads. Optimized
1308               // Uses may point to an access outside the loop, as getClobbering
1309               // checks the previous iteration when walking the backedge.
1310               // FIXME: More precise: no Uses that alias SI.
1311               if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
1312                 return false;
1313             } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1314               if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1315                 (void)LI; // Silence warning.
1316                 assert(!LI->isUnordered() && "Expected unordered load");
1317                 return false;
1318               }
1319               // Any call, while it may not be clobbering SI, it may be a use.
1320               if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1321                 // Check if the call may read from the memory location written
1322                 // to by SI. Check CI's attributes and arguments; the number of
1323                 // such checks performed is limited above by NoOfMemAccTooLarge.
1324                 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1325                 if (isModOrRefSet(MRI))
1326                   return false;
1327               }
1328             }
1329         }
1330       auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1331       Flags->incrementClobberingCalls();
1332       // If there are no clobbering Defs in the loop, store is safe to hoist.
1333       return MSSA->isLiveOnEntryDef(Source) ||
1334              !CurLoop->contains(Source->getBlock());
1335     }
1336   }
1337 
1338   assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1339 
1340   // We've established mechanical ability and aliasing, it's up to the caller
1341   // to check fault safety
1342   return true;
1343 }
1344 
1345 /// Returns true if a PHINode is a trivially replaceable with an
1346 /// Instruction.
1347 /// This is true when all incoming values are that instruction.
1348 /// This pattern occurs most often with LCSSA PHI nodes.
1349 ///
1350 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1351   for (const Value *IncValue : PN.incoming_values())
1352     if (IncValue != &I)
1353       return false;
1354 
1355   return true;
1356 }
1357 
1358 /// Return true if the instruction is free in the loop.
1359 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1360                          const TargetTransformInfo *TTI) {
1361 
1362   if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1363     if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1364         TargetTransformInfo::TCC_Free)
1365       return false;
1366     // For a GEP, we cannot simply use getUserCost because currently it
1367     // optimistically assumes that a GEP will fold into addressing mode
1368     // regardless of its users.
1369     const BasicBlock *BB = GEP->getParent();
1370     for (const User *U : GEP->users()) {
1371       const Instruction *UI = cast<Instruction>(U);
1372       if (CurLoop->contains(UI) &&
1373           (BB != UI->getParent() ||
1374            (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1375         return false;
1376     }
1377     return true;
1378   } else
1379     return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1380            TargetTransformInfo::TCC_Free;
1381 }
1382 
1383 /// Return true if the only users of this instruction are outside of
1384 /// the loop. If this is true, we can sink the instruction to the exit
1385 /// blocks of the loop.
1386 ///
1387 /// We also return true if the instruction could be folded away in lowering.
1388 /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
1389 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1390                                   const LoopSafetyInfo *SafetyInfo,
1391                                   TargetTransformInfo *TTI, bool &FreeInLoop,
1392                                   bool LoopNestMode) {
1393   const auto &BlockColors = SafetyInfo->getBlockColors();
1394   bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1395   for (const User *U : I.users()) {
1396     const Instruction *UI = cast<Instruction>(U);
1397     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1398       const BasicBlock *BB = PN->getParent();
1399       // We cannot sink uses in catchswitches.
1400       if (isa<CatchSwitchInst>(BB->getTerminator()))
1401         return false;
1402 
1403       // We need to sink a callsite to a unique funclet.  Avoid sinking if the
1404       // phi use is too muddled.
1405       if (isa<CallInst>(I))
1406         if (!BlockColors.empty() &&
1407             BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1408           return false;
1409 
1410       if (LoopNestMode) {
1411         while (isa<PHINode>(UI) && UI->hasOneUser() &&
1412                UI->getNumOperands() == 1) {
1413           if (!CurLoop->contains(UI))
1414             break;
1415           UI = cast<Instruction>(UI->user_back());
1416         }
1417       }
1418     }
1419 
1420     if (CurLoop->contains(UI)) {
1421       if (IsFree) {
1422         FreeInLoop = true;
1423         continue;
1424       }
1425       return false;
1426     }
1427   }
1428   return true;
1429 }
1430 
1431 static Instruction *cloneInstructionInExitBlock(
1432     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1433     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1434   Instruction *New;
1435   if (auto *CI = dyn_cast<CallInst>(&I)) {
1436     const auto &BlockColors = SafetyInfo->getBlockColors();
1437 
1438     // Sinking call-sites need to be handled differently from other
1439     // instructions.  The cloned call-site needs a funclet bundle operand
1440     // appropriate for its location in the CFG.
