1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/LazyValueInfo.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/InitializePasses.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/BlockFrequency.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SSAUpdater.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <memory> 78 #include <utility> 79 80 using namespace llvm; 81 using namespace jumpthreading; 82 83 #define DEBUG_TYPE "jump-threading" 84 85 STATISTIC(NumThreads, "Number of jumps threaded"); 86 STATISTIC(NumFolds, "Number of terminators folded"); 87 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 88 89 static cl::opt<unsigned> 90 BBDuplicateThreshold("jump-threading-threshold", 91 cl::desc("Max block size to duplicate for jump threading"), 92 cl::init(6), cl::Hidden); 93 94 static cl::opt<unsigned> 95 ImplicationSearchThreshold( 96 "jump-threading-implication-search-threshold", 97 cl::desc("The number of predecessors to search for a stronger " 98 "condition to use to thread over a weaker condition"), 99 cl::init(3), cl::Hidden); 100 101 static cl::opt<bool> PrintLVIAfterJumpThreading( 102 "print-lvi-after-jump-threading", 103 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 104 cl::Hidden); 105 106 static cl::opt<bool> ThreadAcrossLoopHeaders( 107 "jump-threading-across-loop-headers", 108 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 109 cl::init(false), cl::Hidden); 110 111 112 namespace { 113 114 /// This pass performs 'jump threading', which looks at blocks that have 115 /// multiple predecessors and multiple successors. If one or more of the 116 /// predecessors of the block can be proven to always jump to one of the 117 /// successors, we forward the edge from the predecessor to the successor by 118 /// duplicating the contents of this block. 119 /// 120 /// An example of when this can occur is code like this: 121 /// 122 /// if () { ... 123 /// X = 4; 124 /// } 125 /// if (X < 3) { 126 /// 127 /// In this case, the unconditional branch at the end of the first if can be 128 /// revectored to the false side of the second if. 129 class JumpThreading : public FunctionPass { 130 JumpThreadingPass Impl; 131 132 public: 133 static char ID; // Pass identification 134 135 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 136 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 137 } 138 139 bool runOnFunction(Function &F) override; 140 141 void getAnalysisUsage(AnalysisUsage &AU) const override { 142 AU.addRequired<DominatorTreeWrapperPass>(); 143 AU.addPreserved<DominatorTreeWrapperPass>(); 144 AU.addRequired<AAResultsWrapperPass>(); 145 AU.addRequired<LazyValueInfoWrapperPass>(); 146 AU.addPreserved<LazyValueInfoWrapperPass>(); 147 AU.addPreserved<GlobalsAAWrapperPass>(); 148 AU.addRequired<TargetLibraryInfoWrapperPass>(); 149 } 150 151 void releaseMemory() override { Impl.releaseMemory(); } 152 }; 153 154 } // end anonymous namespace 155 156 char JumpThreading::ID = 0; 157 158 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 159 "Jump Threading", false, false) 160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 162 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 163 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 164 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 165 "Jump Threading", false, false) 166 167 // Public interface to the Jump Threading pass 168 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 169 return new JumpThreading(Threshold); 170 } 171 172 JumpThreadingPass::JumpThreadingPass(int T) { 173 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 174 } 175 176 // Update branch probability information according to conditional 177 // branch probability. This is usually made possible for cloned branches 178 // in inline instances by the context specific profile in the caller. 179 // For instance, 180 // 181 // [Block PredBB] 182 // [Branch PredBr] 183 // if (t) { 184 // Block A; 185 // } else { 186 // Block B; 187 // } 188 // 189 // [Block BB] 190 // cond = PN([true, %A], [..., %B]); // PHI node 191 // [Branch CondBr] 192 // if (cond) { 193 // ... // P(cond == true) = 1% 194 // } 195 // 196 // Here we know that when block A is taken, cond must be true, which means 197 // P(cond == true | A) = 1 198 // 199 // Given that P(cond == true) = P(cond == true | A) * P(A) + 200 // P(cond == true | B) * P(B) 201 // we get: 202 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 203 // 204 // which gives us: 205 // P(A) is less than P(cond == true), i.e. 206 // P(t == true) <= P(cond == true) 207 // 208 // In other words, if we know P(cond == true) is unlikely, we know 209 // that P(t == true) is also unlikely. 210 // 211 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 212 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!CondBr) 214 return; 215 216 BranchProbability BP; 217 uint64_t TrueWeight, FalseWeight; 218 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 219 return; 220 221 // Returns the outgoing edge of the dominating predecessor block 222 // that leads to the PhiNode's incoming block: 223 auto GetPredOutEdge = 224 [](BasicBlock *IncomingBB, 225 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 226 auto *PredBB = IncomingBB; 227 auto *SuccBB = PhiBB; 228 SmallPtrSet<BasicBlock *, 16> Visited; 229 while (true) { 230 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 231 if (PredBr && PredBr->isConditional()) 232 return {PredBB, SuccBB}; 233 Visited.insert(PredBB); 234 auto *SinglePredBB = PredBB->getSinglePredecessor(); 235 if (!SinglePredBB) 236 return {nullptr, nullptr}; 237 238 // Stop searching when SinglePredBB has been visited. It means we see 239 // an unreachable loop. 240 if (Visited.count(SinglePredBB)) 241 return {nullptr, nullptr}; 242 243 SuccBB = PredBB; 244 PredBB = SinglePredBB; 245 } 246 }; 247 248 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 249 Value *PhiOpnd = PN->getIncomingValue(i); 250 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 251 252 if (!CI || !CI->getType()->isIntegerTy(1)) 253 continue; 254 255 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 256 TrueWeight, TrueWeight + FalseWeight) 257 : BranchProbability::getBranchProbability( 258 FalseWeight, TrueWeight + FalseWeight)); 259 260 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 261 if (!PredOutEdge.first) 262 return; 263 264 BasicBlock *PredBB = PredOutEdge.first; 265 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 266 if (!PredBr) 267 return; 268 269 uint64_t PredTrueWeight, PredFalseWeight; 270 // FIXME: We currently only set the profile data when it is missing. 271 // With PGO, this can be used to refine even existing profile data with 272 // context information. This needs to be done after more performance 273 // testing. 274 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 275 continue; 276 277 // We can not infer anything useful when BP >= 50%, because BP is the 278 // upper bound probability value. 279 if (BP >= BranchProbability(50, 100)) 280 continue; 281 282 SmallVector<uint32_t, 2> Weights; 283 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 284 Weights.push_back(BP.getNumerator()); 285 Weights.push_back(BP.getCompl().getNumerator()); 286 } else { 287 Weights.push_back(BP.getCompl().getNumerator()); 288 Weights.push_back(BP.getNumerator()); 289 } 290 PredBr->setMetadata(LLVMContext::MD_prof, 291 MDBuilder(PredBr->getParent()->getContext()) 292 .createBranchWeights(Weights)); 293 } 294 } 295 296 /// runOnFunction - Toplevel algorithm. 297 bool JumpThreading::runOnFunction(Function &F) { 298 if (skipFunction(F)) 299 return false; 300 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 301 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 302 // DT if it's available. 303 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 304 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 305 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 306 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 307 std::unique_ptr<BlockFrequencyInfo> BFI; 308 std::unique_ptr<BranchProbabilityInfo> BPI; 309 if (F.hasProfileData()) { 310 LoopInfo LI{DominatorTree(F)}; 311 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 312 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 313 } 314 315 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 316 std::move(BFI), std::move(BPI)); 317 if (PrintLVIAfterJumpThreading) { 318 dbgs() << "LVI for function '" << F.getName() << "':\n"; 319 LVI->printLVI(F, *DT, dbgs()); 320 } 321 return Changed; 322 } 323 324 PreservedAnalyses JumpThreadingPass::run(Function &F, 325 FunctionAnalysisManager &AM) { 326 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 327 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 328 // DT if it's available. 329 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 330 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 331 auto &AA = AM.getResult<AAManager>(F); 332 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 333 334 std::unique_ptr<BlockFrequencyInfo> BFI; 335 std::unique_ptr<BranchProbabilityInfo> BPI; 336 if (F.hasProfileData()) { 337 LoopInfo LI{DominatorTree(F)}; 338 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 339 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 340 } 341 342 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 343 std::move(BFI), std::move(BPI)); 344 345 if (!Changed) 346 return PreservedAnalyses::all(); 347 PreservedAnalyses PA; 348 PA.preserve<GlobalsAA>(); 349 PA.preserve<DominatorTreeAnalysis>(); 350 PA.preserve<LazyValueAnalysis>(); 351 return PA; 352 } 353 354 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 355 LazyValueInfo *LVI_, AliasAnalysis *AA_, 356 DomTreeUpdater *DTU_, bool HasProfileData_, 357 std::unique_ptr<BlockFrequencyInfo> BFI_, 358 std::unique_ptr<BranchProbabilityInfo> BPI_) { 359 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 360 TLI = TLI_; 361 LVI = LVI_; 362 AA = AA_; 363 DTU = DTU_; 364 BFI.reset(); 365 BPI.reset(); 366 // When profile data is available, we need to update edge weights after 367 // successful jump threading, which requires both BPI and BFI being available. 368 HasProfileData = HasProfileData_; 369 auto *GuardDecl = F.getParent()->getFunction( 370 Intrinsic::getName(Intrinsic::experimental_guard)); 371 HasGuards = GuardDecl && !GuardDecl->use_empty(); 372 if (HasProfileData) { 373 BPI = std::move(BPI_); 374 BFI = std::move(BFI_); 375 } 376 377 // JumpThreading must not processes blocks unreachable from entry. It's a 378 // waste of compute time and can potentially lead to hangs. 379 SmallPtrSet<BasicBlock *, 16> Unreachable; 380 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 381 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 382 DominatorTree &DT = DTU->getDomTree(); 383 for (auto &BB : F) 384 if (!DT.isReachableFromEntry(&BB)) 385 Unreachable.insert(&BB); 386 387 if (!ThreadAcrossLoopHeaders) 388 FindLoopHeaders(F); 389 390 bool EverChanged = false; 391 bool Changed; 392 do { 393 Changed = false; 394 for (auto &BB : F) { 395 if (Unreachable.count(&BB)) 396 continue; 397 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 398 Changed = true; 399 // Stop processing BB if it's the entry or is now deleted. The following 400 // routines attempt to eliminate BB and locating a suitable replacement 401 // for the entry is non-trivial. 402 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 403 continue; 404 405 if (pred_empty(&BB)) { 406 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 407 // the instructions in it. We must remove BB to prevent invalid IR. 408 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 409 << "' with terminator: " << *BB.getTerminator() 410 << '\n'); 411 LoopHeaders.erase(&BB); 412 LVI->eraseBlock(&BB); 413 DeleteDeadBlock(&BB, DTU); 414 Changed = true; 415 continue; 416 } 417 418 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 419 // is "almost empty", we attempt to merge BB with its sole successor. 420 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 421 if (BI && BI->isUnconditional() && 422 // The terminator must be the only non-phi instruction in BB. 423 BB.getFirstNonPHIOrDbg()->isTerminator() && 424 // Don't alter Loop headers and latches to ensure another pass can 425 // detect and transform nested loops later. 426 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 427 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 428 // BB is valid for cleanup here because we passed in DTU. F remains 429 // BB's parent until a DTU->getDomTree() event. 