xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/BlockFrequencyInfo.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/Analysis/CFG.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/LazyValueInfo.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/PassManager.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/ProfDataUtils.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/BlockFrequency.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace jumpthreading;
83 
84 #define DEBUG_TYPE "jump-threading"
85 
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89 
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94 
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101 
102 static cl::opt<unsigned> PhiDuplicateThreshold(
103     "jump-threading-phi-threshold",
104     cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
105     cl::Hidden);
106 
107 static cl::opt<bool> PrintLVIAfterJumpThreading(
108     "print-lvi-after-jump-threading",
109     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
110     cl::Hidden);
111 
112 static cl::opt<bool> ThreadAcrossLoopHeaders(
113     "jump-threading-across-loop-headers",
114     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
115     cl::init(false), cl::Hidden);
116 
117 
118 namespace {
119 
120   /// This pass performs 'jump threading', which looks at blocks that have
121   /// multiple predecessors and multiple successors.  If one or more of the
122   /// predecessors of the block can be proven to always jump to one of the
123   /// successors, we forward the edge from the predecessor to the successor by
124   /// duplicating the contents of this block.
125   ///
126   /// An example of when this can occur is code like this:
127   ///
128   ///   if () { ...
129   ///     X = 4;
130   ///   }
131   ///   if (X < 3) {
132   ///
133   /// In this case, the unconditional branch at the end of the first if can be
134   /// revectored to the false side of the second if.
135   class JumpThreading : public FunctionPass {
136     JumpThreadingPass Impl;
137 
138   public:
139     static char ID; // Pass identification
140 
141     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
142       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
143     }
144 
145     bool runOnFunction(Function &F) override;
146 
147     void getAnalysisUsage(AnalysisUsage &AU) const override {
148       AU.addRequired<DominatorTreeWrapperPass>();
149       AU.addPreserved<DominatorTreeWrapperPass>();
150       AU.addRequired<AAResultsWrapperPass>();
151       AU.addRequired<LazyValueInfoWrapperPass>();
152       AU.addPreserved<LazyValueInfoWrapperPass>();
153       AU.addPreserved<GlobalsAAWrapperPass>();
154       AU.addRequired<TargetLibraryInfoWrapperPass>();
155       AU.addRequired<TargetTransformInfoWrapperPass>();
156     }
157 
158     void releaseMemory() override { Impl.releaseMemory(); }
159   };
160 
161 } // end anonymous namespace
162 
163 char JumpThreading::ID = 0;
164 
165 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
166                 "Jump Threading", false, false)
167 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
168 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
171 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
172                 "Jump Threading", false, false)
173 
174 // Public interface to the Jump Threading pass
175 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
176   return new JumpThreading(Threshold);
177 }
178 
179 JumpThreadingPass::JumpThreadingPass(int T) {
180   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
181 }
182 
183 // Update branch probability information according to conditional
184 // branch probability. This is usually made possible for cloned branches
185 // in inline instances by the context specific profile in the caller.
186 // For instance,
187 //
188 //  [Block PredBB]
189 //  [Branch PredBr]
190 //  if (t) {
191 //     Block A;
192 //  } else {
193 //     Block B;
194 //  }
195 //
196 //  [Block BB]
197 //  cond = PN([true, %A], [..., %B]); // PHI node
198 //  [Branch CondBr]
199 //  if (cond) {
200 //    ...  // P(cond == true) = 1%
201 //  }
202 //
203 //  Here we know that when block A is taken, cond must be true, which means
204 //      P(cond == true | A) = 1
205 //
206 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
207 //                               P(cond == true | B) * P(B)
208 //  we get:
209 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
210 //
211 //  which gives us:
212 //     P(A) is less than P(cond == true), i.e.
213 //     P(t == true) <= P(cond == true)
214 //
215 //  In other words, if we know P(cond == true) is unlikely, we know
216 //  that P(t == true) is also unlikely.
217 //
218 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
219   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
220   if (!CondBr)
221     return;
222 
223   uint64_t TrueWeight, FalseWeight;
224   if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
225     return;
226 
227   if (TrueWeight + FalseWeight == 0)
228     // Zero branch_weights do not give a hint for getting branch probabilities.