1441     SmallVector<OperandBundleDef, 1> OpBundles;
1442     for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1443          BundleIdx != BundleEnd; ++BundleIdx) {
1444       OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1445       if (Bundle.getTagID() == LLVMContext::OB_funclet)
1446         continue;
1447 
1448       OpBundles.emplace_back(Bundle);
1449     }
1450 
1451     if (!BlockColors.empty()) {
1452       const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1453       assert(CV.size() == 1 && "non-unique color for exit block!");
1454       BasicBlock *BBColor = CV.front();
1455       Instruction *EHPad = BBColor->getFirstNonPHI();
1456       if (EHPad->isEHPad())
1457         OpBundles.emplace_back("funclet", EHPad);
1458     }
1459 
1460     New = CallInst::Create(CI, OpBundles);
1461   } else {
1462     New = I.clone();
1463   }
1464 
1465   ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1466   if (!I.getName().empty())
1467     New->setName(I.getName() + ".le");
1468 
1469   if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1470     // Create a new MemoryAccess and let MemorySSA set its defining access.
1471     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1472         New, nullptr, New->getParent(), MemorySSA::Beginning);
1473     if (NewMemAcc) {
1474       if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1475         MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1476       else {
1477         auto *MemUse = cast<MemoryUse>(NewMemAcc);
1478         MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1479       }
1480     }
1481   }
1482 
1483   // Build LCSSA PHI nodes for any in-loop operands (if legal).  Note that
1484   // this is particularly cheap because we can rip off the PHI node that we're
1485   // replacing for the number and blocks of the predecessors.
1486   // OPT: If this shows up in a profile, we can instead finish sinking all
1487   // invariant instructions, and then walk their operands to re-establish
1488   // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1489   // sinking bottom-up.
1490   for (Use &Op : New->operands())
1491     if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1492       auto *OInst = cast<Instruction>(Op.get());
1493       PHINode *OpPN =
1494         PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1495                         OInst->getName() + ".lcssa", &ExitBlock.front());
1496       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1497         OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1498       Op = OpPN;
1499     }
1500   return New;
1501 }
1502 
1503 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1504                              MemorySSAUpdater *MSSAU) {
1505   if (MSSAU)
1506     MSSAU->removeMemoryAccess(&I);
1507   SafetyInfo.removeInstruction(&I);
1508   I.eraseFromParent();
1509 }
1510 
1511 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1512                                   ICFLoopSafetyInfo &SafetyInfo,
1513                                   MemorySSAUpdater *MSSAU,
1514                                   ScalarEvolution *SE) {
1515   SafetyInfo.removeInstruction(&I);
1516   SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1517   I.moveBefore(&Dest);
1518   if (MSSAU)
1519     if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1520             MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1521       MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1522                          MemorySSA::BeforeTerminator);
1523   if (SE)
1524     SE->forgetValue(&I);
1525 }
1526 
1527 static Instruction *sinkThroughTriviallyReplaceablePHI(
1528     PHINode *TPN, Instruction *I, LoopInfo *LI,
1529     SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1530     const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1531     MemorySSAUpdater *MSSAU) {
1532   assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1533          "Expect only trivially replaceable PHI");
1534   BasicBlock *ExitBlock = TPN->getParent();
1535   Instruction *New;
1536   auto It = SunkCopies.find(ExitBlock);
1537   if (It != SunkCopies.end())
1538     New = It->second;
1539   else
1540     New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1541         *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1542   return New;
1543 }
1544 
1545 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1546   BasicBlock *BB = PN->getParent();
1547   if (!BB->canSplitPredecessors())
1548     return false;
1549   // It's not impossible to split EHPad blocks, but if BlockColors already exist
1550   // it require updating BlockColors for all offspring blocks accordingly. By
1551   // skipping such corner case, we can make updating BlockColors after splitting
1552   // predecessor fairly simple.
1553   if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1554     return false;
1555   for (BasicBlock *BBPred : predecessors(BB)) {
1556     if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1557         isa<CallBrInst>(BBPred->getTerminator()))
1558       return false;
1559   }
1560   return true;
1561 }
1562 
1563 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1564                                         LoopInfo *LI, const Loop *CurLoop,
1565                                         LoopSafetyInfo *SafetyInfo,
1566                                         MemorySSAUpdater *MSSAU) {
1567 #ifndef NDEBUG
1568   SmallVector<BasicBlock *, 32> ExitBlocks;
1569   CurLoop->getUniqueExitBlocks(ExitBlocks);
1570   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1571                                              ExitBlocks.end());
1572 #endif
1573   BasicBlock *ExitBB = PN->getParent();
1574   assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1575 
1576   // Split predecessors of the loop exit to make instructions in the loop are
1577   // exposed to exit blocks through trivially replaceable PHIs while keeping the
1578   // loop in the canonical form where each predecessor of each exit block should
1579   // be contained within the loop. For example, this will convert the loop below
1580   // from
1581   //
1582   // LB1:
1583   //   %v1 =
1584   //   br %LE, %LB2
1585   // LB2:
1586   //   %v2 =
1587   //   br %LE, %LB1
1588   // LE:
1589   //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1590   //
1591   // to
1592   //
1593   // LB1:
1594   //   %v1 =
1595   //   br %LE.split, %LB2
1596   // LB2:
1597   //   %v2 =
1598   //   br %LE.split2, %LB1
1599   // LE.split:
1600   //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
1601   //   br %LE
1602   // LE.split2:
1603   //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
1604   //   br %LE
1605   // LE:
1606   //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1607   //
1608   const auto &BlockColors = SafetyInfo->getBlockColors();
1609   SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1610   while (!PredBBs.empty()) {
1611     BasicBlock *PredBB = *PredBBs.begin();
1612     assert(CurLoop->contains(PredBB) &&
1613            "Expect all predecessors are in the loop");
1614     if (PN->getBasicBlockIndex(PredBB) >= 0) {
1615       BasicBlock *NewPred = SplitBlockPredecessors(
1616           ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1617       // Since we do not allow splitting EH-block with BlockColors in
1618       // canSplitPredecessors(), we can simply assign predecessor's color to
1619       // the new block.
