1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion, attempting to remove as much 10 // code from the body of a loop as possible. It does this by either hoisting 11 // code into the preheader block, or by sinking code to the exit blocks if it is 12 // safe. This pass also promotes must-aliased memory locations in the loop to 13 // live in registers, thus hoisting and sinking "invariant" loads and stores. 14 // 15 // Hoisting operations out of loops is a canonicalization transform. It 16 // enables and simplifies subsequent optimizations in the middle-end. 17 // Rematerialization of hoisted instructions to reduce register pressure is the 18 // responsibility of the back-end, which has more accurate information about 19 // register pressure and also handles other optimizations than LICM that 20 // increase live-ranges. 21 // 22 // This pass uses alias analysis for two purposes: 23 // 24 // 1. Moving loop invariant loads and calls out of loops. If we can determine 25 // that a load or call inside of a loop never aliases anything stored to, 26 // we can hoist it or sink it like any other instruction. 27 // 2. Scalar Promotion of Memory - If there is a store instruction inside of 28 // the loop, we try to move the store to happen AFTER the loop instead of 29 // inside of the loop. This can only happen if a few conditions are true: 30 // A. The pointer stored through is loop invariant 31 // B. There are no stores or loads in the loop which _may_ alias the 32 // pointer. There are no calls in the loop which mod/ref the pointer. 33 // If these conditions are true, we can promote the loads and stores in the 34 // loop of the pointer to use a temporary alloca'd variable. We then use 35 // the SSAUpdater to construct the appropriate SSA form for the value. 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LICM.h" 40 #include "llvm/ADT/PriorityWorklist.h" 41 #include "llvm/ADT/SetOperations.h" 42 #include "llvm/ADT/Statistic.h" 43 #include "llvm/Analysis/AliasAnalysis.h" 44 #include "llvm/Analysis/AliasSetTracker.h" 45 #include "llvm/Analysis/AssumptionCache.h" 46 #include "llvm/Analysis/CaptureTracking.h" 47 #include "llvm/Analysis/GuardUtils.h" 48 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 49 #include "llvm/Analysis/Loads.h" 50 #include "llvm/Analysis/LoopInfo.h" 51 #include "llvm/Analysis/LoopIterator.h" 52 #include "llvm/Analysis/LoopNestAnalysis.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Analysis/MemorySSA.h" 55 #include "llvm/Analysis/MemorySSAUpdater.h" 56 #include "llvm/Analysis/MustExecute.h" 57 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 58 #include "llvm/Analysis/ScalarEvolution.h" 59 #include "llvm/Analysis/TargetLibraryInfo.h" 60 #include "llvm/Analysis/TargetTransformInfo.h" 61 #include "llvm/Analysis/ValueTracking.h" 62 #include "llvm/IR/CFG.h" 63 #include "llvm/IR/Constants.h" 64 #include "llvm/IR/DataLayout.h" 65 #include "llvm/IR/DebugInfoMetadata.h" 66 #include "llvm/IR/DerivedTypes.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/IntrinsicInst.h" 70 #include "llvm/IR/IRBuilder.h" 71 #include "llvm/IR/LLVMContext.h" 72 #include "llvm/IR/Metadata.h" 73 #include "llvm/IR/PatternMatch.h" 74 #include "llvm/IR/PredIteratorCache.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Support/CommandLine.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/raw_ostream.h" 79 #include "llvm/Target/TargetOptions.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/LoopUtils.h" 85 #include "llvm/Transforms/Utils/SSAUpdater.h" 86 #include <algorithm> 87 #include <utility> 88 using namespace llvm; 89 90 namespace llvm { 91 class LPMUpdater; 92 } // namespace llvm 93 94 #define DEBUG_TYPE "licm" 95 96 STATISTIC(NumCreatedBlocks, "Number of blocks created"); 97 STATISTIC(NumClonedBranches, "Number of branches cloned"); 98 STATISTIC(NumSunk, "Number of instructions sunk out of loop"); 99 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); 100 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); 101 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); 102 STATISTIC(NumPromotionCandidates, "Number of promotion candidates"); 103 STATISTIC(NumLoadPromoted, "Number of load-only promotions"); 104 STATISTIC(NumLoadStorePromoted, "Number of load and store promotions"); 105 STATISTIC(NumMinMaxHoisted, 106 "Number of min/max expressions hoisted out of the loop"); 107 STATISTIC(NumGEPsHoisted, 108 "Number of geps reassociated and hoisted out of the loop"); 109 STATISTIC(NumAddSubHoisted, "Number of add/subtract expressions reassociated " 110 "and hoisted out of the loop"); 111 STATISTIC(NumFPAssociationsHoisted, "Number of invariant FP expressions " 112 "reassociated and hoisted out of the loop"); 113 STATISTIC(NumIntAssociationsHoisted, 114 "Number of invariant int expressions " 115 "reassociated and hoisted out of the loop"); 116 117 /// Memory promotion is enabled by default. 118 static cl::opt<bool> 119 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), 120 cl::desc("Disable memory promotion in LICM pass")); 121 122 static cl::opt<bool> ControlFlowHoisting( 123 "licm-control-flow-hoisting", cl::Hidden, cl::init(false), 124 cl::desc("Enable control flow (and PHI) hoisting in LICM")); 125 126 static cl::opt<bool> 127 SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false), 128 cl::desc("Force thread model single in LICM pass")); 129 130 static cl::opt<uint32_t> MaxNumUsesTraversed( 131 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), 132 cl::desc("Max num uses visited for identifying load " 133 "invariance in loop using invariant start (default = 8)")); 134 135 static cl::opt<unsigned> FPAssociationUpperLimit( 136 "licm-max-num-fp-reassociations", cl::init(5U), cl::Hidden, 137 cl::desc( 138 "Set upper limit for the number of transformations performed " 139 "during a single round of hoisting the reassociated expressions.")); 140 141 cl::opt<unsigned> IntAssociationUpperLimit( 142 "licm-max-num-int-reassociations", cl::init(5U), cl::Hidden, 143 cl::desc( 144 "Set upper limit for the number of transformations performed " 145 "during a single round of hoisting the reassociated expressions.")); 146 147 // Experimental option to allow imprecision in LICM in pathological cases, in 148 // exchange for faster compile. This is to be removed if MemorySSA starts to 149 // address the same issue. LICM calls MemorySSAWalker's 150 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect 151 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, 152 // which may not be precise, since optimizeUses is capped. The result is 153 // correct, but we may not get as "far up" as possible to get which access is 154 // clobbering the one queried. 155 cl::opt<unsigned> llvm::SetLicmMssaOptCap( 156 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, 157 cl::desc("Enable imprecision in LICM in pathological cases, in exchange " 158 "for faster compile. Caps the MemorySSA clobbering calls.")); 159 160 // Experimentally, memory promotion carries less importance than sinking and 161 // hoisting. Limit when we do promotion when using MemorySSA, in order to save 162 // compile time. 163 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( 164 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, 165 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " 166 "effect. When MSSA in LICM is enabled, then this is the maximum " 167 "number of accesses allowed to be present in a loop in order to " 168 "enable memory promotion.")); 169 170 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); 171 static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, 172 const LoopSafetyInfo *SafetyInfo, 173 TargetTransformInfo *TTI, 174 bool &FoldableInLoop, bool LoopNestMode); 175 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 176 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 177 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 178 OptimizationRemarkEmitter *ORE); 179 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 180 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 181 MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE); 182 static bool isSafeToExecuteUnconditionally( 183 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, 184 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, 185 OptimizationRemarkEmitter *ORE, const Instruction *CtxI, 186 AssumptionCache *AC, bool AllowSpeculation); 187 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, 188 Loop *CurLoop, Instruction &I, 189 SinkAndHoistLICMFlags &Flags, 190 bool InvariantGroup); 191 static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, 192 MemoryUse &MU); 193 /// Aggregates various functions for hoisting computations out of loop. 194 static bool hoistArithmetics(Instruction &I, Loop &L, 195 ICFLoopSafetyInfo &SafetyInfo, 196 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 197 DominatorTree *DT); 198 static Instruction *cloneInstructionInExitBlock( 199 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 200 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU); 201 202 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 203 MemorySSAUpdater &MSSAU); 204 205 static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest, 206 ICFLoopSafetyInfo &SafetyInfo, 207 MemorySSAUpdater &MSSAU, ScalarEvolution *SE); 208 209 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, 210 function_ref<void(Instruction *)> Fn); 211 using PointersAndHasReadsOutsideSet = 212 std::pair<SmallSetVector<Value *, 8>, bool>; 213 static SmallVector<PointersAndHasReadsOutsideSet, 0> 214 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L); 215 216 namespace { 217 struct LoopInvariantCodeMotion { 218 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, 219 AssumptionCache *AC, TargetLibraryInfo *TLI, 220 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, 221 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false); 222 223 LoopInvariantCodeMotion(unsigned LicmMssaOptCap, 224 unsigned LicmMssaNoAccForPromotionCap, 225 bool LicmAllowSpeculation) 226 : LicmMssaOptCap(LicmMssaOptCap), 227 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), 228 LicmAllowSpeculation(LicmAllowSpeculation) {} 229 230 private: 231 unsigned LicmMssaOptCap; 232 unsigned LicmMssaNoAccForPromotionCap; 233 bool LicmAllowSpeculation; 234 }; 235 236 struct LegacyLICMPass : public LoopPass { 237 static char ID; // Pass identification, replacement for typeid 238 LegacyLICMPass( 239 unsigned LicmMssaOptCap = SetLicmMssaOptCap, 240 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap, 241 bool LicmAllowSpeculation = true) 242 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 243 LicmAllowSpeculation) { 244 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); 245 } 246 247 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 248 if (skipLoop(L)) 249 return false; 250 251 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block " 252 << L->getHeader()->getNameOrAsOperand() << "\n"); 253 254 Function *F = L->getHeader()->getParent(); 255 256 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 257 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 258 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 259 // pass. Function analyses need to be preserved across loop transformations 260 // but ORE cannot be preserved (see comment before the pass definition). 261 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 262 return LICM.runOnLoop( 263 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(), 264 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 265 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 266 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F), 267 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*F), 268 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*F), 269 SE ? &SE->getSE() : nullptr, MSSA, &ORE); 270 } 271 272 /// This transformation requires natural loop information & requires that 273 /// loop preheaders be inserted into the CFG... 274 /// 275 void getAnalysisUsage(AnalysisUsage &AU) const override { 276 AU.addPreserved<DominatorTreeWrapperPass>(); 277 AU.addPreserved<LoopInfoWrapperPass>(); 278 AU.addRequired<TargetLibraryInfoWrapperPass>(); 279 AU.addRequired<MemorySSAWrapperPass>(); 280 AU.addPreserved<MemorySSAWrapperPass>(); 281 AU.addRequired<TargetTransformInfoWrapperPass>(); 282 AU.addRequired<AssumptionCacheTracker>(); 283 getLoopAnalysisUsage(AU); 284 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 285 AU.addPreserved<LazyBlockFrequencyInfoPass>(); 286 AU.addPreserved<LazyBranchProbabilityInfoPass>(); 287 } 288 289 private: 290 LoopInvariantCodeMotion LICM; 291 }; 292 } // namespace 293 294 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, 295 LoopStandardAnalysisResults &AR, LPMUpdater &) { 296 if (!AR.MSSA) 297 report_fatal_error("LICM requires MemorySSA (loop-mssa)", 298 /*GenCrashDiag*/false); 299 300 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 301 // pass. Function analyses need to be preserved across loop transformations 302 // but ORE cannot be preserved (see comment before the pass definition). 303 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 304 305 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, 306 Opts.AllowSpeculation); 307 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI, 308 &AR.SE, AR.MSSA, &ORE)) 309 return PreservedAnalyses::all(); 310 311 auto PA = getLoopPassPreservedAnalyses(); 312 PA.preserve<MemorySSAAnalysis>(); 313 314 return PA; 315 } 316 317 void LICMPass::printPipeline( 318 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 319 static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline( 320 OS, MapClassName2PassName); 321 322 OS << '<'; 323 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; 324 OS << '>'; 325 } 326 327 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM, 328 LoopStandardAnalysisResults &AR, 329 LPMUpdater &) { 330 if (!AR.MSSA) 331 report_fatal_error("LNICM requires MemorySSA (loop-mssa)", 332 /*GenCrashDiag*/false); 333 334 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 335 // pass. Function analyses need to be preserved across loop transformations 336 // but ORE cannot be preserved (see comment before the pass definition). 