430 LVI->eraseBlock(&BB); 431 Changed = true; 432 } 433 } 434 EverChanged |= Changed; 435 } while (Changed); 436 437 LoopHeaders.clear(); 438 // Flush only the Dominator Tree. 439 DTU->getDomTree(); 440 LVI->enableDT(); 441 return EverChanged; 442 } 443 444 // Replace uses of Cond with ToVal when safe to do so. If all uses are 445 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 446 // because we may incorrectly replace uses when guards/assumes are uses of 447 // of `Cond` and we used the guards/assume to reason about the `Cond` value 448 // at the end of block. RAUW unconditionally replaces all uses 449 // including the guards/assumes themselves and the uses before the 450 // guard/assume. 451 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 452 assert(Cond->getType() == ToVal->getType()); 453 auto *BB = Cond->getParent(); 454 // We can unconditionally replace all uses in non-local blocks (i.e. uses 455 // strictly dominated by BB), since LVI information is true from the 456 // terminator of BB. 457 replaceNonLocalUsesWith(Cond, ToVal); 458 for (Instruction &I : reverse(*BB)) { 459 // Reached the Cond whose uses we are trying to replace, so there are no 460 // more uses. 461 if (&I == Cond) 462 break; 463 // We only replace uses in instructions that are guaranteed to reach the end 464 // of BB, where we know Cond is ToVal. 465 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 466 break; 467 I.replaceUsesOfWith(Cond, ToVal); 468 } 469 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 470 Cond->eraseFromParent(); 471 } 472 473 /// Return the cost of duplicating a piece of this block from first non-phi 474 /// and before StopAt instruction to thread across it. Stop scanning the block 475 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 476 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 477 Instruction *StopAt, 478 unsigned Threshold) { 479 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 480 /// Ignore PHI nodes, these will be flattened when duplication happens. 481 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 482 483 // FIXME: THREADING will delete values that are just used to compute the 484 // branch, so they shouldn't count against the duplication cost. 485 486 unsigned Bonus = 0; 487 if (BB->getTerminator() == StopAt) { 488 // Threading through a switch statement is particularly profitable. If this 489 // block ends in a switch, decrease its cost to make it more likely to 490 // happen. 491 if (isa<SwitchInst>(StopAt)) 492 Bonus = 6; 493 494 // The same holds for indirect branches, but slightly more so. 495 if (isa<IndirectBrInst>(StopAt)) 496 Bonus = 8; 497 } 498 499 // Bump the threshold up so the early exit from the loop doesn't skip the 500 // terminator-based Size adjustment at the end. 501 Threshold += Bonus; 502 503 // Sum up the cost of each instruction until we get to the terminator. Don't 504 // include the terminator because the copy won't include it. 505 unsigned Size = 0; 506 for (; &*I != StopAt; ++I) { 507 508 // Stop scanning the block if we've reached the threshold. 509 if (Size > Threshold) 510 return Size; 511 512 // Debugger intrinsics don't incur code size. 513 if (isa<DbgInfoIntrinsic>(I)) continue; 514 515 // If this is a pointer->pointer bitcast, it is free. 516 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 517 continue; 518 519 // Bail out if this instruction gives back a token type, it is not possible 520 // to duplicate it if it is used outside this BB. 521 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 522 return ~0U; 523 524 // All other instructions count for at least one unit. 525 ++Size; 526 527 // Calls are more expensive. If they are non-intrinsic calls, we model them 528 // as having cost of 4. If they are a non-vector intrinsic, we model them 529 // as having cost of 2 total, and if they are a vector intrinsic, we model 530 // them as having cost 1. 531 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 532 if (CI->cannotDuplicate() || CI->isConvergent()) 533 // Blocks with NoDuplicate are modelled as having infinite cost, so they 534 // are never duplicated. 535 return ~0U; 536 else if (!isa<IntrinsicInst>(CI)) 537 Size += 3; 538 else if (!CI->getType()->isVectorTy()) 539 Size += 1; 540 } 541 } 542 543 return Size > Bonus ? Size - Bonus : 0; 544 } 545 546 /// FindLoopHeaders - We do not want jump threading to turn proper loop 547 /// structures into irreducible loops. Doing this breaks up the loop nesting 548 /// hierarchy and pessimizes later transformations. To prevent this from 549 /// happening, we first have to find the loop headers. Here we approximate this 550 /// by finding targets of backedges in the CFG. 551 /// 552 /// Note that there definitely are cases when we want to allow threading of 553 /// edges across a loop header. For example, threading a jump from outside the 554 /// loop (the preheader) to an exit block of the loop is definitely profitable. 555 /// It is also almost always profitable to thread backedges from within the loop 556 /// to exit blocks, and is often profitable to thread backedges to other blocks 557 /// within the loop (forming a nested loop). This simple analysis is not rich 558 /// enough to track all of these properties and keep it up-to-date as the CFG 559 /// mutates, so we don't allow any of these transformations. 560 void JumpThreadingPass::FindLoopHeaders(Function &F) { 561 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 562 FindFunctionBackedges(F, Edges); 563 564 for (const auto &Edge : Edges) 565 LoopHeaders.insert(Edge.second); 566 } 567 568 /// getKnownConstant - Helper method to determine if we can thread over a 569 /// terminator with the given value as its condition, and if so what value to 570 /// use for that. What kind of value this is depends on whether we want an 571 /// integer or a block address, but an undef is always accepted. 572 /// Returns null if Val is null or not an appropriate constant. 573 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 574 if (!Val) 575 return nullptr; 576 577 // Undef is "known" enough. 578 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 579 return U; 580 581 if (Preference == WantBlockAddress) 582 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 583 584 return dyn_cast<ConstantInt>(Val); 585 } 586 587 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 588 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 589 /// in any of our predecessors. If so, return the known list of value and pred 590 /// BB in the result vector. 591 /// 592 /// This returns true if there were any known values. 593 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( 594 Value *V, BasicBlock *BB, PredValueInfo &Result, 595 ConstantPreference Preference, 596 DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet, 597 Instruction *CxtI) { 598 // This method walks up use-def chains recursively. Because of this, we could 599 // get into an infinite loop going around loops in the use-def chain. To 600 // prevent this, keep track of what (value, block) pairs we've already visited 601 // and terminate the search if we loop back to them 602 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 603 return false; 604 605 // If V is a constant, then it is known in all predecessors. 606 if (Constant *KC = getKnownConstant(V, Preference)) { 607 for (BasicBlock *Pred : predecessors(BB)) 608 Result.push_back(std::make_pair(KC, Pred)); 609 610 return !Result.empty(); 611 } 612 613 // If V is a non-instruction value, or an instruction in a different block, 614 // then it can't be derived from a PHI. 615 Instruction *I = dyn_cast<Instruction>(V); 616 if (!I || I->getParent() != BB) { 617 618 // Okay, if this is a live-in value, see if it has a known value at the end 619 // of any of our predecessors. 620 // 621 // FIXME: This should be an edge property, not a block end property. 622 /// TODO: Per PR2563, we could infer value range information about a 623 /// predecessor based on its terminator. 624 // 625 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 626 // "I" is a non-local compare-with-a-constant instruction. This would be 627 // able to handle value inequalities better, for example if the compare is 628 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 629 // Perhaps getConstantOnEdge should be smart enough to do this? 630 631 if (DTU->hasPendingDomTreeUpdates()) 632 LVI->disableDT(); 633 else 634 LVI->enableDT(); 635 for (BasicBlock *P : predecessors(BB)) { 636 // If the value is known by LazyValueInfo to be a constant in a 637 // predecessor, use that information to try to thread this block. 638 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 639 if (Constant *KC = getKnownConstant(PredCst, Preference)) 640 Result.push_back(std::make_pair(KC, P)); 641 } 642 643 return !Result.empty(); 644 } 645 646 /// If I is a PHI node, then we know the incoming values for any constants. 647 if (PHINode *PN = dyn_cast<PHINode>(I)) { 648 if (DTU->hasPendingDomTreeUpdates()) 649 LVI->disableDT(); 650 else 651 LVI->enableDT(); 652 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 653 Value *InVal = PN->getIncomingValue(i); 654 if (Constant *KC = getKnownConstant(InVal, Preference)) { 655 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 656 } else { 657 Constant *CI = LVI->getConstantOnEdge(InVal, 658 PN->getIncomingBlock(i), 659 BB, CxtI); 660 if (Constant *KC = getKnownConstant(CI, Preference)) 661 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 662 } 663 } 664 665 return !Result.empty(); 666 } 667 668 // Handle Cast instructions. Only see through Cast when the source operand is 669 // PHI or Cmp to save the compilation time. 670 if (CastInst *CI = dyn_cast<CastInst>(I)) { 671 Value *Source = CI->getOperand(0); 672 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 673 return false; 674 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 675 RecursionSet, CxtI); 676 if (Result.empty()) 677 return false; 678 679 // Convert the known values. 680 for (auto &R : Result) 681 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 682 683 return true; 684 } 685 686 // Handle some boolean conditions. 687 if (I->getType()->getPrimitiveSizeInBits() == 1) { 688 assert(Preference == WantInteger && "One-bit non-integer type?"); 689 // X | true -> true 690 // X & false -> false 691 if (I->getOpcode() == Instruction::Or || 692 I->getOpcode() == Instruction::And) { 693 PredValueInfoTy LHSVals, RHSVals; 694 695 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 696 WantInteger, RecursionSet, CxtI); 697 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 698 WantInteger, RecursionSet, CxtI); 699 700 if (LHSVals.empty() && RHSVals.empty()) 701 return false; 702 703 ConstantInt *InterestingVal; 704 if (I->getOpcode() == Instruction::Or) 705 InterestingVal = ConstantInt::getTrue(I->getContext()); 706 else 707 InterestingVal = ConstantInt::getFalse(I->getContext()); 708 709 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 710 711 // Scan for the sentinel. If we find an undef, force it to the 712 // interesting value: x|undef -> true and x&undef -> false. 713 for (const auto &LHSVal : LHSVals) 714 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 715 Result.emplace_back(InterestingVal, LHSVal.second); 716 LHSKnownBBs.insert(LHSVal.second); 717 } 718 for (const auto &RHSVal : RHSVals) 719 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 720 // If we already inferred a value for this block on the LHS, don't 721 // re-add it. 722 if (!LHSKnownBBs.count(RHSVal.second)) 723 Result.emplace_back(InterestingVal, RHSVal.second); 724 } 725 726 return !Result.empty(); 727 } 728 729 // Handle the NOT form of XOR. 730 if (I->getOpcode() == Instruction::Xor && 731 isa<ConstantInt>(I->getOperand(1)) && 732 cast<ConstantInt>(I->getOperand(1))->isOne()) { 733 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 734 WantInteger, RecursionSet, CxtI); 735 if (Result.empty()) 736 return false; 737 738 // Invert the known values. 739 for (auto &R : Result) 740 R.first = ConstantExpr::getNot(R.first); 741 742 return true; 743 } 744 745 // Try to simplify some other binary operator values. 746 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 747 assert(Preference != WantBlockAddress 748 && "A binary operator creating a block address?"); 749 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 750 PredValueInfoTy LHSVals; 751 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 752 WantInteger, RecursionSet, CxtI); 753 754 // Try to use constant folding to simplify the binary operator. 755 for (const auto &LHSVal : LHSVals) { 756 Constant *V = LHSVal.first; 757 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 758 759 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 760 Result.push_back(std::make_pair(KC, LHSVal.second)); 761 } 762 } 763 764 return !Result.empty(); 765 } 766 767 // Handle compare with phi operand, where the PHI is defined in this block. 