1620       if (!BlockColors.empty())
1621         // Grab a reference to the ColorVector to be inserted before getting the
1622         // reference to the vector we are copying because inserting the new
1623         // element in BlockColors might cause the map to be reallocated.
1624         SafetyInfo->copyColors(NewPred, PredBB);
1625     }
1626     PredBBs.remove(PredBB);
1627   }
1628 }
1629 
1630 /// When an instruction is found to only be used outside of the loop, this
1631 /// function moves it to the exit blocks and patches up SSA form as needed.
1632 /// This method is guaranteed to remove the original instruction from its
1633 /// position, and may either delete it or move it to outside of the loop.
1634 ///
1635 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1636                  BlockFrequencyInfo *BFI, const Loop *CurLoop,
1637                  ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1638                  OptimizationRemarkEmitter *ORE) {
1639   bool Changed = false;
1640   LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1641 
1642   // Iterate over users to be ready for actual sinking. Replace users via
1643   // unreachable blocks with undef and make all user PHIs trivially replaceable.
1644   SmallPtrSet<Instruction *, 8> VisitedUsers;
1645   for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1646     auto *User = cast<Instruction>(*UI);
1647     Use &U = UI.getUse();
1648     ++UI;
1649 
1650     if (VisitedUsers.count(User) || CurLoop->contains(User))
1651       continue;
1652 
1653     if (!DT->isReachableFromEntry(User->getParent())) {
1654       U = UndefValue::get(I.getType());
1655       Changed = true;
1656       continue;
1657     }
1658 
1659     // The user must be a PHI node.
1660     PHINode *PN = cast<PHINode>(User);
1661 
1662     // Surprisingly, instructions can be used outside of loops without any
1663     // exits.  This can only happen in PHI nodes if the incoming block is
1664     // unreachable.
1665     BasicBlock *BB = PN->getIncomingBlock(U);
1666     if (!DT->isReachableFromEntry(BB)) {
1667       U = UndefValue::get(I.getType());
1668       Changed = true;
1669       continue;
1670     }
1671 
1672     VisitedUsers.insert(PN);
1673     if (isTriviallyReplaceablePHI(*PN, I))
1674       continue;
1675 
1676     if (!canSplitPredecessors(PN, SafetyInfo))
1677       return Changed;
1678 
1679     // Split predecessors of the PHI so that we can make users trivially
1680     // replaceable.
1681     splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1682 
1683     // Should rebuild the iterators, as they may be invalidated by
1684     // splitPredecessorsOfLoopExit().
1685     UI = I.user_begin();
1686     UE = I.user_end();
1687   }
1688 
1689   if (VisitedUsers.empty())
1690     return Changed;
1691 
1692   ORE->emit([&]() {
1693     return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1694            << "sinking " << ore::NV("Inst", &I);
1695   });
1696   if (isa<LoadInst>(I))
1697     ++NumMovedLoads;
1698   else if (isa<CallInst>(I))
1699     ++NumMovedCalls;
1700   ++NumSunk;
1701 
1702 #ifndef NDEBUG
1703   SmallVector<BasicBlock *, 32> ExitBlocks;
1704   CurLoop->getUniqueExitBlocks(ExitBlocks);
1705   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1706                                              ExitBlocks.end());
1707 #endif
1708 
1709   // Clones of this instruction. Don't create more than one per exit block!
1710   SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1711 
1712   // If this instruction is only used outside of the loop, then all users are
1713   // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1714   // the instruction.
1715   // First check if I is worth sinking for all uses. Sink only when it is worth
1716   // across all uses.
1717   SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1718   for (auto *UI : Users) {
1719     auto *User = cast<Instruction>(UI);
1720 
1721     if (CurLoop->contains(User))
1722       continue;
1723 
1724     PHINode *PN = cast<PHINode>(User);
1725     assert(ExitBlockSet.count(PN->getParent()) &&
1726            "The LCSSA PHI is not in an exit block!");
1727 
1728     // The PHI must be trivially replaceable.
