xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision b2d2a78ad80ec68d4a17f5aef97d21686cb1e29b)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/GlobalsModRef.h"
27 #include "llvm/Analysis/GuardUtils.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/PostDominators.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/ProfDataUtils.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
68 #include "llvm/Transforms/Utils/Cloning.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SSAUpdater.h"
71 #include "llvm/Transforms/Utils/ValueMapper.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<unsigned> PhiDuplicateThreshold(
101     "jump-threading-phi-threshold",
102     cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
103     cl::Hidden);
104 
105 static cl::opt<bool> ThreadAcrossLoopHeaders(
106     "jump-threading-across-loop-headers",
107     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
108     cl::init(false), cl::Hidden);
109 
110 JumpThreadingPass::JumpThreadingPass(int T) {
111   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
112 }
113 
114 // Update branch probability information according to conditional
115 // branch probability. This is usually made possible for cloned branches
116 // in inline instances by the context specific profile in the caller.
117 // For instance,
118 //
119 //  [Block PredBB]
120 //  [Branch PredBr]
121 //  if (t) {
122 //     Block A;
123 //  } else {
124 //     Block B;
125 //  }
126 //
127 //  [Block BB]
128 //  cond = PN([true, %A], [..., %B]); // PHI node
129 //  [Branch CondBr]
130 //  if (cond) {
131 //    ...  // P(cond == true) = 1%
132 //  }
133 //
134 //  Here we know that when block A is taken, cond must be true, which means
135 //      P(cond == true | A) = 1
136 //
137 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
138 //                               P(cond == true | B) * P(B)
139 //  we get:
140 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
141 //
142 //  which gives us:
143 //     P(A) is less than P(cond == true), i.e.
144 //     P(t == true) <= P(cond == true)
145 //
146 //  In other words, if we know P(cond == true) is unlikely, we know
147 //  that P(t == true) is also unlikely.
148 //
149 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
150   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
151   if (!CondBr)
152     return;
153 
154   uint64_t TrueWeight, FalseWeight;
155   if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
156     return;
157 
158   if (TrueWeight + FalseWeight == 0)
159     // Zero branch_weights do not give a hint for getting branch probabilities.
160     // Technically it would result in division by zero denominator, which is
161     // TrueWeight + FalseWeight.
162     return;
163 
164   // Returns the outgoing edge of the dominating predecessor block
165   // that leads to the PhiNode's incoming block:
166   auto GetPredOutEdge =
167       [](BasicBlock *IncomingBB,
168          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
169     auto *PredBB = IncomingBB;
170     auto *SuccBB = PhiBB;
171     SmallPtrSet<BasicBlock *, 16> Visited;
172     while (true) {
173       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
174       if (PredBr && PredBr->isConditional())
175         return {PredBB, SuccBB};
176       Visited.insert(PredBB);
177       auto *SinglePredBB = PredBB->getSinglePredecessor();
178       if (!SinglePredBB)
179         return {nullptr, nullptr};
180 
181       // Stop searching when SinglePredBB has been visited. It means we see
182       // an unreachable loop.
183       if (Visited.count(SinglePredBB))
184         return {nullptr, nullptr};
185 
186       SuccBB = PredBB;
187       PredBB = SinglePredBB;
188     }
189   };
190 
191   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
192     Value *PhiOpnd = PN->getIncomingValue(i);
193     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
194 
195     if (!CI || !CI->getType()->isIntegerTy(1))
196       continue;
197 
198     BranchProbability BP =
199         (CI->isOne() ? BranchProbability::getBranchProbability(
200                            TrueWeight, TrueWeight + FalseWeight)
201                      : BranchProbability::getBranchProbability(
202                            FalseWeight, TrueWeight + FalseWeight));
203 
204     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
205     if (!PredOutEdge.first)
206       return;
207 
208     BasicBlock *PredBB = PredOutEdge.first;
209     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
210     if (!PredBr)
211       return;
212 
213     uint64_t PredTrueWeight, PredFalseWeight;
214     // FIXME: We currently only set the profile data when it is missing.
215     // With PGO, this can be used to refine even existing profile data with
216     // context information. This needs to be done after more performance
217     // testing.
218     if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
219       continue;
220 
221     // We can not infer anything useful when BP >= 50%, because BP is the
222     // upper bound probability value.
223     if (BP >= BranchProbability(50, 100))
224       continue;
225 
226     uint32_t Weights[2];
227     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
228       Weights[0] = BP.getNumerator();
229       Weights[1] = BP.getCompl().getNumerator();
230     } else {
231       Weights[0] = BP.getCompl().getNumerator();
232       Weights[1] = BP.getNumerator();
233     }
234     setBranchWeights(*PredBr, Weights, hasBranchWeightOrigin(*PredBr));
235   }
236 }
237 
238 PreservedAnalyses JumpThreadingPass::run(Function &F,
239                                          FunctionAnalysisManager &AM) {
240   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
241   // Jump Threading has no sense for the targets with divergent CF
242   if (TTI.hasBranchDivergence(&F))
243     return PreservedAnalyses::all();
244   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
245   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
246   auto &AA = AM.getResult<AAManager>(F);
247   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
248 
249   bool Changed =
250       runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
251               std::make_unique<DomTreeUpdater>(
252                   &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
253               std::nullopt, std::nullopt);
254 
255   if (!Changed)
256     return PreservedAnalyses::all();
257 
258 
259   getDomTreeUpdater()->flush();
260 
261 #if defined(EXPENSIVE_CHECKS)
262   assert(getDomTreeUpdater()->getDomTree().verify(
263              DominatorTree::VerificationLevel::Full) &&
264          "DT broken after JumpThreading");
265   assert((!getDomTreeUpdater()->hasPostDomTree() ||
266           getDomTreeUpdater()->getPostDomTree().verify(
267               PostDominatorTree::VerificationLevel::Full)) &&
268          "PDT broken after JumpThreading");
269 #else
270   assert(getDomTreeUpdater()->getDomTree().verify(
271              DominatorTree::VerificationLevel::Fast) &&
272          "DT broken after JumpThreading");
273   assert((!getDomTreeUpdater()->hasPostDomTree() ||
274           getDomTreeUpdater()->getPostDomTree().verify(
275               PostDominatorTree::VerificationLevel::Fast)) &&
276          "PDT broken after JumpThreading");
277 #endif
278 
279   return getPreservedAnalysis();
280 }
281 
282 bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_,
283                                 TargetLibraryInfo *TLI_,
284                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
285                                 AliasAnalysis *AA_,
286                                 std::unique_ptr<DomTreeUpdater> DTU_,
287                                 std::optional<BlockFrequencyInfo *> BFI_,
288                                 std::optional<BranchProbabilityInfo *> BPI_) {
289   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n");
290   F = &F_;
291   FAM = FAM_;
292   TLI = TLI_;
293   TTI = TTI_;
294   LVI = LVI_;
295   AA = AA_;
296   DTU = std::move(DTU_);
297   BFI = BFI_;
298   BPI = BPI_;
299   auto *GuardDecl = F->getParent()->getFunction(
300       Intrinsic::getName(Intrinsic::experimental_guard));
301   HasGuards = GuardDecl && !GuardDecl->use_empty();
302 
303   // Reduce the number of instructions duplicated when optimizing strictly for
304   // size.
305   if (BBDuplicateThreshold.getNumOccurrences())
306     BBDupThreshold = BBDuplicateThreshold;
307   else if (F->hasFnAttribute(Attribute::MinSize))
308     BBDupThreshold = 3;
309   else
310     BBDupThreshold = DefaultBBDupThreshold;
311 
312   // JumpThreading must not processes blocks unreachable from entry. It's a
313   // waste of compute time and can potentially lead to hangs.
314   SmallPtrSet<BasicBlock *, 16> Unreachable;
315   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
316   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
317   DominatorTree &DT = DTU->getDomTree();
318   for (auto &BB : *F)
319     if (!DT.isReachableFromEntry(&BB))
320       Unreachable.insert(&BB);
321 
322   if (!ThreadAcrossLoopHeaders)
323     findLoopHeaders(*F);
324 
325   bool EverChanged = false;
326   bool Changed;
327   do {
328     Changed = false;
329     for (auto &BB : *F) {
330       if (Unreachable.count(&BB))
331         continue;
332       while (processBlock(&BB)) // Thread all of the branches we can over BB.
333         Changed = ChangedSinceLastAnalysisUpdate = true;
334 
335       // Jump threading may have introduced redundant debug values into BB
336       // which should be removed.
337       if (Changed)
338         RemoveRedundantDbgInstrs(&BB);
339 
340       // Stop processing BB if it's the entry or is now deleted. The following
341       // routines attempt to eliminate BB and locating a suitable replacement
342       // for the entry is non-trivial.
343       if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
344         continue;
345 
346       if (pred_empty(&BB)) {
347         // When processBlock makes BB unreachable it doesn't bother to fix up
348         // the instructions in it. We must remove BB to prevent invalid IR.
349         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
350                           << "' with terminator: " << *BB.getTerminator()
351                           << '\n');
352         LoopHeaders.erase(&BB);
353         LVI->eraseBlock(&BB);
354         DeleteDeadBlock(&BB, DTU.get());
355         Changed = ChangedSinceLastAnalysisUpdate = true;
356         continue;
357       }
358 
359       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
360       // is "almost empty", we attempt to merge BB with its sole successor.
361       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
362       if (BI && BI->isUnconditional()) {
363         BasicBlock *Succ = BI->getSuccessor(0);
364         if (
365             // The terminator must be the only non-phi instruction in BB.
366             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
367             // Don't alter Loop headers and latches to ensure another pass can
368             // detect and transform nested loops later.
369             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
370             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) {
371           RemoveRedundantDbgInstrs(Succ);
372           // BB is valid for cleanup here because we passed in DTU. F remains
373           // BB's parent until a DTU->getDomTree() event.
374           LVI->eraseBlock(&BB);
375           Changed = ChangedSinceLastAnalysisUpdate = true;
376         }
377       }
378     }
379     EverChanged |= Changed;
380   } while (Changed);
381 
382   LoopHeaders.clear();
383   return EverChanged;
384 }
385 
386 // Replace uses of Cond with ToVal when safe to do so. If all uses are
387 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
388 // because we may incorrectly replace uses when guards/assumes are uses of
389 // of `Cond` and we used the guards/assume to reason about the `Cond` value
390 // at the end of block. RAUW unconditionally replaces all uses
391 // including the guards/assumes themselves and the uses before the
392 // guard/assume.
393 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
394                                 BasicBlock *KnownAtEndOfBB) {
395   bool Changed = false;
396   assert(Cond->getType() == ToVal->getType());
397   // We can unconditionally replace all uses in non-local blocks (i.e. uses
398   // strictly dominated by BB), since LVI information is true from the
399   // terminator of BB.
400   if (Cond->getParent() == KnownAtEndOfBB)
401     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
402   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
403     // Replace any debug-info record users of Cond with ToVal.
404     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
405       DVR.replaceVariableLocationOp(Cond, ToVal, true);
406 
407     // Reached the Cond whose uses we are trying to replace, so there are no
408     // more uses.
409     if (&I == Cond)
410       break;
411     // We only replace uses in instructions that are guaranteed to reach the end
412     // of BB, where we know Cond is ToVal.
413     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
414       break;
415     Changed |= I.replaceUsesOfWith(Cond, ToVal);
416   }
417   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
418     Cond->eraseFromParent();
419     Changed = true;
420   }
421   return Changed;
422 }
423 
424 /// Return the cost of duplicating a piece of this block from first non-phi
425 /// and before StopAt instruction to thread across it. Stop scanning the block
426 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
427 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
428                                              BasicBlock *BB,
429                                              Instruction *StopAt,
430                                              unsigned Threshold) {
431   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
432 
433   // Do not duplicate the BB if it has a lot of PHI nodes.
434   // If a threadable chain is too long then the number of PHI nodes can add up,
435   // leading to a substantial increase in compile time when rewriting the SSA.
436   unsigned PhiCount = 0;
437   Instruction *FirstNonPHI = nullptr;
438   for (Instruction &I : *BB) {
439     if (!isa<PHINode>(&I)) {
440       FirstNonPHI = &I;
441       break;
442     }
443     if (++PhiCount > PhiDuplicateThreshold)
444       return ~0U;
445   }
446 
447   /// Ignore PHI nodes, these will be flattened when duplication happens.
448   BasicBlock::const_iterator I(FirstNonPHI);
449 
450   // FIXME: THREADING will delete values that are just used to compute the
451   // branch, so they shouldn't count against the duplication cost.
452 
453   unsigned Bonus = 0;
454   if (BB->getTerminator() == StopAt) {
455     // Threading through a switch statement is particularly profitable.  If this
456     // block ends in a switch, decrease its cost to make it more likely to
457     // happen.
458     if (isa<SwitchInst>(StopAt))
459       Bonus = 6;
460 
461     // The same holds for indirect branches, but slightly more so.
462     if (isa<IndirectBrInst>(StopAt))
463       Bonus = 8;
464   }
465 
466   // Bump the threshold up so the early exit from the loop doesn't skip the
467   // terminator-based Size adjustment at the end.
468   Threshold += Bonus;
469 
470   // Sum up the cost of each instruction until we get to the terminator.  Don't
471   // include the terminator because the copy won't include it.
472   unsigned Size = 0;
473   for (; &*I != StopAt; ++I) {
474 
475     // Stop scanning the block if we've reached the threshold.