768 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 769 assert(Preference == WantInteger && "Compares only produce integers"); 770 Type *CmpType = Cmp->getType(); 771 Value *CmpLHS = Cmp->getOperand(0); 772 Value *CmpRHS = Cmp->getOperand(1); 773 CmpInst::Predicate Pred = Cmp->getPredicate(); 774 775 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 776 if (!PN) 777 PN = dyn_cast<PHINode>(CmpRHS); 778 if (PN && PN->getParent() == BB) { 779 const DataLayout &DL = PN->getModule()->getDataLayout(); 780 // We can do this simplification if any comparisons fold to true or false. 781 // See if any do. 782 if (DTU->hasPendingDomTreeUpdates()) 783 LVI->disableDT(); 784 else 785 LVI->enableDT(); 786 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 787 BasicBlock *PredBB = PN->getIncomingBlock(i); 788 Value *LHS, *RHS; 789 if (PN == CmpLHS) { 790 LHS = PN->getIncomingValue(i); 791 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 792 } else { 793 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 794 RHS = PN->getIncomingValue(i); 795 } 796 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 797 if (!Res) { 798 if (!isa<Constant>(RHS)) 799 continue; 800 801 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 802 auto LHSInst = dyn_cast<Instruction>(LHS); 803 if (LHSInst && LHSInst->getParent() == BB) 804 continue; 805 806 LazyValueInfo::Tristate 807 ResT = LVI->getPredicateOnEdge(Pred, LHS, 808 cast<Constant>(RHS), PredBB, BB, 809 CxtI ? CxtI : Cmp); 810 if (ResT == LazyValueInfo::Unknown) 811 continue; 812 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 813 } 814 815 if (Constant *KC = getKnownConstant(Res, WantInteger)) 816 Result.push_back(std::make_pair(KC, PredBB)); 817 } 818 819 return !Result.empty(); 820 } 821 822 // If comparing a live-in value against a constant, see if we know the 823 // live-in value on any predecessors. 824 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 825 Constant *CmpConst = cast<Constant>(CmpRHS); 826 827 if (!isa<Instruction>(CmpLHS) || 828 cast<Instruction>(CmpLHS)->getParent() != BB) { 829 if (DTU->hasPendingDomTreeUpdates()) 830 LVI->disableDT(); 831 else 832 LVI->enableDT(); 833 for (BasicBlock *P : predecessors(BB)) { 834 // If the value is known by LazyValueInfo to be a constant in a 835 // predecessor, use that information to try to thread this block. 836 LazyValueInfo::Tristate Res = 837 LVI->getPredicateOnEdge(Pred, CmpLHS, 838 CmpConst, P, BB, CxtI ? CxtI : Cmp); 839 if (Res == LazyValueInfo::Unknown) 840 continue; 841 842 Constant *ResC = ConstantInt::get(CmpType, Res); 843 Result.push_back(std::make_pair(ResC, P)); 844 } 845 846 return !Result.empty(); 847 } 848 849 // InstCombine can fold some forms of constant range checks into 850 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 851 // x as a live-in. 852 { 853 using namespace PatternMatch; 854 855 Value *AddLHS; 856 ConstantInt *AddConst; 857 if (isa<ConstantInt>(CmpConst) && 858 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 859 if (!isa<Instruction>(AddLHS) || 860 cast<Instruction>(AddLHS)->getParent() != BB) { 861 if (DTU->hasPendingDomTreeUpdates()) 862 LVI->disableDT(); 863 else 864 LVI->enableDT(); 865 for (BasicBlock *P : predecessors(BB)) { 866 // If the value is known by LazyValueInfo to be a ConstantRange in 867 // a predecessor, use that information to try to thread this 868 // block. 869 ConstantRange CR = LVI->getConstantRangeOnEdge( 870 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 871 // Propagate the range through the addition. 872 CR = CR.add(AddConst->getValue()); 873 874 // Get the range where the compare returns true. 875 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 876 Pred, cast<ConstantInt>(CmpConst)->getValue()); 877 878 Constant *ResC; 879 if (CmpRange.contains(CR)) 880 ResC = ConstantInt::getTrue(CmpType); 881 else if (CmpRange.inverse().contains(CR)) 882 ResC = ConstantInt::getFalse(CmpType); 883 else 884 continue; 885 886 Result.push_back(std::make_pair(ResC, P)); 887 } 888 889 return !Result.empty(); 890 } 891 } 892 } 893 894 // Try to find a constant value for the LHS of a comparison, 895 // and evaluate it statically if we can. 896 PredValueInfoTy LHSVals; 897 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 898 WantInteger, RecursionSet, CxtI); 899 900 for (const auto &LHSVal : LHSVals) { 901 Constant *V = LHSVal.first; 902 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 903 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 904 Result.push_back(std::make_pair(KC, LHSVal.second)); 905 } 906 907 return !Result.empty(); 908 } 909 } 910 911 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 912 // Handle select instructions where at least one operand is a known constant 913 // and we can figure out the condition value for any predecessor block. 914 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 915 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 916 PredValueInfoTy Conds; 917 if ((TrueVal || FalseVal) && 918 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 919 WantInteger, RecursionSet, CxtI)) { 920 for (auto &C : Conds) { 921 Constant *Cond = C.first; 922 923 // Figure out what value to use for the condition. 924 bool KnownCond; 925 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 926 // A known boolean. 927 KnownCond = CI->isOne(); 928 } else { 929 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 930 // Either operand will do, so be sure to pick the one that's a known 931 // constant. 932 // FIXME: Do this more cleverly if both values are known constants? 933 KnownCond = (TrueVal != nullptr); 934 } 935 936 // See if the select has a known constant value for this predecessor. 937 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 938 Result.push_back(std::make_pair(Val, C.second)); 939 } 940 941 return !Result.empty(); 942 } 943 } 944 945 // If all else fails, see if LVI can figure out a constant value for us. 946 if (DTU->hasPendingDomTreeUpdates()) 947 LVI->disableDT(); 948 else 949 LVI->enableDT(); 950 Constant *CI = LVI->getConstant(V, BB, CxtI); 951 if (Constant *KC = getKnownConstant(CI, Preference)) { 952 for (BasicBlock *Pred : predecessors(BB)) 953 Result.push_back(std::make_pair(KC, Pred)); 954 } 955 956 return !Result.empty(); 957 } 958 959 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 960 /// in an undefined jump, decide which block is best to revector to. 961 /// 962 /// Since we can pick an arbitrary destination, we pick the successor with the 963 /// fewest predecessors. This should reduce the in-degree of the others. 964 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 965 Instruction *BBTerm = BB->getTerminator(); 966 unsigned MinSucc = 0; 967 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 968 // Compute the successor with the minimum number of predecessors. 969 unsigned MinNumPreds = pred_size(TestBB); 970 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 971 TestBB = BBTerm->getSuccessor(i); 972 unsigned NumPreds = pred_size(TestBB); 973 if (NumPreds < MinNumPreds) { 974 MinSucc = i; 975 MinNumPreds = NumPreds; 976 } 977 } 978 979 return MinSucc; 980 } 981 982 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 983 if (!BB->hasAddressTaken()) return false; 984 985 // If the block has its address taken, it may be a tree of dead constants 986 // hanging off of it. These shouldn't keep the block alive. 987 BlockAddress *BA = BlockAddress::get(BB); 988 BA->removeDeadConstantUsers(); 989 return !BA->use_empty(); 990 } 991 992 /// ProcessBlock - If there are any predecessors whose control can be threaded 993 /// through to a successor, transform them now. 994 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 995 // If the block is trivially dead, just return and let the caller nuke it. 996 // This simplifies other transformations. 997 if (DTU->isBBPendingDeletion(BB) || 998 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 999 return false; 1000 1001 // If this block has a single predecessor, and if that pred has a single 1002 // successor, merge the blocks. This encourages recursive jump threading 1003 // because now the condition in this block can be threaded through 1004 // predecessors of our predecessor block. 1005 if (MaybeMergeBasicBlockIntoOnlyPred(BB)) 1006 return true; 1007 1008 if (TryToUnfoldSelectInCurrBB(BB)) 1009 return true; 1010 1011 // Look if we can propagate guards to predecessors. 1012 if (HasGuards && ProcessGuards(BB)) 1013 return true; 1014 1015 // What kind of constant we're looking for. 1016 ConstantPreference Preference = WantInteger; 1017 1018 // Look to see if the terminator is a conditional branch, switch or indirect 1019 // branch, if not we can't thread it. 1020 Value *Condition; 1021 Instruction *Terminator = BB->getTerminator(); 1022 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1023 // Can't thread an unconditional jump. 1024 if (BI->isUnconditional()) return false; 1025 Condition = BI->getCondition(); 1026 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1027 Condition = SI->getCondition(); 1028 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1029 // Can't thread indirect branch with no successors. 1030 if (IB->getNumSuccessors() == 0) return false; 1031 Condition = IB->getAddress()->stripPointerCasts(); 1032 Preference = WantBlockAddress; 1033 } else { 1034 return false; // Must be an invoke or callbr. 1035 } 1036 1037 // Run constant folding to see if we can reduce the condition to a simple 1038 // constant. 1039 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1040 Value *SimpleVal = 1041 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1042 if (SimpleVal) { 1043 I->replaceAllUsesWith(SimpleVal); 1044 if (isInstructionTriviallyDead(I, TLI)) 1045 I->eraseFromParent(); 1046 Condition = SimpleVal; 1047 } 1048 } 1049 1050 // If the terminator is branching on an undef, we can pick any of the 1051 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1052 if (isa<UndefValue>(Condition)) { 1053 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1054 std::vector<DominatorTree::UpdateType> Updates; 1055 1056 // Fold the branch/switch. 1057 Instruction *BBTerm = BB->getTerminator(); 1058 Updates.reserve(BBTerm->getNumSuccessors()); 1059 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1060 if (i == BestSucc) continue; 1061 BasicBlock *Succ = BBTerm->getSuccessor(i); 1062 Succ->removePredecessor(BB, true); 1063 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1064 } 1065 1066 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1067 << "' folding undef terminator: " << *BBTerm << '\n'); 1068 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1069 BBTerm->eraseFromParent(); 1070 DTU->applyUpdatesPermissive(Updates); 1071 return true; 1072 } 1073 1074 // If the terminator of this block is branching on a constant, simplify the 1075 // terminator to an unconditional branch. This can occur due to threading in 1076 // other blocks. 1077 if (getKnownConstant(Condition, Preference)) { 1078 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1079 << "' folding terminator: " << *BB->getTerminator() 1080 << '\n'); 1081 ++NumFolds; 1082 ConstantFoldTerminator(BB, true, nullptr, DTU); 1083 return true; 1084 } 1085 1086 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1087 1088 // All the rest of our checks depend on the condition being an instruction. 1089 if (!CondInst) { 1090 // FIXME: Unify this with code below. 1091 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1092 return true; 1093 return false; 1094 } 1095 1096 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1097 // If we're branching on a conditional, LVI might be able to determine 1098 // it's value at the branch instruction. We only handle comparisons 1099 // against a constant at this time. 1100 // TODO: This should be extended to handle switches as well. 1101 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1102 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1103 if (CondBr && CondConst) { 1104 // We should have returned as soon as we turn a conditional branch to 1105 // unconditional. Because its no longer interesting as far as jump 1106 // threading is concerned. 