1729     Instruction *New = sinkThroughTriviallyReplaceablePHI(
1730         PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1731     PN->replaceAllUsesWith(New);
1732     eraseInstruction(*PN, *SafetyInfo, nullptr);
1733     Changed = true;
1734   }
1735   return Changed;
1736 }
1737 
1738 /// When an instruction is found to only use loop invariant operands that
1739 /// is safe to hoist, this instruction is called to do the dirty work.
1740 ///
1741 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1742                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1743                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1744                   OptimizationRemarkEmitter *ORE) {
1745   LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
1746                     << I << "\n");
1747   ORE->emit([&]() {
1748     return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1749                                                          << ore::NV("Inst", &I);
1750   });
1751 
1752   // Metadata can be dependent on conditions we are hoisting above.
1753   // Conservatively strip all metadata on the instruction unless we were
1754   // guaranteed to execute I if we entered the loop, in which case the metadata
1755   // is valid in the loop preheader.
1756   // Similarly, If I is a call and it is not guaranteed to execute in the loop,
1757   // then moving to the preheader means we should strip attributes on the call
1758   // that can cause UB since we may be hoisting above conditions that allowed
1759   // inferring those attributes. They may not be valid at the preheader.
1760   if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
1761       // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1762       // time in isGuaranteedToExecute if we don't actually have anything to
1763       // drop.  It is a compile time optimization, not required for correctness.
1764       !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1765     I.dropUndefImplyingAttrsAndUnknownMetadata();
1766 
1767   if (isa<PHINode>(I))
1768     // Move the new node to the end of the phi list in the destination block.
1769     moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1770   else
1771     // Move the new node to the destination block, before its terminator.
1772     moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1773 
1774   I.updateLocationAfterHoist();
1775 
1776   if (isa<LoadInst>(I))
1777     ++NumMovedLoads;
1778   else if (isa<CallInst>(I))
1779     ++NumMovedCalls;
1780   ++NumHoisted;
1781 }
1782 
1783 /// Only sink or hoist an instruction if it is not a trapping instruction,
1784 /// or if the instruction is known not to trap when moved to the preheader.
1785 /// or if it is a trapping instruction and is guaranteed to execute.
1786 static bool isSafeToExecuteUnconditionally(
1787     Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
1788     const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
1789     OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
1790     bool AllowSpeculation) {
1791   if (AllowSpeculation && isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
1792     return true;
1793 
1794   bool GuaranteedToExecute =
1795       SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1796 
1797   if (!GuaranteedToExecute) {
1798     auto *LI = dyn_cast<LoadInst>(&Inst);
1799     if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1800       ORE->emit([&]() {
1801         return OptimizationRemarkMissed(
1802                    DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1803                << "failed to hoist load with loop-invariant address "
1804                   "because load is conditionally executed";
1805       });
1806   }
1807 
1808   return GuaranteedToExecute;
1809 }
1810 
1811 namespace {
1812 class LoopPromoter : public LoadAndStorePromoter {
1813   Value *SomePtr; // Designated pointer to store to.
1814   const SmallSetVector<Value *, 8> &PointerMustAliases;
1815   SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1816   SmallVectorImpl<Instruction *> &LoopInsertPts;
1817   SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1818   PredIteratorCache &PredCache;
1819   MemorySSAUpdater *MSSAU;
1820   LoopInfo &LI;
1821   DebugLoc DL;
1822   Align Alignment;
1823   bool UnorderedAtomic;
1824   AAMDNodes AATags;
1825   ICFLoopSafetyInfo &SafetyInfo;
1826   bool CanInsertStoresInExitBlocks;
1827 
1828   // We're about to add a use of V in a loop exit block.  Insert an LCSSA phi
1829   // (if legal) if doing so would add an out-of-loop use to an instruction
1830   // defined in-loop.
1831   Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1832     if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1833       return V;
1834 
1835     Instruction *I = cast<Instruction>(V);
1836     // We need to create an LCSSA PHI node for the incoming value and
1837     // store that.
1838     PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1839                                   I->getName() + ".lcssa", &BB->front());
1840     for (BasicBlock *Pred : PredCache.get(BB))
1841       PN->addIncoming(I, Pred);
1842     return PN;
1843   }
1844 
1845 public:
1846   LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1847                const SmallSetVector<Value *, 8> &PMA,
1848                SmallVectorImpl<BasicBlock *> &LEB,
1849                SmallVectorImpl<Instruction *> &LIP,
1850                SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1851                MemorySSAUpdater *MSSAU, LoopInfo &li, DebugLoc dl,
1852                Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
1853                ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks)
1854       : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1855         LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1856         PredCache(PIC), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1857         Alignment(Alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1858         SafetyInfo(SafetyInfo),
1859         CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks) {}
1860 
1861   bool isInstInList(Instruction *I,
1862                     const SmallVectorImpl<Instruction *> &) const override {
1863     Value *Ptr;
1864     if (LoadInst *LI = dyn_cast<LoadInst>(I))
1865       Ptr = LI->getOperand(0);
1866     else
1867       Ptr = cast<StoreInst>(I)->getPointerOperand();
1868     return PointerMustAliases.count(Ptr);
1869   }
1870 
1871   void insertStoresInLoopExitBlocks() {
1872     // Insert stores after in the loop exit blocks.  Each exit block gets a
1873     // store of the live-out values that feed them.  Since we've already told
1874     // the SSA updater about the defs in the loop and the preheader
1875     // definition, it is all set and we can start using it.