476     if (Size > Threshold)
477       return Size;
478 
479     // Bail out if this instruction gives back a token type, it is not possible
480     // to duplicate it if it is used outside this BB.
481     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
482       return ~0U;
483 
484     // Blocks with NoDuplicate are modelled as having infinite cost, so they
485     // are never duplicated.
486     if (const CallInst *CI = dyn_cast<CallInst>(I))
487       if (CI->cannotDuplicate() || CI->isConvergent())
488         return ~0U;
489 
490     if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
491         TargetTransformInfo::TCC_Free)
492       continue;
493 
494     // All other instructions count for at least one unit.
495     ++Size;
496 
497     // Calls are more expensive.  If they are non-intrinsic calls, we model them
498     // as having cost of 4.  If they are a non-vector intrinsic, we model them
499     // as having cost of 2 total, and if they are a vector intrinsic, we model
500     // them as having cost 1.
501     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
502       if (!isa<IntrinsicInst>(CI))
503         Size += 3;
504       else if (!CI->getType()->isVectorTy())
505         Size += 1;
506     }
507   }
508 
509   return Size > Bonus ? Size - Bonus : 0;
510 }
511 
512 /// findLoopHeaders - We do not want jump threading to turn proper loop
513 /// structures into irreducible loops.  Doing this breaks up the loop nesting
514 /// hierarchy and pessimizes later transformations.  To prevent this from
515 /// happening, we first have to find the loop headers.  Here we approximate this
516 /// by finding targets of backedges in the CFG.
517 ///
518 /// Note that there definitely are cases when we want to allow threading of
519 /// edges across a loop header.  For example, threading a jump from outside the
520 /// loop (the preheader) to an exit block of the loop is definitely profitable.
521 /// It is also almost always profitable to thread backedges from within the loop
522 /// to exit blocks, and is often profitable to thread backedges to other blocks
523 /// within the loop (forming a nested loop).  This simple analysis is not rich
524 /// enough to track all of these properties and keep it up-to-date as the CFG
525 /// mutates, so we don't allow any of these transformations.
526 void JumpThreadingPass::findLoopHeaders(Function &F) {
527   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
528   FindFunctionBackedges(F, Edges);
529 
530   for (const auto &Edge : Edges)
531     LoopHeaders.insert(Edge.second);
532 }
533 
534 /// getKnownConstant - Helper method to determine if we can thread over a
535 /// terminator with the given value as its condition, and if so what value to
536 /// use for that. What kind of value this is depends on whether we want an
537 /// integer or a block address, but an undef is always accepted.
538 /// Returns null if Val is null or not an appropriate constant.
539 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
540   if (!Val)
541     return nullptr;
542 
543   // Undef is "known" enough.
544   if (UndefValue *U = dyn_cast<UndefValue>(Val))
545     return U;
546 
547   if (Preference == WantBlockAddress)
548     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
549 
550   return dyn_cast<ConstantInt>(Val);
551 }
552 
553 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
554 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
555 /// in any of our predecessors.  If so, return the known list of value and pred
556 /// BB in the result vector.
557 ///
558 /// This returns true if there were any known values.
559 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
560     Value *V, BasicBlock *BB, PredValueInfo &Result,
561     ConstantPreference Preference, SmallPtrSet<Value *, 4> &RecursionSet,
562     Instruction *CxtI) {
563   const DataLayout &DL = BB->getDataLayout();
564 
565   // This method walks up use-def chains recursively.  Because of this, we could
566   // get into an infinite loop going around loops in the use-def chain.  To
567   // prevent this, keep track of what (value, block) pairs we've already visited
568   // and terminate the search if we loop back to them
569   if (!RecursionSet.insert(V).second)
570     return false;
571 
572   // If V is a constant, then it is known in all predecessors.
573   if (Constant *KC = getKnownConstant(V, Preference)) {
574     for (BasicBlock *Pred : predecessors(BB))
575       Result.emplace_back(KC, Pred);
576 
577     return !Result.empty();
578   }
579 
580   // If V is a non-instruction value, or an instruction in a different block,
581   // then it can't be derived from a PHI.
582   Instruction *I = dyn_cast<Instruction>(V);
583   if (!I || I->getParent() != BB) {
584 
585     // Okay, if this is a live-in value, see if it has a known value at the any
586     // edge from our predecessors.
587     for (BasicBlock *P : predecessors(BB)) {
588       using namespace PatternMatch;
589       // If the value is known by LazyValueInfo to be a constant in a
590       // predecessor, use that information to try to thread this block.
591       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
592       // If I is a non-local compare-with-constant instruction, use more-rich
593       // 'getPredicateOnEdge' method. This would be able to handle value
594       // inequalities better, for example if the compare is "X < 4" and "X < 3"
595       // is known true but "X < 4" itself is not available.
596       CmpInst::Predicate Pred;
597       Value *Val;
598       Constant *Cst;
599       if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst))))
600         PredCst = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
601       if (Constant *KC = getKnownConstant(PredCst, Preference))
602         Result.emplace_back(KC, P);
603     }
604 
605     return !Result.empty();
606   }
607 
608   /// If I is a PHI node, then we know the incoming values for any constants.
609   if (PHINode *PN = dyn_cast<PHINode>(I)) {
610     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
611       Value *InVal = PN->getIncomingValue(i);
612       if (Constant *KC = getKnownConstant(InVal, Preference)) {
613         Result.emplace_back(KC, PN->getIncomingBlock(i));
614       } else {
615         Constant *CI = LVI->getConstantOnEdge(InVal,
616                                               PN->getIncomingBlock(i),
617                                               BB, CxtI);
618         if (Constant *KC = getKnownConstant(CI, Preference))
619           Result.emplace_back(KC, PN->getIncomingBlock(i));
620       }
621     }
622 
623     return !Result.empty();
624   }
625 
626   // Handle Cast instructions.
627   if (CastInst *CI = dyn_cast<CastInst>(I)) {
628     Value *Source = CI->getOperand(0);
629     PredValueInfoTy Vals;
630     computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference,
631                                         RecursionSet, CxtI);
632     if (Vals.empty())
633       return false;
634 
635     // Convert the known values.
636     for (auto &Val : Vals)
637       if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first,
638                                                      CI->getType(), DL))
639         Result.emplace_back(Folded, Val.second);
640 
641     return !Result.empty();
642   }
643 
644   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
645     Value *Source = FI->getOperand(0);
646     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
647                                         RecursionSet, CxtI);
648 
649     erase_if(Result, [](auto &Pair) {
650       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
651     });
652 
653     return !Result.empty();
654   }
655 
656   // Handle some boolean conditions.
657   if (I->getType()->getPrimitiveSizeInBits() == 1) {
658     using namespace PatternMatch;
659     if (Preference != WantInteger)
660       return false;
661     // X | true -> true
662     // X & false -> false
663     Value *Op0, *Op1;
664     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
665         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
666       PredValueInfoTy LHSVals, RHSVals;
667 
668       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
669                                           RecursionSet, CxtI);
670       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
671                                           RecursionSet, CxtI);
672 
673       if (LHSVals.empty() && RHSVals.empty())
674         return false;
675 
676       ConstantInt *InterestingVal;
677       if (match(I, m_LogicalOr()))
678         InterestingVal = ConstantInt::getTrue(I->getContext());
679       else
680         InterestingVal = ConstantInt::getFalse(I->getContext());
681 
682       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
683 
684       // Scan for the sentinel.  If we find an undef, force it to the
685       // interesting value: x|undef -> true and x&undef -> false.
686       for (const auto &LHSVal : LHSVals)
687         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
688           Result.emplace_back(InterestingVal, LHSVal.second);
689           LHSKnownBBs.insert(LHSVal.second);
690         }
691       for (const auto &RHSVal : RHSVals)
692         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
693           // If we already inferred a value for this block on the LHS, don't
694           // re-add it.
695           if (!LHSKnownBBs.count(RHSVal.second))
696             Result.emplace_back(InterestingVal, RHSVal.second);
697         }
698 
699       return !Result.empty();
700     }
701 
702     // Handle the NOT form of XOR.
703     if (I->getOpcode() == Instruction::Xor &&
704         isa<ConstantInt>(I->getOperand(1)) &&
705         cast<ConstantInt>(I->getOperand(1))->isOne()) {
706       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
707                                           WantInteger, RecursionSet, CxtI);
708       if (Result.empty())
709         return false;
710 
711       // Invert the known values.
712       for (auto &R : Result)
713         R.first = ConstantExpr::getNot(R.first);
714 
715       return true;
716     }
717 
718   // Try to simplify some other binary operator values.
719   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
720     if (Preference != WantInteger)
721       return false;
722     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
723       PredValueInfoTy LHSVals;
724       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
725                                           WantInteger, RecursionSet, CxtI);
726 
727       // Try to use constant folding to simplify the binary operator.
728       for (const auto &LHSVal : LHSVals) {
729         Constant *V = LHSVal.first;
730         Constant *Folded =
731             ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
732 
733         if (Constant *KC = getKnownConstant(Folded, WantInteger))
734           Result.emplace_back(KC, LHSVal.second);
735       }
736     }
737 
738     return !Result.empty();
739   }
740 
741   // Handle compare with phi operand, where the PHI is defined in this block.
742   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
743     if (Preference != WantInteger)
744       return false;
745     Type *CmpType = Cmp->getType();
746     Value *CmpLHS = Cmp->getOperand(0);
747     Value *CmpRHS = Cmp->getOperand(1);
748     CmpInst::Predicate Pred = Cmp->getPredicate();
749 
750     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
751     if (!PN)
752       PN = dyn_cast<PHINode>(CmpRHS);
753     // Do not perform phi translation across a loop header phi, because this
754     // may result in comparison of values from two different loop iterations.
755     // FIXME: This check is broken if LoopHeaders is not populated.
756     if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) {
757       const DataLayout &DL = PN->getDataLayout();
758       // We can do this simplification if any comparisons fold to true or false.
759       // See if any do.
760       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
761         BasicBlock *PredBB = PN->getIncomingBlock(i);
762         Value *LHS, *RHS;
763         if (PN == CmpLHS) {
764           LHS = PN->getIncomingValue(i);
765           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
766         } else {
767           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
768           RHS = PN->getIncomingValue(i);
769         }
770         Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
771         if (!Res) {
772           if (!isa<Constant>(RHS))
773             continue;
774 
775           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
776           auto LHSInst = dyn_cast<Instruction>(LHS);
777           if (LHSInst && LHSInst->getParent() == BB)
778             continue;
779 
780           Res = LVI->getPredicateOnEdge(Pred, LHS, cast<Constant>(RHS), PredBB,
781                                         BB, CxtI ? CxtI : Cmp);
782         }
783 
784         if (Constant *KC = getKnownConstant(Res, WantInteger))
785           Result.emplace_back(KC, PredBB);
786       }
787 
788       return !Result.empty();
789     }
790 
791     // If comparing a live-in value against a constant, see if we know the
792     // live-in value on any predecessors.
793     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
794       Constant *CmpConst = cast<Constant>(CmpRHS);
795 
796       if (!isa<Instruction>(CmpLHS) ||
797           cast<Instruction>(CmpLHS)->getParent() != BB) {
798         for (BasicBlock *P : predecessors(BB)) {
799           // If the value is known by LazyValueInfo to be a constant in a
800           // predecessor, use that information to try to thread this block.
801           Constant *Res = LVI->getPredicateOnEdge(Pred, CmpLHS, CmpConst, P, BB,
802                                                   CxtI ? CxtI : Cmp);
803           if (Constant *KC = getKnownConstant(Res, WantInteger))
804             Result.emplace_back(KC, P);
805         }
806 
807         return !Result.empty();
808       }
809 
810       // InstCombine can fold some forms of constant range checks into
811       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
812       // x as a live-in.
813       {
814         using namespace PatternMatch;
815 
816         Value *AddLHS;
817         ConstantInt *AddConst;
818         if (isa<ConstantInt>(CmpConst) &&
819             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
820           if (!isa<Instruction>(AddLHS) ||
821               cast<Instruction>(AddLHS)->getParent() != BB) {
822             for (BasicBlock *P : predecessors(BB)) {
823               // If the value is known by LazyValueInfo to be a ConstantRange in
824               // a predecessor, use that information to try to thread this
825               // block.
826               ConstantRange CR = LVI->getConstantRangeOnEdge(
827                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
828               // Propagate the range through the addition.
829               CR = CR.add(AddConst->getValue());
830 
831               // Get the range where the compare returns true.
832               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
833                   Pred, cast<ConstantInt>(CmpConst)->getValue());
834 
835               Constant *ResC;
836               if (CmpRange.contains(CR))
837                 ResC = ConstantInt::getTrue(CmpType);
838               else if (CmpRange.inverse().contains(CR))
839                 ResC = ConstantInt::getFalse(CmpType);
840               else
841                 continue;
842 
843               Result.emplace_back(ResC, P);
844             }
845 
846             return !Result.empty();
847           }
848         }
849       }
850 
851       // Try to find a constant value for the LHS of a comparison,
852       // and evaluate it statically if we can.
853       PredValueInfoTy LHSVals;
854       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
855                                           WantInteger, RecursionSet, CxtI);
856 
857       for (const auto &LHSVal : LHSVals) {
858         Constant *V = LHSVal.first;
859         Constant *Folded =
860             ConstantFoldCompareInstOperands(Pred, V, CmpConst, DL);
861         if (Constant *KC = getKnownConstant(Folded, WantInteger))
862           Result.emplace_back(KC, LHSVal.second);
863       }
864 
865       return !Result.empty();
866     }
867   }
868 
869   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
870     // Handle select instructions where at least one operand is a known constant
871     // and we can figure out the condition value for any predecessor block.