229     // Technically it would result in division by zero denominator, which is
230     // TrueWeight + FalseWeight.
231     return;
232 
233   // Returns the outgoing edge of the dominating predecessor block
234   // that leads to the PhiNode's incoming block:
235   auto GetPredOutEdge =
236       [](BasicBlock *IncomingBB,
237          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
238     auto *PredBB = IncomingBB;
239     auto *SuccBB = PhiBB;
240     SmallPtrSet<BasicBlock *, 16> Visited;
241     while (true) {
242       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
243       if (PredBr && PredBr->isConditional())
244         return {PredBB, SuccBB};
245       Visited.insert(PredBB);
246       auto *SinglePredBB = PredBB->getSinglePredecessor();
247       if (!SinglePredBB)
248         return {nullptr, nullptr};
249 
250       // Stop searching when SinglePredBB has been visited. It means we see
251       // an unreachable loop.
252       if (Visited.count(SinglePredBB))
253         return {nullptr, nullptr};
254 
255       SuccBB = PredBB;
256       PredBB = SinglePredBB;
257     }
258   };
259 
260   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
261     Value *PhiOpnd = PN->getIncomingValue(i);
262     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
263 
264     if (!CI || !CI->getType()->isIntegerTy(1))
265       continue;
266 
267     BranchProbability BP =
268         (CI->isOne() ? BranchProbability::getBranchProbability(
269                            TrueWeight, TrueWeight + FalseWeight)
270                      : BranchProbability::getBranchProbability(
271                            FalseWeight, TrueWeight + FalseWeight));
272 
273     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
274     if (!PredOutEdge.first)
275       return;
276 
277     BasicBlock *PredBB = PredOutEdge.first;
278     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
279     if (!PredBr)
280       return;
281 
282     uint64_t PredTrueWeight, PredFalseWeight;
283     // FIXME: We currently only set the profile data when it is missing.
284     // With PGO, this can be used to refine even existing profile data with
285     // context information. This needs to be done after more performance
286     // testing.
287     if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
288       continue;
289 
290     // We can not infer anything useful when BP >= 50%, because BP is the
291     // upper bound probability value.
292     if (BP >= BranchProbability(50, 100))
293       continue;
294 
295     SmallVector<uint32_t, 2> Weights;
296     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
297       Weights.push_back(BP.getNumerator());
298       Weights.push_back(BP.getCompl().getNumerator());
299     } else {
300       Weights.push_back(BP.getCompl().getNumerator());
301       Weights.push_back(BP.getNumerator());
302     }
303     PredBr->setMetadata(LLVMContext::MD_prof,
304                         MDBuilder(PredBr->getParent()->getContext())
305                             .createBranchWeights(Weights));
306   }
307 }
308 
309 /// runOnFunction - Toplevel algorithm.
310 bool JumpThreading::runOnFunction(Function &F) {
311   if (skipFunction(F))
312     return false;
313   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
314   // Jump Threading has no sense for the targets with divergent CF
315   if (TTI->hasBranchDivergence())
316     return false;
317   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
318   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
319   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
320   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
321   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
322   std::unique_ptr<BlockFrequencyInfo> BFI;
323   std::unique_ptr<BranchProbabilityInfo> BPI;
324   if (F.hasProfileData()) {
325     LoopInfo LI{*DT};
326     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
327     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
328   }
329 
330   bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
331                               std::move(BFI), std::move(BPI));
332   if (PrintLVIAfterJumpThreading) {
333     dbgs() << "LVI for function '" << F.getName() << "':\n";
334     LVI->printLVI(F, DTU.getDomTree(), dbgs());
335   }
336   return Changed;
337 }
338 
339 PreservedAnalyses JumpThreadingPass::run(Function &F,
340                                          FunctionAnalysisManager &AM) {
341   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
342   // Jump Threading has no sense for the targets with divergent CF
343   if (TTI.hasBranchDivergence())
344     return PreservedAnalyses::all();
345   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
346   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
347   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
348   auto &AA = AM.getResult<AAManager>(F);
349   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
350 
351   std::unique_ptr<BlockFrequencyInfo> BFI;
352   std::unique_ptr<BranchProbabilityInfo> BPI;
353   if (F.hasProfileData()) {
354     LoopInfo LI{DT};
355     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
356     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
357   }
358 
359   bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
360                          std::move(BFI), std::move(BPI));
361 
362   if (PrintLVIAfterJumpThreading) {
363     dbgs() << "LVI for function '" << F.getName() << "':\n";
364     LVI.printLVI(F, DTU.getDomTree(), dbgs());
365   }
366 
367   if (!Changed)
368     return PreservedAnalyses::all();
369   PreservedAnalyses PA;
370   PA.preserve<DominatorTreeAnalysis>();
371   PA.preserve<LazyValueAnalysis>();
372   return PA;
373 }
374 
375 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
376                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
377                                 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
378                                 bool HasProfileData_,
379                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
380                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
381   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
382   TLI = TLI_;
383   TTI = TTI_;
384   LVI = LVI_;
385   AA = AA_;
386   DTU = DTU_;
387   BFI.reset();
388   BPI.reset();
389   // When profile data is available, we need to update edge weights after
390   // successful jump threading, which requires both BPI and BFI being available.