337 OptimizationRemarkEmitter ORE(LN.getParent()); 338 339 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, 340 Opts.AllowSpeculation); 341 342 Loop &OutermostLoop = LN.getOutermostLoop(); 343 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, &AR.AC, 344 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true); 345 346 if (!Changed) 347 return PreservedAnalyses::all(); 348 349 auto PA = getLoopPassPreservedAnalyses(); 350 351 PA.preserve<DominatorTreeAnalysis>(); 352 PA.preserve<LoopAnalysis>(); 353 PA.preserve<MemorySSAAnalysis>(); 354 355 return PA; 356 } 357 358 void LNICMPass::printPipeline( 359 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 360 static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline( 361 OS, MapClassName2PassName); 362 363 OS << '<'; 364 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; 365 OS << '>'; 366 } 367 368 char LegacyLICMPass::ID = 0; 369 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", 370 false, false) 371 INITIALIZE_PASS_DEPENDENCY(LoopPass) 372 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 373 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 374 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 375 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) 376 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, 377 false) 378 379 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } 380 381 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop &L, 382 MemorySSA &MSSA) 383 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, 384 IsSink, L, MSSA) {} 385 386 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( 387 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, 388 Loop &L, MemorySSA &MSSA) 389 : LicmMssaOptCap(LicmMssaOptCap), 390 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), 391 IsSink(IsSink) { 392 unsigned AccessCapCount = 0; 393 for (auto *BB : L.getBlocks()) 394 if (const auto *Accesses = MSSA.getBlockAccesses(BB)) 395 for (const auto &MA : *Accesses) { 396 (void)MA; 397 ++AccessCapCount; 398 if (AccessCapCount > LicmMssaNoAccForPromotionCap) { 399 NoOfMemAccTooLarge = true; 400 return; 401 } 402 } 403 } 404 405 /// Hoist expressions out of the specified loop. Note, alias info for inner 406 /// loop is not preserved so it is not a good idea to run LICM multiple 407 /// times on one loop. 408 bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, 409 DominatorTree *DT, AssumptionCache *AC, 410 TargetLibraryInfo *TLI, 411 TargetTransformInfo *TTI, 412 ScalarEvolution *SE, MemorySSA *MSSA, 413 OptimizationRemarkEmitter *ORE, 414 bool LoopNestMode) { 415 bool Changed = false; 416 417 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); 418 419 // If this loop has metadata indicating that LICM is not to be performed then 420 // just exit. 421 if (hasDisableLICMTransformsHint(L)) { 422 return false; 423 } 424 425 // Don't sink stores from loops with coroutine suspend instructions. 426 // LICM would sink instructions into the default destination of 427 // the coroutine switch. The default destination of the switch is to 428 // handle the case where the coroutine is suspended, by which point the 429 // coroutine frame may have been destroyed. No instruction can be sunk there. 430 // FIXME: This would unfortunately hurt the performance of coroutines, however 431 // there is currently no general solution for this. Similar issues could also 432 // potentially happen in other passes where instructions are being moved 433 // across that edge. 434 bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) { 435 return llvm::any_of(*BB, [](Instruction &I) { 436 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); 437 return II && II->getIntrinsicID() == Intrinsic::coro_suspend; 438 }); 439 }); 440 441 MemorySSAUpdater MSSAU(MSSA); 442 SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 443 /*IsSink=*/true, *L, *MSSA); 444 445 // Get the preheader block to move instructions into... 446 BasicBlock *Preheader = L->getLoopPreheader(); 447 448 // Compute loop safety information. 449 ICFLoopSafetyInfo SafetyInfo; 450 SafetyInfo.computeLoopSafetyInfo(L); 451 452 // We want to visit all of the instructions in this loop... that are not parts 453 // of our subloops (they have already had their invariants hoisted out of 454 // their loop, into this loop, so there is no need to process the BODIES of 455 // the subloops). 456 // 457 // Traverse the body of the loop in depth first order on the dominator tree so 458 // that we are guaranteed to see definitions before we see uses. This allows 459 // us to sink instructions in one pass, without iteration. After sinking 460 // instructions, we perform another pass to hoist them out of the loop. 461 if (L->hasDedicatedExits()) 462 Changed |= 463 LoopNestMode 464 ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, DT, 465 TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE) 466 : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 467 MSSAU, &SafetyInfo, Flags, ORE); 468 Flags.setIsSink(false); 469 if (Preheader) 470 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, AC, TLI, L, 471 MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode, 472 LicmAllowSpeculation); 473 474 // Now that all loop invariants have been removed from the loop, promote any 475 // memory references to scalars that we can. 476 // Don't sink stores from loops without dedicated block exits. Exits 477 // containing indirect branches are not transformed by loop simplify, 478 // make sure we catch that. An additional load may be generated in the 479 // preheader for SSA updater, so also avoid sinking when no preheader 480 // is available. 481 if (!DisablePromotion && Preheader && L->hasDedicatedExits() && 482 !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) { 483 // Figure out the loop exits and their insertion points 484 SmallVector<BasicBlock *, 8> ExitBlocks; 485 L->getUniqueExitBlocks(ExitBlocks); 486 487 // We can't insert into a catchswitch. 488 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { 489 return isa<CatchSwitchInst>(Exit->getTerminator()); 490 }); 491 492 if (!HasCatchSwitch) { 493 SmallVector<BasicBlock::iterator, 8> InsertPts; 494 SmallVector<MemoryAccess *, 8> MSSAInsertPts; 495 InsertPts.reserve(ExitBlocks.size()); 496 MSSAInsertPts.reserve(ExitBlocks.size()); 497 for (BasicBlock *ExitBlock : ExitBlocks) { 498 InsertPts.push_back(ExitBlock->getFirstInsertionPt()); 499 MSSAInsertPts.push_back(nullptr); 500 } 501 502 PredIteratorCache PIC; 503 504 // Promoting one set of accesses may make the pointers for another set 505 // loop invariant, so run this in a loop. 506 bool Promoted = false; 507 bool LocalPromoted; 508 do { 509 LocalPromoted = false; 510 for (auto [PointerMustAliases, HasReadsOutsideSet] : 511 collectPromotionCandidates(MSSA, AA, L)) { 512 LocalPromoted |= promoteLoopAccessesToScalars( 513 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, 514 DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE, 515 LicmAllowSpeculation, HasReadsOutsideSet); 516 } 517 Promoted |= LocalPromoted; 518 } while (LocalPromoted); 519 520 // Once we have promoted values across the loop body we have to 521 // recursively reform LCSSA as any nested loop may now have values defined 522 // within the loop used in the outer loop. 523 // FIXME: This is really heavy handed. It would be a bit better to use an 524 // SSAUpdater strategy during promotion that was LCSSA aware and reformed 525 // it as it went. 526 if (Promoted) 527 formLCSSARecursively(*L, *DT, LI, SE); 528 529 Changed |= Promoted; 530 } 531 } 532 533 // Check that neither this loop nor its parent have had LCSSA broken. LICM is 534 // specifically moving instructions across the loop boundary and so it is 535 // especially in need of basic functional correctness checking here. 536 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); 537 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && 538 "Parent loop not left in LCSSA form after LICM!"); 539 540 if (VerifyMemorySSA) 541 MSSA->verifyMemorySSA(); 542 543 if (Changed && SE) 544 SE->forgetLoopDispositions(); 545 return Changed; 546 } 547 548 /// Walk the specified region of the CFG (defined by all blocks dominated by 549 /// the specified block, and that are in the current loop) in reverse depth 550 /// first order w.r.t the DominatorTree. This allows us to visit uses before 551 /// definitions, allowing us to sink a loop body in one pass without iteration. 552 /// 553 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 554 DominatorTree *DT, TargetLibraryInfo *TLI, 555 TargetTransformInfo *TTI, Loop *CurLoop, 556 MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, 557 SinkAndHoistLICMFlags &Flags, 558 OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) { 559 560 // Verify inputs. 561 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 562 CurLoop != nullptr && SafetyInfo != nullptr && 563 "Unexpected input to sinkRegion."); 564 565 // We want to visit children before parents. We will enqueue all the parents 566 // before their children in the worklist and process the worklist in reverse 567 // order. 568 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); 569 570 bool Changed = false; 571 for (DomTreeNode *DTN : reverse(Worklist)) { 572 BasicBlock *BB = DTN->getBlock(); 573 // Only need to process the contents of this block if it is not part of a 574 // subloop (which would already have been processed). 575 if (inSubLoop(BB, CurLoop, LI)) 576 continue; 577 578 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { 579 Instruction &I = *--II; 580 581 // The instruction is not used in the loop if it is dead. In this case, 582 // we just delete it instead of sinking it. 583 if (isInstructionTriviallyDead(&I, TLI)) { 584 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); 585 salvageKnowledge(&I); 586 salvageDebugInfo(I); 587 ++II; 588 eraseInstruction(I, *SafetyInfo, MSSAU); 589 Changed = true; 590 continue; 591 } 592 593 // Check to see if we can sink this instruction to the exit blocks 594 // of the loop. We can do this if the all users of the instruction are 595 // outside of the loop. In this case, it doesn't even matter if the 596 // operands of the instruction are loop invariant. 597 // 598 bool FoldableInLoop = false; 599 bool LoopNestMode = OutermostLoop != nullptr; 600 if (!I.mayHaveSideEffects() && 601 isNotUsedOrFoldableInLoop(I, LoopNestMode ? OutermostLoop : CurLoop, 602 SafetyInfo, TTI, FoldableInLoop, 603 LoopNestMode) && 604 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) { 605 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { 606 if (!FoldableInLoop) { 607 ++II; 608 salvageDebugInfo(I); 609 eraseInstruction(I, *SafetyInfo, MSSAU); 610 } 611 Changed = true; 612 } 613 } 614 } 615 } 616 if (VerifyMemorySSA) 617 MSSAU.getMemorySSA()->verifyMemorySSA(); 618 return Changed; 619 } 620 621 bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 622 DominatorTree *DT, TargetLibraryInfo *TLI, 623 TargetTransformInfo *TTI, Loop *CurLoop, 624 MemorySSAUpdater &MSSAU, 625 ICFLoopSafetyInfo *SafetyInfo, 626 SinkAndHoistLICMFlags &Flags, 627 OptimizationRemarkEmitter *ORE) { 628 629 bool Changed = false; 630 SmallPriorityWorklist<Loop *, 4> Worklist; 631 Worklist.insert(CurLoop); 632 appendLoopsToWorklist(*CurLoop, Worklist); 633 while (!Worklist.empty()) { 634 Loop *L = Worklist.pop_back_val(); 635 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 636 MSSAU, SafetyInfo, Flags, ORE, CurLoop); 637 } 638 return Changed; 639 } 640 641 namespace { 642 // This is a helper class for hoistRegion to make it able to hoist control flow 643 // in order to be able to hoist phis. The way this works is that we initially 644 // start hoisting to the loop preheader, and when we see a loop invariant branch 645 // we make note of this. When we then come to hoist an instruction that's 646 // conditional on such a branch we duplicate the branch and the relevant control 647 // flow, then hoist the instruction into the block corresponding to its original 648 // block in the duplicated control flow. 649 class ControlFlowHoister { 650 private: 651 // Information about the loop we are hoisting from 652 LoopInfo *LI; 653 DominatorTree *DT; 654 Loop *CurLoop; 655 MemorySSAUpdater &MSSAU; 656 657 // A map of blocks in the loop to the block their instructions will be hoisted 658 // to. 659 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; 660 661 // The branches that we can hoist, mapped to the block that marks a 662 // convergence point of their control flow. 663 DenseMap<BranchInst *, BasicBlock *> HoistableBranches; 664 665 public: 666 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, 667 MemorySSAUpdater &MSSAU) 668 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} 669 670 void registerPossiblyHoistableBranch(BranchInst *BI) { 671 // We can only hoist conditional branches with loop invariant operands. 672 if (!ControlFlowHoisting || !BI->isConditional() || 673 !CurLoop->hasLoopInvariantOperands(BI)) 674 return; 675 676 // The branch destinations need to be in the loop, and we don't gain 677 // anything by duplicating conditional branches with duplicate successors, 678 // as it's essentially the same as an unconditional branch. 679 BasicBlock *TrueDest = BI->getSuccessor(0); 680 BasicBlock *FalseDest = BI->getSuccessor(1); 681 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || 682 TrueDest == FalseDest) 683 return; 684 685 // We can hoist BI if one branch destination is the successor of the other, 686 // or both have common successor which we check by seeing if the 687 // intersection of their successors is non-empty. 688 // TODO: This could be expanded to allowing branches where both ends 689 // eventually converge to a single block. 690 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; 691 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); 692 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); 693 BasicBlock *CommonSucc = nullptr; 694 if (TrueDestSucc.count(FalseDest)) { 695 CommonSucc = FalseDest; 696 } else if (FalseDestSucc.count(TrueDest)) { 697 CommonSucc = TrueDest; 698 } else { 699 set_intersect(TrueDestSucc, FalseDestSucc); 700 // If there's one common successor use that. 701 if (TrueDestSucc.size() == 1) 702 CommonSucc = *TrueDestSucc.begin(); 703 // If there's more than one pick whichever appears first in the block list 704 // (we can't use the value returned by TrueDestSucc.begin() as it's 705 // unpredicatable which element gets returned). 