1107 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1108 1109 if (DTU->hasPendingDomTreeUpdates()) 1110 LVI->disableDT(); 1111 else 1112 LVI->enableDT(); 1113 LazyValueInfo::Tristate Ret = 1114 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1115 CondConst, CondBr); 1116 if (Ret != LazyValueInfo::Unknown) { 1117 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1118 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1119 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1120 ToRemoveSucc->removePredecessor(BB, true); 1121 BranchInst *UncondBr = 1122 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1123 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1124 CondBr->eraseFromParent(); 1125 if (CondCmp->use_empty()) 1126 CondCmp->eraseFromParent(); 1127 // We can safely replace *some* uses of the CondInst if it has 1128 // exactly one value as returned by LVI. RAUW is incorrect in the 1129 // presence of guards and assumes, that have the `Cond` as the use. This 1130 // is because we use the guards/assume to reason about the `Cond` value 1131 // at the end of block, but RAUW unconditionally replaces all uses 1132 // including the guards/assumes themselves and the uses before the 1133 // guard/assume. 1134 else if (CondCmp->getParent() == BB) { 1135 auto *CI = Ret == LazyValueInfo::True ? 1136 ConstantInt::getTrue(CondCmp->getType()) : 1137 ConstantInt::getFalse(CondCmp->getType()); 1138 ReplaceFoldableUses(CondCmp, CI); 1139 } 1140 DTU->applyUpdatesPermissive( 1141 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1142 return true; 1143 } 1144 1145 // We did not manage to simplify this branch, try to see whether 1146 // CondCmp depends on a known phi-select pattern. 1147 if (TryToUnfoldSelect(CondCmp, BB)) 1148 return true; 1149 } 1150 } 1151 1152 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1153 if (TryToUnfoldSelect(SI, BB)) 1154 return true; 1155 1156 // Check for some cases that are worth simplifying. Right now we want to look 1157 // for loads that are used by a switch or by the condition for the branch. If 1158 // we see one, check to see if it's partially redundant. If so, insert a PHI 1159 // which can then be used to thread the values. 1160 Value *SimplifyValue = CondInst; 1161 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1162 if (isa<Constant>(CondCmp->getOperand(1))) 1163 SimplifyValue = CondCmp->getOperand(0); 1164 1165 // TODO: There are other places where load PRE would be profitable, such as 1166 // more complex comparisons. 1167 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1168 if (SimplifyPartiallyRedundantLoad(LoadI)) 1169 return true; 1170 1171 // Before threading, try to propagate profile data backwards: 1172 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1173 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1174 updatePredecessorProfileMetadata(PN, BB); 1175 1176 // Handle a variety of cases where we are branching on something derived from 1177 // a PHI node in the current block. If we can prove that any predecessors 1178 // compute a predictable value based on a PHI node, thread those predecessors. 1179 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1180 return true; 1181 1182 // If this is an otherwise-unfoldable branch on a phi node in the current 1183 // block, see if we can simplify. 1184 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1185 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1186 return ProcessBranchOnPHI(PN); 1187 1188 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1189 if (CondInst->getOpcode() == Instruction::Xor && 1190 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1191 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1192 1193 // Search for a stronger dominating condition that can be used to simplify a 1194 // conditional branch leaving BB. 1195 if (ProcessImpliedCondition(BB)) 1196 return true; 1197 1198 return false; 1199 } 1200 1201 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1202 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1203 if (!BI || !BI->isConditional()) 1204 return false; 1205 1206 Value *Cond = BI->getCondition(); 1207 BasicBlock *CurrentBB = BB; 1208 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1209 unsigned Iter = 0; 1210 1211 auto &DL = BB->getModule()->getDataLayout(); 1212 1213 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1214 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1215 if (!PBI || !PBI->isConditional()) 1216 return false; 1217 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1218 return false; 1219 1220 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1221 Optional<bool> Implication = 1222 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1223 if (Implication) { 1224 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1225 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1226 RemoveSucc->removePredecessor(BB); 1227 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1228 UncondBI->setDebugLoc(BI->getDebugLoc()); 1229 BI->eraseFromParent(); 1230 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1231 return true; 1232 } 1233 CurrentBB = CurrentPred; 1234 CurrentPred = CurrentBB->getSinglePredecessor(); 1235 } 1236 1237 return false; 1238 } 1239 1240 /// Return true if Op is an instruction defined in the given block. 1241 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1242 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1243 if (OpInst->getParent() == BB) 1244 return true; 1245 return false; 1246 } 1247 1248 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1249 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1250 /// This is an important optimization that encourages jump threading, and needs 1251 /// to be run interlaced with other jump threading tasks. 1252 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1253 // Don't hack volatile and ordered loads. 1254 if (!LoadI->isUnordered()) return false; 1255 1256 // If the load is defined in a block with exactly one predecessor, it can't be 1257 // partially redundant. 1258 BasicBlock *LoadBB = LoadI->getParent(); 1259 if (LoadBB->getSinglePredecessor()) 1260 return false; 1261 1262 // If the load is defined in an EH pad, it can't be partially redundant, 1263 // because the edges between the invoke and the EH pad cannot have other 1264 // instructions between them. 1265 if (LoadBB->isEHPad()) 1266 return false; 1267 1268 Value *LoadedPtr = LoadI->getOperand(0); 1269 1270 // If the loaded operand is defined in the LoadBB and its not a phi, 1271 // it can't be available in predecessors. 1272 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1273 return false; 1274 1275 // Scan a few instructions up from the load, to see if it is obviously live at 1276 // the entry to its block. 1277 BasicBlock::iterator BBIt(LoadI); 1278 bool IsLoadCSE; 1279 if (Value *AvailableVal = FindAvailableLoadedValue( 1280 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1281 // If the value of the load is locally available within the block, just use 1282 // it. This frequently occurs for reg2mem'd allocas. 1283 1284 if (IsLoadCSE) { 1285 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1286 combineMetadataForCSE(NLoadI, LoadI, false); 1287 }; 1288 1289 // If the returned value is the load itself, replace with an undef. This can 1290 // only happen in dead loops. 1291 if (AvailableVal == LoadI) 1292 AvailableVal = UndefValue::get(LoadI->getType()); 1293 if (AvailableVal->getType() != LoadI->getType()) 1294 AvailableVal = CastInst::CreateBitOrPointerCast( 1295 AvailableVal, LoadI->getType(), "", LoadI); 1296 LoadI->replaceAllUsesWith(AvailableVal); 1297 LoadI->eraseFromParent(); 1298 return true; 1299 } 1300 1301 // Otherwise, if we scanned the whole block and got to the top of the block, 1302 // we know the block is locally transparent to the load. If not, something 1303 // might clobber its value. 1304 if (BBIt != LoadBB->begin()) 1305 return false; 1306 1307 // If all of the loads and stores that feed the value have the same AA tags, 1308 // then we can propagate them onto any newly inserted loads. 1309 AAMDNodes AATags; 1310 LoadI->getAAMetadata(AATags); 1311 1312 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1313 1314 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1315 1316 AvailablePredsTy AvailablePreds; 1317 BasicBlock *OneUnavailablePred = nullptr; 1318 SmallVector<LoadInst*, 8> CSELoads; 1319 1320 // If we got here, the loaded value is transparent through to the start of the 1321 // block. Check to see if it is available in any of the predecessor blocks. 1322 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1323 // If we already scanned this predecessor, skip it. 1324 if (!PredsScanned.insert(PredBB).second) 1325 continue; 1326 1327 BBIt = PredBB->end(); 1328 unsigned NumScanedInst = 0; 1329 Value *PredAvailable = nullptr; 1330 // NOTE: We don't CSE load that is volatile or anything stronger than 1331 // unordered, that should have been checked when we entered the function. 1332 assert(LoadI->isUnordered() && 1333 "Attempting to CSE volatile or atomic loads"); 1334 // If this is a load on a phi pointer, phi-translate it and search 1335 // for available load/store to the pointer in predecessors. 1336 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1337 PredAvailable = FindAvailablePtrLoadStore( 1338 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1339 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1340 1341 // If PredBB has a single predecessor, continue scanning through the 1342 // single predecessor. 1343 BasicBlock *SinglePredBB = PredBB; 1344 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1345 NumScanedInst < DefMaxInstsToScan) { 1346 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1347 if (SinglePredBB) { 1348 BBIt = SinglePredBB->end(); 1349 PredAvailable = FindAvailablePtrLoadStore( 1350 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1351 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1352 &NumScanedInst); 1353 } 1354 } 1355 1356 if (!PredAvailable) { 1357 OneUnavailablePred = PredBB; 1358 continue; 1359 } 1360 1361 if (IsLoadCSE) 1362 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1363 1364 // If so, this load is partially redundant. Remember this info so that we 1365 // can create a PHI node. 1366 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1367 } 1368 1369 // If the loaded value isn't available in any predecessor, it isn't partially 1370 // redundant. 1371 if (AvailablePreds.empty()) return false; 1372 1373 // Okay, the loaded value is available in at least one (and maybe all!) 1374 // predecessors. If the value is unavailable in more than one unique 1375 // predecessor, we want to insert a merge block for those common predecessors. 1376 // This ensures that we only have to insert one reload, thus not increasing 1377 // code size. 1378 BasicBlock *UnavailablePred = nullptr; 1379 1380 // If the value is unavailable in one of predecessors, we will end up 1381 // inserting a new instruction into them. It is only valid if all the 1382 // instructions before LoadI are guaranteed to pass execution to its 1383 // successor, or if LoadI is safe to speculate. 1384 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1385 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1386 // It requires domination tree analysis, so for this simple case it is an 1387 // overkill. 1388 if (PredsScanned.size() != AvailablePreds.size() && 1389 !isSafeToSpeculativelyExecute(LoadI)) 1390 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1391 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1392 return false; 1393 1394 // If there is exactly one predecessor where the value is unavailable, the 1395 // already computed 'OneUnavailablePred' block is it. If it ends in an 1396 // unconditional branch, we know that it isn't a critical edge. 1397 if (PredsScanned.size() == AvailablePreds.size()+1 && 1398 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1399 UnavailablePred = OneUnavailablePred; 1400 } else if (PredsScanned.size() != AvailablePreds.size()) { 1401 // Otherwise, we had multiple unavailable predecessors or we had a critical 1402 // edge from the one. 1403 SmallVector<BasicBlock*, 8> PredsToSplit; 1404 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1405 1406 for (const auto &AvailablePred : AvailablePreds) 1407 AvailablePredSet.insert(AvailablePred.first); 1408 1409 // Add all the unavailable predecessors to the PredsToSplit list. 1410 for (BasicBlock *P : predecessors(LoadBB)) { 1411 // If the predecessor is an indirect goto, we can't split the edge. 1412 // Same for CallBr. 1413 if (isa<IndirectBrInst>(P->getTerminator()) || 1414 isa<CallBrInst>(P->getTerminator())) 1415 return false; 1416 1417 if (!AvailablePredSet.count(P)) 1418 PredsToSplit.push_back(P); 1419 } 1420 1421 // Split them out to their own block. 