391   HasProfileData = HasProfileData_;
392   auto *GuardDecl = F.getParent()->getFunction(
393       Intrinsic::getName(Intrinsic::experimental_guard));
394   HasGuards = GuardDecl && !GuardDecl->use_empty();
395   if (HasProfileData) {
396     BPI = std::move(BPI_);
397     BFI = std::move(BFI_);
398   }
399 
400   // Reduce the number of instructions duplicated when optimizing strictly for
401   // size.
402   if (BBDuplicateThreshold.getNumOccurrences())
403     BBDupThreshold = BBDuplicateThreshold;
404   else if (F.hasFnAttribute(Attribute::MinSize))
405     BBDupThreshold = 3;
406   else
407     BBDupThreshold = DefaultBBDupThreshold;
408 
409   // JumpThreading must not processes blocks unreachable from entry. It's a
410   // waste of compute time and can potentially lead to hangs.
411   SmallPtrSet<BasicBlock *, 16> Unreachable;
412   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
413   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
414   DominatorTree &DT = DTU->getDomTree();
415   for (auto &BB : F)
416     if (!DT.isReachableFromEntry(&BB))
417       Unreachable.insert(&BB);
418 
419   if (!ThreadAcrossLoopHeaders)
420     findLoopHeaders(F);
421 
422   bool EverChanged = false;
423   bool Changed;
424   do {
425     Changed = false;
426     for (auto &BB : F) {
427       if (Unreachable.count(&BB))
428         continue;
429       while (processBlock(&BB)) // Thread all of the branches we can over BB.
430         Changed = true;
431 
432       // Jump threading may have introduced redundant debug values into BB
433       // which should be removed.
434       if (Changed)
435         RemoveRedundantDbgInstrs(&BB);
436 
437       // Stop processing BB if it's the entry or is now deleted. The following
438       // routines attempt to eliminate BB and locating a suitable replacement
439       // for the entry is non-trivial.
440       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
441         continue;
442 
443       if (pred_empty(&BB)) {
444         // When processBlock makes BB unreachable it doesn't bother to fix up
445         // the instructions in it. We must remove BB to prevent invalid IR.
446         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
447                           << "' with terminator: " << *BB.getTerminator()
448                           << '\n');
449         LoopHeaders.erase(&BB);
450         LVI->eraseBlock(&BB);
451         DeleteDeadBlock(&BB, DTU);
452         Changed = true;
453         continue;
454       }
455 
456       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
457       // is "almost empty", we attempt to merge BB with its sole successor.
458       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
459       if (BI && BI->isUnconditional()) {
460         BasicBlock *Succ = BI->getSuccessor(0);
461         if (
462             // The terminator must be the only non-phi instruction in BB.
463             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
464             // Don't alter Loop headers and latches to ensure another pass can
465             // detect and transform nested loops later.
466             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
467             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
468           RemoveRedundantDbgInstrs(Succ);
469           // BB is valid for cleanup here because we passed in DTU. F remains
470           // BB's parent until a DTU->getDomTree() event.