1876     for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1877       BasicBlock *ExitBlock = LoopExitBlocks[i];
1878       Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1879       LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1880       Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1881       Instruction *InsertPos = LoopInsertPts[i];
1882       StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1883       if (UnorderedAtomic)
1884         NewSI->setOrdering(AtomicOrdering::Unordered);
1885       NewSI->setAlignment(Alignment);
1886       NewSI->setDebugLoc(DL);
1887       if (AATags)
1888         NewSI->setAAMetadata(AATags);
1889 
1890       MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1891       MemoryAccess *NewMemAcc;
1892       if (!MSSAInsertPoint) {
1893         NewMemAcc = MSSAU->createMemoryAccessInBB(
1894             NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1895       } else {
1896         NewMemAcc =
1897             MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1898       }
1899       MSSAInsertPts[i] = NewMemAcc;
1900       MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1901       // FIXME: true for safety, false may still be correct.
1902     }
1903   }
1904 
1905   void doExtraRewritesBeforeFinalDeletion() override {
1906     if (CanInsertStoresInExitBlocks)
1907       insertStoresInLoopExitBlocks();
1908   }
1909 
1910   void instructionDeleted(Instruction *I) const override {
1911     SafetyInfo.removeInstruction(I);
1912     MSSAU->removeMemoryAccess(I);
1913   }
1914 
1915   bool shouldDelete(Instruction *I) const override {
1916     if (isa<StoreInst>(I))
1917       return CanInsertStoresInExitBlocks;
1918     return true;
1919   }
1920 };
1921 
1922 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1923                                  DominatorTree *DT) {
1924   // We can perform the captured-before check against any instruction in the
1925   // loop header, as the loop header is reachable from any instruction inside
1926   // the loop.
1927   // TODO: ReturnCaptures=true shouldn't be necessary here.
1928   return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1929                                      /* StoreCaptures */ true,
1930                                      L->getHeader()->getTerminator(), DT);
1931 }
1932 
1933 /// Return true if we can prove that a caller cannot inspect the object if an
1934 /// unwind occurs inside the loop.
1935 bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L,
1936                                 DominatorTree *DT) {
1937   bool RequiresNoCaptureBeforeUnwind;
1938   if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind))
1939     return false;
1940 
1941   return !RequiresNoCaptureBeforeUnwind ||
1942          isNotCapturedBeforeOrInLoop(Object, L, DT);
1943 }
1944 
1945 } // namespace
1946 
1947 /// Try to promote memory values to scalars by sinking stores out of the
1948 /// loop and moving loads to before the loop.  We do this by looping over
1949 /// the stores in the loop, looking for stores to Must pointers which are
1950 /// loop invariant.
1951 ///
1952 bool llvm::promoteLoopAccessesToScalars(
1953     const SmallSetVector<Value *, 8> &PointerMustAliases,
1954     SmallVectorImpl<BasicBlock *> &ExitBlocks,
1955     SmallVectorImpl<Instruction *> &InsertPts,
1956     SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1957     LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1958     Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
1959     OptimizationRemarkEmitter *ORE, bool AllowSpeculation) {
1960   // Verify inputs.
1961   assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1962          SafetyInfo != nullptr &&
1963          "Unexpected Input to promoteLoopAccessesToScalars");
1964 
1965   Value *SomePtr = *PointerMustAliases.begin();
1966   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1967 
1968   // It is not safe to promote a load/store from the loop if the load/store is
1969   // conditional.  For example, turning:
1970   //
1971   //    for () { if (c) *P += 1; }
1972   //
1973   // into:
1974   //
1975   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
1976   //
1977   // is not safe, because *P may only be valid to access if 'c' is true.
1978   //
1979   // The safety property divides into two parts:
1980   // p1) The memory may not be dereferenceable on entry to the loop.  In this
1981   //    case, we can't insert the required load in the preheader.
1982   // p2) The memory model does not allow us to insert a store along any dynamic
1983   //    path which did not originally have one.
1984   //
1985   // If at least one store is guaranteed to execute, both properties are
1986   // satisfied, and promotion is legal.
1987   //
1988   // This, however, is not a necessary condition. Even if no store/load is
1989   // guaranteed to execute, we can still establish these properties.