1422 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1423 } 1424 1425 // If the value isn't available in all predecessors, then there will be 1426 // exactly one where it isn't available. Insert a load on that edge and add 1427 // it to the AvailablePreds list. 1428 if (UnavailablePred) { 1429 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1430 "Can't handle critical edge here!"); 1431 LoadInst *NewVal = new LoadInst( 1432 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1433 LoadI->getName() + ".pr", false, MaybeAlign(LoadI->getAlignment()), 1434 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1435 UnavailablePred->getTerminator()); 1436 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1437 if (AATags) 1438 NewVal->setAAMetadata(AATags); 1439 1440 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1441 } 1442 1443 // Now we know that each predecessor of this block has a value in 1444 // AvailablePreds, sort them for efficient access as we're walking the preds. 1445 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1446 1447 // Create a PHI node at the start of the block for the PRE'd load value. 1448 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1449 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1450 &LoadBB->front()); 1451 PN->takeName(LoadI); 1452 PN->setDebugLoc(LoadI->getDebugLoc()); 1453 1454 // Insert new entries into the PHI for each predecessor. A single block may 1455 // have multiple entries here. 1456 for (pred_iterator PI = PB; PI != PE; ++PI) { 1457 BasicBlock *P = *PI; 1458 AvailablePredsTy::iterator I = 1459 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1460 1461 assert(I != AvailablePreds.end() && I->first == P && 1462 "Didn't find entry for predecessor!"); 1463 1464 // If we have an available predecessor but it requires casting, insert the 1465 // cast in the predecessor and use the cast. Note that we have to update the 1466 // AvailablePreds vector as we go so that all of the PHI entries for this 1467 // predecessor use the same bitcast. 1468 Value *&PredV = I->second; 1469 if (PredV->getType() != LoadI->getType()) 1470 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1471 P->getTerminator()); 1472 1473 PN->addIncoming(PredV, I->first); 1474 } 1475 1476 for (LoadInst *PredLoadI : CSELoads) { 1477 combineMetadataForCSE(PredLoadI, LoadI, true); 1478 } 1479 1480 LoadI->replaceAllUsesWith(PN); 1481 LoadI->eraseFromParent(); 1482 1483 return true; 1484 } 1485 1486 /// FindMostPopularDest - The specified list contains multiple possible 1487 /// threadable destinations. Pick the one that occurs the most frequently in 1488 /// the list. 1489 static BasicBlock * 1490 FindMostPopularDest(BasicBlock *BB, 1491 const SmallVectorImpl<std::pair<BasicBlock *, 1492 BasicBlock *>> &PredToDestList) { 1493 assert(!PredToDestList.empty()); 1494 1495 // Determine popularity. If there are multiple possible destinations, we 1496 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1497 // blocks with known and real destinations to threading undef. We'll handle 1498 // them later if interesting. 1499 DenseMap<BasicBlock*, unsigned> DestPopularity; 1500 for (const auto &PredToDest : PredToDestList) 1501 if (PredToDest.second) 1502 DestPopularity[PredToDest.second]++; 1503 1504 if (DestPopularity.empty()) 1505 return nullptr; 1506 1507 // Find the most popular dest. 1508 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1509 BasicBlock *MostPopularDest = DPI->first; 1510 unsigned Popularity = DPI->second; 1511 SmallVector<BasicBlock*, 4> SamePopularity; 1512 1513 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1514 // If the popularity of this entry isn't higher than the popularity we've 1515 // seen so far, ignore it. 1516 if (DPI->second < Popularity) 1517 ; // ignore. 1518 else if (DPI->second == Popularity) { 1519 // If it is the same as what we've seen so far, keep track of it. 1520 SamePopularity.push_back(DPI->first); 1521 } else { 1522 // If it is more popular, remember it. 1523 SamePopularity.clear(); 1524 MostPopularDest = DPI->first; 1525 Popularity = DPI->second; 1526 } 1527 } 1528 1529 // Okay, now we know the most popular destination. If there is more than one 1530 // destination, we need to determine one. This is arbitrary, but we need 1531 // to make a deterministic decision. Pick the first one that appears in the 1532 // successor list. 1533 if (!SamePopularity.empty()) { 1534 SamePopularity.push_back(MostPopularDest); 1535 Instruction *TI = BB->getTerminator(); 1536 for (unsigned i = 0; ; ++i) { 1537 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1538 1539 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1540 continue; 1541 1542 MostPopularDest = TI->getSuccessor(i); 1543 break; 1544 } 1545 } 1546 1547 // Okay, we have finally picked the most popular destination. 1548 return MostPopularDest; 1549 } 1550 1551 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1552 ConstantPreference Preference, 1553 Instruction *CxtI) { 1554 // If threading this would thread across a loop header, don't even try to 1555 // thread the edge. 1556 if (LoopHeaders.count(BB)) 1557 return false; 1558 1559 PredValueInfoTy PredValues; 1560 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1561 return false; 1562 1563 assert(!PredValues.empty() && 1564 "ComputeValueKnownInPredecessors returned true with no values"); 1565 1566 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1567 for (const auto &PredValue : PredValues) { 1568 dbgs() << " BB '" << BB->getName() 1569 << "': FOUND condition = " << *PredValue.first 1570 << " for pred '" << PredValue.second->getName() << "'.\n"; 1571 }); 1572 1573 // Decide what we want to thread through. Convert our list of known values to 1574 // a list of known destinations for each pred. This also discards duplicate 1575 // predecessors and keeps track of the undefined inputs (which are represented 1576 // as a null dest in the PredToDestList). 1577 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1578 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1579 1580 BasicBlock *OnlyDest = nullptr; 1581 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1582 Constant *OnlyVal = nullptr; 1583 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1584 1585 for (const auto &PredValue : PredValues) { 1586 BasicBlock *Pred = PredValue.second; 1587 if (!SeenPreds.insert(Pred).second) 1588 continue; // Duplicate predecessor entry. 1589 1590 Constant *Val = PredValue.first; 1591 1592 BasicBlock *DestBB; 1593 if (isa<UndefValue>(Val)) 1594 DestBB = nullptr; 1595 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1596 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1597 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1598 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1599 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1600 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1601 } else { 1602 assert(isa<IndirectBrInst>(BB->getTerminator()) 1603 && "Unexpected terminator"); 1604 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1605 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1606 } 1607 1608 // If we have exactly one destination, remember it for efficiency below. 1609 if (PredToDestList.empty()) { 1610 OnlyDest = DestBB; 1611 OnlyVal = Val; 1612 } else { 1613 if (OnlyDest != DestBB) 1614 OnlyDest = MultipleDestSentinel; 1615 // It possible we have same destination, but different value, e.g. default 1616 // case in switchinst. 1617 if (Val != OnlyVal) 1618 OnlyVal = MultipleVal; 1619 } 1620 1621 // If the predecessor ends with an indirect goto, we can't change its 1622 // destination. Same for CallBr. 1623 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1624 isa<CallBrInst>(Pred->getTerminator())) 1625 continue; 1626 1627 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1628 } 1629 1630 // If all edges were unthreadable, we fail. 1631 if (PredToDestList.empty()) 1632 return false; 1633 1634 // If all the predecessors go to a single known successor, we want to fold, 1635 // not thread. By doing so, we do not need to duplicate the current block and 1636 // also miss potential opportunities in case we dont/cant duplicate. 1637 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1638 if (BB->hasNPredecessors(PredToDestList.size())) { 1639 bool SeenFirstBranchToOnlyDest = false; 1640 std::vector <DominatorTree::UpdateType> Updates; 1641 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1642 for (BasicBlock *SuccBB : successors(BB)) { 1643 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1644 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1645 } else { 1646 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1647 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1648 } 1649 } 1650 1651 // Finally update the terminator. 1652 Instruction *Term = BB->getTerminator(); 1653 BranchInst::Create(OnlyDest, Term); 1654 Term->eraseFromParent(); 1655 DTU->applyUpdatesPermissive(Updates); 1656 1657 // If the condition is now dead due to the removal of the old terminator, 1658 // erase it. 1659 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1660 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1661 CondInst->eraseFromParent(); 1662 // We can safely replace *some* uses of the CondInst if it has 1663 // exactly one value as returned by LVI. RAUW is incorrect in the 1664 // presence of guards and assumes, that have the `Cond` as the use. This 1665 // is because we use the guards/assume to reason about the `Cond` value 1666 // at the end of block, but RAUW unconditionally replaces all uses 1667 // including the guards/assumes themselves and the uses before the 1668 // guard/assume. 1669 else if (OnlyVal && OnlyVal != MultipleVal && 1670 CondInst->getParent() == BB) 1671 ReplaceFoldableUses(CondInst, OnlyVal); 1672 } 1673 return true; 1674 } 1675 } 1676 1677 // Determine which is the most common successor. If we have many inputs and 1678 // this block is a switch, we want to start by threading the batch that goes 1679 // to the most popular destination first. If we only know about one 1680 // threadable destination (the common case) we can avoid this. 1681 BasicBlock *MostPopularDest = OnlyDest; 1682 1683 if (MostPopularDest == MultipleDestSentinel) { 1684 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1685 // won't process them, but we might have other destination that are eligible 1686 // and we still want to process. 1687 erase_if(PredToDestList, 1688 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1689 return LoopHeaders.count(PredToDest.second) != 0; 1690 }); 1691 1692 if (PredToDestList.empty()) 1693 return false; 1694 1695 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1696 } 1697 1698 // Now that we know what the most popular destination is, factor all 1699 // predecessors that will jump to it into a single predecessor. 1700 SmallVector<BasicBlock*, 16> PredsToFactor; 1701 for (const auto &PredToDest : PredToDestList) 1702 if (PredToDest.second == MostPopularDest) { 1703 BasicBlock *Pred = PredToDest.first; 1704 1705 // This predecessor may be a switch or something else that has multiple 1706 // edges to the block. Factor each of these edges by listing them 1707 // according to # occurrences in PredsToFactor. 1708 for (BasicBlock *Succ : successors(Pred)) 1709 if (Succ == BB) 1710 PredsToFactor.push_back(Pred); 1711 } 1712 1713 // If the threadable edges are branching on an undefined value, we get to pick 1714 // the destination that these predecessors should get to. 1715 if (!MostPopularDest) 1716 MostPopularDest = BB->getTerminator()-> 1717 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1718 1719 // Ok, try to thread it! 1720 return TryThreadEdge(BB, PredsToFactor, MostPopularDest); 1721 } 1722 1723 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1724 /// a PHI node in the current block. See if there are any simplifications we 1725 /// can do based on inputs to the phi node. 1726 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1727 BasicBlock *BB = PN->getParent(); 1728 1729 // TODO: We could make use of this to do it once for blocks with common PHI 1730 // values. 1731 SmallVector<BasicBlock*, 1> PredBBs; 1732 PredBBs.resize(1); 1733 1734 // If any of the predecessor blocks end in an unconditional branch, we can 1735 // *duplicate* the conditional branch into that block in order to further 1736 // encourage jump threading and to eliminate cases where we have branch on a 1737 // phi of an icmp (branch on icmp is much better). 1738 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1739 BasicBlock *PredBB = PN->getIncomingBlock(i); 1740 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1741 if (PredBr->isUnconditional()) { 1742 PredBBs[0] = PredBB; 1743 // Try to duplicate BB into PredBB. 1744 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1745 return true; 1746 } 1747 } 1748 1749 return false; 1750 } 1751 1752 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1753 /// a xor instruction in the current block. See if there are any 1754 /// simplifications we can do based on inputs to the xor. 1755 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1756 BasicBlock *BB = BO->getParent(); 1757 1758 // If either the LHS or RHS of the xor is a constant, don't do this 1759 // optimization. 