872     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
873     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
874     PredValueInfoTy Conds;
875     if ((TrueVal || FalseVal) &&
876         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
877                                             WantInteger, RecursionSet, CxtI)) {
878       for (auto &C : Conds) {
879         Constant *Cond = C.first;
880 
881         // Figure out what value to use for the condition.
882         bool KnownCond;
883         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
884           // A known boolean.
885           KnownCond = CI->isOne();
886         } else {
887           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
888           // Either operand will do, so be sure to pick the one that's a known
889           // constant.
890           // FIXME: Do this more cleverly if both values are known constants?
891           KnownCond = (TrueVal != nullptr);
892         }
893 
894         // See if the select has a known constant value for this predecessor.
895         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
896           Result.emplace_back(Val, C.second);
897       }
898 
899       return !Result.empty();
900     }
901   }
902 
903   // If all else fails, see if LVI can figure out a constant value for us.
904   assert(CxtI->getParent() == BB && "CxtI should be in BB");
905   Constant *CI = LVI->getConstant(V, CxtI);
906   if (Constant *KC = getKnownConstant(CI, Preference)) {
907     for (BasicBlock *Pred : predecessors(BB))
908       Result.emplace_back(KC, Pred);
909   }
910 
911   return !Result.empty();
912 }
913 
914 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
915 /// in an undefined jump, decide which block is best to revector to.
916 ///
917 /// Since we can pick an arbitrary destination, we pick the successor with the
918 /// fewest predecessors.  This should reduce the in-degree of the others.
919 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
920   Instruction *BBTerm = BB->getTerminator();
921   unsigned MinSucc = 0;
922   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
923   // Compute the successor with the minimum number of predecessors.
924   unsigned MinNumPreds = pred_size(TestBB);
925   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
926     TestBB = BBTerm->getSuccessor(i);
927     unsigned NumPreds = pred_size(TestBB);
928     if (NumPreds < MinNumPreds) {
929       MinSucc = i;
930       MinNumPreds = NumPreds;
931     }
932   }
933 
934   return MinSucc;
935 }
936 
937 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
938   if (!BB->hasAddressTaken()) return false;
939 
940   // If the block has its address taken, it may be a tree of dead constants
941   // hanging off of it.  These shouldn't keep the block alive.
942   BlockAddress *BA = BlockAddress::get(BB);
943   BA->removeDeadConstantUsers();
944   return !BA->use_empty();
945 }
946 
947 /// processBlock - If there are any predecessors whose control can be threaded
948 /// through to a successor, transform them now.
949 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
950   // If the block is trivially dead, just return and let the caller nuke it.
951   // This simplifies other transformations.
952   if (DTU->isBBPendingDeletion(BB) ||
953       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
954     return false;
955 
956   // If this block has a single predecessor, and if that pred has a single
957   // successor, merge the blocks.  This encourages recursive jump threading
958   // because now the condition in this block can be threaded through
959   // predecessors of our predecessor block.
960   if (maybeMergeBasicBlockIntoOnlyPred(BB))
961     return true;
962 
963   if (tryToUnfoldSelectInCurrBB(BB))
964     return true;
965 
966   // Look if we can propagate guards to predecessors.
967   if (HasGuards && processGuards(BB))
968     return true;
969 
970   // What kind of constant we're looking for.
971   ConstantPreference Preference = WantInteger;
972 
973   // Look to see if the terminator is a conditional branch, switch or indirect
974   // branch, if not we can't thread it.
975   Value *Condition;
976   Instruction *Terminator = BB->getTerminator();
977   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
978     // Can't thread an unconditional jump.
979     if (BI->isUnconditional()) return false;
980     Condition = BI->getCondition();
981   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
982     Condition = SI->getCondition();
983   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
984     // Can't thread indirect branch with no successors.
985     if (IB->getNumSuccessors() == 0) return false;
986     Condition = IB->getAddress()->stripPointerCasts();
987     Preference = WantBlockAddress;
988   } else {
989     return false; // Must be an invoke or callbr.
990   }
991 
992   // Keep track if we constant folded the condition in this invocation.
993   bool ConstantFolded = false;
994 
995   // Run constant folding to see if we can reduce the condition to a simple
996   // constant.
997   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
998     Value *SimpleVal =
999         ConstantFoldInstruction(I, BB->getDataLayout(), TLI);
1000     if (SimpleVal) {
1001       I->replaceAllUsesWith(SimpleVal);
1002       if (isInstructionTriviallyDead(I, TLI))
1003         I->eraseFromParent();
1004       Condition = SimpleVal;
1005       ConstantFolded = true;
1006     }
1007   }
1008 
1009   // If the terminator is branching on an undef or freeze undef, we can pick any
1010   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1011   auto *FI = dyn_cast<FreezeInst>(Condition);
1012   if (isa<UndefValue>(Condition) ||
1013       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1014     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1015     std::vector<DominatorTree::UpdateType> Updates;
1016 
1017     // Fold the branch/switch.
1018     Instruction *BBTerm = BB->getTerminator();
1019     Updates.reserve(BBTerm->getNumSuccessors());
1020     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1021       if (i == BestSucc) continue;
1022       BasicBlock *Succ = BBTerm->getSuccessor(i);
1023       Succ->removePredecessor(BB, true);
1024       Updates.push_back({DominatorTree::Delete, BB, Succ});
1025     }
1026 
1027     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1028                       << "' folding undef terminator: " << *BBTerm << '\n');
1029     Instruction *NewBI = BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm->getIterator());
1030     NewBI->setDebugLoc(BBTerm->getDebugLoc());
1031     ++NumFolds;
1032     BBTerm->eraseFromParent();
1033     DTU->applyUpdatesPermissive(Updates);
1034     if (FI)
1035       FI->eraseFromParent();
1036     return true;
1037   }
1038 
1039   // If the terminator of this block is branching on a constant, simplify the
1040   // terminator to an unconditional branch.  This can occur due to threading in
1041   // other blocks.
1042   if (getKnownConstant(Condition, Preference)) {
1043     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1044                       << "' folding terminator: " << *BB->getTerminator()
1045                       << '\n');
1046     ++NumFolds;
1047     ConstantFoldTerminator(BB, true, nullptr, DTU.get());
1048     if (auto *BPI = getBPI())
1049       BPI->eraseBlock(BB);
1050     return true;
1051   }
1052 
1053   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1054 
1055   // All the rest of our checks depend on the condition being an instruction.
1056   if (!CondInst) {
1057     // FIXME: Unify this with code below.
1058     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1059       return true;
1060     return ConstantFolded;
1061   }
1062 
1063   // Some of the following optimization can safely work on the unfrozen cond.
1064   Value *CondWithoutFreeze = CondInst;
1065   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1066     CondWithoutFreeze = FI->getOperand(0);
1067 
1068   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1069     // If we're branching on a conditional, LVI might be able to determine
1070     // it's value at the branch instruction.  We only handle comparisons
1071     // against a constant at this time.
1072     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1073       Constant *Res =
1074           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1075                               CondConst, BB->getTerminator(),
1076                               /*UseBlockValue=*/false);
1077       if (Res) {
1078         // We can safely replace *some* uses of the CondInst if it has
1079         // exactly one value as returned by LVI. RAUW is incorrect in the
1080         // presence of guards and assumes, that have the `Cond` as the use. This
1081         // is because we use the guards/assume to reason about the `Cond` value
1082         // at the end of block, but RAUW unconditionally replaces all uses
1083         // including the guards/assumes themselves and the uses before the
1084         // guard/assume.
1085         if (replaceFoldableUses(CondCmp, Res, BB))
1086           return true;
1087       }
1088 
1089       // We did not manage to simplify this branch, try to see whether
1090       // CondCmp depends on a known phi-select pattern.
1091       if (tryToUnfoldSelect(CondCmp, BB))
1092         return true;
1093     }
1094   }
1095 
1096   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1097     if (tryToUnfoldSelect(SI, BB))
1098       return true;
1099 
1100   // Check for some cases that are worth simplifying.  Right now we want to look
1101   // for loads that are used by a switch or by the condition for the branch.  If
1102   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1103   // which can then be used to thread the values.
1104   Value *SimplifyValue = CondWithoutFreeze;
1105 
1106   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1107     if (isa<Constant>(CondCmp->getOperand(1)))
1108       SimplifyValue = CondCmp->getOperand(0);
1109 
1110   // TODO: There are other places where load PRE would be profitable, such as
1111   // more complex comparisons.
1112   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1113     if (simplifyPartiallyRedundantLoad(LoadI))
1114       return true;
1115 
1116   // Before threading, try to propagate profile data backwards:
1117   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1118     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1119       updatePredecessorProfileMetadata(PN, BB);
1120 
1121   // Handle a variety of cases where we are branching on something derived from
1122   // a PHI node in the current block.  If we can prove that any predecessors
1123   // compute a predictable value based on a PHI node, thread those predecessors.
1124   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1125     return true;
1126 
1127   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1128   // the current block, see if we can simplify.
1129   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1130   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1131     return processBranchOnPHI(PN);
1132 
1133   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1134   if (CondInst->getOpcode() == Instruction::Xor &&
1135       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1136     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1137 
1138   // Search for a stronger dominating condition that can be used to simplify a
1139   // conditional branch leaving BB.
1140   if (processImpliedCondition(BB))
1141     return true;
1142 
1143   return false;
1144 }
1145 
1146 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1147   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1148   if (!BI || !BI->isConditional())
1149     return false;
1150 
1151   Value *Cond = BI->getCondition();
1152   // Assuming that predecessor's branch was taken, if pred's branch condition
1153   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1154   // freeze(Cond) is either true or a nondeterministic value.
1155   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1156   // without affecting other instructions.
1157   auto *FICond = dyn_cast<FreezeInst>(Cond);
1158   if (FICond && FICond->hasOneUse())
1159     Cond = FICond->getOperand(0);
1160   else
1161     FICond = nullptr;
1162 
1163   BasicBlock *CurrentBB = BB;
1164   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1165   unsigned Iter = 0;
1166 
1167   auto &DL = BB->getDataLayout();
1168 
1169   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1170     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1171     if (!PBI || !PBI->isConditional())
1172       return false;
1173     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1174       return false;
1175 
1176     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1177     std::optional<bool> Implication =
1178         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1179 
1180     // If the branch condition of BB (which is Cond) and CurrentPred are
1181     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1182     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1183       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1184           FICond->getOperand(0))
1185         Implication = CondIsTrue;
1186     }
1187 
1188     if (Implication) {
1189       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1190       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1191       RemoveSucc->removePredecessor(BB);
1192       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI->getIterator());
1193       UncondBI->setDebugLoc(BI->getDebugLoc());
1194       ++NumFolds;
1195       BI->eraseFromParent();
1196       if (FICond)
1197         FICond->eraseFromParent();
1198 
1199       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1200       if (auto *BPI = getBPI())
1201         BPI->eraseBlock(BB);
1202       return true;
1203     }
1204     CurrentBB = CurrentPred;
1205     CurrentPred = CurrentBB->getSinglePredecessor();
1206   }
1207 
1208   return false;
1209 }
1210 
1211 /// Return true if Op is an instruction defined in the given block.
1212 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1213   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1214     if (OpInst->getParent() == BB)
1215       return true;
1216   return false;
1217 }
1218 
1219 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1220 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1221 /// This is an important optimization that encourages jump threading, and needs
1222 /// to be run interlaced with other jump threading tasks.
1223 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1224   // Don't hack volatile and ordered loads.
1225   if (!LoadI->isUnordered()) return false;
1226 
1227   // If the load is defined in a block with exactly one predecessor, it can't be
1228   // partially redundant.
1229   BasicBlock *LoadBB = LoadI->getParent();
1230   if (LoadBB->getSinglePredecessor())
1231     return false;
1232 
1233   // If the load is defined in an EH pad, it can't be partially redundant,
1234   // because the edges between the invoke and the EH pad cannot have other
1235   // instructions between them.
1236   if (LoadBB->isEHPad())
1237     return false;
1238 
1239   Value *LoadedPtr = LoadI->getOperand(0);
1240 
1241   // If the loaded operand is defined in the LoadBB and its not a phi,
1242   // it can't be available in predecessors.
1243   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1244     return false;
1245 
1246   // Scan a few instructions up from the load, to see if it is obviously live at
1247   // the entry to its block.
1248   BasicBlock::iterator BBIt(LoadI);
1249   bool IsLoadCSE;
1250   BatchAAResults BatchAA(*AA);
1251   // The dominator tree is updated lazily and may not be valid at this point.
1252   BatchAA.disableDominatorTree();
1253   if (Value *AvailableVal = FindAvailableLoadedValue(
1254           LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) {
1255     // If the value of the load is locally available within the block, just use
1256     // it.  This frequently occurs for reg2mem'd allocas.
1257 
1258     if (IsLoadCSE) {
1259       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1260       combineMetadataForCSE(NLoadI, LoadI, false);
1261       LVI->forgetValue(NLoadI);
1262     };
1263 
1264     // If the returned value is the load itself, replace with poison. This can
1265     // only happen in dead loops.