706 else if (!TrueDestSucc.empty()) { 707 Function *F = TrueDest->getParent(); 708 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; 709 auto It = llvm::find_if(*F, IsSucc); 710 assert(It != F->end() && "Could not find successor in function"); 711 CommonSucc = &*It; 712 } 713 } 714 // The common successor has to be dominated by the branch, as otherwise 715 // there will be some other path to the successor that will not be 716 // controlled by this branch so any phi we hoist would be controlled by the 717 // wrong condition. This also takes care of avoiding hoisting of loop back 718 // edges. 719 // TODO: In some cases this could be relaxed if the successor is dominated 720 // by another block that's been hoisted and we can guarantee that the 721 // control flow has been replicated exactly. 722 if (CommonSucc && DT->dominates(BI, CommonSucc)) 723 HoistableBranches[BI] = CommonSucc; 724 } 725 726 bool canHoistPHI(PHINode *PN) { 727 // The phi must have loop invariant operands. 728 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) 729 return false; 730 // We can hoist phis if the block they are in is the target of hoistable 731 // branches which cover all of the predecessors of the block. 732 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; 733 BasicBlock *BB = PN->getParent(); 734 for (BasicBlock *PredBB : predecessors(BB)) 735 PredecessorBlocks.insert(PredBB); 736 // If we have less predecessor blocks than predecessors then the phi will 737 // have more than one incoming value for the same block which we can't 738 // handle. 739 // TODO: This could be handled be erasing some of the duplicate incoming 740 // values. 741 if (PredecessorBlocks.size() != pred_size(BB)) 742 return false; 743 for (auto &Pair : HoistableBranches) { 744 if (Pair.second == BB) { 745 // Which blocks are predecessors via this branch depends on if the 746 // branch is triangle-like or diamond-like. 747 if (Pair.first->getSuccessor(0) == BB) { 748 PredecessorBlocks.erase(Pair.first->getParent()); 749 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 750 } else if (Pair.first->getSuccessor(1) == BB) { 751 PredecessorBlocks.erase(Pair.first->getParent()); 752 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 753 } else { 754 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 755 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 756 } 757 } 758 } 759 // PredecessorBlocks will now be empty if for every predecessor of BB we 760 // found a hoistable branch source. 761 return PredecessorBlocks.empty(); 762 } 763 764 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { 765 if (!ControlFlowHoisting) 766 return CurLoop->getLoopPreheader(); 767 // If BB has already been hoisted, return that 768 if (HoistDestinationMap.count(BB)) 769 return HoistDestinationMap[BB]; 770 771 // Check if this block is conditional based on a pending branch 772 auto HasBBAsSuccessor = 773 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { 774 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || 775 Pair.first->getSuccessor(1) == BB); 776 }; 777 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor); 778 779 // If not involved in a pending branch, hoist to preheader 780 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); 781 if (It == HoistableBranches.end()) { 782 LLVM_DEBUG(dbgs() << "LICM using " 783 << InitialPreheader->getNameOrAsOperand() 784 << " as hoist destination for " 785 << BB->getNameOrAsOperand() << "\n"); 786 HoistDestinationMap[BB] = InitialPreheader; 787 return InitialPreheader; 788 } 789 BranchInst *BI = It->first; 790 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == 791 HoistableBranches.end() && 792 "BB is expected to be the target of at most one branch"); 793 794 LLVMContext &C = BB->getContext(); 795 BasicBlock *TrueDest = BI->getSuccessor(0); 796 BasicBlock *FalseDest = BI->getSuccessor(1); 797 BasicBlock *CommonSucc = HoistableBranches[BI]; 798 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); 799 800 // Create hoisted versions of blocks that currently don't have them 801 auto CreateHoistedBlock = [&](BasicBlock *Orig) { 802 if (HoistDestinationMap.count(Orig)) 803 return HoistDestinationMap[Orig]; 804 BasicBlock *New = 805 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); 806 HoistDestinationMap[Orig] = New; 807 DT->addNewBlock(New, HoistTarget); 808 if (CurLoop->getParentLoop()) 809 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); 810 ++NumCreatedBlocks; 811 LLVM_DEBUG(dbgs() << "LICM created " << New->getName() 812 << " as hoist destination for " << Orig->getName() 813 << "\n"); 814 return New; 815 }; 816 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); 817 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); 818 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); 819 820 // Link up these blocks with branches. 821 if (!HoistCommonSucc->getTerminator()) { 822 // The new common successor we've generated will branch to whatever that 823 // hoist target branched to. 824 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); 825 assert(TargetSucc && "Expected hoist target to have a single successor"); 826 HoistCommonSucc->moveBefore(TargetSucc); 827 BranchInst::Create(TargetSucc, HoistCommonSucc); 828 } 829 if (!HoistTrueDest->getTerminator()) { 830 HoistTrueDest->moveBefore(HoistCommonSucc); 831 BranchInst::Create(HoistCommonSucc, HoistTrueDest); 832 } 833 if (!HoistFalseDest->getTerminator()) { 834 HoistFalseDest->moveBefore(HoistCommonSucc); 835 BranchInst::Create(HoistCommonSucc, HoistFalseDest); 836 } 837 838 // If BI is being cloned to what was originally the preheader then 839 // HoistCommonSucc will now be the new preheader. 840 if (HoistTarget == InitialPreheader) { 841 // Phis in the loop header now need to use the new preheader. 842 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); 843 MSSAU.wireOldPredecessorsToNewImmediatePredecessor( 844 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); 845 // The new preheader dominates the loop header. 846 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); 847 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); 848 DT->changeImmediateDominator(HeaderNode, PreheaderNode); 849 // The preheader hoist destination is now the new preheader, with the 850 // exception of the hoist destination of this branch. 851 for (auto &Pair : HoistDestinationMap) 852 if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) 853 Pair.second = HoistCommonSucc; 854 } 855 856 // Now finally clone BI. 857 ReplaceInstWithInst( 858 HoistTarget->getTerminator(), 859 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); 860 ++NumClonedBranches; 861 862 assert(CurLoop->getLoopPreheader() && 863 "Hoisting blocks should not have destroyed preheader"); 864 return HoistDestinationMap[BB]; 865 } 866 }; 867 } // namespace 868 869 /// Walk the specified region of the CFG (defined by all blocks dominated by 870 /// the specified block, and that are in the current loop) in depth first 871 /// order w.r.t the DominatorTree. This allows us to visit definitions before 872 /// uses, allowing us to hoist a loop body in one pass without iteration. 873 /// 874 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 875 DominatorTree *DT, AssumptionCache *AC, 876 TargetLibraryInfo *TLI, Loop *CurLoop, 877 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 878 ICFLoopSafetyInfo *SafetyInfo, 879 SinkAndHoistLICMFlags &Flags, 880 OptimizationRemarkEmitter *ORE, bool LoopNestMode, 881 bool AllowSpeculation) { 882 // Verify inputs. 883 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 884 CurLoop != nullptr && SafetyInfo != nullptr && 885 "Unexpected input to hoistRegion."); 886 887 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); 888 889 // Keep track of instructions that have been hoisted, as they may need to be 890 // re-hoisted if they end up not dominating all of their uses. 891 SmallVector<Instruction *, 16> HoistedInstructions; 892 893 // For PHI hoisting to work we need to hoist blocks before their successors. 894 // We can do this by iterating through the blocks in the loop in reverse 895 // post-order. 896 LoopBlocksRPO Worklist(CurLoop); 897 Worklist.perform(LI); 898 bool Changed = false; 899 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 900 for (BasicBlock *BB : Worklist) { 901 // Only need to process the contents of this block if it is not part of a 902 // subloop (which would already have been processed). 903 if (!LoopNestMode && inSubLoop(BB, CurLoop, LI)) 904 continue; 905 906 for (Instruction &I : llvm::make_early_inc_range(*BB)) { 907 // Try hoisting the instruction out to the preheader. We can only do 908 // this if all of the operands of the instruction are loop invariant and 909 // if it is safe to hoist the instruction. We also check block frequency 910 // to make sure instruction only gets hoisted into colder blocks. 911 // TODO: It may be safe to hoist if we are hoisting to a conditional block 912 // and we have accurately duplicated the control flow from the loop header 913 // to that block. 914 if (CurLoop->hasLoopInvariantOperands(&I) && 915 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) && 916 isSafeToExecuteUnconditionally( 917 I, DT, TLI, CurLoop, SafetyInfo, ORE, 918 Preheader->getTerminator(), AC, AllowSpeculation)) { 919 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 920 MSSAU, SE, ORE); 921 HoistedInstructions.push_back(&I); 922 Changed = true; 923 continue; 924 } 925 926 // Attempt to remove floating point division out of the loop by 927 // converting it to a reciprocal multiplication. 928 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && 929 CurLoop->isLoopInvariant(I.getOperand(1))) { 930 auto Divisor = I.getOperand(1); 931 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); 932 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); 933 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); 934 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); 935 ReciprocalDivisor->insertBefore(&I); 936 ReciprocalDivisor->setDebugLoc(I.getDebugLoc()); 937 938 auto Product = 939 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); 940 Product->setFastMathFlags(I.getFastMathFlags()); 941 SafetyInfo->insertInstructionTo(Product, I.getParent()); 942 Product->insertAfter(&I); 943 Product->setDebugLoc(I.getDebugLoc()); 944 I.replaceAllUsesWith(Product); 945 eraseInstruction(I, *SafetyInfo, MSSAU); 946 947 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), 948 SafetyInfo, MSSAU, SE, ORE); 949 HoistedInstructions.push_back(ReciprocalDivisor); 950 Changed = true; 951 continue; 952 } 953 954 auto IsInvariantStart = [&](Instruction &I) { 955 using namespace PatternMatch; 956 return I.use_empty() && 957 match(&I, m_Intrinsic<Intrinsic::invariant_start>()); 958 }; 959 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { 960 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && 961 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); 962 }; 963 if ((IsInvariantStart(I) || isGuard(&I)) && 964 CurLoop->hasLoopInvariantOperands(&I) && 965 MustExecuteWithoutWritesBefore(I)) { 966 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 967 MSSAU, SE, ORE); 968 HoistedInstructions.push_back(&I); 969 Changed = true; 970 continue; 971 } 972 973 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 974 if (CFH.canHoistPHI(PN)) { 975 // Redirect incoming blocks first to ensure that we create hoisted 976 // versions of those blocks before we hoist the phi. 977 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) 978 PN->setIncomingBlock( 979 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); 980 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 981 MSSAU, SE, ORE); 982 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); 983 Changed = true; 984 continue; 985 } 986 } 987 988 // Try to reassociate instructions so that part of computations can be 989 // done out of loop. 990 if (hoistArithmetics(I, *CurLoop, *SafetyInfo, MSSAU, AC, DT)) { 991 Changed = true; 992 continue; 993 } 994 995 // Remember possibly hoistable branches so we can actually hoist them 996 // later if needed. 997 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 998 CFH.registerPossiblyHoistableBranch(BI); 999 } 1000 } 1001 1002 // If we hoisted instructions to a conditional block they may not dominate 1003 // their uses that weren't hoisted (such as phis where some operands are not 1004 // loop invariant). If so make them unconditional by moving them to their 1005 // immediate dominator. We iterate through the instructions in reverse order 1006 // which ensures that when we rehoist an instruction we rehoist its operands, 1007 // and also keep track of where in the block we are rehoisting to make sure 1008 // that we rehoist instructions before the instructions that use them. 1009 Instruction *HoistPoint = nullptr; 1010 if (ControlFlowHoisting) { 1011 for (Instruction *I : reverse(HoistedInstructions)) { 1012 if (!llvm::all_of(I->uses(), 1013 [&](Use &U) { return DT->dominates(I, U); })) { 1014 BasicBlock *Dominator = 1015 DT->getNode(I->getParent())->getIDom()->getBlock(); 1016 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { 1017 if (HoistPoint) 1018 assert(DT->dominates(Dominator, HoistPoint->getParent()) && 1019 "New hoist point expected to dominate old hoist point"); 1020 HoistPoint = Dominator->getTerminator(); 1021 } 1022 LLVM_DEBUG(dbgs() << "LICM rehoisting to " 1023 << HoistPoint->getParent()->getNameOrAsOperand() 1024 << ": " << *I << "\n"); 1025 moveInstructionBefore(*I, HoistPoint->getIterator(), *SafetyInfo, MSSAU, 1026 SE); 1027 HoistPoint = I; 1028 Changed = true; 1029 } 1030 } 1031 } 1032 if (VerifyMemorySSA) 1033 MSSAU.getMemorySSA()->verifyMemorySSA(); 1034 1035 // Now that we've finished hoisting make sure that LI and DT are still 1036 // valid. 