1760 if (isa<ConstantInt>(BO->getOperand(0)) || 1761 isa<ConstantInt>(BO->getOperand(1))) 1762 return false; 1763 1764 // If the first instruction in BB isn't a phi, we won't be able to infer 1765 // anything special about any particular predecessor. 1766 if (!isa<PHINode>(BB->front())) 1767 return false; 1768 1769 // If this BB is a landing pad, we won't be able to split the edge into it. 1770 if (BB->isEHPad()) 1771 return false; 1772 1773 // If we have a xor as the branch input to this block, and we know that the 1774 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1775 // the condition into the predecessor and fix that value to true, saving some 1776 // logical ops on that path and encouraging other paths to simplify. 1777 // 1778 // This copies something like this: 1779 // 1780 // BB: 1781 // %X = phi i1 [1], [%X'] 1782 // %Y = icmp eq i32 %A, %B 1783 // %Z = xor i1 %X, %Y 1784 // br i1 %Z, ... 1785 // 1786 // Into: 1787 // BB': 1788 // %Y = icmp ne i32 %A, %B 1789 // br i1 %Y, ... 1790 1791 PredValueInfoTy XorOpValues; 1792 bool isLHS = true; 1793 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1794 WantInteger, BO)) { 1795 assert(XorOpValues.empty()); 1796 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1797 WantInteger, BO)) 1798 return false; 1799 isLHS = false; 1800 } 1801 1802 assert(!XorOpValues.empty() && 1803 "ComputeValueKnownInPredecessors returned true with no values"); 1804 1805 // Scan the information to see which is most popular: true or false. The 1806 // predecessors can be of the set true, false, or undef. 1807 unsigned NumTrue = 0, NumFalse = 0; 1808 for (const auto &XorOpValue : XorOpValues) { 1809 if (isa<UndefValue>(XorOpValue.first)) 1810 // Ignore undefs for the count. 1811 continue; 1812 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1813 ++NumFalse; 1814 else 1815 ++NumTrue; 1816 } 1817 1818 // Determine which value to split on, true, false, or undef if neither. 1819 ConstantInt *SplitVal = nullptr; 1820 if (NumTrue > NumFalse) 1821 SplitVal = ConstantInt::getTrue(BB->getContext()); 1822 else if (NumTrue != 0 || NumFalse != 0) 1823 SplitVal = ConstantInt::getFalse(BB->getContext()); 1824 1825 // Collect all of the blocks that this can be folded into so that we can 1826 // factor this once and clone it once. 1827 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1828 for (const auto &XorOpValue : XorOpValues) { 1829 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1830 continue; 1831 1832 BlocksToFoldInto.push_back(XorOpValue.second); 1833 } 1834 1835 // If we inferred a value for all of the predecessors, then duplication won't 1836 // help us. However, we can just replace the LHS or RHS with the constant. 1837 if (BlocksToFoldInto.size() == 1838 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1839 if (!SplitVal) { 1840 // If all preds provide undef, just nuke the xor, because it is undef too. 1841 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1842 BO->eraseFromParent(); 1843 } else if (SplitVal->isZero()) { 1844 // If all preds provide 0, replace the xor with the other input. 1845 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1846 BO->eraseFromParent(); 1847 } else { 1848 // If all preds provide 1, set the computed value to 1. 1849 BO->setOperand(!isLHS, SplitVal); 1850 } 1851 1852 return true; 1853 } 1854 1855 // Try to duplicate BB into PredBB. 1856 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1857 } 1858 1859 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1860 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1861 /// NewPred using the entries from OldPred (suitably mapped). 1862 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1863 BasicBlock *OldPred, 1864 BasicBlock *NewPred, 1865 DenseMap<Instruction*, Value*> &ValueMap) { 1866 for (PHINode &PN : PHIBB->phis()) { 1867 // Ok, we have a PHI node. Figure out what the incoming value was for the 1868 // DestBlock. 1869 Value *IV = PN.getIncomingValueForBlock(OldPred); 1870 1871 // Remap the value if necessary. 1872 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1873 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1874 if (I != ValueMap.end()) 1875 IV = I->second; 1876 } 1877 1878 PN.addIncoming(IV, NewPred); 1879 } 1880 } 1881 1882 /// Merge basic block BB into its sole predecessor if possible. 1883 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1884 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1885 if (!SinglePred) 1886 return false; 1887 1888 const Instruction *TI = SinglePred->getTerminator(); 1889 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1890 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1891 return false; 1892 1893 // If SinglePred was a loop header, BB becomes one. 1894 if (LoopHeaders.erase(SinglePred)) 1895 LoopHeaders.insert(BB); 1896 1897 LVI->eraseBlock(SinglePred); 1898 MergeBasicBlockIntoOnlyPred(BB, DTU); 1899 1900 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1901 // BB code within one basic block `BB`), we need to invalidate the LVI 1902 // information associated with BB, because the LVI information need not be 1903 // true for all of BB after the merge. For example, 1904 // Before the merge, LVI info and code is as follows: 1905 // SinglePred: <LVI info1 for %p val> 1906 // %y = use of %p 1907 // call @exit() // need not transfer execution to successor. 1908 // assume(%p) // from this point on %p is true 1909 // br label %BB 1910 // BB: <LVI info2 for %p val, i.e. %p is true> 1911 // %x = use of %p 1912 // br label exit 1913 // 1914 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1915 // (info2 and info1 respectively). After the merge and the deletion of the 1916 // LVI info1 for SinglePred. We have the following code: 1917 // BB: <LVI info2 for %p val> 1918 // %y = use of %p 1919 // call @exit() 1920 // assume(%p) 1921 // %x = use of %p <-- LVI info2 is correct from here onwards. 1922 // br label exit 1923 // LVI info2 for BB is incorrect at the beginning of BB. 1924 1925 // Invalidate LVI information for BB if the LVI is not provably true for 1926 // all of BB. 1927 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1928 LVI->eraseBlock(BB); 1929 return true; 1930 } 1931 1932 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1933 /// ValueMapping maps old values in BB to new ones in NewBB. 1934 void JumpThreadingPass::UpdateSSA( 1935 BasicBlock *BB, BasicBlock *NewBB, 1936 DenseMap<Instruction *, Value *> &ValueMapping) { 1937 // If there were values defined in BB that are used outside the block, then we 1938 // now have to update all uses of the value to use either the original value, 1939 // the cloned value, or some PHI derived value. This can require arbitrary 1940 // PHI insertion, of which we are prepared to do, clean these up now. 1941 SSAUpdater SSAUpdate; 1942 SmallVector<Use *, 16> UsesToRename; 1943 1944 for (Instruction &I : *BB) { 1945 // Scan all uses of this instruction to see if it is used outside of its 1946 // block, and if so, record them in UsesToRename. 1947 for (Use &U : I.uses()) { 1948 Instruction *User = cast<Instruction>(U.getUser()); 1949 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1950 if (UserPN->getIncomingBlock(U) == BB) 1951 continue; 1952 } else if (User->getParent() == BB) 1953 continue; 1954 1955 UsesToRename.push_back(&U); 1956 } 1957 1958 // If there are no uses outside the block, we're done with this instruction. 1959 if (UsesToRename.empty()) 1960 continue; 1961 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1962 1963 // We found a use of I outside of BB. Rename all uses of I that are outside 1964 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1965 // with the two values we know. 1966 SSAUpdate.Initialize(I.getType(), I.getName()); 1967 SSAUpdate.AddAvailableValue(BB, &I); 1968 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1969 1970 while (!UsesToRename.empty()) 1971 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1972 LLVM_DEBUG(dbgs() << "\n"); 1973 } 1974 } 1975 1976 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 1977 /// arguments that come from PredBB. Return the map from the variables in the 1978 /// source basic block to the variables in the newly created basic block. 1979 DenseMap<Instruction *, Value *> 1980 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI, 1981 BasicBlock::iterator BE, BasicBlock *NewBB, 1982 BasicBlock *PredBB) { 1983 // We are going to have to map operands from the source basic block to the new 1984 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 1985 // block, evaluate them to account for entry from PredBB. 1986 DenseMap<Instruction *, Value *> ValueMapping; 1987 1988 // Clone the phi nodes of the source basic block into NewBB. The resulting 1989 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 1990 // might need to rewrite the operand of the cloned phi. 1991 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1992 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 1993 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 1994 ValueMapping[PN] = NewPN; 1995 } 1996 1997 // Clone the non-phi instructions of the source basic block into NewBB, 1998 // keeping track of the mapping and using it to remap operands in the cloned 1999 // instructions. 2000 for (; BI != BE; ++BI) { 2001 Instruction *New = BI->clone(); 2002 New->setName(BI->getName()); 2003 NewBB->getInstList().push_back(New); 2004 ValueMapping[&*BI] = New; 2005 2006 // Remap operands to patch up intra-block references. 2007 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2008 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2009 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2010 if (I != ValueMapping.end()) 2011 New->setOperand(i, I->second); 2012 } 2013 } 2014 2015 return ValueMapping; 2016 } 2017 2018 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so. 2019 bool JumpThreadingPass::TryThreadEdge( 2020 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2021 BasicBlock *SuccBB) { 2022 // If threading to the same block as we come from, we would infinite loop. 2023 if (SuccBB == BB) { 2024 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2025 << "' - would thread to self!\n"); 2026 return false; 2027 } 2028 2029 // If threading this would thread across a loop header, don't thread the edge. 2030 // See the comments above FindLoopHeaders for justifications and caveats. 2031 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2032 LLVM_DEBUG({ 2033 bool BBIsHeader = LoopHeaders.count(BB); 2034 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2035 dbgs() << " Not threading across " 2036 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2037 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2038 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2039 }); 2040 return false; 2041 } 2042 2043 unsigned JumpThreadCost = 2044 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2045 if (JumpThreadCost > BBDupThreshold) { 2046 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2047 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2048 return false; 2049 } 2050 2051 ThreadEdge(BB, PredBBs, SuccBB); 2052 return true; 2053 } 2054 2055 /// ThreadEdge - We have decided that it is safe and profitable to factor the 2056 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2057 /// across BB. Transform the IR to reflect this change. 2058 void JumpThreadingPass::ThreadEdge(BasicBlock *BB, 2059 const SmallVectorImpl<BasicBlock *> &PredBBs, 2060 BasicBlock *SuccBB) { 2061 assert(SuccBB != BB && "Don't create an infinite loop"); 2062 2063 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2064 "Don't thread across loop headers"); 2065 2066 // And finally, do it! Start by factoring the predecessors if needed. 2067 BasicBlock *PredBB; 2068 if (PredBBs.size() == 1) 2069 PredBB = PredBBs[0]; 2070 else { 2071 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2072 << " common predecessors.\n"); 2073 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2074 } 2075 2076 // And finally, do it! 2077 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2078 << "' to '" << SuccBB->getName() 2079 << ", across block:\n " << *BB << "\n"); 2080 2081 if (DTU->hasPendingDomTreeUpdates()) 2082 LVI->disableDT(); 2083 else 2084 LVI->enableDT(); 2085 LVI->threadEdge(PredBB, BB, SuccBB); 2086 2087 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2088 BB->getName()+".thread", 2089 BB->getParent(), BB); 2090 NewBB->moveAfter(PredBB); 2091 2092 // Set the block frequency of NewBB. 