1266     if (AvailableVal == LoadI)
1267       AvailableVal = PoisonValue::get(LoadI->getType());
1268     if (AvailableVal->getType() != LoadI->getType()) {
1269       AvailableVal = CastInst::CreateBitOrPointerCast(
1270           AvailableVal, LoadI->getType(), "", LoadI->getIterator());
1271       cast<Instruction>(AvailableVal)->setDebugLoc(LoadI->getDebugLoc());
1272     }
1273     LoadI->replaceAllUsesWith(AvailableVal);
1274     LoadI->eraseFromParent();
1275     return true;
1276   }
1277 
1278   // Otherwise, if we scanned the whole block and got to the top of the block,
1279   // we know the block is locally transparent to the load.  If not, something
1280   // might clobber its value.
1281   if (BBIt != LoadBB->begin())
1282     return false;
1283 
1284   // If all of the loads and stores that feed the value have the same AA tags,
1285   // then we can propagate them onto any newly inserted loads.
1286   AAMDNodes AATags = LoadI->getAAMetadata();
1287 
1288   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1289 
1290   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1291 
1292   AvailablePredsTy AvailablePreds;
1293   BasicBlock *OneUnavailablePred = nullptr;
1294   SmallVector<LoadInst*, 8> CSELoads;
1295 
1296   // If we got here, the loaded value is transparent through to the start of the
1297   // block.  Check to see if it is available in any of the predecessor blocks.
1298   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1299     // If we already scanned this predecessor, skip it.
1300     if (!PredsScanned.insert(PredBB).second)
1301       continue;
1302 
1303     BBIt = PredBB->end();
1304     unsigned NumScanedInst = 0;
1305     Value *PredAvailable = nullptr;
1306     // NOTE: We don't CSE load that is volatile or anything stronger than
1307     // unordered, that should have been checked when we entered the function.
1308     assert(LoadI->isUnordered() &&
1309            "Attempting to CSE volatile or atomic loads");
1310     // If this is a load on a phi pointer, phi-translate it and search
1311     // for available load/store to the pointer in predecessors.
1312     Type *AccessTy = LoadI->getType();
1313     const auto &DL = LoadI->getDataLayout();
1314     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1315                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1316                        AATags);
1317     PredAvailable = findAvailablePtrLoadStore(
1318         Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1319         &BatchAA, &IsLoadCSE, &NumScanedInst);
1320 
1321     // If PredBB has a single predecessor, continue scanning through the
1322     // single predecessor.
1323     BasicBlock *SinglePredBB = PredBB;
1324     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1325            NumScanedInst < DefMaxInstsToScan) {
1326       SinglePredBB = SinglePredBB->getSinglePredecessor();
1327       if (SinglePredBB) {
1328         BBIt = SinglePredBB->end();
1329         PredAvailable = findAvailablePtrLoadStore(
1330             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1331             (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE,
1332             &NumScanedInst);
1333       }
1334     }
1335 
1336     if (!PredAvailable) {
1337       OneUnavailablePred = PredBB;
1338       continue;
1339     }
1340 
1341     if (IsLoadCSE)
1342       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1343 
1344     // If so, this load is partially redundant.  Remember this info so that we
1345     // can create a PHI node.
1346     AvailablePreds.emplace_back(PredBB, PredAvailable);
1347   }
1348 
1349   // If the loaded value isn't available in any predecessor, it isn't partially
1350   // redundant.
1351   if (AvailablePreds.empty()) return false;
1352 
1353   // Okay, the loaded value is available in at least one (and maybe all!)
1354   // predecessors.  If the value is unavailable in more than one unique
1355   // predecessor, we want to insert a merge block for those common predecessors.
1356   // This ensures that we only have to insert one reload, thus not increasing
1357   // code size.
1358   BasicBlock *UnavailablePred = nullptr;
1359 
1360   // If the value is unavailable in one of predecessors, we will end up
1361   // inserting a new instruction into them. It is only valid if all the
1362   // instructions before LoadI are guaranteed to pass execution to its
1363   // successor, or if LoadI is safe to speculate.
1364   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1365   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1366   // It requires domination tree analysis, so for this simple case it is an
1367   // overkill.
1368   if (PredsScanned.size() != AvailablePreds.size() &&
1369       !isSafeToSpeculativelyExecute(LoadI))
1370     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1371       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1372         return false;
1373 
1374   // If there is exactly one predecessor where the value is unavailable, the
1375   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1376   // unconditional branch, we know that it isn't a critical edge.
1377   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1378       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1379     UnavailablePred = OneUnavailablePred;
1380   } else if (PredsScanned.size() != AvailablePreds.size()) {
1381     // Otherwise, we had multiple unavailable predecessors or we had a critical
1382     // edge from the one.
1383     SmallVector<BasicBlock*, 8> PredsToSplit;
1384     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1385 
1386     for (const auto &AvailablePred : AvailablePreds)
1387       AvailablePredSet.insert(AvailablePred.first);
1388 
1389     // Add all the unavailable predecessors to the PredsToSplit list.
1390     for (BasicBlock *P : predecessors(LoadBB)) {
1391       // If the predecessor is an indirect goto, we can't split the edge.
1392       if (isa<IndirectBrInst>(P->getTerminator()))
1393         return false;
1394 
1395       if (!AvailablePredSet.count(P))
1396         PredsToSplit.push_back(P);
1397     }
1398 
1399     // Split them out to their own block.
1400     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1401   }
1402 
1403   // If the value isn't available in all predecessors, then there will be
1404   // exactly one where it isn't available.  Insert a load on that edge and add
1405   // it to the AvailablePreds list.
1406   if (UnavailablePred) {
1407     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1408            "Can't handle critical edge here!");
1409     LoadInst *NewVal = new LoadInst(
1410         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1411         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1412         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1413         UnavailablePred->getTerminator()->getIterator());
1414     NewVal->setDebugLoc(LoadI->getDebugLoc());
1415     if (AATags)
1416       NewVal->setAAMetadata(AATags);
1417 
1418     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1419   }
1420 
1421   // Now we know that each predecessor of this block has a value in
1422   // AvailablePreds, sort them for efficient access as we're walking the preds.
1423   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1424 
1425   // Create a PHI node at the start of the block for the PRE'd load value.
1426   PHINode *PN = PHINode::Create(LoadI->getType(), pred_size(LoadBB), "");
1427   PN->insertBefore(LoadBB->begin());
1428   PN->takeName(LoadI);
1429   PN->setDebugLoc(LoadI->getDebugLoc());
1430 
1431   // Insert new entries into the PHI for each predecessor.  A single block may
1432   // have multiple entries here.
1433   for (BasicBlock *P : predecessors(LoadBB)) {
1434     AvailablePredsTy::iterator I =
1435         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1436 
1437     assert(I != AvailablePreds.end() && I->first == P &&
1438            "Didn't find entry for predecessor!");
1439 
1440     // If we have an available predecessor but it requires casting, insert the
1441     // cast in the predecessor and use the cast. Note that we have to update the
1442     // AvailablePreds vector as we go so that all of the PHI entries for this
1443     // predecessor use the same bitcast.
1444     Value *&PredV = I->second;
1445     if (PredV->getType() != LoadI->getType())
1446       PredV = CastInst::CreateBitOrPointerCast(
1447           PredV, LoadI->getType(), "", P->getTerminator()->getIterator());
1448 
1449     PN->addIncoming(PredV, I->first);
1450   }
1451 
1452   for (LoadInst *PredLoadI : CSELoads) {
1453     combineMetadataForCSE(PredLoadI, LoadI, true);
1454     LVI->forgetValue(PredLoadI);
1455   }
1456 
1457   LoadI->replaceAllUsesWith(PN);
1458   LoadI->eraseFromParent();
1459 
1460   return true;
1461 }
1462 
1463 /// findMostPopularDest - The specified list contains multiple possible
1464 /// threadable destinations.  Pick the one that occurs the most frequently in
1465 /// the list.
1466 static BasicBlock *
1467 findMostPopularDest(BasicBlock *BB,
1468                     const SmallVectorImpl<std::pair<BasicBlock *,
1469                                           BasicBlock *>> &PredToDestList) {
1470   assert(!PredToDestList.empty());
1471 
1472   // Determine popularity.  If there are multiple possible destinations, we
1473   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1474   // blocks with known and real destinations to threading undef.  We'll handle
1475   // them later if interesting.
1476   MapVector<BasicBlock *, unsigned> DestPopularity;
1477 
1478   // Populate DestPopularity with the successors in the order they appear in the
1479   // successor list.  This way, we ensure determinism by iterating it in the
1480   // same order in llvm::max_element below.  We map nullptr to 0 so that we can
1481   // return nullptr when PredToDestList contains nullptr only.
1482   DestPopularity[nullptr] = 0;
1483   for (auto *SuccBB : successors(BB))
1484     DestPopularity[SuccBB] = 0;
1485 
1486   for (const auto &PredToDest : PredToDestList)
1487     if (PredToDest.second)
1488       DestPopularity[PredToDest.second]++;
1489 
1490   // Find the most popular dest.
1491   auto MostPopular = llvm::max_element(DestPopularity, llvm::less_second());
1492 
1493   // Okay, we have finally picked the most popular destination.
1494   return MostPopular->first;
1495 }
1496 
1497 // Try to evaluate the value of V when the control flows from PredPredBB to
1498 // BB->getSinglePredecessor() and then on to BB.
1499 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1500                                                        BasicBlock *PredPredBB,
1501                                                        Value *V,
1502                                                        const DataLayout &DL) {
1503   BasicBlock *PredBB = BB->getSinglePredecessor();
1504   assert(PredBB && "Expected a single predecessor");
1505 
1506   if (Constant *Cst = dyn_cast<Constant>(V)) {
1507     return Cst;
1508   }
1509 
1510   // Consult LVI if V is not an instruction in BB or PredBB.
1511   Instruction *I = dyn_cast<Instruction>(V);
1512   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1513     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1514   }
1515 
1516   // Look into a PHI argument.
1517   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1518     if (PHI->getParent() == PredBB)
1519       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1520     return nullptr;
1521   }
1522 
1523   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1524   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1525     if (CondCmp->getParent() == BB) {
1526       Constant *Op0 =
1527           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0), DL);
1528       Constant *Op1 =
1529           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1), DL);
1530       if (Op0 && Op1) {
1531         return ConstantFoldCompareInstOperands(CondCmp->getPredicate(), Op0,
1532                                                Op1, DL);
1533       }
1534     }
1535     return nullptr;
1536   }
1537 
1538   return nullptr;
1539 }
1540 
1541 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1542                                                ConstantPreference Preference,
1543                                                Instruction *CxtI) {
1544   // If threading this would thread across a loop header, don't even try to
1545   // thread the edge.
1546   if (LoopHeaders.count(BB))
1547     return false;
1548 
1549   PredValueInfoTy PredValues;
1550   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1551                                        CxtI)) {
1552     // We don't have known values in predecessors.  See if we can thread through
1553     // BB and its sole predecessor.
1554     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1555   }
1556 
1557   assert(!PredValues.empty() &&
1558          "computeValueKnownInPredecessors returned true with no values");
1559 
1560   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1561              for (const auto &PredValue : PredValues) {
1562                dbgs() << "  BB '" << BB->getName()
1563                       << "': FOUND condition = " << *PredValue.first
1564                       << " for pred '" << PredValue.second->getName() << "'.\n";
1565   });
1566 
1567   // Decide what we want to thread through.  Convert our list of known values to
1568   // a list of known destinations for each pred.  This also discards duplicate
1569   // predecessors and keeps track of the undefined inputs (which are represented
1570   // as a null dest in the PredToDestList).
1571   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1572   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1573 
1574   BasicBlock *OnlyDest = nullptr;
1575   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1576   Constant *OnlyVal = nullptr;
1577   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1578 
1579   for (const auto &PredValue : PredValues) {
1580     BasicBlock *Pred = PredValue.second;
1581     if (!SeenPreds.insert(Pred).second)
1582       continue;  // Duplicate predecessor entry.
1583 
1584     Constant *Val = PredValue.first;
1585 
1586     BasicBlock *DestBB;
1587     if (isa<UndefValue>(Val))
1588       DestBB = nullptr;
1589     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1590       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1591       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1592     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1593       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1594       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1595     } else {
1596       assert(isa<IndirectBrInst>(BB->getTerminator())
1597               && "Unexpected terminator");
1598       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1599       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1600     }
1601 
1602     // If we have exactly one destination, remember it for efficiency below.
1603     if (PredToDestList.empty()) {
1604       OnlyDest = DestBB;
1605       OnlyVal = Val;
1606     } else {
1607       if (OnlyDest != DestBB)
1608         OnlyDest = MultipleDestSentinel;
1609       // It possible we have same destination, but different value, e.g. default
1610       // case in switchinst.
1611       if (Val != OnlyVal)
1612         OnlyVal = MultipleVal;
1613     }
1614 
1615     // If the predecessor ends with an indirect goto, we can't change its
1616     // destination.
1617     if (isa<IndirectBrInst>(Pred->getTerminator()))
1618       continue;
1619 
1620     PredToDestList.emplace_back(Pred, DestBB);
1621   }
1622 
1623   // If all edges were unthreadable, we fail.
1624   if (PredToDestList.empty())
1625     return false;
1626 
1627   // If all the predecessors go to a single known successor, we want to fold,
1628   // not thread. By doing so, we do not need to duplicate the current block and
1629   // also miss potential opportunities in case we dont/cant duplicate.
1630   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1631     if (BB->hasNPredecessors(PredToDestList.size())) {
1632       bool SeenFirstBranchToOnlyDest = false;
1633       std::vector <DominatorTree::UpdateType> Updates;
1634       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1635       for (BasicBlock *SuccBB : successors(BB)) {
1636         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1637           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1638         } else {
1639           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1640           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1641         }
1642       }
1643 
1644       // Finally update the terminator.