1990   // We can establish (p1) by proving that hoisting the load into the preheader
1991   // is safe (i.e. proving dereferenceability on all paths through the loop). We
1992   // can use any access within the alias set to prove dereferenceability,
1993   // since they're all must alias.
1994   //
1995   // There are two ways establish (p2):
1996   // a) Prove the location is thread-local. In this case the memory model
1997   // requirement does not apply, and stores are safe to insert.
1998   // b) Prove a store dominates every exit block. In this case, if an exit
1999   // blocks is reached, the original dynamic path would have taken us through
2000   // the store, so inserting a store into the exit block is safe. Note that this
2001   // is different from the store being guaranteed to execute. For instance,
2002   // if an exception is thrown on the first iteration of the loop, the original
2003   // store is never executed, but the exit blocks are not executed either.
2004 
2005   bool DereferenceableInPH = false;
2006   bool SafeToInsertStore = false;
2007   bool FoundLoadToPromote = false;
2008 
2009   SmallVector<Instruction *, 64> LoopUses;
2010 
2011   // We start with an alignment of one and try to find instructions that allow
2012   // us to prove better alignment.
2013   Align Alignment;
2014   // Keep track of which types of access we see
2015   bool SawUnorderedAtomic = false;
2016   bool SawNotAtomic = false;
2017   AAMDNodes AATags;
2018 
2019   const DataLayout &MDL = Preheader->getModule()->getDataLayout();
2020 
2021   bool IsKnownThreadLocalObject = false;
2022   if (SafetyInfo->anyBlockMayThrow()) {
2023     // If a loop can throw, we have to insert a store along each unwind edge.
2024     // That said, we can't actually make the unwind edge explicit. Therefore,
2025     // we have to prove that the store is dead along the unwind edge.  We do
2026     // this by proving that the caller can't have a reference to the object
2027     // after return and thus can't possibly load from the object.
2028     Value *Object = getUnderlyingObject(SomePtr);
2029     if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT))
2030       return false;
2031     // Subtlety: Alloca's aren't visible to callers, but *are* potentially
2032     // visible to other threads if captured and used during their lifetimes.
2033     IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
2034   }
2035 
2036   // Check that all accesses to pointers in the aliass set use the same type.
2037   // We cannot (yet) promote a memory location that is loaded and stored in
2038   // different sizes.  While we are at it, collect alignment and AA info.
2039   Type *AccessTy = nullptr;
2040   for (Value *ASIV : PointerMustAliases) {
2041     for (User *U : ASIV->users()) {
2042       // Ignore instructions that are outside the loop.
2043       Instruction *UI = dyn_cast<Instruction>(U);
2044       if (!UI || !CurLoop->contains(UI))
2045         continue;
2046 
2047       // If there is an non-load/store instruction in the loop, we can't promote
2048       // it.
2049       if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2050         if (!Load->isUnordered())
2051           return false;
2052 
2053         SawUnorderedAtomic |= Load->isAtomic();
2054         SawNotAtomic |= !Load->isAtomic();
2055         FoundLoadToPromote = true;
2056 
2057         Align InstAlignment = Load->getAlign();
2058 
2059         // Note that proving a load safe to speculate requires proving
2060         // sufficient alignment at the target location.  Proving it guaranteed
2061         // to execute does as well.  Thus we can increase our guaranteed
2062         // alignment as well.
2063         if (!DereferenceableInPH || (InstAlignment > Alignment))
2064           if (isSafeToExecuteUnconditionally(
2065                   *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
2066                   Preheader->getTerminator(), AllowSpeculation)) {
2067             DereferenceableInPH = true;
2068             Alignment = std::max(Alignment, InstAlignment);
2069           }
2070       } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2071         // Stores *of* the pointer are not interesting, only stores *to* the
2072         // pointer.
2073         if (UI->getOperand(1) != ASIV)
2074           continue;
2075         if (!Store->isUnordered())
2076           return false;
2077 
2078         SawUnorderedAtomic |= Store->isAtomic();
2079         SawNotAtomic |= !Store->isAtomic();
2080 
2081         // If the store is guaranteed to execute, both properties are satisfied.
2082         // We may want to check if a store is guaranteed to execute even if we
2083         // already know that promotion is safe, since it may have higher
2084         // alignment than any other guaranteed stores, in which case we can
2085         // raise the alignment on the promoted store.
2086         Align InstAlignment = Store->getAlign();
2087 
2088         if (!DereferenceableInPH || !SafeToInsertStore ||
2089             (InstAlignment > Alignment)) {
2090           if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2091             DereferenceableInPH = true;
2092             SafeToInsertStore = true;
2093             Alignment = std::max(Alignment, InstAlignment);
2094           }
2095         }
2096 
2097         // If a store dominates all exit blocks, it is safe to sink.
2098         // As explained above, if an exit block was executed, a dominating
2099         // store must have been executed at least once, so we are not
2100         // introducing stores on paths that did not have them.
