1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/GlobalsModRef.h" 27 #include "llvm/Analysis/GuardUtils.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/PostDominators.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/PassManager.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/ProfDataUtils.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/Support/BlockFrequency.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/raw_ostream.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SSAUpdater.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <memory> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace jumpthreading; 81 82 #define DEBUG_TYPE "jump-threading" 83 84 STATISTIC(NumThreads, "Number of jumps threaded"); 85 STATISTIC(NumFolds, "Number of terminators folded"); 86 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 87 88 static cl::opt<unsigned> 89 BBDuplicateThreshold("jump-threading-threshold", 90 cl::desc("Max block size to duplicate for jump threading"), 91 cl::init(6), cl::Hidden); 92 93 static cl::opt<unsigned> 94 ImplicationSearchThreshold( 95 "jump-threading-implication-search-threshold", 96 cl::desc("The number of predecessors to search for a stronger " 97 "condition to use to thread over a weaker condition"), 98 cl::init(3), cl::Hidden); 99 100 static cl::opt<unsigned> PhiDuplicateThreshold( 101 "jump-threading-phi-threshold", 102 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76), 103 cl::Hidden); 104 105 static cl::opt<bool> ThreadAcrossLoopHeaders( 106 "jump-threading-across-loop-headers", 107 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 108 cl::init(false), cl::Hidden); 109 110 JumpThreadingPass::JumpThreadingPass(int T) { 111 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 112 } 113 114 // Update branch probability information according to conditional 115 // branch probability. This is usually made possible for cloned branches 116 // in inline instances by the context specific profile in the caller. 117 // For instance, 118 // 119 // [Block PredBB] 120 // [Branch PredBr] 121 // if (t) { 122 // Block A; 123 // } else { 124 // Block B; 125 // } 126 // 127 // [Block BB] 128 // cond = PN([true, %A], [..., %B]); // PHI node 129 // [Branch CondBr] 130 // if (cond) { 131 // ... // P(cond == true) = 1% 132 // } 133 // 134 // Here we know that when block A is taken, cond must be true, which means 135 // P(cond == true | A) = 1 136 // 137 // Given that P(cond == true) = P(cond == true | A) * P(A) + 138 // P(cond == true | B) * P(B) 139 // we get: 140 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 141 // 142 // which gives us: 143 // P(A) is less than P(cond == true), i.e. 144 // P(t == true) <= P(cond == true) 145 // 146 // In other words, if we know P(cond == true) is unlikely, we know 147 // that P(t == true) is also unlikely. 148 // 149 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 150 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 151 if (!CondBr) 152 return; 153 154 uint64_t TrueWeight, FalseWeight; 155 if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight)) 156 return; 157 158 if (TrueWeight + FalseWeight == 0) 159 // Zero branch_weights do not give a hint for getting branch probabilities. 160 // Technically it would result in division by zero denominator, which is 161 // TrueWeight + FalseWeight. 162 return; 163 164 // Returns the outgoing edge of the dominating predecessor block 165 // that leads to the PhiNode's incoming block: 166 auto GetPredOutEdge = 167 [](BasicBlock *IncomingBB, 168 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 169 auto *PredBB = IncomingBB; 170 auto *SuccBB = PhiBB; 171 SmallPtrSet<BasicBlock *, 16> Visited; 172 while (true) { 173 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 174 if (PredBr && PredBr->isConditional()) 175 return {PredBB, SuccBB}; 176 Visited.insert(PredBB); 177 auto *SinglePredBB = PredBB->getSinglePredecessor(); 178 if (!SinglePredBB) 179 return {nullptr, nullptr}; 180 181 // Stop searching when SinglePredBB has been visited. It means we see 182 // an unreachable loop. 183 if (Visited.count(SinglePredBB)) 184 return {nullptr, nullptr}; 185 186 SuccBB = PredBB; 187 PredBB = SinglePredBB; 188 } 189 }; 190 191 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 192 Value *PhiOpnd = PN->getIncomingValue(i); 193 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 194 195 if (!CI || !CI->getType()->isIntegerTy(1)) 196 continue; 197 198 BranchProbability BP = 199 (CI->isOne() ? BranchProbability::getBranchProbability( 200 TrueWeight, TrueWeight + FalseWeight) 201 : BranchProbability::getBranchProbability( 202 FalseWeight, TrueWeight + FalseWeight)); 203 204 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 205 if (!PredOutEdge.first) 206 return; 207 208 BasicBlock *PredBB = PredOutEdge.first; 209 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 210 if (!PredBr) 211 return; 212 213 uint64_t PredTrueWeight, PredFalseWeight; 214 // FIXME: We currently only set the profile data when it is missing. 215 // With PGO, this can be used to refine even existing profile data with 216 // context information. This needs to be done after more performance 217 // testing. 218 if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight)) 219 continue; 220 221 // We can not infer anything useful when BP >= 50%, because BP is the 222 // upper bound probability value. 223 if (BP >= BranchProbability(50, 100)) 224 continue; 225 226 uint32_t Weights[2]; 227 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 228 Weights[0] = BP.getNumerator(); 229 Weights[1] = BP.getCompl().getNumerator(); 230 } else { 231 Weights[0] = BP.getCompl().getNumerator(); 232 Weights[1] = BP.getNumerator(); 233 } 234 setBranchWeights(*PredBr, Weights, hasBranchWeightOrigin(*PredBr)); 235 } 236 } 237 238 PreservedAnalyses JumpThreadingPass::run(Function &F, 239 FunctionAnalysisManager &AM) { 240 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 241 // Jump Threading has no sense for the targets with divergent CF 242 if (TTI.hasBranchDivergence(&F)) 243 return PreservedAnalyses::all(); 244 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 245 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 246 auto &AA = AM.getResult<AAManager>(F); 247 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 248 249 bool Changed = 250 runImpl(F, &AM, &TLI, &TTI, &LVI, &AA, 251 std::make_unique<DomTreeUpdater>( 252 &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy), 253 std::nullopt, std::nullopt); 254 255 if (!Changed) 256 return PreservedAnalyses::all(); 257 258 259 getDomTreeUpdater()->flush(); 260 261 #if defined(EXPENSIVE_CHECKS) 262 assert(getDomTreeUpdater()->getDomTree().verify( 263 DominatorTree::VerificationLevel::Full) && 264 "DT broken after JumpThreading"); 265 assert((!getDomTreeUpdater()->hasPostDomTree() || 266 getDomTreeUpdater()->getPostDomTree().verify( 267 PostDominatorTree::VerificationLevel::Full)) && 268 "PDT broken after JumpThreading"); 269 #else 270 assert(getDomTreeUpdater()->getDomTree().verify( 271 DominatorTree::VerificationLevel::Fast) && 272 "DT broken after JumpThreading"); 273 assert((!getDomTreeUpdater()->hasPostDomTree() || 274 getDomTreeUpdater()->getPostDomTree().verify( 275 PostDominatorTree::VerificationLevel::Fast)) && 276 "PDT broken after JumpThreading"); 277 #endif 278 279 return getPreservedAnalysis(); 280 } 281 282 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_, 283 TargetLibraryInfo *TLI_, 284 TargetTransformInfo *TTI_, LazyValueInfo *LVI_, 285 AliasAnalysis *AA_, 286 std::unique_ptr<DomTreeUpdater> DTU_, 287 std::optional<BlockFrequencyInfo *> BFI_, 288 std::optional<BranchProbabilityInfo *> BPI_) { 289 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n"); 290 F = &F_; 291 FAM = FAM_; 292 TLI = TLI_; 293 TTI = TTI_; 294 LVI = LVI_; 295 AA = AA_; 296 DTU = std::move(DTU_); 297 BFI = BFI_; 298 BPI = BPI_; 299 auto *GuardDecl = F->getParent()->getFunction( 300 Intrinsic::getName(Intrinsic::experimental_guard)); 301 HasGuards = GuardDecl && !GuardDecl->use_empty(); 302 303 // Reduce the number of instructions duplicated when optimizing strictly for 304 // size. 305 if (BBDuplicateThreshold.getNumOccurrences()) 306 BBDupThreshold = BBDuplicateThreshold; 307 else if (F->hasFnAttribute(Attribute::MinSize)) 308 BBDupThreshold = 3; 309 else 310 BBDupThreshold = DefaultBBDupThreshold; 311 312 // JumpThreading must not processes blocks unreachable from entry. It's a 313 // waste of compute time and can potentially lead to hangs. 314 SmallPtrSet<BasicBlock *, 16> Unreachable; 315 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 316 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 317 DominatorTree &DT = DTU->getDomTree(); 318 for (auto &BB : *F) 319 if (!DT.isReachableFromEntry(&BB)) 320 Unreachable.insert(&BB); 321 322 if (!ThreadAcrossLoopHeaders) 323 findLoopHeaders(*F); 324 325 bool EverChanged = false; 326 bool Changed; 327 do { 328 Changed = false; 329 for (auto &BB : *F) { 330 if (Unreachable.count(&BB)) 331 continue; 332 while (processBlock(&BB)) // Thread all of the branches we can over BB. 333 Changed = ChangedSinceLastAnalysisUpdate = true; 334 335 // Jump threading may have introduced redundant debug values into BB 336 // which should be removed. 337 if (Changed) 338 RemoveRedundantDbgInstrs(&BB); 339 340 // Stop processing BB if it's the entry or is now deleted. The following 341 // routines attempt to eliminate BB and locating a suitable replacement 342 // for the entry is non-trivial. 343 if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 344 continue; 345 346 if (pred_empty(&BB)) { 347 // When processBlock makes BB unreachable it doesn't bother to fix up 348 // the instructions in it. We must remove BB to prevent invalid IR. 349 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 350 << "' with terminator: " << *BB.getTerminator() 351 << '\n'); 352 LoopHeaders.erase(&BB); 353 LVI->eraseBlock(&BB); 354 DeleteDeadBlock(&BB, DTU.get()); 355 Changed = ChangedSinceLastAnalysisUpdate = true; 356 continue; 357 } 358 359 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 360 // is "almost empty", we attempt to merge BB with its sole successor. 361 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 362 if (BI && BI->isUnconditional()) { 363 BasicBlock *Succ = BI->getSuccessor(0); 364 if ( 365 // The terminator must be the only non-phi instruction in BB. 366 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 367 // Don't alter Loop headers and latches to ensure another pass can 368 // detect and transform nested loops later. 369 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 370 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) { 371 RemoveRedundantDbgInstrs(Succ); 372 // BB is valid for cleanup here because we passed in DTU. F remains 373 // BB's parent until a DTU->getDomTree() event. 374 LVI->eraseBlock(&BB); 375 Changed = ChangedSinceLastAnalysisUpdate = true; 376 } 377 } 378 } 379 EverChanged |= Changed; 380 } while (Changed); 381 382 LoopHeaders.clear(); 383 return EverChanged; 384 } 385 386 // Replace uses of Cond with ToVal when safe to do so. If all uses are 387 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 388 // because we may incorrectly replace uses when guards/assumes are uses of 389 // of `Cond` and we used the guards/assume to reason about the `Cond` value 390 // at the end of block. RAUW unconditionally replaces all uses 391 // including the guards/assumes themselves and the uses before the 392 // guard/assume. 393 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal, 394 BasicBlock *KnownAtEndOfBB) { 395 bool Changed = false; 396 assert(Cond->getType() == ToVal->getType()); 397 // We can unconditionally replace all uses in non-local blocks (i.e. uses 398 // strictly dominated by BB), since LVI information is true from the 399 // terminator of BB. 400 if (Cond->getParent() == KnownAtEndOfBB) 401 Changed |= replaceNonLocalUsesWith(Cond, ToVal); 402 for (Instruction &I : reverse(*KnownAtEndOfBB)) { 403 // Replace any debug-info record users of Cond with ToVal. 404 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) 405 DVR.replaceVariableLocationOp(Cond, ToVal, true); 406 407 // Reached the Cond whose uses we are trying to replace, so there are no 408 // more uses. 409 if (&I == Cond) 410 break; 411 // We only replace uses in instructions that are guaranteed to reach the end 412 // of BB, where we know Cond is ToVal. 413 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 414 break; 415 Changed |= I.replaceUsesOfWith(Cond, ToVal); 416 } 417 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) { 418 Cond->eraseFromParent(); 419 Changed = true; 420 } 421 return Changed; 422 } 423 424 /// Return the cost of duplicating a piece of this block from first non-phi 425 /// and before StopAt instruction to thread across it. Stop scanning the block 426 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 427 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, 428 BasicBlock *BB, 429 Instruction *StopAt, 430 unsigned Threshold) { 431 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 432 433 // Do not duplicate the BB if it has a lot of PHI nodes. 434 // If a threadable chain is too long then the number of PHI nodes can add up, 435 // leading to a substantial increase in compile time when rewriting the SSA. 436 unsigned PhiCount = 0; 437 Instruction *FirstNonPHI = nullptr; 438 for (Instruction &I : *BB) { 439 if (!isa<PHINode>(&I)) { 440 FirstNonPHI = &I; 441 break; 442 } 443 if (++PhiCount > PhiDuplicateThreshold) 444 return ~0U; 445 } 446 447 /// Ignore PHI nodes, these will be flattened when duplication happens. 448 BasicBlock::const_iterator I(FirstNonPHI); 449 450 // FIXME: THREADING will delete values that are just used to compute the 451 // branch, so they shouldn't count against the duplication cost. 452 453 unsigned Bonus = 0; 454 if (BB->getTerminator() == StopAt) { 455 // Threading through a switch statement is particularly profitable. If this 456 // block ends in a switch, decrease its cost to make it more likely to 457 // happen. 458 if (isa<SwitchInst>(StopAt)) 459 Bonus = 6; 460 461 // The same holds for indirect branches, but slightly more so. 462 if (isa<IndirectBrInst>(StopAt)) 463 Bonus = 8; 464 } 465 466 // Bump the threshold up so the early exit from the loop doesn't skip the 467 // terminator-based Size adjustment at the end. 468 Threshold += Bonus; 469 470 // Sum up the cost of each instruction until we get to the terminator. Don't 471 // include the terminator because the copy won't include it. 472 unsigned Size = 0; 473 for (; &*I != StopAt; ++I) { 474 475 // Stop scanning the block if we've reached the threshold. 476 if (Size > Threshold) 477 return Size; 478 479 // Bail out if this instruction gives back a token type, it is not possible 480 // to duplicate it if it is used outside this BB. 481 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 482 return ~0U; 483 484 // Blocks with NoDuplicate are modelled as having infinite cost, so they 485 // are never duplicated. 