1645       Instruction *Term = BB->getTerminator();
1646       Instruction *NewBI = BranchInst::Create(OnlyDest, Term->getIterator());
1647       NewBI->setDebugLoc(Term->getDebugLoc());
1648       ++NumFolds;
1649       Term->eraseFromParent();
1650       DTU->applyUpdatesPermissive(Updates);
1651       if (auto *BPI = getBPI())
1652         BPI->eraseBlock(BB);
1653 
1654       // If the condition is now dead due to the removal of the old terminator,
1655       // erase it.
1656       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1657         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1658           CondInst->eraseFromParent();
1659         // We can safely replace *some* uses of the CondInst if it has
1660         // exactly one value as returned by LVI. RAUW is incorrect in the
1661         // presence of guards and assumes, that have the `Cond` as the use. This
1662         // is because we use the guards/assume to reason about the `Cond` value
1663         // at the end of block, but RAUW unconditionally replaces all uses
1664         // including the guards/assumes themselves and the uses before the
1665         // guard/assume.
1666         else if (OnlyVal && OnlyVal != MultipleVal)
1667           replaceFoldableUses(CondInst, OnlyVal, BB);
1668       }
1669       return true;
1670     }
1671   }
1672 
1673   // Determine which is the most common successor.  If we have many inputs and
1674   // this block is a switch, we want to start by threading the batch that goes
1675   // to the most popular destination first.  If we only know about one
1676   // threadable destination (the common case) we can avoid this.
1677   BasicBlock *MostPopularDest = OnlyDest;
1678 
1679   if (MostPopularDest == MultipleDestSentinel) {
1680     // Remove any loop headers from the Dest list, threadEdge conservatively
1681     // won't process them, but we might have other destination that are eligible
1682     // and we still want to process.
1683     erase_if(PredToDestList,
1684              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1685                return LoopHeaders.contains(PredToDest.second);
1686              });
1687 
1688     if (PredToDestList.empty())
1689       return false;
1690 
1691     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1692   }
1693 
1694   // Now that we know what the most popular destination is, factor all
1695   // predecessors that will jump to it into a single predecessor.
1696   SmallVector<BasicBlock*, 16> PredsToFactor;
1697   for (const auto &PredToDest : PredToDestList)
1698     if (PredToDest.second == MostPopularDest) {
1699       BasicBlock *Pred = PredToDest.first;
1700 
1701       // This predecessor may be a switch or something else that has multiple
1702       // edges to the block.  Factor each of these edges by listing them
1703       // according to # occurrences in PredsToFactor.
1704       for (BasicBlock *Succ : successors(Pred))
1705         if (Succ == BB)
1706           PredsToFactor.push_back(Pred);
1707     }
1708 
1709   // If the threadable edges are branching on an undefined value, we get to pick
1710   // the destination that these predecessors should get to.
1711   if (!MostPopularDest)
1712     MostPopularDest = BB->getTerminator()->
1713                             getSuccessor(getBestDestForJumpOnUndef(BB));
1714 
1715   // Ok, try to thread it!
1716   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1717 }
1718 
1719 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1720 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1721 /// simplifications we can do based on inputs to the phi node.
1722 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1723   BasicBlock *BB = PN->getParent();
1724 
1725   // TODO: We could make use of this to do it once for blocks with common PHI
1726   // values.
1727   SmallVector<BasicBlock*, 1> PredBBs;
1728   PredBBs.resize(1);
1729 
1730   // If any of the predecessor blocks end in an unconditional branch, we can
1731   // *duplicate* the conditional branch into that block in order to further
1732   // encourage jump threading and to eliminate cases where we have branch on a
1733   // phi of an icmp (branch on icmp is much better).
1734   // This is still beneficial when a frozen phi is used as the branch condition
1735   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1736   // to br(icmp(freeze ...)).
1737   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1738     BasicBlock *PredBB = PN->getIncomingBlock(i);
1739     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1740       if (PredBr->isUnconditional()) {
1741         PredBBs[0] = PredBB;
1742         // Try to duplicate BB into PredBB.
1743         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1744           return true;
1745       }
1746   }
1747 
1748   return false;
1749 }
1750 
1751 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1752 /// a xor instruction in the current block.  See if there are any
1753 /// simplifications we can do based on inputs to the xor.
1754 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1755   BasicBlock *BB = BO->getParent();
1756 
1757   // If either the LHS or RHS of the xor is a constant, don't do this
1758   // optimization.
1759   if (isa<ConstantInt>(BO->getOperand(0)) ||
1760       isa<ConstantInt>(BO->getOperand(1)))
1761     return false;
1762 
1763   // If the first instruction in BB isn't a phi, we won't be able to infer
1764   // anything special about any particular predecessor.
1765   if (!isa<PHINode>(BB->front()))
1766     return false;
1767 
1768   // If this BB is a landing pad, we won't be able to split the edge into it.
1769   if (BB->isEHPad())
1770     return false;
1771 
1772   // If we have a xor as the branch input to this block, and we know that the
1773   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1774   // the condition into the predecessor and fix that value to true, saving some
1775   // logical ops on that path and encouraging other paths to simplify.
1776   //
1777   // This copies something like this:
1778   //
1779   //  BB:
1780   //    %X = phi i1 [1],  [%X']
1781   //    %Y = icmp eq i32 %A, %B
1782   //    %Z = xor i1 %X, %Y
1783   //    br i1 %Z, ...
1784   //
1785   // Into:
1786   //  BB':
1787   //    %Y = icmp ne i32 %A, %B
1788   //    br i1 %Y, ...
1789 
1790   PredValueInfoTy XorOpValues;
1791   bool isLHS = true;
1792   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1793                                        WantInteger, BO)) {
1794     assert(XorOpValues.empty());
1795     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1796                                          WantInteger, BO))
1797       return false;
1798     isLHS = false;
1799   }
1800 
1801   assert(!XorOpValues.empty() &&
1802          "computeValueKnownInPredecessors returned true with no values");
1803 
1804   // Scan the information to see which is most popular: true or false.  The
1805   // predecessors can be of the set true, false, or undef.
1806   unsigned NumTrue = 0, NumFalse = 0;
1807   for (const auto &XorOpValue : XorOpValues) {
1808     if (isa<UndefValue>(XorOpValue.first))
1809       // Ignore undefs for the count.
1810       continue;
1811     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1812       ++NumFalse;
1813     else
1814       ++NumTrue;
1815   }
1816 
1817   // Determine which value to split on, true, false, or undef if neither.
1818   ConstantInt *SplitVal = nullptr;
1819   if (NumTrue > NumFalse)
1820     SplitVal = ConstantInt::getTrue(BB->getContext());
1821   else if (NumTrue != 0 || NumFalse != 0)
1822     SplitVal = ConstantInt::getFalse(BB->getContext());
1823 
1824   // Collect all of the blocks that this can be folded into so that we can
1825   // factor this once and clone it once.
1826   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1827   for (const auto &XorOpValue : XorOpValues) {
1828     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1829       continue;
1830 
1831     BlocksToFoldInto.push_back(XorOpValue.second);
1832   }
1833 
1834   // If we inferred a value for all of the predecessors, then duplication won't
1835   // help us.  However, we can just replace the LHS or RHS with the constant.
1836   if (BlocksToFoldInto.size() ==
1837       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1838     if (!SplitVal) {
1839       // If all preds provide undef, just nuke the xor, because it is undef too.
1840       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1841       BO->eraseFromParent();
1842     } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1843       // If all preds provide 0, replace the xor with the other input.
1844       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1845       BO->eraseFromParent();
1846     } else {
1847       // If all preds provide 1, set the computed value to 1.
1848       BO->setOperand(!isLHS, SplitVal);
1849     }
1850 
1851     return true;
1852   }
1853 
1854   // If any of predecessors end with an indirect goto, we can't change its
1855   // destination.
1856   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1857         return isa<IndirectBrInst>(Pred->getTerminator());
1858       }))
1859     return false;
1860 
1861   // Try to duplicate BB into PredBB.
1862   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1863 }
1864 
1865 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1866 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1867 /// NewPred using the entries from OldPred (suitably mapped).
1868 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1869                                             BasicBlock *OldPred,
1870                                             BasicBlock *NewPred,
1871                                             ValueToValueMapTy &ValueMap) {
1872   for (PHINode &PN : PHIBB->phis()) {
1873     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1874     // DestBlock.
1875     Value *IV = PN.getIncomingValueForBlock(OldPred);
1876 
1877     // Remap the value if necessary.
1878     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1879       ValueToValueMapTy::iterator I = ValueMap.find(Inst);
1880       if (I != ValueMap.end())
1881         IV = I->second;
1882     }
1883 
1884     PN.addIncoming(IV, NewPred);
1885   }
1886 }
1887 
1888 /// Merge basic block BB into its sole predecessor if possible.
1889 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1890   BasicBlock *SinglePred = BB->getSinglePredecessor();
1891   if (!SinglePred)
1892     return false;
1893 
1894   const Instruction *TI = SinglePred->getTerminator();
1895   if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 ||
1896       SinglePred == BB || hasAddressTakenAndUsed(BB))
1897     return false;
1898 
1899   // If SinglePred was a loop header, BB becomes one.
1900   if (LoopHeaders.erase(SinglePred))
1901     LoopHeaders.insert(BB);
1902 
1903   LVI->eraseBlock(SinglePred);
1904   MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1905 
1906   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1907   // BB code within one basic block `BB`), we need to invalidate the LVI
1908   // information associated with BB, because the LVI information need not be
1909   // true for all of BB after the merge. For example,
1910   // Before the merge, LVI info and code is as follows:
1911   // SinglePred: <LVI info1 for %p val>
1912   // %y = use of %p
1913   // call @exit() // need not transfer execution to successor.
1914   // assume(%p) // from this point on %p is true
1915   // br label %BB
1916   // BB: <LVI info2 for %p val, i.e. %p is true>
1917   // %x = use of %p
1918   // br label exit
1919   //
1920   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1921   // (info2 and info1 respectively). After the merge and the deletion of the
1922   // LVI info1 for SinglePred. We have the following code:
1923   // BB: <LVI info2 for %p val>
1924   // %y = use of %p
1925   // call @exit()
1926   // assume(%p)
1927   // %x = use of %p <-- LVI info2 is correct from here onwards.
1928   // br label exit
1929   // LVI info2 for BB is incorrect at the beginning of BB.
1930 
1931   // Invalidate LVI information for BB if the LVI is not provably true for
1932   // all of BB.
1933   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1934     LVI->eraseBlock(BB);
1935   return true;
1936 }
1937 
1938 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1939 /// ValueMapping maps old values in BB to new ones in NewBB.
1940 void JumpThreadingPass::updateSSA(BasicBlock *BB, BasicBlock *NewBB,
1941                                   ValueToValueMapTy &ValueMapping) {
1942   // If there were values defined in BB that are used outside the block, then we
1943   // now have to update all uses of the value to use either the original value,
1944   // the cloned value, or some PHI derived value.  This can require arbitrary
1945   // PHI insertion, of which we are prepared to do, clean these up now.
1946   SSAUpdater SSAUpdate;
1947   SmallVector<Use *, 16> UsesToRename;
1948   SmallVector<DbgValueInst *, 4> DbgValues;
1949   SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1950 
1951   for (Instruction &I : *BB) {
1952     // Scan all uses of this instruction to see if it is used outside of its
1953     // block, and if so, record them in UsesToRename.
1954     for (Use &U : I.uses()) {
1955       Instruction *User = cast<Instruction>(U.getUser());
1956       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1957         if (UserPN->getIncomingBlock(U) == BB)
1958           continue;
1959       } else if (User->getParent() == BB)
1960         continue;
1961 
1962       UsesToRename.push_back(&U);
1963     }
1964 
1965     // Find debug values outside of the block
1966     findDbgValues(DbgValues, &I, &DbgVariableRecords);
1967     llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) {
1968       return DbgVal->getParent() == BB;
1969     });
1970     llvm::erase_if(DbgVariableRecords, [&](const DbgVariableRecord *DbgVarRec) {
1971       return DbgVarRec->getParent() == BB;
1972     });
1973 
1974     // If there are no uses outside the block, we're done with this instruction.
1975     if (UsesToRename.empty() && DbgValues.empty() && DbgVariableRecords.empty())
1976       continue;
1977     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1978 
1979     // We found a use of I outside of BB.  Rename all uses of I that are outside
1980     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1981     // with the two values we know.
1982     SSAUpdate.Initialize(I.getType(), I.getName());
1983     SSAUpdate.AddAvailableValue(BB, &I);
1984     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1985 
1986     while (!UsesToRename.empty())
1987       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1988     if (!DbgValues.empty() || !DbgVariableRecords.empty()) {
1989       SSAUpdate.UpdateDebugValues(&I, DbgValues);
1990       SSAUpdate.UpdateDebugValues(&I, DbgVariableRecords);
1991       DbgValues.clear();
1992       DbgVariableRecords.clear();
1993     }
1994 
1995     LLVM_DEBUG(dbgs() << "\n");
1996   }
1997 }
1998 
1999 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2000 /// arguments that come from PredBB.  Return the map from the variables in the
2001 /// source basic block to the variables in the newly created basic block.