2093 if (HasProfileData) { 2094 auto NewBBFreq = 2095 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2096 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2097 } 2098 2099 // Copy all the instructions from BB to NewBB except the terminator. 2100 DenseMap<Instruction *, Value *> ValueMapping = 2101 CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2102 2103 // We didn't copy the terminator from BB over to NewBB, because there is now 2104 // an unconditional jump to SuccBB. Insert the unconditional jump. 2105 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2106 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2107 2108 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2109 // PHI nodes for NewBB now. 2110 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2111 2112 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2113 // eliminates predecessors from BB, which requires us to simplify any PHI 2114 // nodes in BB. 2115 Instruction *PredTerm = PredBB->getTerminator(); 2116 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2117 if (PredTerm->getSuccessor(i) == BB) { 2118 BB->removePredecessor(PredBB, true); 2119 PredTerm->setSuccessor(i, NewBB); 2120 } 2121 2122 // Enqueue required DT updates. 2123 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2124 {DominatorTree::Insert, PredBB, NewBB}, 2125 {DominatorTree::Delete, PredBB, BB}}); 2126 2127 UpdateSSA(BB, NewBB, ValueMapping); 2128 2129 // At this point, the IR is fully up to date and consistent. Do a quick scan 2130 // over the new instructions and zap any that are constants or dead. This 2131 // frequently happens because of phi translation. 2132 SimplifyInstructionsInBlock(NewBB, TLI); 2133 2134 // Update the edge weight from BB to SuccBB, which should be less than before. 2135 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2136 2137 // Threaded an edge! 2138 ++NumThreads; 2139 } 2140 2141 /// Create a new basic block that will be the predecessor of BB and successor of 2142 /// all blocks in Preds. When profile data is available, update the frequency of 2143 /// this new block. 2144 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2145 ArrayRef<BasicBlock *> Preds, 2146 const char *Suffix) { 2147 SmallVector<BasicBlock *, 2> NewBBs; 2148 2149 // Collect the frequencies of all predecessors of BB, which will be used to 2150 // update the edge weight of the result of splitting predecessors. 2151 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2152 if (HasProfileData) 2153 for (auto Pred : Preds) 2154 FreqMap.insert(std::make_pair( 2155 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2156 2157 // In the case when BB is a LandingPad block we create 2 new predecessors 2158 // instead of just one. 2159 if (BB->isLandingPad()) { 2160 std::string NewName = std::string(Suffix) + ".split-lp"; 2161 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2162 } else { 2163 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2164 } 2165 2166 std::vector<DominatorTree::UpdateType> Updates; 2167 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2168 for (auto NewBB : NewBBs) { 2169 BlockFrequency NewBBFreq(0); 2170 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2171 for (auto Pred : predecessors(NewBB)) { 2172 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2173 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2174 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2175 NewBBFreq += FreqMap.lookup(Pred); 2176 } 2177 if (HasProfileData) // Apply the summed frequency to NewBB. 2178 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2179 } 2180 2181 DTU->applyUpdatesPermissive(Updates); 2182 return NewBBs[0]; 2183 } 2184 2185 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2186 const Instruction *TI = BB->getTerminator(); 2187 assert(TI->getNumSuccessors() > 1 && "not a split"); 2188 2189 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2190 if (!WeightsNode) 2191 return false; 2192 2193 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2194 if (MDName->getString() != "branch_weights") 2195 return false; 2196 2197 // Ensure there are weights for all of the successors. Note that the first 2198 // operand to the metadata node is a name, not a weight. 2199 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2200 } 2201 2202 /// Update the block frequency of BB and branch weight and the metadata on the 2203 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2204 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2205 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2206 BasicBlock *BB, 2207 BasicBlock *NewBB, 2208 BasicBlock *SuccBB) { 2209 if (!HasProfileData) 2210 return; 2211 2212 assert(BFI && BPI && "BFI & BPI should have been created here"); 2213 2214 // As the edge from PredBB to BB is deleted, we have to update the block 2215 // frequency of BB. 2216 auto BBOrigFreq = BFI->getBlockFreq(BB); 2217 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2218 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2219 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2220 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2221 2222 // Collect updated outgoing edges' frequencies from BB and use them to update 2223 // edge probabilities. 2224 SmallVector<uint64_t, 4> BBSuccFreq; 2225 for (BasicBlock *Succ : successors(BB)) { 2226 auto SuccFreq = (Succ == SuccBB) 2227 ? BB2SuccBBFreq - NewBBFreq 2228 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2229 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2230 } 2231 2232 uint64_t MaxBBSuccFreq = 2233 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2234 2235 SmallVector<BranchProbability, 4> BBSuccProbs; 2236 if (MaxBBSuccFreq == 0) 2237 BBSuccProbs.assign(BBSuccFreq.size(), 2238 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2239 else { 2240 for (uint64_t Freq : BBSuccFreq) 2241 BBSuccProbs.push_back( 2242 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2243 // Normalize edge probabilities so that they sum up to one. 2244 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2245 BBSuccProbs.end()); 2246 } 2247 2248 // Update edge probabilities in BPI. 2249 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2250 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2251 2252 // Update the profile metadata as well. 2253 // 2254 // Don't do this if the profile of the transformed blocks was statically 2255 // estimated. (This could occur despite the function having an entry 2256 // frequency in completely cold parts of the CFG.) 2257 // 2258 // In this case we don't want to suggest to subsequent passes that the 2259 // calculated weights are fully consistent. Consider this graph: 2260 // 2261 // check_1 2262 // 50% / | 2263 // eq_1 | 50% 2264 // \ | 2265 // check_2 2266 // 50% / | 2267 // eq_2 | 50% 2268 // \ | 2269 // check_3 2270 // 50% / | 2271 // eq_3 | 50% 2272 // \ | 2273 // 2274 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2275 // the overall probabilities are inconsistent; the total probability that the 2276 // value is either 1, 2 or 3 is 150%. 2277 // 2278 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2279 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2280 // the loop exit edge. Then based solely on static estimation we would assume 2281 // the loop was extremely hot. 2282 // 2283 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2284 // shouldn't make edges extremely likely or unlikely based solely on static 2285 // estimation. 2286 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2287 SmallVector<uint32_t, 4> Weights; 2288 for (auto Prob : BBSuccProbs) 2289 Weights.push_back(Prob.getNumerator()); 2290 2291 auto TI = BB->getTerminator(); 2292 TI->setMetadata( 2293 LLVMContext::MD_prof, 2294 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2295 } 2296 } 2297 2298 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2299 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2300 /// If we can duplicate the contents of BB up into PredBB do so now, this 2301 /// improves the odds that the branch will be on an analyzable instruction like 2302 /// a compare. 2303 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2304 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2305 assert(!PredBBs.empty() && "Can't handle an empty set"); 2306 2307 // If BB is a loop header, then duplicating this block outside the loop would 2308 // cause us to transform this into an irreducible loop, don't do this. 2309 // See the comments above FindLoopHeaders for justifications and caveats. 2310 if (LoopHeaders.count(BB)) { 2311 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2312 << "' into predecessor block '" << PredBBs[0]->getName() 2313 << "' - it might create an irreducible loop!\n"); 2314 return false; 2315 } 2316 2317 unsigned DuplicationCost = 2318 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2319 if (DuplicationCost > BBDupThreshold) { 2320 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2321 << "' - Cost is too high: " << DuplicationCost << "\n"); 2322 return false; 2323 } 2324 2325 // And finally, do it! Start by factoring the predecessors if needed. 2326 std::vector<DominatorTree::UpdateType> Updates; 2327 BasicBlock *PredBB; 2328 if (PredBBs.size() == 1) 2329 PredBB = PredBBs[0]; 2330 else { 2331 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2332 << " common predecessors.\n"); 2333 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2334 } 2335 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2336 2337 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2338 // of PredBB. 2339 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2340 << "' into end of '" << PredBB->getName() 2341 << "' to eliminate branch on phi. Cost: " 2342 << DuplicationCost << " block is:" << *BB << "\n"); 2343 2344 // Unless PredBB ends with an unconditional branch, split the edge so that we 2345 // can just clone the bits from BB into the end of the new PredBB. 2346 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2347 2348 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2349 BasicBlock *OldPredBB = PredBB; 2350 PredBB = SplitEdge(OldPredBB, BB); 2351 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2352 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2353 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2354 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2355 } 2356 2357 // We are going to have to map operands from the original BB block into the 2358 // PredBB block. Evaluate PHI nodes in BB. 2359 DenseMap<Instruction*, Value*> ValueMapping; 2360 2361 BasicBlock::iterator BI = BB->begin(); 2362 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2363 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2364 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2365 // mapping and using it to remap operands in the cloned instructions. 2366 for (; BI != BB->end(); ++BI) { 2367 Instruction *New = BI->clone(); 2368 2369 // Remap operands to patch up intra-block references. 2370 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2371 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2372 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2373 if (I != ValueMapping.end()) 2374 New->setOperand(i, I->second); 2375 } 2376 2377 // If this instruction can be simplified after the operands are updated, 2378 // just use the simplified value instead. This frequently happens due to 2379 // phi translation. 2380 if (Value *IV = SimplifyInstruction( 2381 New, 2382 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2383 ValueMapping[&*BI] = IV; 2384 if (!New->mayHaveSideEffects()) { 2385 New->deleteValue(); 2386 New = nullptr; 2387 } 2388 } else { 2389 ValueMapping[&*BI] = New; 2390 } 2391 if (New) { 2392 // Otherwise, insert the new instruction into the block. 2393 New->setName(BI->getName()); 2394 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2395 // Update Dominance from simplified New instruction operands. 2396 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2397 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2398 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2399 } 2400 } 2401 2402 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2403 // add entries to the PHI nodes for branch from PredBB now. 2404 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2405 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2406 ValueMapping); 2407 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2408 ValueMapping); 2409 2410 UpdateSSA(BB, PredBB, ValueMapping); 2411 2412 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2413 // that we nuked. 2414 BB->removePredecessor(PredBB, true); 2415 2416 // Remove the unconditional branch at the end of the PredBB block. 