486 if (const CallInst *CI = dyn_cast<CallInst>(I)) 487 if (CI->cannotDuplicate() || CI->isConvergent()) 488 return ~0U; 489 490 if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) == 491 TargetTransformInfo::TCC_Free) 492 continue; 493 494 // All other instructions count for at least one unit. 495 ++Size; 496 497 // Calls are more expensive. If they are non-intrinsic calls, we model them 498 // as having cost of 4. If they are a non-vector intrinsic, we model them 499 // as having cost of 2 total, and if they are a vector intrinsic, we model 500 // them as having cost 1. 501 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 502 if (!isa<IntrinsicInst>(CI)) 503 Size += 3; 504 else if (!CI->getType()->isVectorTy()) 505 Size += 1; 506 } 507 } 508 509 return Size > Bonus ? Size - Bonus : 0; 510 } 511 512 /// findLoopHeaders - We do not want jump threading to turn proper loop 513 /// structures into irreducible loops. Doing this breaks up the loop nesting 514 /// hierarchy and pessimizes later transformations. To prevent this from 515 /// happening, we first have to find the loop headers. Here we approximate this 516 /// by finding targets of backedges in the CFG. 517 /// 518 /// Note that there definitely are cases when we want to allow threading of 519 /// edges across a loop header. For example, threading a jump from outside the 520 /// loop (the preheader) to an exit block of the loop is definitely profitable. 521 /// It is also almost always profitable to thread backedges from within the loop 522 /// to exit blocks, and is often profitable to thread backedges to other blocks 523 /// within the loop (forming a nested loop). This simple analysis is not rich 524 /// enough to track all of these properties and keep it up-to-date as the CFG 525 /// mutates, so we don't allow any of these transformations. 526 void JumpThreadingPass::findLoopHeaders(Function &F) { 527 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 528 FindFunctionBackedges(F, Edges); 529 530 for (const auto &Edge : Edges) 531 LoopHeaders.insert(Edge.second); 532 } 533 534 /// getKnownConstant - Helper method to determine if we can thread over a 535 /// terminator with the given value as its condition, and if so what value to 536 /// use for that. What kind of value this is depends on whether we want an 537 /// integer or a block address, but an undef is always accepted. 538 /// Returns null if Val is null or not an appropriate constant. 539 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 540 if (!Val) 541 return nullptr; 542 543 // Undef is "known" enough. 544 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 545 return U; 546 547 if (Preference == WantBlockAddress) 548 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 549 550 return dyn_cast<ConstantInt>(Val); 551 } 552 553 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 554 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 555 /// in any of our predecessors. If so, return the known list of value and pred 556 /// BB in the result vector. 557 /// 558 /// This returns true if there were any known values. 559 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 560 Value *V, BasicBlock *BB, PredValueInfo &Result, 561 ConstantPreference Preference, SmallPtrSet<Value *, 4> &RecursionSet, 562 Instruction *CxtI) { 563 const DataLayout &DL = BB->getDataLayout(); 564 565 // This method walks up use-def chains recursively. Because of this, we could 566 // get into an infinite loop going around loops in the use-def chain. To 567 // prevent this, keep track of what (value, block) pairs we've already visited 568 // and terminate the search if we loop back to them 569 if (!RecursionSet.insert(V).second) 570 return false; 571 572 // If V is a constant, then it is known in all predecessors. 573 if (Constant *KC = getKnownConstant(V, Preference)) { 574 for (BasicBlock *Pred : predecessors(BB)) 575 Result.emplace_back(KC, Pred); 576 577 return !Result.empty(); 578 } 579 580 // If V is a non-instruction value, or an instruction in a different block, 581 // then it can't be derived from a PHI. 582 Instruction *I = dyn_cast<Instruction>(V); 583 if (!I || I->getParent() != BB) { 584 585 // Okay, if this is a live-in value, see if it has a known value at the any 586 // edge from our predecessors. 587 for (BasicBlock *P : predecessors(BB)) { 588 using namespace PatternMatch; 589 // If the value is known by LazyValueInfo to be a constant in a 590 // predecessor, use that information to try to thread this block. 591 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 592 // If I is a non-local compare-with-constant instruction, use more-rich 593 // 'getPredicateOnEdge' method. This would be able to handle value 594 // inequalities better, for example if the compare is "X < 4" and "X < 3" 595 // is known true but "X < 4" itself is not available. 596 CmpInst::Predicate Pred; 597 Value *Val; 598 Constant *Cst; 599 if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) 600 PredCst = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI); 601 if (Constant *KC = getKnownConstant(PredCst, Preference)) 602 Result.emplace_back(KC, P); 603 } 604 605 return !Result.empty(); 606 } 607 608 /// If I is a PHI node, then we know the incoming values for any constants. 609 if (PHINode *PN = dyn_cast<PHINode>(I)) { 610 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 611 Value *InVal = PN->getIncomingValue(i); 612 if (Constant *KC = getKnownConstant(InVal, Preference)) { 613 Result.emplace_back(KC, PN->getIncomingBlock(i)); 614 } else { 615 Constant *CI = LVI->getConstantOnEdge(InVal, 616 PN->getIncomingBlock(i), 617 BB, CxtI); 618 if (Constant *KC = getKnownConstant(CI, Preference)) 619 Result.emplace_back(KC, PN->getIncomingBlock(i)); 620 } 621 } 622 623 return !Result.empty(); 624 } 625 626 // Handle Cast instructions. 627 if (CastInst *CI = dyn_cast<CastInst>(I)) { 628 Value *Source = CI->getOperand(0); 629 PredValueInfoTy Vals; 630 computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference, 631 RecursionSet, CxtI); 632 if (Vals.empty()) 633 return false; 634 635 // Convert the known values. 636 for (auto &Val : Vals) 637 if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first, 638 CI->getType(), DL)) 639 Result.emplace_back(Folded, Val.second); 640 641 return !Result.empty(); 642 } 643 644 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 645 Value *Source = FI->getOperand(0); 646 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 647 RecursionSet, CxtI); 648 649 erase_if(Result, [](auto &Pair) { 650 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 651 }); 652 653 return !Result.empty(); 654 } 655 656 // Handle some boolean conditions. 657 if (I->getType()->getPrimitiveSizeInBits() == 1) { 658 using namespace PatternMatch; 659 if (Preference != WantInteger) 660 return false; 661 // X | true -> true 662 // X & false -> false 663 Value *Op0, *Op1; 664 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 665 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 666 PredValueInfoTy LHSVals, RHSVals; 667 668 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 669 RecursionSet, CxtI); 670 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 671 RecursionSet, CxtI); 672 673 if (LHSVals.empty() && RHSVals.empty()) 674 return false; 675 676 ConstantInt *InterestingVal; 677 if (match(I, m_LogicalOr())) 678 InterestingVal = ConstantInt::getTrue(I->getContext()); 679 else 680 InterestingVal = ConstantInt::getFalse(I->getContext()); 681 682 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 683 684 // Scan for the sentinel. If we find an undef, force it to the 685 // interesting value: x|undef -> true and x&undef -> false. 686 for (const auto &LHSVal : LHSVals) 687 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 688 Result.emplace_back(InterestingVal, LHSVal.second); 689 LHSKnownBBs.insert(LHSVal.second); 690 } 691 for (const auto &RHSVal : RHSVals) 692 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 693 // If we already inferred a value for this block on the LHS, don't 694 // re-add it. 695 if (!LHSKnownBBs.count(RHSVal.second)) 696 Result.emplace_back(InterestingVal, RHSVal.second); 697 } 698 699 return !Result.empty(); 700 } 701 702 // Handle the NOT form of XOR. 703 if (I->getOpcode() == Instruction::Xor && 704 isa<ConstantInt>(I->getOperand(1)) && 705 cast<ConstantInt>(I->getOperand(1))->isOne()) { 706 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 707 WantInteger, RecursionSet, CxtI); 708 if (Result.empty()) 709 return false; 710 711 // Invert the known values. 712 for (auto &R : Result) 713 R.first = ConstantExpr::getNot(R.first); 714 715 return true; 716 } 717 718 // Try to simplify some other binary operator values. 719 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 720 if (Preference != WantInteger) 721 return false; 722 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 723 PredValueInfoTy LHSVals; 724 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 725 WantInteger, RecursionSet, CxtI); 726 727 // Try to use constant folding to simplify the binary operator. 728 for (const auto &LHSVal : LHSVals) { 729 Constant *V = LHSVal.first; 730 Constant *Folded = 731 ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL); 732 733 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 734 Result.emplace_back(KC, LHSVal.second); 735 } 736 } 737 738 return !Result.empty(); 739 } 740 741 // Handle compare with phi operand, where the PHI is defined in this block. 742 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 743 if (Preference != WantInteger) 744 return false; 745 Type *CmpType = Cmp->getType(); 746 Value *CmpLHS = Cmp->getOperand(0); 747 Value *CmpRHS = Cmp->getOperand(1); 748 CmpInst::Predicate Pred = Cmp->getPredicate(); 749 750 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 751 if (!PN) 752 PN = dyn_cast<PHINode>(CmpRHS); 753 // Do not perform phi translation across a loop header phi, because this 754 // may result in comparison of values from two different loop iterations. 755 // FIXME: This check is broken if LoopHeaders is not populated. 756 if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) { 757 const DataLayout &DL = PN->getDataLayout(); 758 // We can do this simplification if any comparisons fold to true or false. 759 // See if any do. 760 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 761 BasicBlock *PredBB = PN->getIncomingBlock(i); 762 Value *LHS, *RHS; 763 if (PN == CmpLHS) { 764 LHS = PN->getIncomingValue(i); 765 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 766 } else { 767 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 768 RHS = PN->getIncomingValue(i); 769 } 770 Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL}); 771 if (!Res) { 772 if (!isa<Constant>(RHS)) 773 continue; 774 775 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 776 auto LHSInst = dyn_cast<Instruction>(LHS); 777 if (LHSInst && LHSInst->getParent() == BB) 778 continue; 779 780 Res = LVI->getPredicateOnEdge(Pred, LHS, cast<Constant>(RHS), PredBB, 781 BB, CxtI ? CxtI : Cmp); 782 } 783 784 if (Constant *KC = getKnownConstant(Res, WantInteger)) 785 Result.emplace_back(KC, PredBB); 786 } 787 788 return !Result.empty(); 789 } 790 791 // If comparing a live-in value against a constant, see if we know the 792 // live-in value on any predecessors. 793 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 794 Constant *CmpConst = cast<Constant>(CmpRHS); 795 796 if (!isa<Instruction>(CmpLHS) || 797 cast<Instruction>(CmpLHS)->getParent() != BB) { 798 for (BasicBlock *P : predecessors(BB)) { 799 // If the value is known by LazyValueInfo to be a constant in a 800 // predecessor, use that information to try to thread this block. 801 Constant *Res = LVI->getPredicateOnEdge(Pred, CmpLHS, CmpConst, P, BB, 802 CxtI ? CxtI : Cmp); 803 if (Constant *KC = getKnownConstant(Res, WantInteger)) 804 Result.emplace_back(KC, P); 805 } 806 807 return !Result.empty(); 808 } 809 810 // InstCombine can fold some forms of constant range checks into 811 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 812 // x as a live-in. 813 { 814 using namespace PatternMatch; 815 816 Value *AddLHS; 817 ConstantInt *AddConst; 818 if (isa<ConstantInt>(CmpConst) && 819 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 820 if (!isa<Instruction>(AddLHS) || 821 cast<Instruction>(AddLHS)->getParent() != BB) { 822 for (BasicBlock *P : predecessors(BB)) { 823 // If the value is known by LazyValueInfo to be a ConstantRange in 824 // a predecessor, use that information to try to thread this 825 // block. 826 ConstantRange CR = LVI->getConstantRangeOnEdge( 827 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 828 // Propagate the range through the addition. 829 CR = CR.add(AddConst->getValue()); 830 831 // Get the range where the compare returns true. 832 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 833 Pred, cast<ConstantInt>(CmpConst)->getValue()); 834 835 Constant *ResC; 836 if (CmpRange.contains(CR)) 837 ResC = ConstantInt::getTrue(CmpType); 838 else if (CmpRange.inverse().contains(CR)) 839 ResC = ConstantInt::getFalse(CmpType); 840 else 841 continue; 842 843 Result.emplace_back(ResC, P); 844 } 845 846 return !Result.empty(); 847 } 848 } 849 } 850 851 // Try to find a constant value for the LHS of a comparison, 852 // and evaluate it statically if we can. 853 PredValueInfoTy LHSVals; 854 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 855 WantInteger, RecursionSet, CxtI); 856 857 for (const auto &LHSVal : LHSVals) { 858 Constant *V = LHSVal.first; 859 Constant *Folded = 860 ConstantFoldCompareInstOperands(Pred, V, CmpConst, DL); 861 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 862 Result.emplace_back(KC, LHSVal.second); 863 } 864 865 return !Result.empty(); 866 } 867 } 868 869 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 870 // Handle select instructions where at least one operand is a known constant 871 // and we can figure out the condition value for any predecessor block. 872 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 873 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 874 PredValueInfoTy Conds; 875 if ((TrueVal || FalseVal) && 876 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 877 WantInteger, RecursionSet, CxtI)) { 878 for (auto &C : Conds) { 879 Constant *Cond = C.first; 880 881 // Figure out what value to use for the condition. 882 bool KnownCond; 883 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 884 // A known boolean. 885 KnownCond = CI->isOne(); 886 } else { 887 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 888 // Either operand will do, so be sure to pick the one that's a known 889 // constant. 890 // FIXME: Do this more cleverly if both values are known constants? 