2002 
2003 void JumpThreadingPass::cloneInstructions(ValueToValueMapTy &ValueMapping,
2004                                           BasicBlock::iterator BI,
2005                                           BasicBlock::iterator BE,
2006                                           BasicBlock *NewBB,
2007                                           BasicBlock *PredBB) {
2008   // We are going to have to map operands from the source basic block to the new
2009   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2010   // block, evaluate them to account for entry from PredBB.
2011 
2012   // Retargets llvm.dbg.value to any renamed variables.
2013   auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2014     auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2015     if (!DbgInstruction)
2016       return false;
2017 
2018     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2019     for (auto DbgOperand : DbgInstruction->location_ops()) {
2020       auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2021       if (!DbgOperandInstruction)
2022         continue;
2023 
2024       auto I = ValueMapping.find(DbgOperandInstruction);
2025       if (I != ValueMapping.end()) {
2026         OperandsToRemap.insert(
2027             std::pair<Value *, Value *>(DbgOperand, I->second));
2028       }
2029     }
2030 
2031     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2032       DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2033     return true;
2034   };
2035 
2036   // Duplicate implementation of the above dbg.value code, using
2037   // DbgVariableRecords instead.
2038   auto RetargetDbgVariableRecordIfPossible = [&](DbgVariableRecord *DVR) {
2039     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2040     for (auto *Op : DVR->location_ops()) {
2041       Instruction *OpInst = dyn_cast<Instruction>(Op);
2042       if (!OpInst)
2043         continue;
2044 
2045       auto I = ValueMapping.find(OpInst);
2046       if (I != ValueMapping.end())
2047         OperandsToRemap.insert({OpInst, I->second});
2048     }
2049 
2050     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2051       DVR->replaceVariableLocationOp(OldOp, MappedOp);
2052   };
2053 
2054   BasicBlock *RangeBB = BI->getParent();
2055 
2056   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2057   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2058   // might need to rewrite the operand of the cloned phi.
2059   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2060     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2061     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2062     ValueMapping[PN] = NewPN;
2063   }
2064 
2065   // Clone noalias scope declarations in the threaded block. When threading a
2066   // loop exit, we would otherwise end up with two idential scope declarations
2067   // visible at the same time.
2068   SmallVector<MDNode *> NoAliasScopes;
2069   DenseMap<MDNode *, MDNode *> ClonedScopes;
2070   LLVMContext &Context = PredBB->getContext();
2071   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2072   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2073 
2074   auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) {
2075     auto DVRRange = NewInst->cloneDebugInfoFrom(From);
2076     for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2077       RetargetDbgVariableRecordIfPossible(&DVR);
2078   };
2079 
2080   // Clone the non-phi instructions of the source basic block into NewBB,
2081   // keeping track of the mapping and using it to remap operands in the cloned
2082   // instructions.
2083   for (; BI != BE; ++BI) {
2084     Instruction *New = BI->clone();
2085     New->setName(BI->getName());
2086     New->insertInto(NewBB, NewBB->end());
2087     ValueMapping[&*BI] = New;
2088     adaptNoAliasScopes(New, ClonedScopes, Context);
2089 
2090     CloneAndRemapDbgInfo(New, &*BI);
2091 
2092     if (RetargetDbgValueIfPossible(New))
2093       continue;
2094 
2095     // Remap operands to patch up intra-block references.
2096     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2097       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2098         ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2099         if (I != ValueMapping.end())
2100           New->setOperand(i, I->second);
2101       }
2102   }
2103 
2104   // There may be DbgVariableRecords on the terminator, clone directly from
2105   // marker to marker as there isn't an instruction there.
2106   if (BE != RangeBB->end() && BE->hasDbgRecords()) {
2107     // Dump them at the end.
2108     DbgMarker *Marker = RangeBB->getMarker(BE);
2109     DbgMarker *EndMarker = NewBB->createMarker(NewBB->end());
2110     auto DVRRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt);
2111     for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2112       RetargetDbgVariableRecordIfPossible(&DVR);
2113   }
2114 
2115   return;
2116 }
2117 
2118 /// Attempt to thread through two successive basic blocks.
2119 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2120                                                          Value *Cond) {
2121   // Consider:
2122   //
2123   // PredBB:
2124   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2125   //   %tobool = icmp eq i32 %cond, 0
2126   //   br i1 %tobool, label %BB, label ...
2127   //
2128   // BB:
2129   //   %cmp = icmp eq i32* %var, null
2130   //   br i1 %cmp, label ..., label ...
2131   //
2132   // We don't know the value of %var at BB even if we know which incoming edge
2133   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2134   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2135   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2136 
2137   // Require that BB end with a Branch for simplicity.
2138   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2139   if (!CondBr)
2140     return false;
2141 
2142   // BB must have exactly one predecessor.
2143   BasicBlock *PredBB = BB->getSinglePredecessor();
2144   if (!PredBB)
2145     return false;
2146 
2147   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2148   // unconditional branch, we should be merging PredBB and BB instead. For
2149   // simplicity, we don't deal with a switch.
2150   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2151   if (!PredBBBranch || PredBBBranch->isUnconditional())
2152     return false;
2153 
2154   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2155   // PredBB.
2156   if (PredBB->getSinglePredecessor())
2157     return false;
2158 
2159   // Don't thread through PredBB if it contains a successor edge to itself, in
2160   // which case we would infinite loop.  Suppose we are threading an edge from
2161   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2162   // successor edge to itself.  If we allowed jump threading in this case, we
2163   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2164   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2165   // with another jump threading opportunity from PredBB.thread through PredBB
2166   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2167   // would keep peeling one iteration from PredBB.
2168   if (llvm::is_contained(successors(PredBB), PredBB))
2169     return false;
2170 
2171   // Don't thread across a loop header.
2172   if (LoopHeaders.count(PredBB))
2173     return false;
2174 
2175   // Avoid complication with duplicating EH pads.
2176   if (PredBB->isEHPad())
2177     return false;
2178 
2179   // Find a predecessor that we can thread.  For simplicity, we only consider a
2180   // successor edge out of BB to which we thread exactly one incoming edge into
2181   // PredBB.
2182   unsigned ZeroCount = 0;
2183   unsigned OneCount = 0;
2184   BasicBlock *ZeroPred = nullptr;
2185   BasicBlock *OnePred = nullptr;
2186   const DataLayout &DL = BB->getDataLayout();
2187   for (BasicBlock *P : predecessors(PredBB)) {
2188     // If PredPred ends with IndirectBrInst, we can't handle it.
2189     if (isa<IndirectBrInst>(P->getTerminator()))
2190       continue;
2191     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2192             evaluateOnPredecessorEdge(BB, P, Cond, DL))) {
2193       if (CI->isZero()) {
2194         ZeroCount++;
2195         ZeroPred = P;
2196       } else if (CI->isOne()) {
2197         OneCount++;
2198         OnePred = P;
2199       }
2200     }
2201   }
2202 
2203   // Disregard complicated cases where we have to thread multiple edges.
2204   BasicBlock *PredPredBB;
2205   if (ZeroCount == 1) {
2206     PredPredBB = ZeroPred;
2207   } else if (OneCount == 1) {
2208     PredPredBB = OnePred;
2209   } else {
2210     return false;
2211   }
2212 
2213   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2214 
2215   // If threading to the same block as we come from, we would infinite loop.
2216   if (SuccBB == BB) {
2217     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2218                       << "' - would thread to self!\n");
2219     return false;
2220   }
2221 
2222   // If threading this would thread across a loop header, don't thread the edge.
2223   // See the comments above findLoopHeaders for justifications and caveats.
2224   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2225     LLVM_DEBUG({
2226       bool BBIsHeader = LoopHeaders.count(BB);
2227       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2228       dbgs() << "  Not threading across "
2229              << (BBIsHeader ? "loop header BB '" : "block BB '")
2230              << BB->getName() << "' to dest "
2231              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2232              << SuccBB->getName()
2233              << "' - it might create an irreducible loop!\n";
2234     });
2235     return false;
2236   }
2237 
2238   // Compute the cost of duplicating BB and PredBB.
2239   unsigned BBCost = getJumpThreadDuplicationCost(
2240       TTI, BB, BB->getTerminator(), BBDupThreshold);
2241   unsigned PredBBCost = getJumpThreadDuplicationCost(
2242       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2243 
2244   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2245   // individually before checking their sum because getJumpThreadDuplicationCost
2246   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2247   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2248       BBCost + PredBBCost > BBDupThreshold) {
2249     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2250                       << "' - Cost is too high: " << PredBBCost
2251                       << " for PredBB, " << BBCost << "for BB\n");
2252     return false;
2253   }
2254 
2255   // Now we are ready to duplicate PredBB.
2256   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2257   return true;
2258 }
2259 
2260 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2261                                                     BasicBlock *PredBB,
2262                                                     BasicBlock *BB,
2263                                                     BasicBlock *SuccBB) {
2264   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2265                     << BB->getName() << "'\n");
2266 
2267   // Build BPI/BFI before any changes are made to IR.
2268   bool HasProfile = doesBlockHaveProfileData(BB);
2269   auto *BFI = getOrCreateBFI(HasProfile);
2270   auto *BPI = getOrCreateBPI(BFI != nullptr);
2271 
2272   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2273   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2274 
2275   BasicBlock *NewBB =
2276       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2277                          PredBB->getParent(), PredBB);
2278   NewBB->moveAfter(PredBB);
2279 
2280   // Set the block frequency of NewBB.
2281   if (BFI) {
2282     assert(BPI && "It's expected BPI to exist along with BFI");
2283     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2284                      BPI->getEdgeProbability(PredPredBB, PredBB);
2285     BFI->setBlockFreq(NewBB, NewBBFreq);
2286   }
2287 
2288   // We are going to have to map operands from the original BB block to the new
2289   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2290   // to account for entry from PredPredBB.
2291   ValueToValueMapTy ValueMapping;
2292   cloneInstructions(ValueMapping, PredBB->begin(), PredBB->end(), NewBB,
2293                     PredPredBB);
2294 
2295   // Copy the edge probabilities from PredBB to NewBB.
2296   if (BPI)
2297     BPI->copyEdgeProbabilities(PredBB, NewBB);
2298 
2299   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2300   // This eliminates predecessors from PredPredBB, which requires us to simplify
2301   // any PHI nodes in PredBB.
2302   Instruction *PredPredTerm = PredPredBB->getTerminator();
2303   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2304     if (PredPredTerm->getSuccessor(i) == PredBB) {
2305       PredBB->removePredecessor(PredPredBB, true);
2306       PredPredTerm->setSuccessor(i, NewBB);
2307     }
2308 
2309   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2310                                   ValueMapping);
2311   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2312                                   ValueMapping);
2313 
2314   DTU->applyUpdatesPermissive(
2315       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2316        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2317        {DominatorTree::Insert, PredPredBB, NewBB},
2318        {DominatorTree::Delete, PredPredBB, PredBB}});
2319 
2320   updateSSA(PredBB, NewBB, ValueMapping);
2321 
2322   // Clean up things like PHI nodes with single operands, dead instructions,
2323   // etc.
2324   SimplifyInstructionsInBlock(NewBB, TLI);
2325   SimplifyInstructionsInBlock(PredBB, TLI);
2326 
2327   SmallVector<BasicBlock *, 1> PredsToFactor;
2328   PredsToFactor.push_back(NewBB);
2329   threadEdge(BB, PredsToFactor, SuccBB);
2330 }
2331 
2332 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2333 bool JumpThreadingPass::tryThreadEdge(
2334     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2335     BasicBlock *SuccBB) {
2336   // If threading to the same block as we come from, we would infinite loop.
2337   if (SuccBB == BB) {
2338     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2339                       << "' - would thread to self!\n");
2340     return false;
2341   }
2342 
2343   // If threading this would thread across a loop header, don't thread the edge.
2344   // See the comments above findLoopHeaders for justifications and caveats.
2345   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2346     LLVM_DEBUG({
2347       bool BBIsHeader = LoopHeaders.count(BB);
2348       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2349       dbgs() << "  Not threading across "
2350           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2351           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2352           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2353     });
2354     return false;
2355   }
2356 
2357   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2358       TTI, BB, BB->getTerminator(), BBDupThreshold);
2359   if (JumpThreadCost > BBDupThreshold) {
2360     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2361                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2362     return false;
2363   }
2364 
2365   threadEdge(BB, PredBBs, SuccBB);
2366   return true;
2367 }
2368 
2369 /// threadEdge - We have decided that it is safe and profitable to factor the
2370 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2371 /// across BB.  Transform the IR to reflect this change.
2372 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2373                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2374                                    BasicBlock *SuccBB) {
2375   assert(SuccBB != BB && "Don't create an infinite loop");
2376 
2377   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2378          "Don't thread across loop headers");
2379 
2380   // Build BPI/BFI before any changes are made to IR.
2381   bool HasProfile = doesBlockHaveProfileData(BB);
2382   auto *BFI = getOrCreateBFI(HasProfile);
2383   auto *BPI = getOrCreateBPI(BFI != nullptr);
2384 
2385   // And finally, do it!  Start by factoring the predecessors if needed.
2386   BasicBlock *PredBB;
2387   if (PredBBs.size() == 1)
2388     PredBB = PredBBs[0];
2389   else {
2390     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2391                       << " common predecessors.\n");
2392     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2393   }
2394 
2395   // And finally, do it!