1037 #ifdef EXPENSIVE_CHECKS 1038 if (Changed) { 1039 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 1040 "Dominator tree verification failed"); 1041 LI->verify(*DT); 1042 } 1043 #endif 1044 1045 return Changed; 1046 } 1047 1048 // Return true if LI is invariant within scope of the loop. LI is invariant if 1049 // CurLoop is dominated by an invariant.start representing the same memory 1050 // location and size as the memory location LI loads from, and also the 1051 // invariant.start has no uses. 1052 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, 1053 Loop *CurLoop) { 1054 Value *Addr = LI->getPointerOperand(); 1055 const DataLayout &DL = LI->getDataLayout(); 1056 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); 1057 1058 // It is not currently possible for clang to generate an invariant.start 1059 // intrinsic with scalable vector types because we don't support thread local 1060 // sizeless types and we don't permit sizeless types in structs or classes. 1061 // Furthermore, even if support is added for this in future the intrinsic 1062 // itself is defined to have a size of -1 for variable sized objects. This 1063 // makes it impossible to verify if the intrinsic envelops our region of 1064 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8> 1065 // types would have a -1 parameter, but the former is clearly double the size 1066 // of the latter. 1067 if (LocSizeInBits.isScalable()) 1068 return false; 1069 1070 // If we've ended up at a global/constant, bail. We shouldn't be looking at 1071 // uselists for non-local Values in a loop pass. 1072 if (isa<Constant>(Addr)) 1073 return false; 1074 1075 unsigned UsesVisited = 0; 1076 // Traverse all uses of the load operand value, to see if invariant.start is 1077 // one of the uses, and whether it dominates the load instruction. 1078 for (auto *U : Addr->users()) { 1079 // Avoid traversing for Load operand with high number of users. 1080 if (++UsesVisited > MaxNumUsesTraversed) 1081 return false; 1082 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1083 // If there are escaping uses of invariant.start instruction, the load maybe 1084 // non-invariant. 1085 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || 1086 !II->use_empty()) 1087 continue; 1088 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0)); 1089 // The intrinsic supports having a -1 argument for variable sized objects 1090 // so we should check for that here. 1091 if (InvariantSize->isNegative()) 1092 continue; 1093 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; 1094 // Confirm the invariant.start location size contains the load operand size 1095 // in bits. Also, the invariant.start should dominate the load, and we 1096 // should not hoist the load out of a loop that contains this dominating 1097 // invariant.start. 1098 if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits && 1099 DT->properlyDominates(II->getParent(), CurLoop->getHeader())) 1100 return true; 1101 } 1102 1103 return false; 1104 } 1105 1106 namespace { 1107 /// Return true if-and-only-if we know how to (mechanically) both hoist and 1108 /// sink a given instruction out of a loop. Does not address legality 1109 /// concerns such as aliasing or speculation safety. 1110 bool isHoistableAndSinkableInst(Instruction &I) { 1111 // Only these instructions are hoistable/sinkable. 1112 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 1113 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) || 1114 isa<BinaryOperator>(I) || isa<SelectInst>(I) || 1115 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || 1116 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 1117 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || 1118 isa<InsertValueInst>(I) || isa<FreezeInst>(I)); 1119 } 1120 /// Return true if MSSA knows there are no MemoryDefs in the loop. 1121 bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) { 1122 for (auto *BB : L->getBlocks()) 1123 if (MSSAU.getMemorySSA()->getBlockDefs(BB)) 1124 return false; 1125 return true; 1126 } 1127 1128 /// Return true if I is the only Instruction with a MemoryAccess in L. 1129 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, 1130 const MemorySSAUpdater &MSSAU) { 1131 for (auto *BB : L->getBlocks()) 1132 if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) { 1133 int NotAPhi = 0; 1134 for (const auto &Acc : *Accs) { 1135 if (isa<MemoryPhi>(&Acc)) 1136 continue; 1137 const auto *MUD = cast<MemoryUseOrDef>(&Acc); 1138 if (MUD->getMemoryInst() != I || NotAPhi++ == 1) 1139 return false; 1140 } 1141 } 1142 return true; 1143 } 1144 } 1145 1146 static MemoryAccess *getClobberingMemoryAccess(MemorySSA &MSSA, 1147 BatchAAResults &BAA, 1148 SinkAndHoistLICMFlags &Flags, 1149 MemoryUseOrDef *MA) { 1150 // See declaration of SetLicmMssaOptCap for usage details. 1151 if (Flags.tooManyClobberingCalls()) 1152 return MA->getDefiningAccess(); 1153 1154 MemoryAccess *Source = 1155 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(MA, BAA); 1156 Flags.incrementClobberingCalls(); 1157 return Source; 1158 } 1159 1160 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, 1161 Loop *CurLoop, MemorySSAUpdater &MSSAU, 1162 bool TargetExecutesOncePerLoop, 1163 SinkAndHoistLICMFlags &Flags, 1164 OptimizationRemarkEmitter *ORE) { 1165 // If we don't understand the instruction, bail early. 1166 if (!isHoistableAndSinkableInst(I)) 1167 return false; 1168 1169 MemorySSA *MSSA = MSSAU.getMemorySSA(); 1170 // Loads have extra constraints we have to verify before we can hoist them. 1171 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 1172 if (!LI->isUnordered()) 1173 return false; // Don't sink/hoist volatile or ordered atomic loads! 1174 1175 // Loads from constant memory are always safe to move, even if they end up 1176 // in the same alias set as something that ends up being modified. 1177 if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0)))) 1178 return true; 1179 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1180 return true; 1181 1182 if (LI->isAtomic() && !TargetExecutesOncePerLoop) 1183 return false; // Don't risk duplicating unordered loads 1184 1185 // This checks for an invariant.start dominating the load. 1186 if (isLoadInvariantInLoop(LI, DT, CurLoop)) 1187 return true; 1188 1189 auto MU = cast<MemoryUse>(MSSA->getMemoryAccess(LI)); 1190 1191 bool InvariantGroup = LI->hasMetadata(LLVMContext::MD_invariant_group); 1192 1193 bool Invalidated = pointerInvalidatedByLoop( 1194 MSSA, MU, CurLoop, I, Flags, InvariantGroup); 1195 // Check loop-invariant address because this may also be a sinkable load 1196 // whose address is not necessarily loop-invariant. 1197 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1198 ORE->emit([&]() { 1199 return OptimizationRemarkMissed( 1200 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) 1201 << "failed to move load with loop-invariant address " 1202 "because the loop may invalidate its value"; 1203 }); 1204 1205 return !Invalidated; 1206 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1207 // Don't sink or hoist dbg info; it's legal, but not useful. 1208 if (isa<DbgInfoIntrinsic>(I)) 1209 return false; 1210 1211 // Don't sink calls which can throw. 1212 if (CI->mayThrow()) 1213 return false; 1214 1215 // Convergent attribute has been used on operations that involve 1216 // inter-thread communication which results are implicitly affected by the 1217 // enclosing control flows. It is not safe to hoist or sink such operations 1218 // across control flow. 1219 if (CI->isConvergent()) 1220 return false; 1221 1222 // FIXME: Current LLVM IR semantics don't work well with coroutines and 1223 // thread local globals. We currently treat getting the address of a thread 1224 // local global as not accessing memory, even though it may not be a 1225 // constant throughout a function with coroutines. Remove this check after 1226 // we better model semantics of thread local globals. 1227 if (CI->getFunction()->isPresplitCoroutine()) 1228 return false; 1229 1230 using namespace PatternMatch; 1231 if (match(CI, m_Intrinsic<Intrinsic::assume>())) 1232 // Assumes don't actually alias anything or throw 1233 return true; 1234 1235 // Handle simple cases by querying alias analysis. 1236 MemoryEffects Behavior = AA->getMemoryEffects(CI); 1237 1238 if (Behavior.doesNotAccessMemory()) 1239 return true; 1240 if (Behavior.onlyReadsMemory()) { 1241 // A readonly argmemonly function only reads from memory pointed to by 1242 // it's arguments with arbitrary offsets. If we can prove there are no 1243 // writes to this memory in the loop, we can hoist or sink. 1244 if (Behavior.onlyAccessesArgPointees()) { 1245 // TODO: expand to writeable arguments 1246 for (Value *Op : CI->args()) 1247 if (Op->getType()->isPointerTy() && 1248 pointerInvalidatedByLoop( 1249 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I, 1250 Flags, /*InvariantGroup=*/false)) 1251 return false; 1252 return true; 1253 } 1254 1255 // If this call only reads from memory and there are no writes to memory 1256 // in the loop, we can hoist or sink the call as appropriate. 1257 if (isReadOnly(MSSAU, CurLoop)) 1258 return true; 1259 } 1260 1261 // FIXME: This should use mod/ref information to see if we can hoist or 1262 // sink the call. 1263 1264 return false; 1265 } else if (auto *FI = dyn_cast<FenceInst>(&I)) { 1266 // Fences alias (most) everything to provide ordering. For the moment, 1267 // just give up if there are any other memory operations in the loop. 1268 return isOnlyMemoryAccess(FI, CurLoop, MSSAU); 1269 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 1270 if (!SI->isUnordered()) 1271 return false; // Don't sink/hoist volatile or ordered atomic store! 1272 1273 // We can only hoist a store that we can prove writes a value which is not 1274 // read or overwritten within the loop. For those cases, we fallback to 1275 // load store promotion instead. TODO: We can extend this to cases where 1276 // there is exactly one write to the location and that write dominates an 1277 // arbitrary number of reads in the loop. 1278 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) 1279 return true; 1280 // If there are more accesses than the Promotion cap, then give up as we're 1281 // not walking a list that long. 1282 if (Flags.tooManyMemoryAccesses()) 1283 return false; 1284 1285 auto *SIMD = MSSA->getMemoryAccess(SI); 1286 BatchAAResults BAA(*AA); 1287 auto *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, SIMD); 1288 // Make sure there are no clobbers inside the loop. 1289 if (!MSSA->isLiveOnEntryDef(Source) && 1290 CurLoop->contains(Source->getBlock())) 1291 return false; 1292 1293 // If there are interfering Uses (i.e. their defining access is in the 1294 // loop), or ordered loads (stored as Defs!), don't move this store. 1295 // Could do better here, but this is conservatively correct. 1296 // TODO: Cache set of Uses on the first walk in runOnLoop, update when 1297 // moving accesses. Can also extend to dominating uses. 1298 for (auto *BB : CurLoop->getBlocks()) 1299 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 1300 for (const auto &MA : *Accesses) 1301 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { 1302 auto *MD = getClobberingMemoryAccess(*MSSA, BAA, Flags, 1303 const_cast<MemoryUse *>(MU)); 1304 if (!MSSA->isLiveOnEntryDef(MD) && 1305 CurLoop->contains(MD->getBlock())) 1306 return false; 1307 // Disable hoisting past potentially interfering loads. Optimized 1308 // Uses may point to an access outside the loop, as getClobbering 1309 // checks the previous iteration when walking the backedge. 1310 // FIXME: More precise: no Uses that alias SI. 1311 if (!Flags.getIsSink() && !MSSA->dominates(SIMD, MU)) 1312 return false; 1313 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { 1314 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { 1315 (void)LI; // Silence warning. 1316 assert(!LI->isUnordered() && "Expected unordered load"); 1317 return false; 1318 } 1319 // Any call, while it may not be clobbering SI, it may be a use. 1320 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { 1321 // Check if the call may read from the memory location written 1322 // to by SI. Check CI's attributes and arguments; the number of 1323 // such checks performed is limited above by NoOfMemAccTooLarge. 1324 ModRefInfo MRI = BAA.getModRefInfo(CI, MemoryLocation::get(SI)); 1325 if (isModOrRefSet(MRI)) 1326 return false; 1327 } 1328 } 1329 } 1330 return true; 1331 } 1332 1333 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); 1334 1335 // We've established mechanical ability and aliasing, it's up to the caller 1336 // to check fault safety 1337 return true; 1338 } 1339 1340 /// Returns true if a PHINode is a trivially replaceable with an 1341 /// Instruction. 1342 /// This is true when all incoming values are that instruction. 1343 /// This pattern occurs most often with LCSSA PHI nodes. 1344 /// 1345 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { 1346 for (const Value *IncValue : PN.incoming_values()) 1347 if (IncValue != &I) 1348 return false; 1349 1350 return true; 1351 } 1352 1353 /// Return true if the instruction is foldable in the loop. 1354 static bool isFoldableInLoop(const Instruction &I, const Loop *CurLoop, 1355 const TargetTransformInfo *TTI) { 1356 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1357 InstructionCost CostI = 1358 TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); 1359 if (CostI != TargetTransformInfo::TCC_Free) 1360 return false; 1361 // For a GEP, we cannot simply use getInstructionCost because currently 1362 // it optimistically assumes that a GEP will fold into addressing mode 1363 // regardless of its users. 1364 const BasicBlock *BB = GEP->getParent(); 1365 for (const User *U : GEP->users()) { 1366 const Instruction *UI = cast<Instruction>(U); 1367 if (CurLoop->contains(UI) && 1368 (BB != UI->getParent() || 1369 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) 1370 return false; 1371 } 1372 return true; 1373 } 1374 1375 return false; 1376 } 1377 1378 /// Return true if the only users of this instruction are outside of 1379 /// the loop. If this is true, we can sink the instruction to the exit 1380 /// blocks of the loop. 1381 /// 1382 /// We also return true if the instruction could be folded away in lowering. 1383 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). 