891 KnownCond = (TrueVal != nullptr); 892 } 893 894 // See if the select has a known constant value for this predecessor. 895 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 896 Result.emplace_back(Val, C.second); 897 } 898 899 return !Result.empty(); 900 } 901 } 902 903 // If all else fails, see if LVI can figure out a constant value for us. 904 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 905 Constant *CI = LVI->getConstant(V, CxtI); 906 if (Constant *KC = getKnownConstant(CI, Preference)) { 907 for (BasicBlock *Pred : predecessors(BB)) 908 Result.emplace_back(KC, Pred); 909 } 910 911 return !Result.empty(); 912 } 913 914 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 915 /// in an undefined jump, decide which block is best to revector to. 916 /// 917 /// Since we can pick an arbitrary destination, we pick the successor with the 918 /// fewest predecessors. This should reduce the in-degree of the others. 919 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 920 Instruction *BBTerm = BB->getTerminator(); 921 unsigned MinSucc = 0; 922 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 923 // Compute the successor with the minimum number of predecessors. 924 unsigned MinNumPreds = pred_size(TestBB); 925 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 926 TestBB = BBTerm->getSuccessor(i); 927 unsigned NumPreds = pred_size(TestBB); 928 if (NumPreds < MinNumPreds) { 929 MinSucc = i; 930 MinNumPreds = NumPreds; 931 } 932 } 933 934 return MinSucc; 935 } 936 937 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 938 if (!BB->hasAddressTaken()) return false; 939 940 // If the block has its address taken, it may be a tree of dead constants 941 // hanging off of it. These shouldn't keep the block alive. 942 BlockAddress *BA = BlockAddress::get(BB); 943 BA->removeDeadConstantUsers(); 944 return !BA->use_empty(); 945 } 946 947 /// processBlock - If there are any predecessors whose control can be threaded 948 /// through to a successor, transform them now. 949 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 950 // If the block is trivially dead, just return and let the caller nuke it. 951 // This simplifies other transformations. 952 if (DTU->isBBPendingDeletion(BB) || 953 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 954 return false; 955 956 // If this block has a single predecessor, and if that pred has a single 957 // successor, merge the blocks. This encourages recursive jump threading 958 // because now the condition in this block can be threaded through 959 // predecessors of our predecessor block. 960 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 961 return true; 962 963 if (tryToUnfoldSelectInCurrBB(BB)) 964 return true; 965 966 // Look if we can propagate guards to predecessors. 967 if (HasGuards && processGuards(BB)) 968 return true; 969 970 // What kind of constant we're looking for. 971 ConstantPreference Preference = WantInteger; 972 973 // Look to see if the terminator is a conditional branch, switch or indirect 974 // branch, if not we can't thread it. 975 Value *Condition; 976 Instruction *Terminator = BB->getTerminator(); 977 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 978 // Can't thread an unconditional jump. 979 if (BI->isUnconditional()) return false; 980 Condition = BI->getCondition(); 981 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 982 Condition = SI->getCondition(); 983 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 984 // Can't thread indirect branch with no successors. 985 if (IB->getNumSuccessors() == 0) return false; 986 Condition = IB->getAddress()->stripPointerCasts(); 987 Preference = WantBlockAddress; 988 } else { 989 return false; // Must be an invoke or callbr. 990 } 991 992 // Keep track if we constant folded the condition in this invocation. 993 bool ConstantFolded = false; 994 995 // Run constant folding to see if we can reduce the condition to a simple 996 // constant. 997 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 998 Value *SimpleVal = 999 ConstantFoldInstruction(I, BB->getDataLayout(), TLI); 1000 if (SimpleVal) { 1001 I->replaceAllUsesWith(SimpleVal); 1002 if (isInstructionTriviallyDead(I, TLI)) 1003 I->eraseFromParent(); 1004 Condition = SimpleVal; 1005 ConstantFolded = true; 1006 } 1007 } 1008 1009 // If the terminator is branching on an undef or freeze undef, we can pick any 1010 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1011 auto *FI = dyn_cast<FreezeInst>(Condition); 1012 if (isa<UndefValue>(Condition) || 1013 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1014 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1015 std::vector<DominatorTree::UpdateType> Updates; 1016 1017 // Fold the branch/switch. 1018 Instruction *BBTerm = BB->getTerminator(); 1019 Updates.reserve(BBTerm->getNumSuccessors()); 1020 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1021 if (i == BestSucc) continue; 1022 BasicBlock *Succ = BBTerm->getSuccessor(i); 1023 Succ->removePredecessor(BB, true); 1024 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1025 } 1026 1027 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1028 << "' folding undef terminator: " << *BBTerm << '\n'); 1029 Instruction *NewBI = BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm->getIterator()); 1030 NewBI->setDebugLoc(BBTerm->getDebugLoc()); 1031 ++NumFolds; 1032 BBTerm->eraseFromParent(); 1033 DTU->applyUpdatesPermissive(Updates); 1034 if (FI) 1035 FI->eraseFromParent(); 1036 return true; 1037 } 1038 1039 // If the terminator of this block is branching on a constant, simplify the 1040 // terminator to an unconditional branch. This can occur due to threading in 1041 // other blocks. 1042 if (getKnownConstant(Condition, Preference)) { 1043 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1044 << "' folding terminator: " << *BB->getTerminator() 1045 << '\n'); 1046 ++NumFolds; 1047 ConstantFoldTerminator(BB, true, nullptr, DTU.get()); 1048 if (auto *BPI = getBPI()) 1049 BPI->eraseBlock(BB); 1050 return true; 1051 } 1052 1053 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1054 1055 // All the rest of our checks depend on the condition being an instruction. 1056 if (!CondInst) { 1057 // FIXME: Unify this with code below. 1058 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1059 return true; 1060 return ConstantFolded; 1061 } 1062 1063 // Some of the following optimization can safely work on the unfrozen cond. 1064 Value *CondWithoutFreeze = CondInst; 1065 if (auto *FI = dyn_cast<FreezeInst>(CondInst)) 1066 CondWithoutFreeze = FI->getOperand(0); 1067 1068 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) { 1069 // If we're branching on a conditional, LVI might be able to determine 1070 // it's value at the branch instruction. We only handle comparisons 1071 // against a constant at this time. 1072 if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) { 1073 Constant *Res = 1074 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1075 CondConst, BB->getTerminator(), 1076 /*UseBlockValue=*/false); 1077 if (Res) { 1078 // We can safely replace *some* uses of the CondInst if it has 1079 // exactly one value as returned by LVI. RAUW is incorrect in the 1080 // presence of guards and assumes, that have the `Cond` as the use. This 1081 // is because we use the guards/assume to reason about the `Cond` value 1082 // at the end of block, but RAUW unconditionally replaces all uses 1083 // including the guards/assumes themselves and the uses before the 1084 // guard/assume. 1085 if (replaceFoldableUses(CondCmp, Res, BB)) 1086 return true; 1087 } 1088 1089 // We did not manage to simplify this branch, try to see whether 1090 // CondCmp depends on a known phi-select pattern. 1091 if (tryToUnfoldSelect(CondCmp, BB)) 1092 return true; 1093 } 1094 } 1095 1096 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1097 if (tryToUnfoldSelect(SI, BB)) 1098 return true; 1099 1100 // Check for some cases that are worth simplifying. Right now we want to look 1101 // for loads that are used by a switch or by the condition for the branch. If 1102 // we see one, check to see if it's partially redundant. If so, insert a PHI 1103 // which can then be used to thread the values. 1104 Value *SimplifyValue = CondWithoutFreeze; 1105 1106 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1107 if (isa<Constant>(CondCmp->getOperand(1))) 1108 SimplifyValue = CondCmp->getOperand(0); 1109 1110 // TODO: There are other places where load PRE would be profitable, such as 1111 // more complex comparisons. 1112 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1113 if (simplifyPartiallyRedundantLoad(LoadI)) 1114 return true; 1115 1116 // Before threading, try to propagate profile data backwards: 1117 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1118 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1119 updatePredecessorProfileMetadata(PN, BB); 1120 1121 // Handle a variety of cases where we are branching on something derived from 1122 // a PHI node in the current block. If we can prove that any predecessors 1123 // compute a predictable value based on a PHI node, thread those predecessors. 1124 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1125 return true; 1126 1127 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1128 // the current block, see if we can simplify. 1129 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze); 1130 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1131 return processBranchOnPHI(PN); 1132 1133 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1134 if (CondInst->getOpcode() == Instruction::Xor && 1135 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1136 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1137 1138 // Search for a stronger dominating condition that can be used to simplify a 1139 // conditional branch leaving BB. 1140 if (processImpliedCondition(BB)) 1141 return true; 1142 1143 return false; 1144 } 1145 1146 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1147 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1148 if (!BI || !BI->isConditional()) 1149 return false; 1150 1151 Value *Cond = BI->getCondition(); 1152 // Assuming that predecessor's branch was taken, if pred's branch condition 1153 // (V) implies Cond, Cond can be either true, undef, or poison. In this case, 1154 // freeze(Cond) is either true or a nondeterministic value. 1155 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true 1156 // without affecting other instructions. 1157 auto *FICond = dyn_cast<FreezeInst>(Cond); 1158 if (FICond && FICond->hasOneUse()) 1159 Cond = FICond->getOperand(0); 1160 else 1161 FICond = nullptr; 1162 1163 BasicBlock *CurrentBB = BB; 1164 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1165 unsigned Iter = 0; 1166 1167 auto &DL = BB->getDataLayout(); 1168 1169 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1170 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1171 if (!PBI || !PBI->isConditional()) 1172 return false; 1173 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1174 return false; 1175 1176 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1177 std::optional<bool> Implication = 1178 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1179 1180 // If the branch condition of BB (which is Cond) and CurrentPred are 1181 // exactly the same freeze instruction, Cond can be folded into CondIsTrue. 1182 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) { 1183 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) == 1184 FICond->getOperand(0)) 1185 Implication = CondIsTrue; 1186 } 1187 1188 if (Implication) { 1189 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1190 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1191 RemoveSucc->removePredecessor(BB); 1192 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI->getIterator()); 1193 UncondBI->setDebugLoc(BI->getDebugLoc()); 1194 ++NumFolds; 1195 BI->eraseFromParent(); 1196 if (FICond) 1197 FICond->eraseFromParent(); 1198 1199 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1200 if (auto *BPI = getBPI()) 1201 BPI->eraseBlock(BB); 1202 return true; 1203 } 1204 CurrentBB = CurrentPred; 1205 CurrentPred = CurrentBB->getSinglePredecessor(); 1206 } 1207 1208 return false; 1209 } 1210 1211 /// Return true if Op is an instruction defined in the given block. 1212 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1213 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1214 if (OpInst->getParent() == BB) 1215 return true; 1216 return false; 1217 } 1218 1219 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1220 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1221 /// This is an important optimization that encourages jump threading, and needs 1222 /// to be run interlaced with other jump threading tasks. 1223 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1224 // Don't hack volatile and ordered loads. 1225 if (!LoadI->isUnordered()) return false; 1226 1227 // If the load is defined in a block with exactly one predecessor, it can't be 1228 // partially redundant. 1229 BasicBlock *LoadBB = LoadI->getParent(); 1230 if (LoadBB->getSinglePredecessor()) 1231 return false; 1232 1233 // If the load is defined in an EH pad, it can't be partially redundant, 1234 // because the edges between the invoke and the EH pad cannot have other 1235 // instructions between them. 1236 if (LoadBB->isEHPad()) 1237 return false; 1238 1239 Value *LoadedPtr = LoadI->getOperand(0); 1240 1241 // If the loaded operand is defined in the LoadBB and its not a phi, 1242 // it can't be available in predecessors. 1243 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1244 return false; 1245 1246 // Scan a few instructions up from the load, to see if it is obviously live at 1247 // the entry to its block. 1248 BasicBlock::iterator BBIt(LoadI); 1249 bool IsLoadCSE; 1250 BatchAAResults BatchAA(*AA); 1251 // The dominator tree is updated lazily and may not be valid at this point. 1252 BatchAA.disableDominatorTree(); 1253 if (Value *AvailableVal = FindAvailableLoadedValue( 1254 LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) { 1255 // If the value of the load is locally available within the block, just use 1256 // it. This frequently occurs for reg2mem'd allocas. 1257 1258 if (IsLoadCSE) { 1259 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1260 combineMetadataForCSE(NLoadI, LoadI, false); 1261 LVI->forgetValue(NLoadI); 1262 }; 1263 1264 // If the returned value is the load itself, replace with poison. This can 1265 // only happen in dead loops. 1266 if (AvailableVal == LoadI) 1267 AvailableVal = PoisonValue::get(LoadI->getType()); 1268 if (AvailableVal->getType() != LoadI->getType()) { 1269 AvailableVal = CastInst::CreateBitOrPointerCast( 1270 AvailableVal, LoadI->getType(), "", LoadI->getIterator()); 1271 cast<Instruction>(AvailableVal)->setDebugLoc(LoadI->getDebugLoc()); 1272 } 1273 LoadI->replaceAllUsesWith(AvailableVal); 1274 LoadI->eraseFromParent(); 1275 return true; 1276 } 1277 1278 // Otherwise, if we scanned the whole block and got to the top of the block, 1279 // we know the block is locally transparent to the load. If not, something 1280 // might clobber its value. 