2396   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2397                     << "' to '" << SuccBB->getName()
2398                     << ", across block:\n    " << *BB << "\n");
2399 
2400   LVI->threadEdge(PredBB, BB, SuccBB);
2401 
2402   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2403                                          BB->getName()+".thread",
2404                                          BB->getParent(), BB);
2405   NewBB->moveAfter(PredBB);
2406 
2407   // Set the block frequency of NewBB.
2408   if (BFI) {
2409     assert(BPI && "It's expected BPI to exist along with BFI");
2410     auto NewBBFreq =
2411         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2412     BFI->setBlockFreq(NewBB, NewBBFreq);
2413   }
2414 
2415   // Copy all the instructions from BB to NewBB except the terminator.
2416   ValueToValueMapTy ValueMapping;
2417   cloneInstructions(ValueMapping, BB->begin(), std::prev(BB->end()), NewBB,
2418                     PredBB);
2419 
2420   // We didn't copy the terminator from BB over to NewBB, because there is now
2421   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2422   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2423   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2424 
2425   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2426   // PHI nodes for NewBB now.
2427   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2428 
2429   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2430   // eliminates predecessors from BB, which requires us to simplify any PHI
2431   // nodes in BB.
2432   Instruction *PredTerm = PredBB->getTerminator();
2433   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2434     if (PredTerm->getSuccessor(i) == BB) {
2435       BB->removePredecessor(PredBB, true);
2436       PredTerm->setSuccessor(i, NewBB);
2437     }
2438 
2439   // Enqueue required DT updates.
2440   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2441                                {DominatorTree::Insert, PredBB, NewBB},
2442                                {DominatorTree::Delete, PredBB, BB}});
2443 
2444   updateSSA(BB, NewBB, ValueMapping);
2445 
2446   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2447   // over the new instructions and zap any that are constants or dead.  This
2448   // frequently happens because of phi translation.
2449   SimplifyInstructionsInBlock(NewBB, TLI);
2450 
2451   // Update the edge weight from BB to SuccBB, which should be less than before.
2452   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
2453 
2454   // Threaded an edge!
2455   ++NumThreads;
2456 }
2457 
2458 /// Create a new basic block that will be the predecessor of BB and successor of
2459 /// all blocks in Preds. When profile data is available, update the frequency of
2460 /// this new block.
2461 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2462                                                ArrayRef<BasicBlock *> Preds,
2463                                                const char *Suffix) {
2464   SmallVector<BasicBlock *, 2> NewBBs;
2465 
2466   // Collect the frequencies of all predecessors of BB, which will be used to
2467   // update the edge weight of the result of splitting predecessors.
2468   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2469   auto *BFI = getBFI();
2470   if (BFI) {
2471     auto *BPI = getOrCreateBPI(true);
2472     for (auto *Pred : Preds)
2473       FreqMap.insert(std::make_pair(
2474           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2475   }
2476 
2477   // In the case when BB is a LandingPad block we create 2 new predecessors
2478   // instead of just one.
2479   if (BB->isLandingPad()) {
2480     std::string NewName = std::string(Suffix) + ".split-lp";
2481     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2482   } else {
2483     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2484   }
2485 
2486   std::vector<DominatorTree::UpdateType> Updates;
2487   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2488   for (auto *NewBB : NewBBs) {
2489     BlockFrequency NewBBFreq(0);
2490     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2491     for (auto *Pred : predecessors(NewBB)) {
2492       Updates.push_back({DominatorTree::Delete, Pred, BB});
2493       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2494       if (BFI) // Update frequencies between Pred -> NewBB.
2495         NewBBFreq += FreqMap.lookup(Pred);
2496     }
2497     if (BFI) // Apply the summed frequency to NewBB.
2498       BFI->setBlockFreq(NewBB, NewBBFreq);
2499   }
2500 
2501   DTU->applyUpdatesPermissive(Updates);
2502   return NewBBs[0];
2503 }
2504 
2505 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2506   const Instruction *TI = BB->getTerminator();
2507   if (!TI || TI->getNumSuccessors() < 2)
2508     return false;
2509 
2510   return hasValidBranchWeightMD(*TI);
2511 }
2512 
2513 /// Update the block frequency of BB and branch weight and the metadata on the
2514 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2515 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2516 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2517                                                      BasicBlock *BB,
2518                                                      BasicBlock *NewBB,
2519                                                      BasicBlock *SuccBB,
2520                                                      BlockFrequencyInfo *BFI,
2521                                                      BranchProbabilityInfo *BPI,
2522                                                      bool HasProfile) {
2523   assert(((BFI && BPI) || (!BFI && !BFI)) &&
2524          "Both BFI & BPI should either be set or unset");
2525 
2526   if (!BFI) {
2527     assert(!HasProfile &&
2528            "It's expected to have BFI/BPI when profile info exists");
2529     return;
2530   }
2531 
2532   // As the edge from PredBB to BB is deleted, we have to update the block
2533   // frequency of BB.
2534   auto BBOrigFreq = BFI->getBlockFreq(BB);
2535   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2536   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2537   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2538   BFI->setBlockFreq(BB, BBNewFreq);
2539 
2540   // Collect updated outgoing edges' frequencies from BB and use them to update
2541   // edge probabilities.
2542   SmallVector<uint64_t, 4> BBSuccFreq;
2543   for (BasicBlock *Succ : successors(BB)) {
2544     auto SuccFreq = (Succ == SuccBB)
2545                         ? BB2SuccBBFreq - NewBBFreq
2546                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2547     BBSuccFreq.push_back(SuccFreq.getFrequency());
2548   }
2549 
2550   uint64_t MaxBBSuccFreq = *llvm::max_element(BBSuccFreq);
2551 
2552   SmallVector<BranchProbability, 4> BBSuccProbs;
2553   if (MaxBBSuccFreq == 0)
2554     BBSuccProbs.assign(BBSuccFreq.size(),
2555                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2556   else {
2557     for (uint64_t Freq : BBSuccFreq)
2558       BBSuccProbs.push_back(
2559           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2560     // Normalize edge probabilities so that they sum up to one.
2561     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2562                                               BBSuccProbs.end());
2563   }
2564 
2565   // Update edge probabilities in BPI.
2566   BPI->setEdgeProbability(BB, BBSuccProbs);
2567 
2568   // Update the profile metadata as well.
2569   //
2570   // Don't do this if the profile of the transformed blocks was statically
2571   // estimated.  (This could occur despite the function having an entry
2572   // frequency in completely cold parts of the CFG.)
2573   //
2574   // In this case we don't want to suggest to subsequent passes that the
2575   // calculated weights are fully consistent.  Consider this graph:
2576   //
2577   //                 check_1
2578   //             50% /  |
2579   //             eq_1   | 50%
2580   //                 \  |
2581   //                 check_2
2582   //             50% /  |
2583   //             eq_2   | 50%
2584   //                 \  |
2585   //                 check_3
2586   //             50% /  |
2587   //             eq_3   | 50%
2588   //                 \  |
2589   //
2590   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2591   // the overall probabilities are inconsistent; the total probability that the
2592   // value is either 1, 2 or 3 is 150%.
2593   //
2594   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2595   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2596   // the loop exit edge.  Then based solely on static estimation we would assume
2597   // the loop was extremely hot.
2598   //
2599   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2600   // shouldn't make edges extremely likely or unlikely based solely on static
2601   // estimation.
2602   if (BBSuccProbs.size() >= 2 && HasProfile) {
2603     SmallVector<uint32_t, 4> Weights;
2604     for (auto Prob : BBSuccProbs)
2605       Weights.push_back(Prob.getNumerator());
2606 
2607     auto TI = BB->getTerminator();
2608     setBranchWeights(*TI, Weights, hasBranchWeightOrigin(*TI));
2609   }
2610 }
2611 
2612 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2613 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2614 /// If we can duplicate the contents of BB up into PredBB do so now, this
2615 /// improves the odds that the branch will be on an analyzable instruction like
2616 /// a compare.
2617 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2618     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2619   assert(!PredBBs.empty() && "Can't handle an empty set");
2620 
2621   // If BB is a loop header, then duplicating this block outside the loop would
2622   // cause us to transform this into an irreducible loop, don't do this.
2623   // See the comments above findLoopHeaders for justifications and caveats.
2624   if (LoopHeaders.count(BB)) {
2625     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2626                       << "' into predecessor block '" << PredBBs[0]->getName()
2627                       << "' - it might create an irreducible loop!\n");
2628     return false;
2629   }
2630 
2631   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2632       TTI, BB, BB->getTerminator(), BBDupThreshold);
2633   if (DuplicationCost > BBDupThreshold) {
2634     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2635                       << "' - Cost is too high: " << DuplicationCost << "\n");
2636     return false;
2637   }
2638 
2639   // And finally, do it!  Start by factoring the predecessors if needed.
2640   std::vector<DominatorTree::UpdateType> Updates;
2641   BasicBlock *PredBB;
2642   if (PredBBs.size() == 1)
2643     PredBB = PredBBs[0];
2644   else {
2645     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2646                       << " common predecessors.\n");
2647     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2648   }
2649   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2650 
2651   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2652   // of PredBB.
2653   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2654                     << "' into end of '" << PredBB->getName()
2655                     << "' to eliminate branch on phi.  Cost: "
2656                     << DuplicationCost << " block is:" << *BB << "\n");
2657 
2658   // Unless PredBB ends with an unconditional branch, split the edge so that we
2659   // can just clone the bits from BB into the end of the new PredBB.
2660   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2661 
2662   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2663     BasicBlock *OldPredBB = PredBB;
2664     PredBB = SplitEdge(OldPredBB, BB);
2665     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2666     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2667     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2668     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2669   }
2670 
2671   // We are going to have to map operands from the original BB block into the
2672   // PredBB block.  Evaluate PHI nodes in BB.
2673   ValueToValueMapTy ValueMapping;
2674 
2675   BasicBlock::iterator BI = BB->begin();
2676   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2677     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2678   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2679   // mapping and using it to remap operands in the cloned instructions.
2680   for (; BI != BB->end(); ++BI) {
2681     Instruction *New = BI->clone();
2682     New->insertInto(PredBB, OldPredBranch->getIterator());
2683 
2684     // Remap operands to patch up intra-block references.
2685     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2686       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2687         ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2688         if (I != ValueMapping.end())
2689           New->setOperand(i, I->second);
2690       }
2691 
2692     // Remap debug variable operands.
2693     remapDebugVariable(ValueMapping, New);
2694 
2695     // If this instruction can be simplified after the operands are updated,
2696     // just use the simplified value instead.  This frequently happens due to
2697     // phi translation.
2698     if (Value *IV = simplifyInstruction(
2699             New,
2700             {BB->getDataLayout(), TLI, nullptr, nullptr, New})) {
2701       ValueMapping[&*BI] = IV;
2702       if (!New->mayHaveSideEffects()) {
2703         New->eraseFromParent();
2704         New = nullptr;
2705         // Clone debug-info on the elided instruction to the destination
2706         // position.
2707         OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true);
2708       }
2709     } else {
2710       ValueMapping[&*BI] = New;
2711     }
2712     if (New) {
2713       // Otherwise, insert the new instruction into the block.
2714       New->setName(BI->getName());
2715       // Clone across any debug-info attached to the old instruction.
2716       New->cloneDebugInfoFrom(&*BI);
2717       // Update Dominance from simplified New instruction operands.
2718       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2719         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2720           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2721     }
2722   }
2723 
2724   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2725   // add entries to the PHI nodes for branch from PredBB now.
2726   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2727   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2728                                   ValueMapping);
2729   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2730                                   ValueMapping);
2731 
2732   updateSSA(BB, PredBB, ValueMapping);
2733 
2734   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2735   // that we nuked.
2736   BB->removePredecessor(PredBB, true);
2737 
2738   // Remove the unconditional branch at the end of the PredBB block.
2739   OldPredBranch->eraseFromParent();
2740   if (auto *BPI = getBPI())
2741     BPI->copyEdgeProbabilities(BB, PredBB);
2742   DTU->applyUpdatesPermissive(Updates);
2743 
2744   ++NumDupes;
2745   return true;
2746 }
2747 
2748 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2749 // a Select instruction in Pred. BB has other predecessors and SI is used in
2750 // a PHI node in BB. SI has no other use.
2751 // A new basic block, NewBB, is created and SI is converted to compare and
2752 // conditional branch. SI is erased from parent.
2753 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2754                                           SelectInst *SI, PHINode *SIUse,
2755                                           unsigned Idx) {
2756   // Expand the select.
2757   //
2758   // Pred --
2759   //  |    v
2760   //  |  NewBB
2761   //  |    |
2762   //  |-----
2763   //  v
2764   // BB
2765   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2766   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2767                                          BB->getParent(), BB);
2768   // Move the unconditional branch to NewBB.
2769   PredTerm->removeFromParent();
2770   PredTerm->insertInto(NewBB, NewBB->end());
2771   // Create a conditional branch and update PHI nodes.
2772   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2773   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2774   BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2775   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2776   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2777 
2778   uint64_t TrueWeight = 1;
2779   uint64_t FalseWeight = 1;
2780   // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2781   if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2782       (TrueWeight + FalseWeight) != 0) {
2783     SmallVector<BranchProbability, 2> BP;
2784     BP.emplace_back(BranchProbability::getBranchProbability(
2785         TrueWeight, TrueWeight + FalseWeight));
2786     BP.emplace_back(BranchProbability::getBranchProbability(
2787         FalseWeight, TrueWeight + FalseWeight));
2788     // Update BPI if exists.
2789     if (auto *BPI = getBPI())
2790       BPI->setEdgeProbability(Pred, BP);
2791   }
2792   // Set the block frequency of NewBB.