1384 static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, 1385 const LoopSafetyInfo *SafetyInfo, 1386 TargetTransformInfo *TTI, 1387 bool &FoldableInLoop, bool LoopNestMode) { 1388 const auto &BlockColors = SafetyInfo->getBlockColors(); 1389 bool IsFoldable = isFoldableInLoop(I, CurLoop, TTI); 1390 for (const User *U : I.users()) { 1391 const Instruction *UI = cast<Instruction>(U); 1392 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1393 const BasicBlock *BB = PN->getParent(); 1394 // We cannot sink uses in catchswitches. 1395 if (isa<CatchSwitchInst>(BB->getTerminator())) 1396 return false; 1397 1398 // We need to sink a callsite to a unique funclet. Avoid sinking if the 1399 // phi use is too muddled. 1400 if (isa<CallInst>(I)) 1401 if (!BlockColors.empty() && 1402 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) 1403 return false; 1404 1405 if (LoopNestMode) { 1406 while (isa<PHINode>(UI) && UI->hasOneUser() && 1407 UI->getNumOperands() == 1) { 1408 if (!CurLoop->contains(UI)) 1409 break; 1410 UI = cast<Instruction>(UI->user_back()); 1411 } 1412 } 1413 } 1414 1415 if (CurLoop->contains(UI)) { 1416 if (IsFoldable) { 1417 FoldableInLoop = true; 1418 continue; 1419 } 1420 return false; 1421 } 1422 } 1423 return true; 1424 } 1425 1426 static Instruction *cloneInstructionInExitBlock( 1427 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 1428 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) { 1429 Instruction *New; 1430 if (auto *CI = dyn_cast<CallInst>(&I)) { 1431 const auto &BlockColors = SafetyInfo->getBlockColors(); 1432 1433 // Sinking call-sites need to be handled differently from other 1434 // instructions. The cloned call-site needs a funclet bundle operand 1435 // appropriate for its location in the CFG. 1436 SmallVector<OperandBundleDef, 1> OpBundles; 1437 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); 1438 BundleIdx != BundleEnd; ++BundleIdx) { 1439 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); 1440 if (Bundle.getTagID() == LLVMContext::OB_funclet) 1441 continue; 1442 1443 OpBundles.emplace_back(Bundle); 1444 } 1445 1446 if (!BlockColors.empty()) { 1447 const ColorVector &CV = BlockColors.find(&ExitBlock)->second; 1448 assert(CV.size() == 1 && "non-unique color for exit block!"); 1449 BasicBlock *BBColor = CV.front(); 1450 Instruction *EHPad = BBColor->getFirstNonPHI(); 1451 if (EHPad->isEHPad()) 1452 OpBundles.emplace_back("funclet", EHPad); 1453 } 1454 1455 New = CallInst::Create(CI, OpBundles); 1456 New->copyMetadata(*CI); 1457 } else { 1458 New = I.clone(); 1459 } 1460 1461 New->insertInto(&ExitBlock, ExitBlock.getFirstInsertionPt()); 1462 if (!I.getName().empty()) 1463 New->setName(I.getName() + ".le"); 1464 1465 if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) { 1466 // Create a new MemoryAccess and let MemorySSA set its defining access. 1467 MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB( 1468 New, nullptr, New->getParent(), MemorySSA::Beginning); 1469 if (NewMemAcc) { 1470 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 1471 MSSAU.insertDef(MemDef, /*RenameUses=*/true); 1472 else { 1473 auto *MemUse = cast<MemoryUse>(NewMemAcc); 1474 MSSAU.insertUse(MemUse, /*RenameUses=*/true); 1475 } 1476 } 1477 } 1478 1479 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that 1480 // this is particularly cheap because we can rip off the PHI node that we're 1481 // replacing for the number and blocks of the predecessors. 1482 // OPT: If this shows up in a profile, we can instead finish sinking all 1483 // invariant instructions, and then walk their operands to re-establish 1484 // LCSSA. That will eliminate creating PHI nodes just to nuke them when 1485 // sinking bottom-up. 1486 for (Use &Op : New->operands()) 1487 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) { 1488 auto *OInst = cast<Instruction>(Op.get()); 1489 PHINode *OpPN = 1490 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), 1491 OInst->getName() + ".lcssa"); 1492 OpPN->insertBefore(ExitBlock.begin()); 1493 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1494 OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); 1495 Op = OpPN; 1496 } 1497 return New; 1498 } 1499 1500 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 1501 MemorySSAUpdater &MSSAU) { 1502 MSSAU.removeMemoryAccess(&I); 1503 SafetyInfo.removeInstruction(&I); 1504 I.eraseFromParent(); 1505 } 1506 1507 static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest, 1508 ICFLoopSafetyInfo &SafetyInfo, 1509 MemorySSAUpdater &MSSAU, 1510 ScalarEvolution *SE) { 1511 SafetyInfo.removeInstruction(&I); 1512 SafetyInfo.insertInstructionTo(&I, Dest->getParent()); 1513 I.moveBefore(*Dest->getParent(), Dest); 1514 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 1515 MSSAU.getMemorySSA()->getMemoryAccess(&I))) 1516 MSSAU.moveToPlace(OldMemAcc, Dest->getParent(), 1517 MemorySSA::BeforeTerminator); 1518 if (SE) 1519 SE->forgetBlockAndLoopDispositions(&I); 1520 } 1521 1522 static Instruction *sinkThroughTriviallyReplaceablePHI( 1523 PHINode *TPN, Instruction *I, LoopInfo *LI, 1524 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, 1525 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, 1526 MemorySSAUpdater &MSSAU) { 1527 assert(isTriviallyReplaceablePHI(*TPN, *I) && 1528 "Expect only trivially replaceable PHI"); 1529 BasicBlock *ExitBlock = TPN->getParent(); 1530 Instruction *New; 1531 auto It = SunkCopies.find(ExitBlock); 1532 if (It != SunkCopies.end()) 1533 New = It->second; 1534 else 1535 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock( 1536 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); 1537 return New; 1538 } 1539 1540 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { 1541 BasicBlock *BB = PN->getParent(); 1542 if (!BB->canSplitPredecessors()) 1543 return false; 1544 // It's not impossible to split EHPad blocks, but if BlockColors already exist 1545 // it require updating BlockColors for all offspring blocks accordingly. By 1546 // skipping such corner case, we can make updating BlockColors after splitting 1547 // predecessor fairly simple. 1548 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) 1549 return false; 1550 for (BasicBlock *BBPred : predecessors(BB)) { 1551 if (isa<IndirectBrInst>(BBPred->getTerminator())) 1552 return false; 1553 } 1554 return true; 1555 } 1556 1557 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, 1558 LoopInfo *LI, const Loop *CurLoop, 1559 LoopSafetyInfo *SafetyInfo, 1560 MemorySSAUpdater *MSSAU) { 1561 #ifndef NDEBUG 1562 SmallVector<BasicBlock *, 32> ExitBlocks; 1563 CurLoop->getUniqueExitBlocks(ExitBlocks); 1564 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1565 ExitBlocks.end()); 1566 #endif 1567 BasicBlock *ExitBB = PN->getParent(); 1568 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); 1569 1570 // Split predecessors of the loop exit to make instructions in the loop are 1571 // exposed to exit blocks through trivially replaceable PHIs while keeping the 1572 // loop in the canonical form where each predecessor of each exit block should 1573 // be contained within the loop. For example, this will convert the loop below 1574 // from 1575 // 1576 // LB1: 1577 // %v1 = 1578 // br %LE, %LB2 1579 // LB2: 1580 // %v2 = 1581 // br %LE, %LB1 1582 // LE: 1583 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable 1584 // 1585 // to 1586 // 1587 // LB1: 1588 // %v1 = 1589 // br %LE.split, %LB2 1590 // LB2: 1591 // %v2 = 1592 // br %LE.split2, %LB1 1593 // LE.split: 1594 // %p1 = phi [%v1, %LB1] <-- trivially replaceable 1595 // br %LE 1596 // LE.split2: 1597 // %p2 = phi [%v2, %LB2] <-- trivially replaceable 1598 // br %LE 1599 // LE: 1600 // %p = phi [%p1, %LE.split], [%p2, %LE.split2] 1601 // 1602 const auto &BlockColors = SafetyInfo->getBlockColors(); 1603 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); 1604 while (!PredBBs.empty()) { 1605 BasicBlock *PredBB = *PredBBs.begin(); 1606 assert(CurLoop->contains(PredBB) && 1607 "Expect all predecessors are in the loop"); 1608 if (PN->getBasicBlockIndex(PredBB) >= 0) { 1609 BasicBlock *NewPred = SplitBlockPredecessors( 1610 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); 1611 // Since we do not allow splitting EH-block with BlockColors in 1612 // canSplitPredecessors(), we can simply assign predecessor's color to 1613 // the new block. 1614 if (!BlockColors.empty()) 1615 // Grab a reference to the ColorVector to be inserted before getting the 1616 // reference to the vector we are copying because inserting the new 1617 // element in BlockColors might cause the map to be reallocated. 1618 SafetyInfo->copyColors(NewPred, PredBB); 1619 } 1620 PredBBs.remove(PredBB); 1621 } 1622 } 1623 1624 /// When an instruction is found to only be used outside of the loop, this 1625 /// function moves it to the exit blocks and patches up SSA form as needed. 1626 /// This method is guaranteed to remove the original instruction from its 1627 /// position, and may either delete it or move it to outside of the loop. 1628 /// 1629 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 1630 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 1631 MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) { 1632 bool Changed = false; 1633 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); 1634 1635 // Iterate over users to be ready for actual sinking. Replace users via 1636 // unreachable blocks with undef and make all user PHIs trivially replaceable. 1637 SmallPtrSet<Instruction *, 8> VisitedUsers; 1638 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { 1639 auto *User = cast<Instruction>(*UI); 1640 Use &U = UI.getUse(); 1641 ++UI; 1642 1643 if (VisitedUsers.count(User) || CurLoop->contains(User)) 1644 continue; 1645 1646 if (!DT->isReachableFromEntry(User->getParent())) { 1647 U = PoisonValue::get(I.getType()); 1648 Changed = true; 1649 continue; 1650 } 1651 1652 // The user must be a PHI node. 1653 PHINode *PN = cast<PHINode>(User); 1654 1655 // Surprisingly, instructions can be used outside of loops without any 1656 // exits. This can only happen in PHI nodes if the incoming block is 1657 // unreachable. 1658 BasicBlock *BB = PN->getIncomingBlock(U); 1659 if (!DT->isReachableFromEntry(BB)) { 1660 U = PoisonValue::get(I.getType()); 1661 Changed = true; 1662 continue; 1663 } 1664 1665 VisitedUsers.insert(PN); 1666 if (isTriviallyReplaceablePHI(*PN, I)) 1667 continue; 1668 1669 if (!canSplitPredecessors(PN, SafetyInfo)) 1670 return Changed; 1671 1672 // Split predecessors of the PHI so that we can make users trivially 1673 // replaceable. 1674 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU); 1675 1676 // Should rebuild the iterators, as they may be invalidated by 1677 // splitPredecessorsOfLoopExit(). 1678 UI = I.user_begin(); 1679 UE = I.user_end(); 1680 } 1681 1682 if (VisitedUsers.empty()) 1683 return Changed; 1684 1685 ORE->emit([&]() { 1686 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) 1687 << "sinking " << ore::NV("Inst", &I); 1688 }); 1689 if (isa<LoadInst>(I)) 1690 ++NumMovedLoads; 1691 else if (isa<CallInst>(I)) 1692 ++NumMovedCalls; 1693 ++NumSunk; 1694 1695 #ifndef NDEBUG 1696 SmallVector<BasicBlock *, 32> ExitBlocks; 1697 CurLoop->getUniqueExitBlocks(ExitBlocks); 1698 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1699 ExitBlocks.end()); 1700 #endif 1701 1702 // Clones of this instruction. Don't create more than one per exit block! 1703 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; 1704 1705 // If this instruction is only used outside of the loop, then all users are 1706 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of 1707 // the instruction. 1708 // First check if I is worth sinking for all uses. Sink only when it is worth 1709 // across all uses. 1710 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); 1711 for (auto *UI : Users) { 1712 auto *User = cast<Instruction>(UI); 1713 1714 if (CurLoop->contains(User)) 1715 continue; 1716 1717 PHINode *PN = cast<PHINode>(User); 1718 assert(ExitBlockSet.count(PN->getParent()) && 1719 "The LCSSA PHI is not in an exit block!"); 1720 1721 // The PHI must be trivially replaceable. 1722 Instruction *New = sinkThroughTriviallyReplaceablePHI( 1723 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); 1724 // As we sink the instruction out of the BB, drop its debug location. 1725 New->dropLocation(); 1726 PN->replaceAllUsesWith(New); 1727 eraseInstruction(*PN, *SafetyInfo, MSSAU); 1728 Changed = true; 1729 } 1730 return Changed; 1731 } 1732 1733 /// When an instruction is found to only use loop invariant operands that 1734 /// is safe to hoist, this instruction is called to do the dirty work. 1735 /// 1736 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 1737 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 1738 MemorySSAUpdater &MSSAU, ScalarEvolution *SE, 1739 OptimizationRemarkEmitter *ORE) { 1740 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": " 1741 << I << "\n"); 1742 ORE->emit([&]() { 1743 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " 1744 << ore::NV("Inst", &I); 1745 }); 1746 1747 // Metadata can be dependent on conditions we are hoisting above. 1748 // Conservatively strip all metadata on the instruction unless we were 1749 // guaranteed to execute I if we entered the loop, in which case the metadata 1750 // is valid in the loop preheader. 1751 // Similarly, If I is a call and it is not guaranteed to execute in the loop, 1752 // then moving to the preheader means we should strip attributes on the call 1753 // that can cause UB since we may be hoisting above conditions that allowed 1754 // inferring those attributes. They may not be valid at the preheader. 1755 if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) && 1756 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning 1757 // time in isGuaranteedToExecute if we don't actually have anything to 1758 // drop. It is a compile time optimization, not required for correctness. 1759 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) 1760 I.dropUBImplyingAttrsAndMetadata(); 1761 1762 if (isa<PHINode>(I)) 1763 // Move the new node to the end of the phi list in the destination block. 1764 moveInstructionBefore(I, Dest->getFirstNonPHIIt(), *SafetyInfo, MSSAU, SE); 1765 else 1766 // Move the new node to the destination block, before its terminator. 