1281 if (BBIt != LoadBB->begin()) 1282 return false; 1283 1284 // If all of the loads and stores that feed the value have the same AA tags, 1285 // then we can propagate them onto any newly inserted loads. 1286 AAMDNodes AATags = LoadI->getAAMetadata(); 1287 1288 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1289 1290 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1291 1292 AvailablePredsTy AvailablePreds; 1293 BasicBlock *OneUnavailablePred = nullptr; 1294 SmallVector<LoadInst*, 8> CSELoads; 1295 1296 // If we got here, the loaded value is transparent through to the start of the 1297 // block. Check to see if it is available in any of the predecessor blocks. 1298 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1299 // If we already scanned this predecessor, skip it. 1300 if (!PredsScanned.insert(PredBB).second) 1301 continue; 1302 1303 BBIt = PredBB->end(); 1304 unsigned NumScanedInst = 0; 1305 Value *PredAvailable = nullptr; 1306 // NOTE: We don't CSE load that is volatile or anything stronger than 1307 // unordered, that should have been checked when we entered the function. 1308 assert(LoadI->isUnordered() && 1309 "Attempting to CSE volatile or atomic loads"); 1310 // If this is a load on a phi pointer, phi-translate it and search 1311 // for available load/store to the pointer in predecessors. 1312 Type *AccessTy = LoadI->getType(); 1313 const auto &DL = LoadI->getDataLayout(); 1314 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1315 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1316 AATags); 1317 PredAvailable = findAvailablePtrLoadStore( 1318 Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, 1319 &BatchAA, &IsLoadCSE, &NumScanedInst); 1320 1321 // If PredBB has a single predecessor, continue scanning through the 1322 // single predecessor. 1323 BasicBlock *SinglePredBB = PredBB; 1324 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1325 NumScanedInst < DefMaxInstsToScan) { 1326 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1327 if (SinglePredBB) { 1328 BBIt = SinglePredBB->end(); 1329 PredAvailable = findAvailablePtrLoadStore( 1330 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1331 (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE, 1332 &NumScanedInst); 1333 } 1334 } 1335 1336 if (!PredAvailable) { 1337 OneUnavailablePred = PredBB; 1338 continue; 1339 } 1340 1341 if (IsLoadCSE) 1342 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1343 1344 // If so, this load is partially redundant. Remember this info so that we 1345 // can create a PHI node. 1346 AvailablePreds.emplace_back(PredBB, PredAvailable); 1347 } 1348 1349 // If the loaded value isn't available in any predecessor, it isn't partially 1350 // redundant. 1351 if (AvailablePreds.empty()) return false; 1352 1353 // Okay, the loaded value is available in at least one (and maybe all!) 1354 // predecessors. If the value is unavailable in more than one unique 1355 // predecessor, we want to insert a merge block for those common predecessors. 1356 // This ensures that we only have to insert one reload, thus not increasing 1357 // code size. 1358 BasicBlock *UnavailablePred = nullptr; 1359 1360 // If the value is unavailable in one of predecessors, we will end up 1361 // inserting a new instruction into them. It is only valid if all the 1362 // instructions before LoadI are guaranteed to pass execution to its 1363 // successor, or if LoadI is safe to speculate. 1364 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1365 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1366 // It requires domination tree analysis, so for this simple case it is an 1367 // overkill. 1368 if (PredsScanned.size() != AvailablePreds.size() && 1369 !isSafeToSpeculativelyExecute(LoadI)) 1370 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1371 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1372 return false; 1373 1374 // If there is exactly one predecessor where the value is unavailable, the 1375 // already computed 'OneUnavailablePred' block is it. If it ends in an 1376 // unconditional branch, we know that it isn't a critical edge. 1377 if (PredsScanned.size() == AvailablePreds.size()+1 && 1378 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1379 UnavailablePred = OneUnavailablePred; 1380 } else if (PredsScanned.size() != AvailablePreds.size()) { 1381 // Otherwise, we had multiple unavailable predecessors or we had a critical 1382 // edge from the one. 1383 SmallVector<BasicBlock*, 8> PredsToSplit; 1384 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1385 1386 for (const auto &AvailablePred : AvailablePreds) 1387 AvailablePredSet.insert(AvailablePred.first); 1388 1389 // Add all the unavailable predecessors to the PredsToSplit list. 1390 for (BasicBlock *P : predecessors(LoadBB)) { 1391 // If the predecessor is an indirect goto, we can't split the edge. 1392 if (isa<IndirectBrInst>(P->getTerminator())) 1393 return false; 1394 1395 if (!AvailablePredSet.count(P)) 1396 PredsToSplit.push_back(P); 1397 } 1398 1399 // Split them out to their own block. 1400 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1401 } 1402 1403 // If the value isn't available in all predecessors, then there will be 1404 // exactly one where it isn't available. Insert a load on that edge and add 1405 // it to the AvailablePreds list. 1406 if (UnavailablePred) { 1407 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1408 "Can't handle critical edge here!"); 1409 LoadInst *NewVal = new LoadInst( 1410 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1411 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1412 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1413 UnavailablePred->getTerminator()->getIterator()); 1414 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1415 if (AATags) 1416 NewVal->setAAMetadata(AATags); 1417 1418 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1419 } 1420 1421 // Now we know that each predecessor of this block has a value in 1422 // AvailablePreds, sort them for efficient access as we're walking the preds. 1423 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1424 1425 // Create a PHI node at the start of the block for the PRE'd load value. 1426 PHINode *PN = PHINode::Create(LoadI->getType(), pred_size(LoadBB), ""); 1427 PN->insertBefore(LoadBB->begin()); 1428 PN->takeName(LoadI); 1429 PN->setDebugLoc(LoadI->getDebugLoc()); 1430 1431 // Insert new entries into the PHI for each predecessor. A single block may 1432 // have multiple entries here. 1433 for (BasicBlock *P : predecessors(LoadBB)) { 1434 AvailablePredsTy::iterator I = 1435 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1436 1437 assert(I != AvailablePreds.end() && I->first == P && 1438 "Didn't find entry for predecessor!"); 1439 1440 // If we have an available predecessor but it requires casting, insert the 1441 // cast in the predecessor and use the cast. Note that we have to update the 1442 // AvailablePreds vector as we go so that all of the PHI entries for this 1443 // predecessor use the same bitcast. 1444 Value *&PredV = I->second; 1445 if (PredV->getType() != LoadI->getType()) 1446 PredV = CastInst::CreateBitOrPointerCast( 1447 PredV, LoadI->getType(), "", P->getTerminator()->getIterator()); 1448 1449 PN->addIncoming(PredV, I->first); 1450 } 1451 1452 for (LoadInst *PredLoadI : CSELoads) { 1453 combineMetadataForCSE(PredLoadI, LoadI, true); 1454 LVI->forgetValue(PredLoadI); 1455 } 1456 1457 LoadI->replaceAllUsesWith(PN); 1458 LoadI->eraseFromParent(); 1459 1460 return true; 1461 } 1462 1463 /// findMostPopularDest - The specified list contains multiple possible 1464 /// threadable destinations. Pick the one that occurs the most frequently in 1465 /// the list. 1466 static BasicBlock * 1467 findMostPopularDest(BasicBlock *BB, 1468 const SmallVectorImpl<std::pair<BasicBlock *, 1469 BasicBlock *>> &PredToDestList) { 1470 assert(!PredToDestList.empty()); 1471 1472 // Determine popularity. If there are multiple possible destinations, we 1473 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1474 // blocks with known and real destinations to threading undef. We'll handle 1475 // them later if interesting. 1476 MapVector<BasicBlock *, unsigned> DestPopularity; 1477 1478 // Populate DestPopularity with the successors in the order they appear in the 1479 // successor list. This way, we ensure determinism by iterating it in the 1480 // same order in llvm::max_element below. We map nullptr to 0 so that we can 1481 // return nullptr when PredToDestList contains nullptr only. 1482 DestPopularity[nullptr] = 0; 1483 for (auto *SuccBB : successors(BB)) 1484 DestPopularity[SuccBB] = 0; 1485 1486 for (const auto &PredToDest : PredToDestList) 1487 if (PredToDest.second) 1488 DestPopularity[PredToDest.second]++; 1489 1490 // Find the most popular dest. 1491 auto MostPopular = llvm::max_element(DestPopularity, llvm::less_second()); 1492 1493 // Okay, we have finally picked the most popular destination. 1494 return MostPopular->first; 1495 } 1496 1497 // Try to evaluate the value of V when the control flows from PredPredBB to 1498 // BB->getSinglePredecessor() and then on to BB. 1499 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1500 BasicBlock *PredPredBB, 1501 Value *V, 1502 const DataLayout &DL) { 1503 BasicBlock *PredBB = BB->getSinglePredecessor(); 1504 assert(PredBB && "Expected a single predecessor"); 1505 1506 if (Constant *Cst = dyn_cast<Constant>(V)) { 1507 return Cst; 1508 } 1509 1510 // Consult LVI if V is not an instruction in BB or PredBB. 1511 Instruction *I = dyn_cast<Instruction>(V); 1512 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1513 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1514 } 1515 1516 // Look into a PHI argument. 1517 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1518 if (PHI->getParent() == PredBB) 1519 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1520 return nullptr; 1521 } 1522 1523 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1524 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1525 if (CondCmp->getParent() == BB) { 1526 Constant *Op0 = 1527 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0), DL); 1528 Constant *Op1 = 1529 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1), DL); 1530 if (Op0 && Op1) { 1531 return ConstantFoldCompareInstOperands(CondCmp->getPredicate(), Op0, 1532 Op1, DL); 1533 } 1534 } 1535 return nullptr; 1536 } 1537 1538 return nullptr; 1539 } 1540 1541 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1542 ConstantPreference Preference, 1543 Instruction *CxtI) { 1544 // If threading this would thread across a loop header, don't even try to 1545 // thread the edge. 1546 if (LoopHeaders.count(BB)) 1547 return false; 1548 1549 PredValueInfoTy PredValues; 1550 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1551 CxtI)) { 1552 // We don't have known values in predecessors. See if we can thread through 1553 // BB and its sole predecessor. 1554 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1555 } 1556 1557 assert(!PredValues.empty() && 1558 "computeValueKnownInPredecessors returned true with no values"); 1559 1560 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1561 for (const auto &PredValue : PredValues) { 1562 dbgs() << " BB '" << BB->getName() 1563 << "': FOUND condition = " << *PredValue.first 1564 << " for pred '" << PredValue.second->getName() << "'.\n"; 1565 }); 1566 1567 // Decide what we want to thread through. Convert our list of known values to 1568 // a list of known destinations for each pred. This also discards duplicate 1569 // predecessors and keeps track of the undefined inputs (which are represented 1570 // as a null dest in the PredToDestList). 1571 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1572 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1573 1574 BasicBlock *OnlyDest = nullptr; 1575 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1576 Constant *OnlyVal = nullptr; 1577 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1578 1579 for (const auto &PredValue : PredValues) { 1580 BasicBlock *Pred = PredValue.second; 1581 if (!SeenPreds.insert(Pred).second) 1582 continue; // Duplicate predecessor entry. 1583 1584 Constant *Val = PredValue.first; 1585 1586 BasicBlock *DestBB; 1587 if (isa<UndefValue>(Val)) 1588 DestBB = nullptr; 1589 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1590 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1591 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1592 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1593 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1594 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1595 } else { 1596 assert(isa<IndirectBrInst>(BB->getTerminator()) 1597 && "Unexpected terminator"); 1598 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1599 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1600 } 1601 1602 // If we have exactly one destination, remember it for efficiency below. 1603 if (PredToDestList.empty()) { 1604 OnlyDest = DestBB; 1605 OnlyVal = Val; 1606 } else { 1607 if (OnlyDest != DestBB) 1608 OnlyDest = MultipleDestSentinel; 1609 // It possible we have same destination, but different value, e.g. default 1610 // case in switchinst. 1611 if (Val != OnlyVal) 1612 OnlyVal = MultipleVal; 1613 } 1614 1615 // If the predecessor ends with an indirect goto, we can't change its 1616 // destination. 1617 if (isa<IndirectBrInst>(Pred->getTerminator())) 1618 continue; 1619 1620 PredToDestList.emplace_back(Pred, DestBB); 1621 } 1622 1623 // If all edges were unthreadable, we fail. 1624 if (PredToDestList.empty()) 1625 return false; 1626 1627 // If all the predecessors go to a single known successor, we want to fold, 1628 // not thread. By doing so, we do not need to duplicate the current block and 1629 // also miss potential opportunities in case we dont/cant duplicate. 1630 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1631 if (BB->hasNPredecessors(PredToDestList.size())) { 1632 bool SeenFirstBranchToOnlyDest = false; 1633 std::vector <DominatorTree::UpdateType> Updates; 1634 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1635 for (BasicBlock *SuccBB : successors(BB)) { 1636 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1637 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1638 } else { 1639 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1640 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1641 } 1642 } 1643 1644 // Finally update the terminator. 