2101         // Note that this only looks at explicit exit blocks. If we ever
2102         // start sinking stores into unwind edges (see above), this will break.
2103         if (!SafeToInsertStore)
2104           SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2105             return DT->dominates(Store->getParent(), Exit);
2106           });
2107 
2108         // If the store is not guaranteed to execute, we may still get
2109         // deref info through it.
2110         if (!DereferenceableInPH) {
2111           DereferenceableInPH = isDereferenceableAndAlignedPointer(
2112               Store->getPointerOperand(), Store->getValueOperand()->getType(),
2113               Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
2114         }
2115       } else
2116         return false; // Not a load or store.
2117 
2118       if (!AccessTy)
2119         AccessTy = getLoadStoreType(UI);
2120       else if (AccessTy != getLoadStoreType(UI))
2121         return false;
2122 
2123       // Merge the AA tags.
2124       if (LoopUses.empty()) {
2125         // On the first load/store, just take its AA tags.
2126         AATags = UI->getAAMetadata();
2127       } else if (AATags) {
2128         AATags = AATags.merge(UI->getAAMetadata());
2129       }
2130 
2131       LoopUses.push_back(UI);
2132     }
2133   }
2134 
2135   // If we found both an unordered atomic instruction and a non-atomic memory
2136   // access, bail.  We can't blindly promote non-atomic to atomic since we
2137   // might not be able to lower the result.  We can't downgrade since that
2138   // would violate memory model.  Also, align 0 is an error for atomics.
2139   if (SawUnorderedAtomic && SawNotAtomic)
2140     return false;
2141 
2142   // If we're inserting an atomic load in the preheader, we must be able to
2143   // lower it.  We're only guaranteed to be able to lower naturally aligned
2144   // atomics.
2145   if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy))
2146     return false;
2147 
2148   // If we couldn't prove we can hoist the load, bail.
2149   if (!DereferenceableInPH)
2150     return false;
2151 
2152   // We know we can hoist the load, but don't have a guaranteed store.
2153   // Check whether the location is thread-local. If it is, then we can insert
2154   // stores along paths which originally didn't have them without violating the
2155   // memory model.
2156   if (!SafeToInsertStore) {
2157     if (IsKnownThreadLocalObject)
2158       SafeToInsertStore = true;
2159     else {
2160       Value *Object = getUnderlyingObject(SomePtr);
2161       SafeToInsertStore =
2162           (isNoAliasCall(Object) || isa<AllocaInst>(Object)) &&
2163           isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
2164     }
2165   }
2166 
2167   // If we've still failed to prove we can sink the store, hoist the load
2168   // only, if possible.
2169   if (!SafeToInsertStore && !FoundLoadToPromote)
2170     // If we cannot hoist the load either, give up.
2171     return false;
2172 
2173   // Lets do the promotion!
2174   if (SafeToInsertStore)
2175     LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr
2176                       << '\n');
2177   else
2178     LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr
2179                       << '\n');
2180 
2181   ORE->emit([&]() {
2182     return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2183                               LoopUses[0])
2184            << "Moving accesses to memory location out of the loop";
2185   });
2186   ++NumPromoted;
2187 
2188   // Look at all the loop uses, and try to merge their locations.
2189   std::vector<const DILocation *> LoopUsesLocs;
2190   for (auto U : LoopUses)
2191     LoopUsesLocs.push_back(U->getDebugLoc().get());
2192   auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2193 
2194   // We use the SSAUpdater interface to insert phi nodes as required.
2195   SmallVector<PHINode *, 16> NewPHIs;
2196   SSAUpdater SSA(&NewPHIs);
2197   LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2198                         InsertPts, MSSAInsertPts, PIC, MSSAU, *LI, DL,
2199                         Alignment, SawUnorderedAtomic, AATags, *SafetyInfo,
2200                         SafeToInsertStore);
2201 
2202   // Set up the preheader to have a definition of the value.  It is the live-out
2203   // value from the preheader that uses in the loop will use.
2204   LoadInst *PreheaderLoad = new LoadInst(
2205       AccessTy, SomePtr, SomePtr->getName() + ".promoted",
2206       Preheader->getTerminator());
2207   if (SawUnorderedAtomic)
2208     PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2209   PreheaderLoad->setAlignment(Alignment);
2210   PreheaderLoad->setDebugLoc(DebugLoc());
2211   if (AATags)
2212     PreheaderLoad->setAAMetadata(AATags);
2213   SSA.AddAvailableValue(Preheader, PreheaderLoad);
2214 
2215   MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2216       PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2217   MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2218   MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2219 
2220   if (VerifyMemorySSA)
2221     MSSAU->getMemorySSA()->verifyMemorySSA();
2222   // Rewrite all the loads in the loop and remember all the definitions from
2223   // stores in the loop.