1767 moveInstructionBefore(I, Dest->getTerminator()->getIterator(), *SafetyInfo, 1768 MSSAU, SE); 1769 1770 I.updateLocationAfterHoist(); 1771 1772 if (isa<LoadInst>(I)) 1773 ++NumMovedLoads; 1774 else if (isa<CallInst>(I)) 1775 ++NumMovedCalls; 1776 ++NumHoisted; 1777 } 1778 1779 /// Only sink or hoist an instruction if it is not a trapping instruction, 1780 /// or if the instruction is known not to trap when moved to the preheader. 1781 /// or if it is a trapping instruction and is guaranteed to execute. 1782 static bool isSafeToExecuteUnconditionally( 1783 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, 1784 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, 1785 OptimizationRemarkEmitter *ORE, const Instruction *CtxI, 1786 AssumptionCache *AC, bool AllowSpeculation) { 1787 if (AllowSpeculation && 1788 isSafeToSpeculativelyExecute(&Inst, CtxI, AC, DT, TLI)) 1789 return true; 1790 1791 bool GuaranteedToExecute = 1792 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); 1793 1794 if (!GuaranteedToExecute) { 1795 auto *LI = dyn_cast<LoadInst>(&Inst); 1796 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1797 ORE->emit([&]() { 1798 return OptimizationRemarkMissed( 1799 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) 1800 << "failed to hoist load with loop-invariant address " 1801 "because load is conditionally executed"; 1802 }); 1803 } 1804 1805 return GuaranteedToExecute; 1806 } 1807 1808 namespace { 1809 class LoopPromoter : public LoadAndStorePromoter { 1810 Value *SomePtr; // Designated pointer to store to. 1811 SmallVectorImpl<BasicBlock *> &LoopExitBlocks; 1812 SmallVectorImpl<BasicBlock::iterator> &LoopInsertPts; 1813 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; 1814 PredIteratorCache &PredCache; 1815 MemorySSAUpdater &MSSAU; 1816 LoopInfo &LI; 1817 DebugLoc DL; 1818 Align Alignment; 1819 bool UnorderedAtomic; 1820 AAMDNodes AATags; 1821 ICFLoopSafetyInfo &SafetyInfo; 1822 bool CanInsertStoresInExitBlocks; 1823 ArrayRef<const Instruction *> Uses; 1824 1825 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi 1826 // (if legal) if doing so would add an out-of-loop use to an instruction 1827 // defined in-loop. 1828 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { 1829 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB)) 1830 return V; 1831 1832 Instruction *I = cast<Instruction>(V); 1833 // We need to create an LCSSA PHI node for the incoming value and 1834 // store that. 1835 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), 1836 I->getName() + ".lcssa"); 1837 PN->insertBefore(BB->begin()); 1838 for (BasicBlock *Pred : PredCache.get(BB)) 1839 PN->addIncoming(I, Pred); 1840 return PN; 1841 } 1842 1843 public: 1844 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, 1845 SmallVectorImpl<BasicBlock *> &LEB, 1846 SmallVectorImpl<BasicBlock::iterator> &LIP, 1847 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, 1848 MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl, 1849 Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags, 1850 ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks) 1851 : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB), 1852 LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU), 1853 LI(li), DL(std::move(dl)), Alignment(Alignment), 1854 UnorderedAtomic(UnorderedAtomic), AATags(AATags), 1855 SafetyInfo(SafetyInfo), 1856 CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {} 1857 1858 void insertStoresInLoopExitBlocks() { 1859 // Insert stores after in the loop exit blocks. Each exit block gets a 1860 // store of the live-out values that feed them. Since we've already told 1861 // the SSA updater about the defs in the loop and the preheader 1862 // definition, it is all set and we can start using it. 1863 DIAssignID *NewID = nullptr; 1864 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { 1865 BasicBlock *ExitBlock = LoopExitBlocks[i]; 1866 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 1867 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); 1868 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); 1869 BasicBlock::iterator InsertPos = LoopInsertPts[i]; 1870 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); 1871 if (UnorderedAtomic) 1872 NewSI->setOrdering(AtomicOrdering::Unordered); 1873 NewSI->setAlignment(Alignment); 1874 NewSI->setDebugLoc(DL); 1875 // Attach DIAssignID metadata to the new store, generating it on the 1876 // first loop iteration. 1877 if (i == 0) { 1878 // NewSI will have its DIAssignID set here if there are any stores in 1879 // Uses with a DIAssignID attachment. This merged ID will then be 1880 // attached to the other inserted stores (in the branch below). 1881 NewSI->mergeDIAssignID(Uses); 1882 NewID = cast_or_null<DIAssignID>( 1883 NewSI->getMetadata(LLVMContext::MD_DIAssignID)); 1884 } else { 1885 // Attach the DIAssignID (or nullptr) merged from Uses in the branch 1886 // above. 1887 NewSI->setMetadata(LLVMContext::MD_DIAssignID, NewID); 1888 } 1889 1890 if (AATags) 1891 NewSI->setAAMetadata(AATags); 1892 1893 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; 1894 MemoryAccess *NewMemAcc; 1895 if (!MSSAInsertPoint) { 1896 NewMemAcc = MSSAU.createMemoryAccessInBB( 1897 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); 1898 } else { 1899 NewMemAcc = 1900 MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); 1901 } 1902 MSSAInsertPts[i] = NewMemAcc; 1903 MSSAU.insertDef(cast<MemoryDef>(NewMemAcc), true); 1904 // FIXME: true for safety, false may still be correct. 1905 } 1906 } 1907 1908 void doExtraRewritesBeforeFinalDeletion() override { 1909 if (CanInsertStoresInExitBlocks) 1910 insertStoresInLoopExitBlocks(); 1911 } 1912 1913 void instructionDeleted(Instruction *I) const override { 1914 SafetyInfo.removeInstruction(I); 1915 MSSAU.removeMemoryAccess(I); 1916 } 1917 1918 bool shouldDelete(Instruction *I) const override { 1919 if (isa<StoreInst>(I)) 1920 return CanInsertStoresInExitBlocks; 1921 return true; 1922 } 1923 }; 1924 1925 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L, 1926 DominatorTree *DT) { 1927 // We can perform the captured-before check against any instruction in the 1928 // loop header, as the loop header is reachable from any instruction inside 1929 // the loop. 1930 // TODO: ReturnCaptures=true shouldn't be necessary here. 1931 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true, 1932 /* StoreCaptures */ true, 1933 L->getHeader()->getTerminator(), DT); 1934 } 1935 1936 /// Return true if we can prove that a caller cannot inspect the object if an 1937 /// unwind occurs inside the loop. 1938 bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L, 1939 DominatorTree *DT) { 1940 bool RequiresNoCaptureBeforeUnwind; 1941 if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind)) 1942 return false; 1943 1944 return !RequiresNoCaptureBeforeUnwind || 1945 isNotCapturedBeforeOrInLoop(Object, L, DT); 1946 } 1947 1948 bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT, 1949 TargetTransformInfo *TTI) { 1950 // The object must be function-local to start with, and then not captured 1951 // before/in the loop. 1952 return (isIdentifiedFunctionLocal(Object) && 1953 isNotCapturedBeforeOrInLoop(Object, L, DT)) || 1954 (TTI->isSingleThreaded() || SingleThread); 1955 } 1956 1957 } // namespace 1958 1959 /// Try to promote memory values to scalars by sinking stores out of the 1960 /// loop and moving loads to before the loop. We do this by looping over 1961 /// the stores in the loop, looking for stores to Must pointers which are 1962 /// loop invariant. 1963 /// 1964 bool llvm::promoteLoopAccessesToScalars( 1965 const SmallSetVector<Value *, 8> &PointerMustAliases, 1966 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1967 SmallVectorImpl<BasicBlock::iterator> &InsertPts, 1968 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, 1969 LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, 1970 const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, 1971 MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, 1972 OptimizationRemarkEmitter *ORE, bool AllowSpeculation, 1973 bool HasReadsOutsideSet) { 1974 // Verify inputs. 1975 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && 1976 SafetyInfo != nullptr && 1977 "Unexpected Input to promoteLoopAccessesToScalars"); 1978 1979 LLVM_DEBUG({ 1980 dbgs() << "Trying to promote set of must-aliased pointers:\n"; 1981 for (Value *Ptr : PointerMustAliases) 1982 dbgs() << " " << *Ptr << "\n"; 1983 }); 1984 ++NumPromotionCandidates; 1985 1986 Value *SomePtr = *PointerMustAliases.begin(); 1987 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1988 1989 // It is not safe to promote a load/store from the loop if the load/store is 1990 // conditional. For example, turning: 1991 // 1992 // for () { if (c) *P += 1; } 1993 // 1994 // into: 1995 // 1996 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; 1997 // 1998 // is not safe, because *P may only be valid to access if 'c' is true. 1999 // 2000 // The safety property divides into two parts: 2001 // p1) The memory may not be dereferenceable on entry to the loop. In this 2002 // case, we can't insert the required load in the preheader. 2003 // p2) The memory model does not allow us to insert a store along any dynamic 2004 // path which did not originally have one. 2005 // 2006 // If at least one store is guaranteed to execute, both properties are 2007 // satisfied, and promotion is legal. 2008 // 2009 // This, however, is not a necessary condition. Even if no store/load is 2010 // guaranteed to execute, we can still establish these properties. 2011 // We can establish (p1) by proving that hoisting the load into the preheader 2012 // is safe (i.e. proving dereferenceability on all paths through the loop). We 2013 // can use any access within the alias set to prove dereferenceability, 2014 // since they're all must alias. 2015 // 2016 // There are two ways establish (p2): 2017 // a) Prove the location is thread-local. In this case the memory model 2018 // requirement does not apply, and stores are safe to insert. 2019 // b) Prove a store dominates every exit block. In this case, if an exit 2020 // blocks is reached, the original dynamic path would have taken us through 2021 // the store, so inserting a store into the exit block is safe. Note that this 2022 // is different from the store being guaranteed to execute. For instance, 2023 // if an exception is thrown on the first iteration of the loop, the original 2024 // store is never executed, but the exit blocks are not executed either. 2025 2026 bool DereferenceableInPH = false; 2027 bool StoreIsGuanteedToExecute = false; 2028 bool FoundLoadToPromote = false; 2029 // Goes from Unknown to either Safe or Unsafe, but can't switch between them. 2030 enum { 2031 StoreSafe, 2032 StoreUnsafe, 2033 StoreSafetyUnknown, 2034 } StoreSafety = StoreSafetyUnknown; 2035 2036 SmallVector<Instruction *, 64> LoopUses; 2037 2038 // We start with an alignment of one and try to find instructions that allow 2039 // us to prove better alignment. 2040 Align Alignment; 2041 // Keep track of which types of access we see 2042 bool SawUnorderedAtomic = false; 2043 bool SawNotAtomic = false; 2044 AAMDNodes AATags; 2045 2046 const DataLayout &MDL = Preheader->getDataLayout(); 2047 2048 // If there are reads outside the promoted set, then promoting stores is 2049 // definitely not safe. 2050 if (HasReadsOutsideSet) 2051 StoreSafety = StoreUnsafe; 2052 2053 if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) { 2054 // If a loop can throw, we have to insert a store along each unwind edge. 2055 // That said, we can't actually make the unwind edge explicit. Therefore, 2056 // we have to prove that the store is dead along the unwind edge. We do 2057 // this by proving that the caller can't have a reference to the object 2058 // after return and thus can't possibly load from the object. 2059 Value *Object = getUnderlyingObject(SomePtr); 2060 if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT)) 2061 StoreSafety = StoreUnsafe; 2062 } 2063 2064 // Check that all accesses to pointers in the alias set use the same type. 2065 // We cannot (yet) promote a memory location that is loaded and stored in 2066 // different sizes. While we are at it, collect alignment and AA info. 2067 Type *AccessTy = nullptr; 2068 for (Value *ASIV : PointerMustAliases) { 2069 for (Use &U : ASIV->uses()) { 2070 // Ignore instructions that are outside the loop. 2071 Instruction *UI = dyn_cast<Instruction>(U.getUser()); 2072 if (!UI || !CurLoop->contains(UI)) 2073 continue; 2074 2075 // If there is an non-load/store instruction in the loop, we can't promote 2076 // it. 2077 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { 2078 if (!Load->isUnordered()) 2079 return false; 2080 2081 SawUnorderedAtomic |= Load->isAtomic(); 2082 SawNotAtomic |= !Load->isAtomic(); 2083 FoundLoadToPromote = true; 2084 2085 Align InstAlignment = Load->getAlign(); 2086 2087 // Note that proving a load safe to speculate requires proving 2088 // sufficient alignment at the target location. Proving it guaranteed 2089 // to execute does as well. Thus we can increase our guaranteed 2090 // alignment as well. 2091 if (!DereferenceableInPH || (InstAlignment > Alignment)) 2092 if (isSafeToExecuteUnconditionally( 2093 *Load, DT, TLI, CurLoop, SafetyInfo, ORE, 2094 Preheader->getTerminator(), AC, AllowSpeculation)) { 2095 DereferenceableInPH = true; 2096 Alignment = std::max(Alignment, InstAlignment); 2097 } 2098 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { 2099 // Stores *of* the pointer are not interesting, only stores *to* the 2100 // pointer. 2101 if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) 2102 continue; 2103 if (!Store->isUnordered()) 2104 return false; 2105 2106 SawUnorderedAtomic |= Store->isAtomic(); 2107 SawNotAtomic |= !Store->isAtomic(); 2108 2109 // If the store is guaranteed to execute, both properties are satisfied. 2110 // We may want to check if a store is guaranteed to execute even if we 2111 // already know that promotion is safe, since it may have higher 2112 // alignment than any other guaranteed stores, in which case we can 2113 // raise the alignment on the promoted store. 