1645 Instruction *Term = BB->getTerminator(); 1646 Instruction *NewBI = BranchInst::Create(OnlyDest, Term->getIterator()); 1647 NewBI->setDebugLoc(Term->getDebugLoc()); 1648 ++NumFolds; 1649 Term->eraseFromParent(); 1650 DTU->applyUpdatesPermissive(Updates); 1651 if (auto *BPI = getBPI()) 1652 BPI->eraseBlock(BB); 1653 1654 // If the condition is now dead due to the removal of the old terminator, 1655 // erase it. 1656 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1657 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1658 CondInst->eraseFromParent(); 1659 // We can safely replace *some* uses of the CondInst if it has 1660 // exactly one value as returned by LVI. RAUW is incorrect in the 1661 // presence of guards and assumes, that have the `Cond` as the use. This 1662 // is because we use the guards/assume to reason about the `Cond` value 1663 // at the end of block, but RAUW unconditionally replaces all uses 1664 // including the guards/assumes themselves and the uses before the 1665 // guard/assume. 1666 else if (OnlyVal && OnlyVal != MultipleVal) 1667 replaceFoldableUses(CondInst, OnlyVal, BB); 1668 } 1669 return true; 1670 } 1671 } 1672 1673 // Determine which is the most common successor. If we have many inputs and 1674 // this block is a switch, we want to start by threading the batch that goes 1675 // to the most popular destination first. If we only know about one 1676 // threadable destination (the common case) we can avoid this. 1677 BasicBlock *MostPopularDest = OnlyDest; 1678 1679 if (MostPopularDest == MultipleDestSentinel) { 1680 // Remove any loop headers from the Dest list, threadEdge conservatively 1681 // won't process them, but we might have other destination that are eligible 1682 // and we still want to process. 1683 erase_if(PredToDestList, 1684 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1685 return LoopHeaders.contains(PredToDest.second); 1686 }); 1687 1688 if (PredToDestList.empty()) 1689 return false; 1690 1691 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1692 } 1693 1694 // Now that we know what the most popular destination is, factor all 1695 // predecessors that will jump to it into a single predecessor. 1696 SmallVector<BasicBlock*, 16> PredsToFactor; 1697 for (const auto &PredToDest : PredToDestList) 1698 if (PredToDest.second == MostPopularDest) { 1699 BasicBlock *Pred = PredToDest.first; 1700 1701 // This predecessor may be a switch or something else that has multiple 1702 // edges to the block. Factor each of these edges by listing them 1703 // according to # occurrences in PredsToFactor. 1704 for (BasicBlock *Succ : successors(Pred)) 1705 if (Succ == BB) 1706 PredsToFactor.push_back(Pred); 1707 } 1708 1709 // If the threadable edges are branching on an undefined value, we get to pick 1710 // the destination that these predecessors should get to. 1711 if (!MostPopularDest) 1712 MostPopularDest = BB->getTerminator()-> 1713 getSuccessor(getBestDestForJumpOnUndef(BB)); 1714 1715 // Ok, try to thread it! 1716 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1717 } 1718 1719 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1720 /// a PHI node (or freeze PHI) in the current block. See if there are any 1721 /// simplifications we can do based on inputs to the phi node. 1722 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1723 BasicBlock *BB = PN->getParent(); 1724 1725 // TODO: We could make use of this to do it once for blocks with common PHI 1726 // values. 1727 SmallVector<BasicBlock*, 1> PredBBs; 1728 PredBBs.resize(1); 1729 1730 // If any of the predecessor blocks end in an unconditional branch, we can 1731 // *duplicate* the conditional branch into that block in order to further 1732 // encourage jump threading and to eliminate cases where we have branch on a 1733 // phi of an icmp (branch on icmp is much better). 1734 // This is still beneficial when a frozen phi is used as the branch condition 1735 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1736 // to br(icmp(freeze ...)). 1737 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1738 BasicBlock *PredBB = PN->getIncomingBlock(i); 1739 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1740 if (PredBr->isUnconditional()) { 1741 PredBBs[0] = PredBB; 1742 // Try to duplicate BB into PredBB. 1743 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1744 return true; 1745 } 1746 } 1747 1748 return false; 1749 } 1750 1751 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1752 /// a xor instruction in the current block. See if there are any 1753 /// simplifications we can do based on inputs to the xor. 1754 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1755 BasicBlock *BB = BO->getParent(); 1756 1757 // If either the LHS or RHS of the xor is a constant, don't do this 1758 // optimization. 1759 if (isa<ConstantInt>(BO->getOperand(0)) || 1760 isa<ConstantInt>(BO->getOperand(1))) 1761 return false; 1762 1763 // If the first instruction in BB isn't a phi, we won't be able to infer 1764 // anything special about any particular predecessor. 1765 if (!isa<PHINode>(BB->front())) 1766 return false; 1767 1768 // If this BB is a landing pad, we won't be able to split the edge into it. 1769 if (BB->isEHPad()) 1770 return false; 1771 1772 // If we have a xor as the branch input to this block, and we know that the 1773 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1774 // the condition into the predecessor and fix that value to true, saving some 1775 // logical ops on that path and encouraging other paths to simplify. 1776 // 1777 // This copies something like this: 1778 // 1779 // BB: 1780 // %X = phi i1 [1], [%X'] 1781 // %Y = icmp eq i32 %A, %B 1782 // %Z = xor i1 %X, %Y 1783 // br i1 %Z, ... 1784 // 1785 // Into: 1786 // BB': 1787 // %Y = icmp ne i32 %A, %B 1788 // br i1 %Y, ... 1789 1790 PredValueInfoTy XorOpValues; 1791 bool isLHS = true; 1792 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1793 WantInteger, BO)) { 1794 assert(XorOpValues.empty()); 1795 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1796 WantInteger, BO)) 1797 return false; 1798 isLHS = false; 1799 } 1800 1801 assert(!XorOpValues.empty() && 1802 "computeValueKnownInPredecessors returned true with no values"); 1803 1804 // Scan the information to see which is most popular: true or false. The 1805 // predecessors can be of the set true, false, or undef. 1806 unsigned NumTrue = 0, NumFalse = 0; 1807 for (const auto &XorOpValue : XorOpValues) { 1808 if (isa<UndefValue>(XorOpValue.first)) 1809 // Ignore undefs for the count. 1810 continue; 1811 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1812 ++NumFalse; 1813 else 1814 ++NumTrue; 1815 } 1816 1817 // Determine which value to split on, true, false, or undef if neither. 1818 ConstantInt *SplitVal = nullptr; 1819 if (NumTrue > NumFalse) 1820 SplitVal = ConstantInt::getTrue(BB->getContext()); 1821 else if (NumTrue != 0 || NumFalse != 0) 1822 SplitVal = ConstantInt::getFalse(BB->getContext()); 1823 1824 // Collect all of the blocks that this can be folded into so that we can 1825 // factor this once and clone it once. 1826 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1827 for (const auto &XorOpValue : XorOpValues) { 1828 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1829 continue; 1830 1831 BlocksToFoldInto.push_back(XorOpValue.second); 1832 } 1833 1834 // If we inferred a value for all of the predecessors, then duplication won't 1835 // help us. However, we can just replace the LHS or RHS with the constant. 1836 if (BlocksToFoldInto.size() == 1837 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1838 if (!SplitVal) { 1839 // If all preds provide undef, just nuke the xor, because it is undef too. 1840 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1841 BO->eraseFromParent(); 1842 } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) { 1843 // If all preds provide 0, replace the xor with the other input. 1844 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1845 BO->eraseFromParent(); 1846 } else { 1847 // If all preds provide 1, set the computed value to 1. 1848 BO->setOperand(!isLHS, SplitVal); 1849 } 1850 1851 return true; 1852 } 1853 1854 // If any of predecessors end with an indirect goto, we can't change its 1855 // destination. 1856 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1857 return isa<IndirectBrInst>(Pred->getTerminator()); 1858 })) 1859 return false; 1860 1861 // Try to duplicate BB into PredBB. 1862 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1863 } 1864 1865 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1866 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1867 /// NewPred using the entries from OldPred (suitably mapped). 1868 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1869 BasicBlock *OldPred, 1870 BasicBlock *NewPred, 1871 ValueToValueMapTy &ValueMap) { 1872 for (PHINode &PN : PHIBB->phis()) { 1873 // Ok, we have a PHI node. Figure out what the incoming value was for the 1874 // DestBlock. 1875 Value *IV = PN.getIncomingValueForBlock(OldPred); 1876 1877 // Remap the value if necessary. 1878 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1879 ValueToValueMapTy::iterator I = ValueMap.find(Inst); 1880 if (I != ValueMap.end()) 1881 IV = I->second; 1882 } 1883 1884 PN.addIncoming(IV, NewPred); 1885 } 1886 } 1887 1888 /// Merge basic block BB into its sole predecessor if possible. 1889 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1890 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1891 if (!SinglePred) 1892 return false; 1893 1894 const Instruction *TI = SinglePred->getTerminator(); 1895 if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 || 1896 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1897 return false; 1898 1899 // If SinglePred was a loop header, BB becomes one. 1900 if (LoopHeaders.erase(SinglePred)) 1901 LoopHeaders.insert(BB); 1902 1903 LVI->eraseBlock(SinglePred); 1904 MergeBasicBlockIntoOnlyPred(BB, DTU.get()); 1905 1906 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1907 // BB code within one basic block `BB`), we need to invalidate the LVI 1908 // information associated with BB, because the LVI information need not be 1909 // true for all of BB after the merge. For example, 1910 // Before the merge, LVI info and code is as follows: 1911 // SinglePred: <LVI info1 for %p val> 1912 // %y = use of %p 1913 // call @exit() // need not transfer execution to successor. 1914 // assume(%p) // from this point on %p is true 1915 // br label %BB 1916 // BB: <LVI info2 for %p val, i.e. %p is true> 1917 // %x = use of %p 1918 // br label exit 1919 // 1920 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1921 // (info2 and info1 respectively). After the merge and the deletion of the 1922 // LVI info1 for SinglePred. We have the following code: 1923 // BB: <LVI info2 for %p val> 1924 // %y = use of %p 1925 // call @exit() 1926 // assume(%p) 1927 // %x = use of %p <-- LVI info2 is correct from here onwards. 1928 // br label exit 1929 // LVI info2 for BB is incorrect at the beginning of BB. 1930 1931 // Invalidate LVI information for BB if the LVI is not provably true for 1932 // all of BB. 1933 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1934 LVI->eraseBlock(BB); 1935 return true; 1936 } 1937 1938 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1939 /// ValueMapping maps old values in BB to new ones in NewBB. 1940 void JumpThreadingPass::updateSSA(BasicBlock *BB, BasicBlock *NewBB, 1941 ValueToValueMapTy &ValueMapping) { 1942 // If there were values defined in BB that are used outside the block, then we 1943 // now have to update all uses of the value to use either the original value, 1944 // the cloned value, or some PHI derived value. This can require arbitrary 1945 // PHI insertion, of which we are prepared to do, clean these up now. 1946 SSAUpdater SSAUpdate; 1947 SmallVector<Use *, 16> UsesToRename; 1948 SmallVector<DbgValueInst *, 4> DbgValues; 1949 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords; 1950 1951 for (Instruction &I : *BB) { 1952 // Scan all uses of this instruction to see if it is used outside of its 1953 // block, and if so, record them in UsesToRename. 1954 for (Use &U : I.uses()) { 1955 Instruction *User = cast<Instruction>(U.getUser()); 1956 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1957 if (UserPN->getIncomingBlock(U) == BB) 1958 continue; 1959 } else if (User->getParent() == BB) 1960 continue; 1961 1962 UsesToRename.push_back(&U); 1963 } 1964 1965 // Find debug values outside of the block 1966 findDbgValues(DbgValues, &I, &DbgVariableRecords); 1967 llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) { 1968 return DbgVal->getParent() == BB; 1969 }); 1970 llvm::erase_if(DbgVariableRecords, [&](const DbgVariableRecord *DbgVarRec) { 1971 return DbgVarRec->getParent() == BB; 1972 }); 1973 1974 // If there are no uses outside the block, we're done with this instruction. 1975 if (UsesToRename.empty() && DbgValues.empty() && DbgVariableRecords.empty()) 1976 continue; 1977 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1978 1979 // We found a use of I outside of BB. Rename all uses of I that are outside 1980 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1981 // with the two values we know. 1982 SSAUpdate.Initialize(I.getType(), I.getName()); 1983 SSAUpdate.AddAvailableValue(BB, &I); 1984 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1985 1986 while (!UsesToRename.empty()) 1987 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1988 if (!DbgValues.empty() || !DbgVariableRecords.empty()) { 1989 SSAUpdate.UpdateDebugValues(&I, DbgValues); 1990 SSAUpdate.UpdateDebugValues(&I, DbgVariableRecords); 1991 DbgValues.clear(); 1992 DbgVariableRecords.clear(); 1993 } 1994 1995 LLVM_DEBUG(dbgs() << "\n"); 1996 } 1997 } 1998 1999 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2000 /// arguments that come from PredBB. Return the map from the variables in the 2001 /// source basic block to the variables in the newly created basic block. 2002 2003 void JumpThreadingPass::cloneInstructions(ValueToValueMapTy &ValueMapping, 2004 BasicBlock::iterator BI, 2005 BasicBlock::iterator BE, 2006 BasicBlock *NewBB, 2007 BasicBlock *PredBB) { 2008 // We are going to have to map operands from the source basic block to the new 2009 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2010 // block, evaluate them to account for entry from PredBB. 2011 2012 // Retargets llvm.dbg.value to any renamed variables. 2013 auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool { 2014 auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst); 2015 if (!DbgInstruction) 2016 return false; 2017 2018 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap; 2019 for (auto DbgOperand : DbgInstruction->location_ops()) { 2020 auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand); 2021 if (!DbgOperandInstruction) 2022 continue; 2023 2024 auto I = ValueMapping.find(DbgOperandInstruction); 2025 if (I != ValueMapping.end()) { 2026 OperandsToRemap.insert( 2027 std::pair<Value *, Value *>(DbgOperand, I->second)); 2028 } 2029 } 2030 2031 for (auto &[OldOp, MappedOp] : OperandsToRemap) 2032 DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp); 2033 return true; 2034 }; 2035 2036 // Duplicate implementation of the above dbg.value code, using 2037 // DbgVariableRecords instead. 