2417 OldPredBranch->eraseFromParent(); 2418 DTU->applyUpdatesPermissive(Updates); 2419 2420 ++NumDupes; 2421 return true; 2422 } 2423 2424 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2425 // a Select instruction in Pred. BB has other predecessors and SI is used in 2426 // a PHI node in BB. SI has no other use. 2427 // A new basic block, NewBB, is created and SI is converted to compare and 2428 // conditional branch. SI is erased from parent. 2429 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2430 SelectInst *SI, PHINode *SIUse, 2431 unsigned Idx) { 2432 // Expand the select. 2433 // 2434 // Pred -- 2435 // | v 2436 // | NewBB 2437 // | | 2438 // |----- 2439 // v 2440 // BB 2441 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2442 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2443 BB->getParent(), BB); 2444 // Move the unconditional branch to NewBB. 2445 PredTerm->removeFromParent(); 2446 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2447 // Create a conditional branch and update PHI nodes. 2448 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2449 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2450 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2451 2452 // The select is now dead. 2453 SI->eraseFromParent(); 2454 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2455 {DominatorTree::Insert, Pred, NewBB}}); 2456 2457 // Update any other PHI nodes in BB. 2458 for (BasicBlock::iterator BI = BB->begin(); 2459 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2460 if (Phi != SIUse) 2461 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2462 } 2463 2464 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2465 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2466 2467 if (!CondPHI || CondPHI->getParent() != BB) 2468 return false; 2469 2470 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2471 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2472 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2473 2474 // The second and third condition can be potentially relaxed. Currently 2475 // the conditions help to simplify the code and allow us to reuse existing 2476 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) 2477 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2478 continue; 2479 2480 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2481 if (!PredTerm || !PredTerm->isUnconditional()) 2482 continue; 2483 2484 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2485 return true; 2486 } 2487 return false; 2488 } 2489 2490 /// TryToUnfoldSelect - Look for blocks of the form 2491 /// bb1: 2492 /// %a = select 2493 /// br bb2 2494 /// 2495 /// bb2: 2496 /// %p = phi [%a, %bb1] ... 2497 /// %c = icmp %p 2498 /// br i1 %c 2499 /// 2500 /// And expand the select into a branch structure if one of its arms allows %c 2501 /// to be folded. This later enables threading from bb1 over bb2. 2502 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2503 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2504 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2505 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2506 2507 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2508 CondLHS->getParent() != BB) 2509 return false; 2510 2511 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2512 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2513 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2514 2515 // Look if one of the incoming values is a select in the corresponding 2516 // predecessor. 2517 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2518 continue; 2519 2520 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2521 if (!PredTerm || !PredTerm->isUnconditional()) 2522 continue; 2523 2524 // Now check if one of the select values would allow us to constant fold the 2525 // terminator in BB. We don't do the transform if both sides fold, those 2526 // cases will be threaded in any case. 2527 if (DTU->hasPendingDomTreeUpdates()) 2528 LVI->disableDT(); 2529 else 2530 LVI->enableDT(); 2531 LazyValueInfo::Tristate LHSFolds = 2532 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2533 CondRHS, Pred, BB, CondCmp); 2534 LazyValueInfo::Tristate RHSFolds = 2535 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2536 CondRHS, Pred, BB, CondCmp); 2537 if ((LHSFolds != LazyValueInfo::Unknown || 2538 RHSFolds != LazyValueInfo::Unknown) && 2539 LHSFolds != RHSFolds) { 2540 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2541 return true; 2542 } 2543 } 2544 return false; 2545 } 2546 2547 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2548 /// same BB in the form 2549 /// bb: 2550 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2551 /// %s = select %p, trueval, falseval 2552 /// 2553 /// or 2554 /// 2555 /// bb: 2556 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2557 /// %c = cmp %p, 0 2558 /// %s = select %c, trueval, falseval 2559 /// 2560 /// And expand the select into a branch structure. This later enables 2561 /// jump-threading over bb in this pass. 2562 /// 2563 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2564 /// select if the associated PHI has at least one constant. If the unfolded 2565 /// select is not jump-threaded, it will be folded again in the later 2566 /// optimizations. 2567 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2568 // If threading this would thread across a loop header, don't thread the edge. 2569 // See the comments above FindLoopHeaders for justifications and caveats. 2570 if (LoopHeaders.count(BB)) 2571 return false; 2572 2573 for (BasicBlock::iterator BI = BB->begin(); 2574 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2575 // Look for a Phi having at least one constant incoming value. 2576 if (llvm::all_of(PN->incoming_values(), 2577 [](Value *V) { return !isa<ConstantInt>(V); })) 2578 continue; 2579 2580 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2581 // Check if SI is in BB and use V as condition. 2582 if (SI->getParent() != BB) 2583 return false; 2584 Value *Cond = SI->getCondition(); 2585 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2586 }; 2587 2588 SelectInst *SI = nullptr; 2589 for (Use &U : PN->uses()) { 2590 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2591 // Look for a ICmp in BB that compares PN with a constant and is the 2592 // condition of a Select. 2593 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2594 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2595 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2596 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2597 SI = SelectI; 2598 break; 2599 } 2600 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2601 // Look for a Select in BB that uses PN as condition. 2602 if (isUnfoldCandidate(SelectI, U.get())) { 2603 SI = SelectI; 2604 break; 2605 } 2606 } 2607 } 2608 2609 if (!SI) 2610 continue; 2611 // Expand the select. 2612 Instruction *Term = 2613 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2614 BasicBlock *SplitBB = SI->getParent(); 2615 BasicBlock *NewBB = Term->getParent(); 2616 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2617 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2618 NewPN->addIncoming(SI->getFalseValue(), BB); 2619 SI->replaceAllUsesWith(NewPN); 2620 SI->eraseFromParent(); 2621 // NewBB and SplitBB are newly created blocks which require insertion. 2622 std::vector<DominatorTree::UpdateType> Updates; 2623 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2624 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2625 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2626 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2627 // BB's successors were moved to SplitBB, update DTU accordingly. 2628 for (auto *Succ : successors(SplitBB)) { 2629 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2630 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2631 } 2632 DTU->applyUpdatesPermissive(Updates); 2633 return true; 2634 } 2635 return false; 2636 } 2637 2638 /// Try to propagate a guard from the current BB into one of its predecessors 2639 /// in case if another branch of execution implies that the condition of this 2640 /// guard is always true. Currently we only process the simplest case that 2641 /// looks like: 2642 /// 2643 /// Start: 2644 /// %cond = ... 2645 /// br i1 %cond, label %T1, label %F1 2646 /// T1: 2647 /// br label %Merge 2648 /// F1: 2649 /// br label %Merge 2650 /// Merge: 2651 /// %condGuard = ... 2652 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2653 /// 2654 /// And cond either implies condGuard or !condGuard. In this case all the 2655 /// instructions before the guard can be duplicated in both branches, and the 2656 /// guard is then threaded to one of them. 2657 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2658 using namespace PatternMatch; 2659 2660 // We only want to deal with two predecessors. 2661 BasicBlock *Pred1, *Pred2; 2662 auto PI = pred_begin(BB), PE = pred_end(BB); 2663 if (PI == PE) 2664 return false; 2665 Pred1 = *PI++; 2666 if (PI == PE) 2667 return false; 2668 Pred2 = *PI++; 2669 if (PI != PE) 2670 return false; 2671 if (Pred1 == Pred2) 2672 return false; 2673 2674 // Try to thread one of the guards of the block. 2675 // TODO: Look up deeper than to immediate predecessor? 2676 auto *Parent = Pred1->getSinglePredecessor(); 2677 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2678 return false; 2679 2680 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2681 for (auto &I : *BB) 2682 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2683 return true; 2684 2685 return false; 2686 } 2687 2688 /// Try to propagate the guard from BB which is the lower block of a diamond 2689 /// to one of its branches, in case if diamond's condition implies guard's 2690 /// condition. 2691 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2692 BranchInst *BI) { 2693 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2694 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2695 Value *GuardCond = Guard->getArgOperand(0); 2696 Value *BranchCond = BI->getCondition(); 2697 BasicBlock *TrueDest = BI->getSuccessor(0); 2698 BasicBlock *FalseDest = BI->getSuccessor(1); 2699 2700 auto &DL = BB->getModule()->getDataLayout(); 2701 bool TrueDestIsSafe = false; 2702 bool FalseDestIsSafe = false; 2703 2704 // True dest is safe if BranchCond => GuardCond. 2705 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2706 if (Impl && *Impl) 2707 TrueDestIsSafe = true; 2708 else { 2709 // False dest is safe if !BranchCond => GuardCond. 2710 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2711 if (Impl && *Impl) 2712 FalseDestIsSafe = true; 2713 } 2714 2715 if (!TrueDestIsSafe && !FalseDestIsSafe) 2716 return false; 2717 2718 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2719 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2720 2721 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2722 Instruction *AfterGuard = Guard->getNextNode(); 2723 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2724 if (Cost > BBDupThreshold) 2725 return false; 2726 // Duplicate all instructions before the guard and the guard itself to the 2727 // branch where implication is not proved. 2728 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2729 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2730 assert(GuardedBlock && "Could not create the guarded block?"); 2731 // Duplicate all instructions before the guard in the unguarded branch. 2732 // Since we have successfully duplicated the guarded block and this block 2733 // has fewer instructions, we expect it to succeed. 2734 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2735 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 2736 assert(UnguardedBlock && "Could not create the unguarded block?"); 2737 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2738 << GuardedBlock->getName() << "\n"); 2739 // Some instructions before the guard may still have uses. For them, we need 2740 // to create Phi nodes merging their copies in both guarded and unguarded 2741 // branches. Those instructions that have no uses can be just removed. 2742 SmallVector<Instruction *, 4> ToRemove; 2743 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2744 if (!isa<PHINode>(&*BI)) 2745 ToRemove.push_back(&*BI); 2746 2747 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2748 assert(InsertionPoint && "Empty block?"); 2749 // Substitute with Phis & remove. 2750 for (auto *Inst : reverse(ToRemove)) { 2751 if (!Inst->use_empty()) { 2752 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2753 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2754 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2755 NewPN->insertBefore(InsertionPoint); 2756 Inst->replaceAllUsesWith(NewPN); 2757 } 2758 Inst->eraseFromParent(); 2759 } 2760 return true; 2761 } 2762