2224   Promoter.run(LoopUses);
2225 
2226   if (VerifyMemorySSA)
2227     MSSAU->getMemorySSA()->verifyMemorySSA();
2228   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2229   if (PreheaderLoad->use_empty())
2230     eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);
2231 
2232   return true;
2233 }
2234 
2235 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2236                                 function_ref<void(Instruction *)> Fn) {
2237   for (const BasicBlock *BB : L->blocks())
2238     if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2239       for (const auto &Access : *Accesses)
2240         if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2241           Fn(MUD->getMemoryInst());
2242 }
2243 
2244 static SmallVector<SmallSetVector<Value *, 8>, 0>
2245 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2246   AliasSetTracker AST(*AA);
2247 
2248   auto IsPotentiallyPromotable = [L](const Instruction *I) {
2249     if (const auto *SI = dyn_cast<StoreInst>(I))
2250       return L->isLoopInvariant(SI->getPointerOperand());
2251     if (const auto *LI = dyn_cast<LoadInst>(I))
2252       return L->isLoopInvariant(LI->getPointerOperand());
2253     return false;
2254   };
2255 
2256   // Populate AST with potentially promotable accesses and remove them from
2257   // MaybePromotable, so they will not be checked again on the next iteration.
2258   SmallPtrSet<Value *, 16> AttemptingPromotion;
2259   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2260     if (IsPotentiallyPromotable(I)) {
2261       AttemptingPromotion.insert(I);
2262       AST.add(I);
2263     }
2264   });
2265 
2266   // We're only interested in must-alias sets that contain a mod.
2267   SmallVector<const AliasSet *, 8> Sets;
2268   for (AliasSet &AS : AST)
2269     if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2270       Sets.push_back(&AS);
2271 
2272   if (Sets.empty())
2273     return {}; // Nothing to promote...
2274 
2275   // Discard any sets for which there is an aliasing non-promotable access.
2276   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2277     if (AttemptingPromotion.contains(I))
2278       return;
2279 
2280     llvm::erase_if(Sets, [&](const AliasSet *AS) {
2281       return AS->aliasesUnknownInst(I, *AA);
2282     });
2283   });
2284 
2285   SmallVector<SmallSetVector<Value *, 8>, 0> Result;
2286   for (const AliasSet *Set : Sets) {
2287     SmallSetVector<Value *, 8> PointerMustAliases;
2288     for (const auto &ASI : *Set)
2289       PointerMustAliases.insert(ASI.getValue());
2290     Result.push_back(std::move(PointerMustAliases));
2291   }
2292 
2293   return Result;
2294 }
2295 
2296 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2297                                      AliasSetTracker *CurAST, Loop *CurLoop,
2298                                      AAResults *AA) {
2299   return CurAST->getAliasSetFor(MemLoc).isMod();
2300 }
2301 
2302 bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2303                                       Loop *CurLoop, Instruction &I,
2304                                       SinkAndHoistLICMFlags &Flags) {
2305   // For hoisting, use the walker to determine safety
2306   if (!Flags.getIsSink()) {
2307     MemoryAccess *Source;
2308     // See declaration of SetLicmMssaOptCap for usage details.
2309     if (Flags.tooManyClobberingCalls())
2310       Source = MU->getDefiningAccess();
2311     else {
2312       Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2313       Flags.incrementClobberingCalls();
2314     }
2315     return !MSSA->isLiveOnEntryDef(Source) &&
2316            CurLoop->contains(Source->getBlock());
2317   }
2318 
2319   // For sinking, we'd need to check all Defs below this use. The getClobbering
2320   // call will look on the backedge of the loop, but will check aliasing with
2321   // the instructions on the previous iteration.
2322   // For example:
2323   // for (i ... )
2324   //   load a[i] ( Use (LoE)
2325   //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2326   //   i++;
2327   // The load sees no clobbering inside the loop, as the backedge alias check
2328   // does phi translation, and will check aliasing against store a[i-1].
2329   // However sinking the load outside the loop, below the store is incorrect.
2330 
2331   // For now, only sink if there are no Defs in the loop, and the existing ones
2332   // precede the use and are in the same block.
2333   // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2334   // needs PostDominatorTreeAnalysis.
2335   // FIXME: More precise: no Defs that alias this Use.
2336   if (Flags.tooManyMemoryAccesses())
2337     return true;
2338   for (auto *BB : CurLoop->getBlocks())
2339     if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
2340       return true;
2341   // When sinking, the source block may not be part of the loop so check it.
2342   if (!CurLoop->contains(&I))
2343     return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
2344 
2345   return false;
2346 }
2347 
2348 bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
2349                                        MemoryUse &MU) {
2350   if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2351     for (const auto &MA : *Accesses)
2352       if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2353         if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2354           return true;
2355   return false;
2356 }
2357 
2358 /// Little predicate that returns true if the specified basic block is in
2359 /// a subloop of the current one, not the current one itself.
2360 ///
2361 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2362   assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2363   return LI->getLoopFor(BB) != CurLoop;
2364 }
2365