2038 auto RetargetDbgVariableRecordIfPossible = [&](DbgVariableRecord *DVR) { 2039 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap; 2040 for (auto *Op : DVR->location_ops()) { 2041 Instruction *OpInst = dyn_cast<Instruction>(Op); 2042 if (!OpInst) 2043 continue; 2044 2045 auto I = ValueMapping.find(OpInst); 2046 if (I != ValueMapping.end()) 2047 OperandsToRemap.insert({OpInst, I->second}); 2048 } 2049 2050 for (auto &[OldOp, MappedOp] : OperandsToRemap) 2051 DVR->replaceVariableLocationOp(OldOp, MappedOp); 2052 }; 2053 2054 BasicBlock *RangeBB = BI->getParent(); 2055 2056 // Clone the phi nodes of the source basic block into NewBB. The resulting 2057 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2058 // might need to rewrite the operand of the cloned phi. 2059 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2060 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2061 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2062 ValueMapping[PN] = NewPN; 2063 } 2064 2065 // Clone noalias scope declarations in the threaded block. When threading a 2066 // loop exit, we would otherwise end up with two idential scope declarations 2067 // visible at the same time. 2068 SmallVector<MDNode *> NoAliasScopes; 2069 DenseMap<MDNode *, MDNode *> ClonedScopes; 2070 LLVMContext &Context = PredBB->getContext(); 2071 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2072 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2073 2074 auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) { 2075 auto DVRRange = NewInst->cloneDebugInfoFrom(From); 2076 for (DbgVariableRecord &DVR : filterDbgVars(DVRRange)) 2077 RetargetDbgVariableRecordIfPossible(&DVR); 2078 }; 2079 2080 // Clone the non-phi instructions of the source basic block into NewBB, 2081 // keeping track of the mapping and using it to remap operands in the cloned 2082 // instructions. 2083 for (; BI != BE; ++BI) { 2084 Instruction *New = BI->clone(); 2085 New->setName(BI->getName()); 2086 New->insertInto(NewBB, NewBB->end()); 2087 ValueMapping[&*BI] = New; 2088 adaptNoAliasScopes(New, ClonedScopes, Context); 2089 2090 CloneAndRemapDbgInfo(New, &*BI); 2091 2092 if (RetargetDbgValueIfPossible(New)) 2093 continue; 2094 2095 // Remap operands to patch up intra-block references. 2096 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2097 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2098 ValueToValueMapTy::iterator I = ValueMapping.find(Inst); 2099 if (I != ValueMapping.end()) 2100 New->setOperand(i, I->second); 2101 } 2102 } 2103 2104 // There may be DbgVariableRecords on the terminator, clone directly from 2105 // marker to marker as there isn't an instruction there. 2106 if (BE != RangeBB->end() && BE->hasDbgRecords()) { 2107 // Dump them at the end. 2108 DbgMarker *Marker = RangeBB->getMarker(BE); 2109 DbgMarker *EndMarker = NewBB->createMarker(NewBB->end()); 2110 auto DVRRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt); 2111 for (DbgVariableRecord &DVR : filterDbgVars(DVRRange)) 2112 RetargetDbgVariableRecordIfPossible(&DVR); 2113 } 2114 2115 return; 2116 } 2117 2118 /// Attempt to thread through two successive basic blocks. 2119 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2120 Value *Cond) { 2121 // Consider: 2122 // 2123 // PredBB: 2124 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2125 // %tobool = icmp eq i32 %cond, 0 2126 // br i1 %tobool, label %BB, label ... 2127 // 2128 // BB: 2129 // %cmp = icmp eq i32* %var, null 2130 // br i1 %cmp, label ..., label ... 2131 // 2132 // We don't know the value of %var at BB even if we know which incoming edge 2133 // we take to BB. However, once we duplicate PredBB for each of its incoming 2134 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2135 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2136 2137 // Require that BB end with a Branch for simplicity. 2138 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2139 if (!CondBr) 2140 return false; 2141 2142 // BB must have exactly one predecessor. 2143 BasicBlock *PredBB = BB->getSinglePredecessor(); 2144 if (!PredBB) 2145 return false; 2146 2147 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2148 // unconditional branch, we should be merging PredBB and BB instead. For 2149 // simplicity, we don't deal with a switch. 2150 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2151 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2152 return false; 2153 2154 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2155 // PredBB. 2156 if (PredBB->getSinglePredecessor()) 2157 return false; 2158 2159 // Don't thread through PredBB if it contains a successor edge to itself, in 2160 // which case we would infinite loop. Suppose we are threading an edge from 2161 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2162 // successor edge to itself. If we allowed jump threading in this case, we 2163 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2164 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2165 // with another jump threading opportunity from PredBB.thread through PredBB 2166 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2167 // would keep peeling one iteration from PredBB. 2168 if (llvm::is_contained(successors(PredBB), PredBB)) 2169 return false; 2170 2171 // Don't thread across a loop header. 2172 if (LoopHeaders.count(PredBB)) 2173 return false; 2174 2175 // Avoid complication with duplicating EH pads. 2176 if (PredBB->isEHPad()) 2177 return false; 2178 2179 // Find a predecessor that we can thread. For simplicity, we only consider a 2180 // successor edge out of BB to which we thread exactly one incoming edge into 2181 // PredBB. 2182 unsigned ZeroCount = 0; 2183 unsigned OneCount = 0; 2184 BasicBlock *ZeroPred = nullptr; 2185 BasicBlock *OnePred = nullptr; 2186 const DataLayout &DL = BB->getDataLayout(); 2187 for (BasicBlock *P : predecessors(PredBB)) { 2188 // If PredPred ends with IndirectBrInst, we can't handle it. 2189 if (isa<IndirectBrInst>(P->getTerminator())) 2190 continue; 2191 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2192 evaluateOnPredecessorEdge(BB, P, Cond, DL))) { 2193 if (CI->isZero()) { 2194 ZeroCount++; 2195 ZeroPred = P; 2196 } else if (CI->isOne()) { 2197 OneCount++; 2198 OnePred = P; 2199 } 2200 } 2201 } 2202 2203 // Disregard complicated cases where we have to thread multiple edges. 2204 BasicBlock *PredPredBB; 2205 if (ZeroCount == 1) { 2206 PredPredBB = ZeroPred; 2207 } else if (OneCount == 1) { 2208 PredPredBB = OnePred; 2209 } else { 2210 return false; 2211 } 2212 2213 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2214 2215 // If threading to the same block as we come from, we would infinite loop. 2216 if (SuccBB == BB) { 2217 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2218 << "' - would thread to self!\n"); 2219 return false; 2220 } 2221 2222 // If threading this would thread across a loop header, don't thread the edge. 2223 // See the comments above findLoopHeaders for justifications and caveats. 2224 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2225 LLVM_DEBUG({ 2226 bool BBIsHeader = LoopHeaders.count(BB); 2227 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2228 dbgs() << " Not threading across " 2229 << (BBIsHeader ? "loop header BB '" : "block BB '") 2230 << BB->getName() << "' to dest " 2231 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2232 << SuccBB->getName() 2233 << "' - it might create an irreducible loop!\n"; 2234 }); 2235 return false; 2236 } 2237 2238 // Compute the cost of duplicating BB and PredBB. 2239 unsigned BBCost = getJumpThreadDuplicationCost( 2240 TTI, BB, BB->getTerminator(), BBDupThreshold); 2241 unsigned PredBBCost = getJumpThreadDuplicationCost( 2242 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold); 2243 2244 // Give up if costs are too high. We need to check BBCost and PredBBCost 2245 // individually before checking their sum because getJumpThreadDuplicationCost 2246 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2247 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2248 BBCost + PredBBCost > BBDupThreshold) { 2249 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2250 << "' - Cost is too high: " << PredBBCost 2251 << " for PredBB, " << BBCost << "for BB\n"); 2252 return false; 2253 } 2254 2255 // Now we are ready to duplicate PredBB. 2256 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2257 return true; 2258 } 2259 2260 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2261 BasicBlock *PredBB, 2262 BasicBlock *BB, 2263 BasicBlock *SuccBB) { 2264 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2265 << BB->getName() << "'\n"); 2266 2267 // Build BPI/BFI before any changes are made to IR. 2268 bool HasProfile = doesBlockHaveProfileData(BB); 2269 auto *BFI = getOrCreateBFI(HasProfile); 2270 auto *BPI = getOrCreateBPI(BFI != nullptr); 2271 2272 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2273 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2274 2275 BasicBlock *NewBB = 2276 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2277 PredBB->getParent(), PredBB); 2278 NewBB->moveAfter(PredBB); 2279 2280 // Set the block frequency of NewBB. 2281 if (BFI) { 2282 assert(BPI && "It's expected BPI to exist along with BFI"); 2283 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2284 BPI->getEdgeProbability(PredPredBB, PredBB); 2285 BFI->setBlockFreq(NewBB, NewBBFreq); 2286 } 2287 2288 // We are going to have to map operands from the original BB block to the new 2289 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2290 // to account for entry from PredPredBB. 2291 ValueToValueMapTy ValueMapping; 2292 cloneInstructions(ValueMapping, PredBB->begin(), PredBB->end(), NewBB, 2293 PredPredBB); 2294 2295 // Copy the edge probabilities from PredBB to NewBB. 2296 if (BPI) 2297 BPI->copyEdgeProbabilities(PredBB, NewBB); 2298 2299 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2300 // This eliminates predecessors from PredPredBB, which requires us to simplify 2301 // any PHI nodes in PredBB. 2302 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2303 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2304 if (PredPredTerm->getSuccessor(i) == PredBB) { 2305 PredBB->removePredecessor(PredPredBB, true); 2306 PredPredTerm->setSuccessor(i, NewBB); 2307 } 2308 2309 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2310 ValueMapping); 2311 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2312 ValueMapping); 2313 2314 DTU->applyUpdatesPermissive( 2315 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2316 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2317 {DominatorTree::Insert, PredPredBB, NewBB}, 2318 {DominatorTree::Delete, PredPredBB, PredBB}}); 2319 2320 updateSSA(PredBB, NewBB, ValueMapping); 2321 2322 // Clean up things like PHI nodes with single operands, dead instructions, 2323 // etc. 2324 SimplifyInstructionsInBlock(NewBB, TLI); 2325 SimplifyInstructionsInBlock(PredBB, TLI); 2326 2327 SmallVector<BasicBlock *, 1> PredsToFactor; 2328 PredsToFactor.push_back(NewBB); 2329 threadEdge(BB, PredsToFactor, SuccBB); 2330 } 2331 2332 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2333 bool JumpThreadingPass::tryThreadEdge( 2334 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2335 BasicBlock *SuccBB) { 2336 // If threading to the same block as we come from, we would infinite loop. 2337 if (SuccBB == BB) { 2338 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2339 << "' - would thread to self!\n"); 2340 return false; 2341 } 2342 2343 // If threading this would thread across a loop header, don't thread the edge. 2344 // See the comments above findLoopHeaders for justifications and caveats. 2345 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2346 LLVM_DEBUG({ 2347 bool BBIsHeader = LoopHeaders.count(BB); 2348 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2349 dbgs() << " Not threading across " 2350 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2351 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2352 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2353 }); 2354 return false; 2355 } 2356 2357 unsigned JumpThreadCost = getJumpThreadDuplicationCost( 2358 TTI, BB, BB->getTerminator(), BBDupThreshold); 2359 if (JumpThreadCost > BBDupThreshold) { 2360 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2361 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2362 return false; 2363 } 2364 2365 threadEdge(BB, PredBBs, SuccBB); 2366 return true; 2367 } 2368 2369 /// threadEdge - We have decided that it is safe and profitable to factor the 2370 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2371 /// across BB. Transform the IR to reflect this change. 2372 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2373 const SmallVectorImpl<BasicBlock *> &PredBBs, 2374 BasicBlock *SuccBB) { 2375 assert(SuccBB != BB && "Don't create an infinite loop"); 2376 2377 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2378 "Don't thread across loop headers"); 2379 2380 // Build BPI/BFI before any changes are made to IR. 2381 bool HasProfile = doesBlockHaveProfileData(BB); 2382 auto *BFI = getOrCreateBFI(HasProfile); 2383 auto *BPI = getOrCreateBPI(BFI != nullptr); 2384 2385 // And finally, do it! Start by factoring the predecessors if needed. 2386 BasicBlock *PredBB; 2387 if (PredBBs.size() == 1) 2388 PredBB = PredBBs[0]; 2389 else { 2390 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2391 << " common predecessors.\n"); 2392 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2393 } 2394 2395 // And finally, do it! 2396 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2397 << "' to '" << SuccBB->getName() 2398 << ", across block:\n " << *BB << "\n"); 2399 2400 LVI->threadEdge(PredBB, BB, SuccBB); 2401 2402 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2403 BB->getName()+".thread", 2404 BB->getParent(), BB); 2405 NewBB->moveAfter(PredBB); 2406 2407 // Set the block frequency of NewBB. 2408 if (BFI) { 2409 assert(BPI && "It's expected BPI to exist along with BFI"); 2410 auto NewBBFreq = 2411 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2412 BFI->setBlockFreq(NewBB, NewBBFreq); 2413 } 2414 2415 // Copy all the instructions from BB to NewBB except the terminator. 