2793   if (auto *BFI = getBFI()) {
2794     if ((TrueWeight + FalseWeight) == 0) {
2795       TrueWeight = 1;
2796       FalseWeight = 1;
2797     }
2798     BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability(
2799         TrueWeight, TrueWeight + FalseWeight);
2800     auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
2801     BFI->setBlockFreq(NewBB, NewBBFreq);
2802   }
2803 
2804   // The select is now dead.
2805   SI->eraseFromParent();
2806   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2807                                {DominatorTree::Insert, Pred, NewBB}});
2808 
2809   // Update any other PHI nodes in BB.
2810   for (BasicBlock::iterator BI = BB->begin();
2811        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2812     if (Phi != SIUse)
2813       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2814 }
2815 
2816 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2817   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2818 
2819   if (!CondPHI || CondPHI->getParent() != BB)
2820     return false;
2821 
2822   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2823     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2824     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2825 
2826     // The second and third condition can be potentially relaxed. Currently
2827     // the conditions help to simplify the code and allow us to reuse existing
2828     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2829     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2830       continue;
2831 
2832     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2833     if (!PredTerm || !PredTerm->isUnconditional())
2834       continue;
2835 
2836     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2837     return true;
2838   }
2839   return false;
2840 }
2841 
2842 /// tryToUnfoldSelect - Look for blocks of the form
2843 /// bb1:
2844 ///   %a = select
2845 ///   br bb2
2846 ///
2847 /// bb2:
2848 ///   %p = phi [%a, %bb1] ...
2849 ///   %c = icmp %p
2850 ///   br i1 %c
2851 ///
2852 /// And expand the select into a branch structure if one of its arms allows %c
2853 /// to be folded. This later enables threading from bb1 over bb2.
2854 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2855   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2856   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2857   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2858 
2859   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2860       CondLHS->getParent() != BB)
2861     return false;
2862 
2863   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2864     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2865     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2866 
2867     // Look if one of the incoming values is a select in the corresponding
2868     // predecessor.
2869     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2870       continue;
2871 
2872     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2873     if (!PredTerm || !PredTerm->isUnconditional())
2874       continue;
2875 
2876     // Now check if one of the select values would allow us to constant fold the
2877     // terminator in BB. We don't do the transform if both sides fold, those
2878     // cases will be threaded in any case.
2879     Constant *LHSRes =
2880         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2881                                 CondRHS, Pred, BB, CondCmp);
2882     Constant *RHSRes =
2883         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2884                                 CondRHS, Pred, BB, CondCmp);
2885     if ((LHSRes || RHSRes) && LHSRes != RHSRes) {
2886       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2887       return true;
2888     }
2889   }
2890   return false;
2891 }
2892 
2893 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2894 /// same BB in the form
2895 /// bb:
2896 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2897 ///   %s = select %p, trueval, falseval
2898 ///
2899 /// or
2900 ///
2901 /// bb:
2902 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2903 ///   %c = cmp %p, 0
2904 ///   %s = select %c, trueval, falseval
2905 ///
2906 /// And expand the select into a branch structure. This later enables
2907 /// jump-threading over bb in this pass.
2908 ///
2909 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2910 /// select if the associated PHI has at least one constant.  If the unfolded
2911 /// select is not jump-threaded, it will be folded again in the later
2912 /// optimizations.
2913 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2914   // This transform would reduce the quality of msan diagnostics.
2915   // Disable this transform under MemorySanitizer.
2916   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2917     return false;
2918 
2919   // If threading this would thread across a loop header, don't thread the edge.
2920   // See the comments above findLoopHeaders for justifications and caveats.
2921   if (LoopHeaders.count(BB))
2922     return false;
2923 
2924   for (BasicBlock::iterator BI = BB->begin();
2925        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2926     // Look for a Phi having at least one constant incoming value.
2927     if (llvm::all_of(PN->incoming_values(),
2928                      [](Value *V) { return !isa<ConstantInt>(V); }))
2929       continue;
2930 
2931     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2932       using namespace PatternMatch;
2933 
2934       // Check if SI is in BB and use V as condition.
2935       if (SI->getParent() != BB)
2936         return false;
2937       Value *Cond = SI->getCondition();
2938       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2939       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2940     };
2941 
2942     SelectInst *SI = nullptr;
2943     for (Use &U : PN->uses()) {
2944       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2945         // Look for a ICmp in BB that compares PN with a constant and is the
2946         // condition of a Select.
2947         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2948             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2949           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2950             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2951               SI = SelectI;
2952               break;
2953             }
2954       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2955         // Look for a Select in BB that uses PN as condition.
2956         if (isUnfoldCandidate(SelectI, U.get())) {
2957           SI = SelectI;
2958           break;
2959         }
2960       }
2961     }
2962 
2963     if (!SI)
2964       continue;
2965     // Expand the select.
2966     Value *Cond = SI->getCondition();
2967     if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2968       Cond = new FreezeInst(Cond, "cond.fr", SI->getIterator());
2969     MDNode *BranchWeights = getBranchWeightMDNode(*SI);
2970     Instruction *Term =
2971         SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights);
2972     BasicBlock *SplitBB = SI->getParent();
2973     BasicBlock *NewBB = Term->getParent();
2974     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI->getIterator());
2975     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2976     NewPN->addIncoming(SI->getFalseValue(), BB);
2977     NewPN->setDebugLoc(SI->getDebugLoc());
2978     SI->replaceAllUsesWith(NewPN);
2979     SI->eraseFromParent();
2980     // NewBB and SplitBB are newly created blocks which require insertion.
2981     std::vector<DominatorTree::UpdateType> Updates;
2982     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2983     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2984     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2985     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2986     // BB's successors were moved to SplitBB, update DTU accordingly.
2987     for (auto *Succ : successors(SplitBB)) {
2988       Updates.push_back({DominatorTree::Delete, BB, Succ});
2989       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2990     }
2991     DTU->applyUpdatesPermissive(Updates);
2992     return true;
2993   }
2994   return false;
2995 }
2996 
2997 /// Try to propagate a guard from the current BB into one of its predecessors
2998 /// in case if another branch of execution implies that the condition of this
2999 /// guard is always true. Currently we only process the simplest case that
3000 /// looks like:
3001 ///
3002 /// Start:
3003 ///   %cond = ...
3004 ///   br i1 %cond, label %T1, label %F1
3005 /// T1:
3006 ///   br label %Merge
3007 /// F1:
3008 ///   br label %Merge
3009 /// Merge:
3010 ///   %condGuard = ...
3011 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
3012 ///
3013 /// And cond either implies condGuard or !condGuard. In this case all the
3014 /// instructions before the guard can be duplicated in both branches, and the
3015 /// guard is then threaded to one of them.
3016 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
3017   using namespace PatternMatch;
3018 
3019   // We only want to deal with two predecessors.
3020   BasicBlock *Pred1, *Pred2;
3021   auto PI = pred_begin(BB), PE = pred_end(BB);
3022   if (PI == PE)
3023     return false;
3024   Pred1 = *PI++;
3025   if (PI == PE)
3026     return false;
3027   Pred2 = *PI++;
3028   if (PI != PE)
3029     return false;
3030   if (Pred1 == Pred2)
3031     return false;
3032 
3033   // Try to thread one of the guards of the block.
3034   // TODO: Look up deeper than to immediate predecessor?
3035   auto *Parent = Pred1->getSinglePredecessor();
3036   if (!Parent || Parent != Pred2->getSinglePredecessor())
3037     return false;
3038 
3039   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3040     for (auto &I : *BB)
3041       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3042         return true;
3043 
3044   return false;
3045 }
3046 
3047 /// Try to propagate the guard from BB which is the lower block of a diamond
3048 /// to one of its branches, in case if diamond's condition implies guard's
3049 /// condition.
3050 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3051                                     BranchInst *BI) {
3052   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3053   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3054   Value *GuardCond = Guard->getArgOperand(0);
3055   Value *BranchCond = BI->getCondition();
3056   BasicBlock *TrueDest = BI->getSuccessor(0);
3057   BasicBlock *FalseDest = BI->getSuccessor(1);
3058 
3059   auto &DL = BB->getDataLayout();
3060   bool TrueDestIsSafe = false;
3061   bool FalseDestIsSafe = false;
3062 
3063   // True dest is safe if BranchCond => GuardCond.
3064   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3065   if (Impl && *Impl)
3066     TrueDestIsSafe = true;
3067   else {
3068     // False dest is safe if !BranchCond => GuardCond.
3069     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3070     if (Impl && *Impl)
3071       FalseDestIsSafe = true;
3072   }
3073 
3074   if (!TrueDestIsSafe && !FalseDestIsSafe)
3075     return false;
3076 
3077   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3078   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3079 
3080   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3081   Instruction *AfterGuard = Guard->getNextNode();
3082   unsigned Cost =
3083       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3084   if (Cost > BBDupThreshold)
3085     return false;
3086   // Duplicate all instructions before the guard and the guard itself to the
3087   // branch where implication is not proved.
3088   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3089       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3090   assert(GuardedBlock && "Could not create the guarded block?");
3091   // Duplicate all instructions before the guard in the unguarded branch.
3092   // Since we have successfully duplicated the guarded block and this block
3093   // has fewer instructions, we expect it to succeed.
3094   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3095       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3096   assert(UnguardedBlock && "Could not create the unguarded block?");
3097   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3098                     << GuardedBlock->getName() << "\n");
3099   // Some instructions before the guard may still have uses. For them, we need
3100   // to create Phi nodes merging their copies in both guarded and unguarded
3101   // branches. Those instructions that have no uses can be just removed.
3102   SmallVector<Instruction *, 4> ToRemove;
3103   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3104     if (!isa<PHINode>(&*BI))
3105       ToRemove.push_back(&*BI);
3106 
3107   BasicBlock::iterator InsertionPoint = BB->getFirstInsertionPt();
3108   assert(InsertionPoint != BB->end() && "Empty block?");
3109   // Substitute with Phis & remove.
3110   for (auto *Inst : reverse(ToRemove)) {
3111     if (!Inst->use_empty()) {
3112       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3113       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3114       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3115       NewPN->setDebugLoc(Inst->getDebugLoc());
3116       NewPN->insertBefore(InsertionPoint);
3117       Inst->replaceAllUsesWith(NewPN);
3118     }
3119     Inst->dropDbgRecords();
3120     Inst->eraseFromParent();
3121   }
3122   return true;
3123 }
3124 
3125 PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
3126   PreservedAnalyses PA;
3127   PA.preserve<LazyValueAnalysis>();
3128   PA.preserve<DominatorTreeAnalysis>();
3129 
3130   // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3131   // TODO: Would be nice to verify BPI/BFI consistency as well.
3132   return PA;
3133 }
3134 
3135 template <typename AnalysisT>
3136 typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
3137   assert(FAM && "Can't run external analysis without FunctionAnalysisManager");
3138 
3139   // If there were no changes since last call to 'runExternalAnalysis' then all
3140   // analysis is either up to date or explicitly invalidated. Just go ahead and
3141   // run the "external" analysis.
3142   if (!ChangedSinceLastAnalysisUpdate) {
3143     assert(!DTU->hasPendingUpdates() &&
3144            "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3145     // Run the "external" analysis.
3146     return &FAM->getResult<AnalysisT>(*F);
3147   }
3148   ChangedSinceLastAnalysisUpdate = false;
3149 
3150   auto PA = getPreservedAnalysis();
3151   // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3152   // as preserved.
3153   PA.preserve<BranchProbabilityAnalysis>();
3154   PA.preserve<BlockFrequencyAnalysis>();
3155   // Report everything except explicitly preserved as invalid.
3156   FAM->invalidate(*F, PA);
3157   // Update DT/PDT.
3158   DTU->flush();
3159   // Make sure DT/PDT are valid before running "external" analysis.
3160   assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast));
3161   assert((!DTU->hasPostDomTree() ||
3162           DTU->getPostDomTree().verify(
3163               PostDominatorTree::VerificationLevel::Fast)));
3164   // Run the "external" analysis.
3165   auto *Result = &FAM->getResult<AnalysisT>(*F);
3166   // Update analysis JumpThreading depends on and not explicitly preserved.
3167   TTI = &FAM->getResult<TargetIRAnalysis>(*F);
3168   TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
3169   AA = &FAM->getResult<AAManager>(*F);
3170 
3171   return Result;
3172 }
3173 
3174 BranchProbabilityInfo *JumpThreadingPass::getBPI() {
3175   if (!BPI) {
3176     assert(FAM && "Can't create BPI without FunctionAnalysisManager");
3177     BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F);
3178   }
3179   return *BPI;
3180 }
3181 
3182 BlockFrequencyInfo *JumpThreadingPass::getBFI() {
3183   if (!BFI) {
3184     assert(FAM && "Can't create BFI without FunctionAnalysisManager");
3185     BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F);
3186   }
3187   return *BFI;
3188 }
3189 
3190 // Important note on validity of BPI/BFI. JumpThreading tries to preserve
3191 // BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3192 // Otherwise, new instance of BPI/BFI is created (up to date by definition).
3193 BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
3194   auto *Res = getBPI();
3195   if (Res)
3196     return Res;
3197 
3198   if (Force)
3199     BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
3200 
3201   return *BPI;
3202 }
3203 
3204 BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
3205   auto *Res = getBFI();
3206   if (Res)
3207     return Res;
3208 
3209   if (Force)
3210     BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
3211 
3212   return *BFI;
3213 }
3214