2114 Align InstAlignment = Store->getAlign(); 2115 bool GuaranteedToExecute = 2116 SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop); 2117 StoreIsGuanteedToExecute |= GuaranteedToExecute; 2118 if (GuaranteedToExecute) { 2119 DereferenceableInPH = true; 2120 if (StoreSafety == StoreSafetyUnknown) 2121 StoreSafety = StoreSafe; 2122 Alignment = std::max(Alignment, InstAlignment); 2123 } 2124 2125 // If a store dominates all exit blocks, it is safe to sink. 2126 // As explained above, if an exit block was executed, a dominating 2127 // store must have been executed at least once, so we are not 2128 // introducing stores on paths that did not have them. 2129 // Note that this only looks at explicit exit blocks. If we ever 2130 // start sinking stores into unwind edges (see above), this will break. 2131 if (StoreSafety == StoreSafetyUnknown && 2132 llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { 2133 return DT->dominates(Store->getParent(), Exit); 2134 })) 2135 StoreSafety = StoreSafe; 2136 2137 // If the store is not guaranteed to execute, we may still get 2138 // deref info through it. 2139 if (!DereferenceableInPH) { 2140 DereferenceableInPH = isDereferenceableAndAlignedPointer( 2141 Store->getPointerOperand(), Store->getValueOperand()->getType(), 2142 Store->getAlign(), MDL, Preheader->getTerminator(), AC, DT, TLI); 2143 } 2144 } else 2145 continue; // Not a load or store. 2146 2147 if (!AccessTy) 2148 AccessTy = getLoadStoreType(UI); 2149 else if (AccessTy != getLoadStoreType(UI)) 2150 return false; 2151 2152 // Merge the AA tags. 2153 if (LoopUses.empty()) { 2154 // On the first load/store, just take its AA tags. 2155 AATags = UI->getAAMetadata(); 2156 } else if (AATags) { 2157 AATags = AATags.merge(UI->getAAMetadata()); 2158 } 2159 2160 LoopUses.push_back(UI); 2161 } 2162 } 2163 2164 // If we found both an unordered atomic instruction and a non-atomic memory 2165 // access, bail. We can't blindly promote non-atomic to atomic since we 2166 // might not be able to lower the result. We can't downgrade since that 2167 // would violate memory model. Also, align 0 is an error for atomics. 2168 if (SawUnorderedAtomic && SawNotAtomic) 2169 return false; 2170 2171 // If we're inserting an atomic load in the preheader, we must be able to 2172 // lower it. We're only guaranteed to be able to lower naturally aligned 2173 // atomics. 2174 if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy)) 2175 return false; 2176 2177 // If we couldn't prove we can hoist the load, bail. 2178 if (!DereferenceableInPH) { 2179 LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n"); 2180 return false; 2181 } 2182 2183 // We know we can hoist the load, but don't have a guaranteed store. 2184 // Check whether the location is writable and thread-local. If it is, then we 2185 // can insert stores along paths which originally didn't have them without 2186 // violating the memory model. 2187 if (StoreSafety == StoreSafetyUnknown) { 2188 Value *Object = getUnderlyingObject(SomePtr); 2189 bool ExplicitlyDereferenceableOnly; 2190 if (isWritableObject(Object, ExplicitlyDereferenceableOnly) && 2191 (!ExplicitlyDereferenceableOnly || 2192 isDereferenceablePointer(SomePtr, AccessTy, MDL)) && 2193 isThreadLocalObject(Object, CurLoop, DT, TTI)) 2194 StoreSafety = StoreSafe; 2195 } 2196 2197 // If we've still failed to prove we can sink the store, hoist the load 2198 // only, if possible. 2199 if (StoreSafety != StoreSafe && !FoundLoadToPromote) 2200 // If we cannot hoist the load either, give up. 2201 return false; 2202 2203 // Lets do the promotion! 2204 if (StoreSafety == StoreSafe) { 2205 LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr 2206 << '\n'); 2207 ++NumLoadStorePromoted; 2208 } else { 2209 LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr 2210 << '\n'); 2211 ++NumLoadPromoted; 2212 } 2213 2214 ORE->emit([&]() { 2215 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", 2216 LoopUses[0]) 2217 << "Moving accesses to memory location out of the loop"; 2218 }); 2219 2220 // Look at all the loop uses, and try to merge their locations. 2221 std::vector<DILocation *> LoopUsesLocs; 2222 for (auto *U : LoopUses) 2223 LoopUsesLocs.push_back(U->getDebugLoc().get()); 2224 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs)); 2225 2226 // We use the SSAUpdater interface to insert phi nodes as required. 2227 SmallVector<PHINode *, 16> NewPHIs; 2228 SSAUpdater SSA(&NewPHIs); 2229 LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts, 2230 MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment, 2231 SawUnorderedAtomic, AATags, *SafetyInfo, 2232 StoreSafety == StoreSafe); 2233 2234 // Set up the preheader to have a definition of the value. It is the live-out 2235 // value from the preheader that uses in the loop will use. 2236 LoadInst *PreheaderLoad = nullptr; 2237 if (FoundLoadToPromote || !StoreIsGuanteedToExecute) { 2238 PreheaderLoad = 2239 new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted", 2240 Preheader->getTerminator()->getIterator()); 2241 if (SawUnorderedAtomic) 2242 PreheaderLoad->setOrdering(AtomicOrdering::Unordered); 2243 PreheaderLoad->setAlignment(Alignment); 2244 PreheaderLoad->setDebugLoc(DebugLoc()); 2245 if (AATags) 2246 PreheaderLoad->setAAMetadata(AATags); 2247 2248 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB( 2249 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); 2250 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); 2251 MSSAU.insertUse(NewMemUse, /*RenameUses=*/true); 2252 SSA.AddAvailableValue(Preheader, PreheaderLoad); 2253 } else { 2254 SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy)); 2255 } 2256 2257 if (VerifyMemorySSA) 2258 MSSAU.getMemorySSA()->verifyMemorySSA(); 2259 // Rewrite all the loads in the loop and remember all the definitions from 2260 // stores in the loop. 2261 Promoter.run(LoopUses); 2262 2263 if (VerifyMemorySSA) 2264 MSSAU.getMemorySSA()->verifyMemorySSA(); 2265 // If the SSAUpdater didn't use the load in the preheader, just zap it now. 2266 if (PreheaderLoad && PreheaderLoad->use_empty()) 2267 eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU); 2268 2269 return true; 2270 } 2271 2272 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, 2273 function_ref<void(Instruction *)> Fn) { 2274 for (const BasicBlock *BB : L->blocks()) 2275 if (const auto *Accesses = MSSA->getBlockAccesses(BB)) 2276 for (const auto &Access : *Accesses) 2277 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access)) 2278 Fn(MUD->getMemoryInst()); 2279 } 2280 2281 // The bool indicates whether there might be reads outside the set, in which 2282 // case only loads may be promoted. 2283 static SmallVector<PointersAndHasReadsOutsideSet, 0> 2284 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) { 2285 BatchAAResults BatchAA(*AA); 2286 AliasSetTracker AST(BatchAA); 2287 2288 auto IsPotentiallyPromotable = [L](const Instruction *I) { 2289 if (const auto *SI = dyn_cast<StoreInst>(I)) 2290 return L->isLoopInvariant(SI->getPointerOperand()); 2291 if (const auto *LI = dyn_cast<LoadInst>(I)) 2292 return L->isLoopInvariant(LI->getPointerOperand()); 2293 return false; 2294 }; 2295 2296 // Populate AST with potentially promotable accesses. 2297 SmallPtrSet<Value *, 16> AttemptingPromotion; 2298 foreachMemoryAccess(MSSA, L, [&](Instruction *I) { 2299 if (IsPotentiallyPromotable(I)) { 2300 AttemptingPromotion.insert(I); 2301 AST.add(I); 2302 } 2303 }); 2304 2305 // We're only interested in must-alias sets that contain a mod. 2306 SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets; 2307 for (AliasSet &AS : AST) 2308 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias()) 2309 Sets.push_back({&AS, false}); 2310 2311 if (Sets.empty()) 2312 return {}; // Nothing to promote... 2313 2314 // Discard any sets for which there is an aliasing non-promotable access. 2315 foreachMemoryAccess(MSSA, L, [&](Instruction *I) { 2316 if (AttemptingPromotion.contains(I)) 2317 return; 2318 2319 llvm::erase_if(Sets, [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) { 2320 ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA); 2321 // Cannot promote if there are writes outside the set. 2322 if (isModSet(MR)) 2323 return true; 2324 if (isRefSet(MR)) { 2325 // Remember reads outside the set. 2326 Pair.setInt(true); 2327 // If this is a mod-only set and there are reads outside the set, 2328 // we will not be able to promote, so bail out early. 2329 return !Pair.getPointer()->isRef(); 2330 } 2331 return false; 2332 }); 2333 }); 2334 2335 SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result; 2336 for (auto [Set, HasReadsOutsideSet] : Sets) { 2337 SmallSetVector<Value *, 8> PointerMustAliases; 2338 for (const auto &MemLoc : *Set) 2339 PointerMustAliases.insert(const_cast<Value *>(MemLoc.Ptr)); 2340 Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet); 2341 } 2342 2343 return Result; 2344 } 2345 2346 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, 2347 Loop *CurLoop, Instruction &I, 2348 SinkAndHoistLICMFlags &Flags, 2349 bool InvariantGroup) { 2350 // For hoisting, use the walker to determine safety 2351 if (!Flags.getIsSink()) { 2352 // If hoisting an invariant group, we only need to check that there 2353 // is no store to the loaded pointer between the start of the loop, 2354 // and the load (since all values must be the same). 2355 2356 // This can be checked in two conditions: 2357 // 1) if the memoryaccess is outside the loop 2358 // 2) the earliest access is at the loop header, 2359 // if the memory loaded is the phi node 2360 2361 BatchAAResults BAA(MSSA->getAA()); 2362 MemoryAccess *Source = getClobberingMemoryAccess(*MSSA, BAA, Flags, MU); 2363 return !MSSA->isLiveOnEntryDef(Source) && 2364 CurLoop->contains(Source->getBlock()) && 2365 !(InvariantGroup && Source->getBlock() == CurLoop->getHeader() && isa<MemoryPhi>(Source)); 2366 } 2367 2368 // For sinking, we'd need to check all Defs below this use. The getClobbering 2369 // call will look on the backedge of the loop, but will check aliasing with 2370 // the instructions on the previous iteration. 2371 // For example: 2372 // for (i ... ) 2373 // load a[i] ( Use (LoE) 2374 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. 2375 // i++; 2376 // The load sees no clobbering inside the loop, as the backedge alias check 2377 // does phi translation, and will check aliasing against store a[i-1]. 2378 // However sinking the load outside the loop, below the store is incorrect. 2379 2380 // For now, only sink if there are no Defs in the loop, and the existing ones 2381 // precede the use and are in the same block. 2382 // FIXME: Increase precision: Safe to sink if Use post dominates the Def; 2383 // needs PostDominatorTreeAnalysis. 2384 // FIXME: More precise: no Defs that alias this Use. 2385 if (Flags.tooManyMemoryAccesses()) 2386 return true; 2387 for (auto *BB : CurLoop->getBlocks()) 2388 if (pointerInvalidatedByBlock(*BB, *MSSA, *MU)) 2389 return true; 2390 // When sinking, the source block may not be part of the loop so check it. 2391 if (!CurLoop->contains(&I)) 2392 return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU); 2393 2394 return false; 2395 } 2396 2397 bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) { 2398 if (const auto *Accesses = MSSA.getBlockDefs(&BB)) 2399 for (const auto &MA : *Accesses) 2400 if (const auto *MD = dyn_cast<MemoryDef>(&MA)) 2401 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU)) 2402 return true; 2403 return false; 2404 } 2405 2406 /// Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A < 2407 /// min(INV_1, INV_2)), if INV_1 and INV_2 are both loop invariants and their 2408 /// minimun can be computed outside of loop, and X is not a loop-invariant. 2409 static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, 2410 MemorySSAUpdater &MSSAU) { 2411 bool Inverse = false; 2412 using namespace PatternMatch; 2413 Value *Cond1, *Cond2; 2414 if (match(&I, m_LogicalOr(m_Value(Cond1), m_Value(Cond2)))) { 2415 Inverse = true; 2416 } else if (match(&I, m_LogicalAnd(m_Value(Cond1), m_Value(Cond2)))) { 2417 // Do nothing 2418 } else 2419 return false; 2420 2421 auto MatchICmpAgainstInvariant = [&](Value *C, ICmpInst::Predicate &P, 2422 Value *&LHS, Value *&RHS) { 2423 if (!match(C, m_OneUse(m_ICmp(P, m_Value(LHS), m_Value(RHS))))) 2424 return false; 2425 if (!LHS->getType()->isIntegerTy()) 2426 return false; 2427 if (!ICmpInst::isRelational(P)) 2428 return false; 2429 if (L.isLoopInvariant(LHS)) { 2430 std::swap(LHS, RHS); 2431 P = ICmpInst::getSwappedPredicate(P); 2432 } 2433 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS)) 2434 return false; 2435 if (Inverse) 2436 P = ICmpInst::getInversePredicate(P); 2437 return true; 2438 }; 2439 ICmpInst::Predicate P1, P2; 2440 Value *LHS1, *LHS2, *RHS1, *RHS2; 2441 if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) || 2442 !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2)) 2443 return false; 2444 if (P1 != P2 || LHS1 != LHS2) 2445 return false; 2446 2447 // Everything is fine, we can do the transform. 2448 bool UseMin = ICmpInst::isLT(P1) || ICmpInst::isLE(P1); 2449 assert( 2450 (UseMin || ICmpInst::isGT(P1) || ICmpInst::isGE(P1)) && 2451 "Relational predicate is either less (or equal) or greater (or equal)!"); 2452 Intrinsic::ID id = ICmpInst::isSigned(P1) 2453 ? (UseMin ? Intrinsic::smin : Intrinsic::smax) 2454 : (UseMin ? Intrinsic::umin : Intrinsic::umax); 2455 auto *Preheader = L.getLoopPreheader(); 2456 assert(Preheader && "Loop is not in simplify form?"); 2457 IRBuilder<> Builder(Preheader->getTerminator()); 2458 // We are about to create a new guaranteed use for RHS2 which might not exist 2459 // before (if it was a non-taken input of logical and/or instruction). If it 2460 // was poison, we need to freeze it. Note that no new use for LHS and RHS1 are 2461 // introduced, so they don't need this. 2462 if (isa<SelectInst>(I)) 2463 RHS2 = Builder.CreateFreeze(RHS2, RHS2->getName() + ".fr"); 2464 Value *NewRHS = Builder.CreateBinaryIntrinsic( 2465 id, RHS1, RHS2, nullptr, StringRef("invariant.") + 2466 (ICmpInst::isSigned(P1) ? "s" : "u") + 2467 (UseMin ? "min" : "max")); 2468 Builder.SetInsertPoint(&I); 2469 ICmpInst::Predicate P = P1; 2470 if (Inverse) 2471 P = ICmpInst::getInversePredicate(P); 2472 Value *NewCond = Builder.CreateICmp(P, LHS1, NewRHS); 2473 NewCond->takeName(&I); 2474 I.replaceAllUsesWith(NewCond); 2475 eraseInstruction(I, SafetyInfo, MSSAU); 2476 eraseInstruction(*cast<Instruction>(Cond1), SafetyInfo, MSSAU); 2477 eraseInstruction(*cast<Instruction>(Cond2), SafetyInfo, MSSAU); 2478 return true; 2479 } 2480 2481 /// Reassociate gep (gep ptr, idx1), idx2 to gep (gep ptr, idx2), idx1 if 2482 /// this allows hoisting the inner GEP. 2483 static bool hoistGEP(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, 2484 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2485 DominatorTree *DT) { 2486 auto *GEP = dyn_cast<GetElementPtrInst>(&I); 2487 if (!GEP) 2488 return false; 2489 2490 auto *Src = dyn_cast<GetElementPtrInst>(GEP->getPointerOperand()); 2491 if (!Src || !Src->hasOneUse() || !L.contains(Src)) 2492 return false; 2493 2494 Value *SrcPtr = Src->getPointerOperand(); 2495 auto LoopInvariant = [&](Value *V) { return L.isLoopInvariant(V); }; 2496 if (!L.isLoopInvariant(SrcPtr) || !all_of(GEP->indices(), LoopInvariant)) 2497 return false; 2498 2499 // This can only happen if !AllowSpeculation, otherwise this would already be 2500 // handled. 