2416 ValueToValueMapTy ValueMapping; 2417 cloneInstructions(ValueMapping, BB->begin(), std::prev(BB->end()), NewBB, 2418 PredBB); 2419 2420 // We didn't copy the terminator from BB over to NewBB, because there is now 2421 // an unconditional jump to SuccBB. Insert the unconditional jump. 2422 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2423 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2424 2425 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2426 // PHI nodes for NewBB now. 2427 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2428 2429 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2430 // eliminates predecessors from BB, which requires us to simplify any PHI 2431 // nodes in BB. 2432 Instruction *PredTerm = PredBB->getTerminator(); 2433 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2434 if (PredTerm->getSuccessor(i) == BB) { 2435 BB->removePredecessor(PredBB, true); 2436 PredTerm->setSuccessor(i, NewBB); 2437 } 2438 2439 // Enqueue required DT updates. 2440 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2441 {DominatorTree::Insert, PredBB, NewBB}, 2442 {DominatorTree::Delete, PredBB, BB}}); 2443 2444 updateSSA(BB, NewBB, ValueMapping); 2445 2446 // At this point, the IR is fully up to date and consistent. Do a quick scan 2447 // over the new instructions and zap any that are constants or dead. This 2448 // frequently happens because of phi translation. 2449 SimplifyInstructionsInBlock(NewBB, TLI); 2450 2451 // Update the edge weight from BB to SuccBB, which should be less than before. 2452 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile); 2453 2454 // Threaded an edge! 2455 ++NumThreads; 2456 } 2457 2458 /// Create a new basic block that will be the predecessor of BB and successor of 2459 /// all blocks in Preds. When profile data is available, update the frequency of 2460 /// this new block. 2461 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2462 ArrayRef<BasicBlock *> Preds, 2463 const char *Suffix) { 2464 SmallVector<BasicBlock *, 2> NewBBs; 2465 2466 // Collect the frequencies of all predecessors of BB, which will be used to 2467 // update the edge weight of the result of splitting predecessors. 2468 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2469 auto *BFI = getBFI(); 2470 if (BFI) { 2471 auto *BPI = getOrCreateBPI(true); 2472 for (auto *Pred : Preds) 2473 FreqMap.insert(std::make_pair( 2474 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2475 } 2476 2477 // In the case when BB is a LandingPad block we create 2 new predecessors 2478 // instead of just one. 2479 if (BB->isLandingPad()) { 2480 std::string NewName = std::string(Suffix) + ".split-lp"; 2481 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2482 } else { 2483 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2484 } 2485 2486 std::vector<DominatorTree::UpdateType> Updates; 2487 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2488 for (auto *NewBB : NewBBs) { 2489 BlockFrequency NewBBFreq(0); 2490 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2491 for (auto *Pred : predecessors(NewBB)) { 2492 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2493 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2494 if (BFI) // Update frequencies between Pred -> NewBB. 2495 NewBBFreq += FreqMap.lookup(Pred); 2496 } 2497 if (BFI) // Apply the summed frequency to NewBB. 2498 BFI->setBlockFreq(NewBB, NewBBFreq); 2499 } 2500 2501 DTU->applyUpdatesPermissive(Updates); 2502 return NewBBs[0]; 2503 } 2504 2505 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2506 const Instruction *TI = BB->getTerminator(); 2507 if (!TI || TI->getNumSuccessors() < 2) 2508 return false; 2509 2510 return hasValidBranchWeightMD(*TI); 2511 } 2512 2513 /// Update the block frequency of BB and branch weight and the metadata on the 2514 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2515 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2516 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2517 BasicBlock *BB, 2518 BasicBlock *NewBB, 2519 BasicBlock *SuccBB, 2520 BlockFrequencyInfo *BFI, 2521 BranchProbabilityInfo *BPI, 2522 bool HasProfile) { 2523 assert(((BFI && BPI) || (!BFI && !BFI)) && 2524 "Both BFI & BPI should either be set or unset"); 2525 2526 if (!BFI) { 2527 assert(!HasProfile && 2528 "It's expected to have BFI/BPI when profile info exists"); 2529 return; 2530 } 2531 2532 // As the edge from PredBB to BB is deleted, we have to update the block 2533 // frequency of BB. 2534 auto BBOrigFreq = BFI->getBlockFreq(BB); 2535 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2536 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2537 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2538 BFI->setBlockFreq(BB, BBNewFreq); 2539 2540 // Collect updated outgoing edges' frequencies from BB and use them to update 2541 // edge probabilities. 2542 SmallVector<uint64_t, 4> BBSuccFreq; 2543 for (BasicBlock *Succ : successors(BB)) { 2544 auto SuccFreq = (Succ == SuccBB) 2545 ? BB2SuccBBFreq - NewBBFreq 2546 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2547 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2548 } 2549 2550 uint64_t MaxBBSuccFreq = *llvm::max_element(BBSuccFreq); 2551 2552 SmallVector<BranchProbability, 4> BBSuccProbs; 2553 if (MaxBBSuccFreq == 0) 2554 BBSuccProbs.assign(BBSuccFreq.size(), 2555 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2556 else { 2557 for (uint64_t Freq : BBSuccFreq) 2558 BBSuccProbs.push_back( 2559 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2560 // Normalize edge probabilities so that they sum up to one. 2561 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2562 BBSuccProbs.end()); 2563 } 2564 2565 // Update edge probabilities in BPI. 2566 BPI->setEdgeProbability(BB, BBSuccProbs); 2567 2568 // Update the profile metadata as well. 2569 // 2570 // Don't do this if the profile of the transformed blocks was statically 2571 // estimated. (This could occur despite the function having an entry 2572 // frequency in completely cold parts of the CFG.) 2573 // 2574 // In this case we don't want to suggest to subsequent passes that the 2575 // calculated weights are fully consistent. Consider this graph: 2576 // 2577 // check_1 2578 // 50% / | 2579 // eq_1 | 50% 2580 // \ | 2581 // check_2 2582 // 50% / | 2583 // eq_2 | 50% 2584 // \ | 2585 // check_3 2586 // 50% / | 2587 // eq_3 | 50% 2588 // \ | 2589 // 2590 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2591 // the overall probabilities are inconsistent; the total probability that the 2592 // value is either 1, 2 or 3 is 150%. 2593 // 2594 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2595 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2596 // the loop exit edge. Then based solely on static estimation we would assume 2597 // the loop was extremely hot. 2598 // 2599 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2600 // shouldn't make edges extremely likely or unlikely based solely on static 2601 // estimation. 2602 if (BBSuccProbs.size() >= 2 && HasProfile) { 2603 SmallVector<uint32_t, 4> Weights; 2604 for (auto Prob : BBSuccProbs) 2605 Weights.push_back(Prob.getNumerator()); 2606 2607 auto TI = BB->getTerminator(); 2608 setBranchWeights(*TI, Weights, hasBranchWeightOrigin(*TI)); 2609 } 2610 } 2611 2612 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2613 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2614 /// If we can duplicate the contents of BB up into PredBB do so now, this 2615 /// improves the odds that the branch will be on an analyzable instruction like 2616 /// a compare. 2617 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2618 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2619 assert(!PredBBs.empty() && "Can't handle an empty set"); 2620 2621 // If BB is a loop header, then duplicating this block outside the loop would 2622 // cause us to transform this into an irreducible loop, don't do this. 2623 // See the comments above findLoopHeaders for justifications and caveats. 2624 if (LoopHeaders.count(BB)) { 2625 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2626 << "' into predecessor block '" << PredBBs[0]->getName() 2627 << "' - it might create an irreducible loop!\n"); 2628 return false; 2629 } 2630 2631 unsigned DuplicationCost = getJumpThreadDuplicationCost( 2632 TTI, BB, BB->getTerminator(), BBDupThreshold); 2633 if (DuplicationCost > BBDupThreshold) { 2634 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2635 << "' - Cost is too high: " << DuplicationCost << "\n"); 2636 return false; 2637 } 2638 2639 // And finally, do it! Start by factoring the predecessors if needed. 2640 std::vector<DominatorTree::UpdateType> Updates; 2641 BasicBlock *PredBB; 2642 if (PredBBs.size() == 1) 2643 PredBB = PredBBs[0]; 2644 else { 2645 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2646 << " common predecessors.\n"); 2647 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2648 } 2649 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2650 2651 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2652 // of PredBB. 2653 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2654 << "' into end of '" << PredBB->getName() 2655 << "' to eliminate branch on phi. Cost: " 2656 << DuplicationCost << " block is:" << *BB << "\n"); 2657 2658 // Unless PredBB ends with an unconditional branch, split the edge so that we 2659 // can just clone the bits from BB into the end of the new PredBB. 2660 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2661 2662 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2663 BasicBlock *OldPredBB = PredBB; 2664 PredBB = SplitEdge(OldPredBB, BB); 2665 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2666 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2667 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2668 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2669 } 2670 2671 // We are going to have to map operands from the original BB block into the 2672 // PredBB block. Evaluate PHI nodes in BB. 2673 ValueToValueMapTy ValueMapping; 2674 2675 BasicBlock::iterator BI = BB->begin(); 2676 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2677 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2678 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2679 // mapping and using it to remap operands in the cloned instructions. 2680 for (; BI != BB->end(); ++BI) { 2681 Instruction *New = BI->clone(); 2682 New->insertInto(PredBB, OldPredBranch->getIterator()); 2683 2684 // Remap operands to patch up intra-block references. 2685 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2686 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2687 ValueToValueMapTy::iterator I = ValueMapping.find(Inst); 2688 if (I != ValueMapping.end()) 2689 New->setOperand(i, I->second); 2690 } 2691 2692 // Remap debug variable operands. 2693 remapDebugVariable(ValueMapping, New); 2694 2695 // If this instruction can be simplified after the operands are updated, 2696 // just use the simplified value instead. This frequently happens due to 2697 // phi translation. 2698 if (Value *IV = simplifyInstruction( 2699 New, 2700 {BB->getDataLayout(), TLI, nullptr, nullptr, New})) { 2701 ValueMapping[&*BI] = IV; 2702 if (!New->mayHaveSideEffects()) { 2703 New->eraseFromParent(); 2704 New = nullptr; 2705 // Clone debug-info on the elided instruction to the destination 2706 // position. 2707 OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true); 2708 } 2709 } else { 2710 ValueMapping[&*BI] = New; 2711 } 2712 if (New) { 2713 // Otherwise, insert the new instruction into the block. 2714 New->setName(BI->getName()); 2715 // Clone across any debug-info attached to the old instruction. 2716 New->cloneDebugInfoFrom(&*BI); 2717 // Update Dominance from simplified New instruction operands. 2718 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2719 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2720 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2721 } 2722 } 2723 2724 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2725 // add entries to the PHI nodes for branch from PredBB now. 2726 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2727 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2728 ValueMapping); 2729 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2730 ValueMapping); 2731 2732 updateSSA(BB, PredBB, ValueMapping); 2733 2734 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2735 // that we nuked. 2736 BB->removePredecessor(PredBB, true); 2737 2738 // Remove the unconditional branch at the end of the PredBB block. 2739 OldPredBranch->eraseFromParent(); 2740 if (auto *BPI = getBPI()) 2741 BPI->copyEdgeProbabilities(BB, PredBB); 2742 DTU->applyUpdatesPermissive(Updates); 2743 2744 ++NumDupes; 2745 return true; 2746 } 2747 2748 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2749 // a Select instruction in Pred. BB has other predecessors and SI is used in 2750 // a PHI node in BB. SI has no other use. 2751 // A new basic block, NewBB, is created and SI is converted to compare and 2752 // conditional branch. SI is erased from parent. 2753 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2754 SelectInst *SI, PHINode *SIUse, 2755 unsigned Idx) { 2756 // Expand the select. 2757 // 2758 // Pred -- 2759 // | v 2760 // | NewBB 2761 // | | 2762 // |----- 2763 // v 2764 // BB 2765 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2766 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2767 BB->getParent(), BB); 2768 // Move the unconditional branch to NewBB. 2769 PredTerm->removeFromParent(); 2770 PredTerm->insertInto(NewBB, NewBB->end()); 2771 // Create a conditional branch and update PHI nodes. 2772 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2773 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc()); 2774 BI->copyMetadata(*SI, {LLVMContext::MD_prof}); 2775 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2776 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2777 2778 uint64_t TrueWeight = 1; 2779 uint64_t FalseWeight = 1; 2780 // Copy probabilities from 'SI' to created conditional branch in 'Pred'. 2781 if (extractBranchWeights(*SI, TrueWeight, FalseWeight) && 2782 (TrueWeight + FalseWeight) != 0) { 2783 SmallVector<BranchProbability, 2> BP; 2784 BP.emplace_back(BranchProbability::getBranchProbability( 2785 TrueWeight, TrueWeight + FalseWeight)); 2786 BP.emplace_back(BranchProbability::getBranchProbability( 2787 FalseWeight, TrueWeight + FalseWeight)); 2788 // Update BPI if exists. 2789 if (auto *BPI = getBPI()) 2790 BPI->setEdgeProbability(Pred, BP); 2791 } 2792 // Set the block frequency of NewBB. 2793 if (auto *BFI = getBFI()) { 2794 if ((TrueWeight + FalseWeight) == 0) { 2795 TrueWeight = 1; 2796 FalseWeight = 1; 2797 } 2798 BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability( 2799 TrueWeight, TrueWeight + FalseWeight); 2800 auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb; 2801 BFI->setBlockFreq(NewBB, NewBBFreq); 2802 } 2803 2804 // The select is now dead. 2805 SI->eraseFromParent(); 2806 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2807 {DominatorTree::Insert, Pred, NewBB}}); 2808 2809 // Update any other PHI nodes in BB. 2810 for (BasicBlock::iterator BI = BB->begin(); 2811 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2812 if (Phi != SIUse) 2813 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2814 } 2815 2816 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2817 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2818 2819 if (!CondPHI || CondPHI->getParent() != BB) 2820 return false; 2821 2822 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2823 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2824 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2825 2826 // The second and third condition can be potentially relaxed. Currently 2827 // the conditions help to simplify the code and allow us to reuse existing 2828 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2829 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2830 continue; 2831 2832 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2833 if (!PredTerm || !PredTerm->isUnconditional()) 2834 continue; 2835 2836 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2837 return true; 2838 } 2839 return false; 2840 } 2841 2842 /// tryToUnfoldSelect - Look for blocks of the form 2843 /// bb1: 2844 /// %a = select 2845 /// br bb2 2846 /// 2847 /// bb2: 2848 /// %p = phi [%a, %bb1] ... 2849 /// %c = icmp %p 2850 /// br i1 %c 2851 /// 2852 /// And expand the select into a branch structure if one of its arms allows %c 2853 /// to be folded. This later enables threading from bb1 over bb2. 2854 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2855 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2856 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2857 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2858 2859 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2860 CondLHS->getParent() != BB) 2861 return false; 2862 2863 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2864 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2865 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2866 2867 // Look if one of the incoming values is a select in the corresponding 2868 // predecessor. 2869 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2870 continue; 2871 2872 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2873 if (!PredTerm || !PredTerm->isUnconditional()) 2874 continue; 2875 2876 // Now check if one of the select values would allow us to constant fold the 2877 // terminator in BB. We don't do the transform if both sides fold, those 2878 // cases will be threaded in any case. 2879 Constant *LHSRes = 2880 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2881 CondRHS, Pred, BB, CondCmp); 2882 Constant *RHSRes = 2883 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2884 CondRHS, Pred, BB, CondCmp); 2885 if ((LHSRes || RHSRes) && LHSRes != RHSRes) { 2886 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2887 return true; 2888 } 2889 } 2890 return false; 2891 } 2892 2893 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2894 /// same BB in the form 2895 /// bb: 2896 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2897 /// %s = select %p, trueval, falseval 2898 /// 2899 /// or 2900 /// 2901 /// bb: 2902 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2903 /// %c = cmp %p, 0 2904 /// %s = select %c, trueval, falseval 2905 /// 2906 /// And expand the select into a branch structure. This later enables 2907 /// jump-threading over bb in this pass. 2908 /// 2909 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2910 /// select if the associated PHI has at least one constant. If the unfolded 2911 /// select is not jump-threaded, it will be folded again in the later 2912 /// optimizations. 2913 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2914 // This transform would reduce the quality of msan diagnostics. 2915 // Disable this transform under MemorySanitizer. 2916 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2917 return false; 2918 2919 // If threading this would thread across a loop header, don't thread the edge. 2920 // See the comments above findLoopHeaders for justifications and caveats. 2921 if (LoopHeaders.count(BB)) 2922 return false; 2923 2924 for (BasicBlock::iterator BI = BB->begin(); 2925 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2926 // Look for a Phi having at least one constant incoming value. 2927 if (llvm::all_of(PN->incoming_values(), 2928 [](Value *V) { return !isa<ConstantInt>(V); })) 2929 continue; 2930 2931 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2932 using namespace PatternMatch; 2933 2934 // Check if SI is in BB and use V as condition. 2935 if (SI->getParent() != BB) 2936 return false; 2937 Value *Cond = SI->getCondition(); 2938 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2939 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2940 }; 2941 2942 SelectInst *SI = nullptr; 2943 for (Use &U : PN->uses()) { 2944 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2945 // Look for a ICmp in BB that compares PN with a constant and is the 2946 // condition of a Select. 2947 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2948 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2949 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2950 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2951 SI = SelectI; 2952 break; 2953 } 2954 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2955 // Look for a Select in BB that uses PN as condition. 2956 if (isUnfoldCandidate(SelectI, U.get())) { 2957 SI = SelectI; 2958 break; 2959 } 2960 } 2961 } 2962 2963 if (!SI) 2964 continue; 2965 // Expand the select. 2966 Value *Cond = SI->getCondition(); 2967 if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI)) 2968 Cond = new FreezeInst(Cond, "cond.fr", SI->getIterator()); 2969 MDNode *BranchWeights = getBranchWeightMDNode(*SI); 2970 Instruction *Term = 2971 SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights); 2972 BasicBlock *SplitBB = SI->getParent(); 2973 BasicBlock *NewBB = Term->getParent(); 2974 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI->getIterator()); 2975 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2976 NewPN->addIncoming(SI->getFalseValue(), BB); 2977 NewPN->setDebugLoc(SI->getDebugLoc()); 2978 SI->replaceAllUsesWith(NewPN); 2979 SI->eraseFromParent(); 2980 // NewBB and SplitBB are newly created blocks which require insertion. 2981 std::vector<DominatorTree::UpdateType> Updates; 2982 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2983 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2984 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2985 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2986 // BB's successors were moved to SplitBB, update DTU accordingly. 2987 for (auto *Succ : successors(SplitBB)) { 2988 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2989 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2990 } 2991 DTU->applyUpdatesPermissive(Updates); 2992 return true; 2993 } 2994 return false; 2995 } 2996 2997 /// Try to propagate a guard from the current BB into one of its predecessors 2998 /// in case if another branch of execution implies that the condition of this 2999 /// guard is always true. Currently we only process the simplest case that 3000 /// looks like: 3001 /// 3002 /// Start: 3003 /// %cond = ... 3004 /// br i1 %cond, label %T1, label %F1 3005 /// T1: 3006 /// br label %Merge 3007 /// F1: 3008 /// br label %Merge 3009 /// Merge: 3010 /// %condGuard = ... 3011 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 3012 /// 3013 /// And cond either implies condGuard or !condGuard. In this case all the 3014 /// instructions before the guard can be duplicated in both branches, and the 3015 /// guard is then threaded to one of them. 3016 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 3017 using namespace PatternMatch; 3018 3019 // We only want to deal with two predecessors. 3020 BasicBlock *Pred1, *Pred2; 3021 auto PI = pred_begin(BB), PE = pred_end(BB); 3022 if (PI == PE) 3023 return false; 3024 Pred1 = *PI++; 3025 if (PI == PE) 3026 return false; 3027 Pred2 = *PI++; 3028 if (PI != PE) 3029 return false; 3030 if (Pred1 == Pred2) 3031 return false; 3032 3033 // Try to thread one of the guards of the block. 3034 // TODO: Look up deeper than to immediate predecessor? 3035 auto *Parent = Pred1->getSinglePredecessor(); 3036 if (!Parent || Parent != Pred2->getSinglePredecessor()) 3037 return false; 3038 3039 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 3040 for (auto &I : *BB) 3041 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 3042 return true; 3043 3044 return false; 3045 } 3046 3047 /// Try to propagate the guard from BB which is the lower block of a diamond 3048 /// to one of its branches, in case if diamond's condition implies guard's 3049 /// condition. 3050 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 3051 BranchInst *BI) { 3052 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 3053 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 3054 Value *GuardCond = Guard->getArgOperand(0); 3055 Value *BranchCond = BI->getCondition(); 3056 BasicBlock *TrueDest = BI->getSuccessor(0); 3057 BasicBlock *FalseDest = BI->getSuccessor(1); 3058 3059 auto &DL = BB->getDataLayout(); 3060 bool TrueDestIsSafe = false; 3061 bool FalseDestIsSafe = false; 3062 3063 // True dest is safe if BranchCond => GuardCond. 3064 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3065 if (Impl && *Impl) 3066 TrueDestIsSafe = true; 3067 else { 3068 // False dest is safe if !BranchCond => GuardCond. 3069 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3070 if (Impl && *Impl) 3071 FalseDestIsSafe = true; 3072 } 3073 3074 if (!TrueDestIsSafe && !FalseDestIsSafe) 3075 return false; 3076 3077 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3078 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3079 3080 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3081 Instruction *AfterGuard = Guard->getNextNode(); 3082 unsigned Cost = 3083 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold); 3084 if (Cost > BBDupThreshold) 3085 return false; 3086 // Duplicate all instructions before the guard and the guard itself to the 3087 // branch where implication is not proved. 3088 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3089 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3090 assert(GuardedBlock && "Could not create the guarded block?"); 3091 // Duplicate all instructions before the guard in the unguarded branch. 3092 // Since we have successfully duplicated the guarded block and this block 3093 // has fewer instructions, we expect it to succeed. 3094 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3095 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3096 assert(UnguardedBlock && "Could not create the unguarded block?"); 3097 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3098 << GuardedBlock->getName() << "\n"); 3099 // Some instructions before the guard may still have uses. For them, we need 3100 // to create Phi nodes merging their copies in both guarded and unguarded 3101 // branches. Those instructions that have no uses can be just removed. 3102 SmallVector<Instruction *, 4> ToRemove; 3103 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3104 if (!isa<PHINode>(&*BI)) 3105 ToRemove.push_back(&*BI); 3106 3107 BasicBlock::iterator InsertionPoint = BB->getFirstInsertionPt(); 3108 assert(InsertionPoint != BB->end() && "Empty block?"); 3109 // Substitute with Phis & remove. 3110 for (auto *Inst : reverse(ToRemove)) { 3111 if (!Inst->use_empty()) { 3112 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3113 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3114 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3115 NewPN->setDebugLoc(Inst->getDebugLoc()); 3116 NewPN->insertBefore(InsertionPoint); 3117 Inst->replaceAllUsesWith(NewPN); 3118 } 3119 Inst->dropDbgRecords(); 3120 Inst->eraseFromParent(); 3121 } 3122 return true; 3123 } 3124 3125 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const { 3126 PreservedAnalyses PA; 3127 PA.preserve<LazyValueAnalysis>(); 3128 PA.preserve<DominatorTreeAnalysis>(); 3129 3130 // TODO: We would like to preserve BPI/BFI. Enable once all paths update them. 3131 // TODO: Would be nice to verify BPI/BFI consistency as well. 3132 return PA; 3133 } 3134 3135 template <typename AnalysisT> 3136 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() { 3137 assert(FAM && "Can't run external analysis without FunctionAnalysisManager"); 3138 3139 // If there were no changes since last call to 'runExternalAnalysis' then all 3140 // analysis is either up to date or explicitly invalidated. Just go ahead and 3141 // run the "external" analysis. 3142 if (!ChangedSinceLastAnalysisUpdate) { 3143 assert(!DTU->hasPendingUpdates() && 3144 "Lost update of 'ChangedSinceLastAnalysisUpdate'?"); 3145 // Run the "external" analysis. 3146 return &FAM->getResult<AnalysisT>(*F); 3147 } 3148 ChangedSinceLastAnalysisUpdate = false; 3149 3150 auto PA = getPreservedAnalysis(); 3151 // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI 3152 // as preserved. 3153 PA.preserve<BranchProbabilityAnalysis>(); 3154 PA.preserve<BlockFrequencyAnalysis>(); 3155 // Report everything except explicitly preserved as invalid. 3156 FAM->invalidate(*F, PA); 3157 // Update DT/PDT. 3158 DTU->flush(); 3159 // Make sure DT/PDT are valid before running "external" analysis. 3160 assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast)); 3161 assert((!DTU->hasPostDomTree() || 3162 DTU->getPostDomTree().verify( 3163 PostDominatorTree::VerificationLevel::Fast))); 3164 // Run the "external" analysis. 3165 auto *Result = &FAM->getResult<AnalysisT>(*F); 3166 // Update analysis JumpThreading depends on and not explicitly preserved. 3167 TTI = &FAM->getResult<TargetIRAnalysis>(*F); 3168 TLI = &FAM->getResult<TargetLibraryAnalysis>(*F); 3169 AA = &FAM->getResult<AAManager>(*F); 3170 3171 return Result; 3172 } 3173 3174 BranchProbabilityInfo *JumpThreadingPass::getBPI() { 3175 if (!BPI) { 3176 assert(FAM && "Can't create BPI without FunctionAnalysisManager"); 3177 BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F); 3178 } 3179 return *BPI; 3180 } 3181 3182 BlockFrequencyInfo *JumpThreadingPass::getBFI() { 3183 if (!BFI) { 3184 assert(FAM && "Can't create BFI without FunctionAnalysisManager"); 3185 BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F); 3186 } 3187 return *BFI; 3188 } 3189 3190 // Important note on validity of BPI/BFI. JumpThreading tries to preserve 3191 // BPI/BFI as it goes. Thus if cached instance exists it will be updated. 3192 // Otherwise, new instance of BPI/BFI is created (up to date by definition). 3193 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) { 3194 auto *Res = getBPI(); 3195 if (Res) 3196 return Res; 3197 3198 if (Force) 3199 BPI = runExternalAnalysis<BranchProbabilityAnalysis>(); 3200 3201 return *BPI; 3202 } 3203 3204 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) { 3205 auto *Res = getBFI(); 3206 if (Res) 3207 return Res; 3208 3209 if (Force) 3210 BFI = runExternalAnalysis<BlockFrequencyAnalysis>(); 3211 3212 return *BFI; 3213 } 3214