2501 // FIXME: Should we respect AllowSpeculation in these reassociation folds? 2502 // The flag exists to prevent metadata dropping, which is not relevant here. 2503 if (all_of(Src->indices(), LoopInvariant)) 2504 return false; 2505 2506 // The swapped GEPs are inbounds if both original GEPs are inbounds 2507 // and the sign of the offsets is the same. For simplicity, only 2508 // handle both offsets being non-negative. 2509 const DataLayout &DL = GEP->getDataLayout(); 2510 auto NonNegative = [&](Value *V) { 2511 return isKnownNonNegative(V, SimplifyQuery(DL, DT, AC, GEP)); 2512 }; 2513 bool IsInBounds = Src->isInBounds() && GEP->isInBounds() && 2514 all_of(Src->indices(), NonNegative) && 2515 all_of(GEP->indices(), NonNegative); 2516 2517 BasicBlock *Preheader = L.getLoopPreheader(); 2518 IRBuilder<> Builder(Preheader->getTerminator()); 2519 Value *NewSrc = Builder.CreateGEP(GEP->getSourceElementType(), SrcPtr, 2520 SmallVector<Value *>(GEP->indices()), 2521 "invariant.gep", IsInBounds); 2522 Builder.SetInsertPoint(GEP); 2523 Value *NewGEP = Builder.CreateGEP(Src->getSourceElementType(), NewSrc, 2524 SmallVector<Value *>(Src->indices()), "gep", 2525 IsInBounds); 2526 GEP->replaceAllUsesWith(NewGEP); 2527 eraseInstruction(*GEP, SafetyInfo, MSSAU); 2528 eraseInstruction(*Src, SafetyInfo, MSSAU); 2529 return true; 2530 } 2531 2532 /// Try to turn things like "LV + C1 < C2" into "LV < C2 - C1". Here 2533 /// C1 and C2 are loop invariants and LV is a loop-variant. 2534 static bool hoistAdd(ICmpInst::Predicate Pred, Value *VariantLHS, 2535 Value *InvariantRHS, ICmpInst &ICmp, Loop &L, 2536 ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, 2537 AssumptionCache *AC, DominatorTree *DT) { 2538 assert(ICmpInst::isSigned(Pred) && "Not supported yet!"); 2539 assert(!L.isLoopInvariant(VariantLHS) && "Precondition."); 2540 assert(L.isLoopInvariant(InvariantRHS) && "Precondition."); 2541 2542 // Try to represent VariantLHS as sum of invariant and variant operands. 2543 using namespace PatternMatch; 2544 Value *VariantOp, *InvariantOp; 2545 if (!match(VariantLHS, m_NSWAdd(m_Value(VariantOp), m_Value(InvariantOp)))) 2546 return false; 2547 2548 // LHS itself is a loop-variant, try to represent it in the form: 2549 // "VariantOp + InvariantOp". If it is possible, then we can reassociate. 2550 if (L.isLoopInvariant(VariantOp)) 2551 std::swap(VariantOp, InvariantOp); 2552 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) 2553 return false; 2554 2555 // In order to turn "LV + C1 < C2" into "LV < C2 - C1", we need to be able to 2556 // freely move values from left side of inequality to right side (just as in 2557 // normal linear arithmetics). Overflows make things much more complicated, so 2558 // we want to avoid this. 2559 auto &DL = L.getHeader()->getDataLayout(); 2560 bool ProvedNoOverflowAfterReassociate = 2561 computeOverflowForSignedSub(InvariantRHS, InvariantOp, 2562 SimplifyQuery(DL, DT, AC, &ICmp)) == 2563 llvm::OverflowResult::NeverOverflows; 2564 if (!ProvedNoOverflowAfterReassociate) 2565 return false; 2566 auto *Preheader = L.getLoopPreheader(); 2567 assert(Preheader && "Loop is not in simplify form?"); 2568 IRBuilder<> Builder(Preheader->getTerminator()); 2569 Value *NewCmpOp = Builder.CreateSub(InvariantRHS, InvariantOp, "invariant.op", 2570 /*HasNUW*/ false, /*HasNSW*/ true); 2571 ICmp.setPredicate(Pred); 2572 ICmp.setOperand(0, VariantOp); 2573 ICmp.setOperand(1, NewCmpOp); 2574 eraseInstruction(cast<Instruction>(*VariantLHS), SafetyInfo, MSSAU); 2575 return true; 2576 } 2577 2578 /// Try to reassociate and hoist the following two patterns: 2579 /// LV - C1 < C2 --> LV < C1 + C2, 2580 /// C1 - LV < C2 --> LV > C1 - C2. 2581 static bool hoistSub(ICmpInst::Predicate Pred, Value *VariantLHS, 2582 Value *InvariantRHS, ICmpInst &ICmp, Loop &L, 2583 ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, 2584 AssumptionCache *AC, DominatorTree *DT) { 2585 assert(ICmpInst::isSigned(Pred) && "Not supported yet!"); 2586 assert(!L.isLoopInvariant(VariantLHS) && "Precondition."); 2587 assert(L.isLoopInvariant(InvariantRHS) && "Precondition."); 2588 2589 // Try to represent VariantLHS as sum of invariant and variant operands. 2590 using namespace PatternMatch; 2591 Value *VariantOp, *InvariantOp; 2592 if (!match(VariantLHS, m_NSWSub(m_Value(VariantOp), m_Value(InvariantOp)))) 2593 return false; 2594 2595 bool VariantSubtracted = false; 2596 // LHS itself is a loop-variant, try to represent it in the form: 2597 // "VariantOp + InvariantOp". If it is possible, then we can reassociate. If 2598 // the variant operand goes with minus, we use a slightly different scheme. 2599 if (L.isLoopInvariant(VariantOp)) { 2600 std::swap(VariantOp, InvariantOp); 2601 VariantSubtracted = true; 2602 Pred = ICmpInst::getSwappedPredicate(Pred); 2603 } 2604 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) 2605 return false; 2606 2607 // In order to turn "LV - C1 < C2" into "LV < C2 + C1", we need to be able to 2608 // freely move values from left side of inequality to right side (just as in 2609 // normal linear arithmetics). Overflows make things much more complicated, so 2610 // we want to avoid this. Likewise, for "C1 - LV < C2" we need to prove that 2611 // "C1 - C2" does not overflow. 2612 auto &DL = L.getHeader()->getDataLayout(); 2613 SimplifyQuery SQ(DL, DT, AC, &ICmp); 2614 if (VariantSubtracted) { 2615 // C1 - LV < C2 --> LV > C1 - C2 2616 if (computeOverflowForSignedSub(InvariantOp, InvariantRHS, SQ) != 2617 llvm::OverflowResult::NeverOverflows) 2618 return false; 2619 } else { 2620 // LV - C1 < C2 --> LV < C1 + C2 2621 if (computeOverflowForSignedAdd(InvariantOp, InvariantRHS, SQ) != 2622 llvm::OverflowResult::NeverOverflows) 2623 return false; 2624 } 2625 auto *Preheader = L.getLoopPreheader(); 2626 assert(Preheader && "Loop is not in simplify form?"); 2627 IRBuilder<> Builder(Preheader->getTerminator()); 2628 Value *NewCmpOp = 2629 VariantSubtracted 2630 ? Builder.CreateSub(InvariantOp, InvariantRHS, "invariant.op", 2631 /*HasNUW*/ false, /*HasNSW*/ true) 2632 : Builder.CreateAdd(InvariantOp, InvariantRHS, "invariant.op", 2633 /*HasNUW*/ false, /*HasNSW*/ true); 2634 ICmp.setPredicate(Pred); 2635 ICmp.setOperand(0, VariantOp); 2636 ICmp.setOperand(1, NewCmpOp); 2637 eraseInstruction(cast<Instruction>(*VariantLHS), SafetyInfo, MSSAU); 2638 return true; 2639 } 2640 2641 /// Reassociate and hoist add/sub expressions. 2642 static bool hoistAddSub(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, 2643 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2644 DominatorTree *DT) { 2645 using namespace PatternMatch; 2646 ICmpInst::Predicate Pred; 2647 Value *LHS, *RHS; 2648 if (!match(&I, m_ICmp(Pred, m_Value(LHS), m_Value(RHS)))) 2649 return false; 2650 2651 // TODO: Support unsigned predicates? 2652 if (!ICmpInst::isSigned(Pred)) 2653 return false; 2654 2655 // Put variant operand to LHS position. 2656 if (L.isLoopInvariant(LHS)) { 2657 std::swap(LHS, RHS); 2658 Pred = ICmpInst::getSwappedPredicate(Pred); 2659 } 2660 // We want to delete the initial operation after reassociation, so only do it 2661 // if it has no other uses. 2662 if (L.isLoopInvariant(LHS) || !L.isLoopInvariant(RHS) || !LHS->hasOneUse()) 2663 return false; 2664 2665 // TODO: We could go with smarter context, taking common dominator of all I's 2666 // users instead of I itself. 2667 if (hoistAdd(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT)) 2668 return true; 2669 2670 if (hoistSub(Pred, LHS, RHS, cast<ICmpInst>(I), L, SafetyInfo, MSSAU, AC, DT)) 2671 return true; 2672 2673 return false; 2674 } 2675 2676 static bool isReassociableOp(Instruction *I, unsigned IntOpcode, 2677 unsigned FPOpcode) { 2678 if (I->getOpcode() == IntOpcode) 2679 return true; 2680 if (I->getOpcode() == FPOpcode && I->hasAllowReassoc() && 2681 I->hasNoSignedZeros()) 2682 return true; 2683 return false; 2684 } 2685 2686 /// Try to reassociate expressions like ((A1 * B1) + (A2 * B2) + ...) * C where 2687 /// A1, A2, ... and C are loop invariants into expressions like 2688 /// ((A1 * C * B1) + (A2 * C * B2) + ...) and hoist the (A1 * C), (A2 * C), ... 2689 /// invariant expressions. This functions returns true only if any hoisting has 2690 /// actually occured. 2691 static bool hoistMulAddAssociation(Instruction &I, Loop &L, 2692 ICFLoopSafetyInfo &SafetyInfo, 2693 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2694 DominatorTree *DT) { 2695 if (!isReassociableOp(&I, Instruction::Mul, Instruction::FMul)) 2696 return false; 2697 Value *VariantOp = I.getOperand(0); 2698 Value *InvariantOp = I.getOperand(1); 2699 if (L.isLoopInvariant(VariantOp)) 2700 std::swap(VariantOp, InvariantOp); 2701 if (L.isLoopInvariant(VariantOp) || !L.isLoopInvariant(InvariantOp)) 2702 return false; 2703 Value *Factor = InvariantOp; 2704 2705 // First, we need to make sure we should do the transformation. 2706 SmallVector<Use *> Changes; 2707 SmallVector<BinaryOperator *> Adds; 2708 SmallVector<BinaryOperator *> Worklist; 2709 if (BinaryOperator *VariantBinOp = dyn_cast<BinaryOperator>(VariantOp)) 2710 Worklist.push_back(VariantBinOp); 2711 while (!Worklist.empty()) { 2712 BinaryOperator *BO = Worklist.pop_back_val(); 2713 if (!BO->hasOneUse()) 2714 return false; 2715 if (isReassociableOp(BO, Instruction::Add, Instruction::FAdd) && 2716 isa<BinaryOperator>(BO->getOperand(0)) && 2717 isa<BinaryOperator>(BO->getOperand(1))) { 2718 Worklist.push_back(cast<BinaryOperator>(BO->getOperand(0))); 2719 Worklist.push_back(cast<BinaryOperator>(BO->getOperand(1))); 2720 Adds.push_back(BO); 2721 continue; 2722 } 2723 if (!isReassociableOp(BO, Instruction::Mul, Instruction::FMul) || 2724 L.isLoopInvariant(BO)) 2725 return false; 2726 Use &U0 = BO->getOperandUse(0); 2727 Use &U1 = BO->getOperandUse(1); 2728 if (L.isLoopInvariant(U0)) 2729 Changes.push_back(&U0); 2730 else if (L.isLoopInvariant(U1)) 2731 Changes.push_back(&U1); 2732 else 2733 return false; 2734 unsigned Limit = I.getType()->isIntOrIntVectorTy() 2735 ? IntAssociationUpperLimit 2736 : FPAssociationUpperLimit; 2737 if (Changes.size() > Limit) 2738 return false; 2739 } 2740 if (Changes.empty()) 2741 return false; 2742 2743 // Drop the poison flags for any adds we looked through. 2744 if (I.getType()->isIntOrIntVectorTy()) { 2745 for (auto *Add : Adds) 2746 Add->dropPoisonGeneratingFlags(); 2747 } 2748 2749 // We know we should do it so let's do the transformation. 2750 auto *Preheader = L.getLoopPreheader(); 2751 assert(Preheader && "Loop is not in simplify form?"); 2752 IRBuilder<> Builder(Preheader->getTerminator()); 2753 for (auto *U : Changes) { 2754 assert(L.isLoopInvariant(U->get())); 2755 auto *Ins = cast<BinaryOperator>(U->getUser()); 2756 Value *Mul; 2757 if (I.getType()->isIntOrIntVectorTy()) { 2758 Mul = Builder.CreateMul(U->get(), Factor, "factor.op.mul"); 2759 // Drop the poison flags on the original multiply. 2760 Ins->dropPoisonGeneratingFlags(); 2761 } else 2762 Mul = Builder.CreateFMulFMF(U->get(), Factor, Ins, "factor.op.fmul"); 2763 2764 // Rewrite the reassociable instruction. 2765 unsigned OpIdx = U->getOperandNo(); 2766 auto *LHS = OpIdx == 0 ? Mul : Ins->getOperand(0); 2767 auto *RHS = OpIdx == 1 ? Mul : Ins->getOperand(1); 2768 auto *NewBO = BinaryOperator::Create(Ins->getOpcode(), LHS, RHS, 2769 Ins->getName() + ".reass", Ins); 2770 NewBO->copyIRFlags(Ins); 2771 if (VariantOp == Ins) 2772 VariantOp = NewBO; 2773 Ins->replaceAllUsesWith(NewBO); 2774 eraseInstruction(*Ins, SafetyInfo, MSSAU); 2775 } 2776 2777 I.replaceAllUsesWith(VariantOp); 2778 eraseInstruction(I, SafetyInfo, MSSAU); 2779 return true; 2780 } 2781 2782 static bool hoistArithmetics(Instruction &I, Loop &L, 2783 ICFLoopSafetyInfo &SafetyInfo, 2784 MemorySSAUpdater &MSSAU, AssumptionCache *AC, 2785 DominatorTree *DT) { 2786 // Optimize complex patterns, such as (x < INV1 && x < INV2), turning them 2787 // into (x < min(INV1, INV2)), and hoisting the invariant part of this 2788 // expression out of the loop. 2789 if (hoistMinMax(I, L, SafetyInfo, MSSAU)) { 2790 ++NumHoisted; 2791 ++NumMinMaxHoisted; 2792 return true; 2793 } 2794 2795 // Try to hoist GEPs by reassociation. 2796 if (hoistGEP(I, L, SafetyInfo, MSSAU, AC, DT)) { 2797 ++NumHoisted; 2798 ++NumGEPsHoisted; 2799 return true; 2800 } 2801 2802 // Try to hoist add/sub's by reassociation. 2803 if (hoistAddSub(I, L, SafetyInfo, MSSAU, AC, DT)) { 2804 ++NumHoisted; 2805 ++NumAddSubHoisted; 2806 return true; 2807 } 2808 2809 bool IsInt = I.getType()->isIntOrIntVectorTy(); 2810 if (hoistMulAddAssociation(I, L, SafetyInfo, MSSAU, AC, DT)) { 2811 ++NumHoisted; 2812 if (IsInt) 2813 ++NumIntAssociationsHoisted; 2814 else 2815 ++NumFPAssociationsHoisted; 2816 return true; 2817 } 2818 2819 return false; 2820 } 2821 2822 /// Little predicate that returns true if the specified basic block is in 2823 /// a subloop of the current one, not the current one itself. 2824 /// 2825 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { 2826 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); 2827 return LI->getLoopFor(BB) != CurLoop; 2828 } 2829