471           LVI->eraseBlock(&BB);
472           Changed = true;
473         }
474       }
475     }
476     EverChanged |= Changed;
477   } while (Changed);
478 
479   LoopHeaders.clear();
480   return EverChanged;
481 }
482 
483 // Replace uses of Cond with ToVal when safe to do so. If all uses are
484 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
485 // because we may incorrectly replace uses when guards/assumes are uses of
486 // of `Cond` and we used the guards/assume to reason about the `Cond` value
487 // at the end of block. RAUW unconditionally replaces all uses
488 // including the guards/assumes themselves and the uses before the
489 // guard/assume.
490 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
491                                 BasicBlock *KnownAtEndOfBB) {
492   bool Changed = false;
493   assert(Cond->getType() == ToVal->getType());
494   // We can unconditionally replace all uses in non-local blocks (i.e. uses
495   // strictly dominated by BB), since LVI information is true from the
496   // terminator of BB.
497   if (Cond->getParent() == KnownAtEndOfBB)
498     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
499   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
500     // Reached the Cond whose uses we are trying to replace, so there are no
501     // more uses.
502     if (&I == Cond)
503       break;
504     // We only replace uses in instructions that are guaranteed to reach the end
505     // of BB, where we know Cond is ToVal.
506     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
507       break;
508     Changed |= I.replaceUsesOfWith(Cond, ToVal);
509   }
510   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
511     Cond->eraseFromParent();
512     Changed = true;
513   }
514   return Changed;
515 }
516 
517 /// Return the cost of duplicating a piece of this block from first non-phi
518 /// and before StopAt instruction to thread across it. Stop scanning the block
519 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
520 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
521                                              BasicBlock *BB,
522                                              Instruction *StopAt,
523                                              unsigned Threshold) {
524   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
525 
526   // Do not duplicate the BB if it has a lot of PHI nodes.
527   // If a threadable chain is too long then the number of PHI nodes can add up,
528   // leading to a substantial increase in compile time when rewriting the SSA.
529   unsigned PhiCount = 0;
530   Instruction *FirstNonPHI = nullptr;
531   for (Instruction &I : *BB) {
532     if (!isa<PHINode>(&I)) {
533       FirstNonPHI = &I;
534       break;
535     }
536     if (++PhiCount > PhiDuplicateThreshold)
537       return ~0U;
538   }
539 
540   /// Ignore PHI nodes, these will be flattened when duplication happens.
541   BasicBlock::const_iterator I(FirstNonPHI);
542 
543   // FIXME: THREADING will delete values that are just used to compute the
544   // branch, so they shouldn't count against the duplication cost.
545 
546   unsigned Bonus = 0;
547   if (BB->getTerminator() == StopAt) {
548     // Threading through a switch statement is particularly profitable.  If this
549     // block ends in a switch, decrease its cost to make it more likely to
550     // happen.
551     if (isa<SwitchInst>(StopAt))
552       Bonus = 6;
553 
554     // The same holds for indirect branches, but slightly more so.
555     if (isa<IndirectBrInst>(StopAt))
556       Bonus = 8;
557   }
558 
559   // Bump the threshold up so the early exit from the loop doesn't skip the
560   // terminator-based Size adjustment at the end.
561   Threshold += Bonus;
562 
563   // Sum up the cost of each instruction until we get to the terminator.  Don't
564   // include the terminator because the copy won't include it.
565   unsigned Size = 0;
566   for (; &*I != StopAt; ++I) {
567 
568     // Stop scanning the block if we've reached the threshold.
569     if (Size > Threshold)
570       return Size;
571 
572     // Bail out if this instruction gives back a token type, it is not possible
573     // to duplicate it if it is used outside this BB.
574     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
575       return ~0U;
576 
577     // Blocks with NoDuplicate are modelled as having infinite cost, so they
578     // are never duplicated.
579     if (const CallInst *CI = dyn_cast<CallInst>(I))
580       if (CI->cannotDuplicate() || CI->isConvergent())
581         return ~0U;
582 
583     if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
584         TargetTransformInfo::TCC_Free)
585       continue;
586 
587     // All other instructions count for at least one unit.
588     ++Size;
589 
590     // Calls are more expensive.  If they are non-intrinsic calls, we model them
591     // as having cost of 4.  If they are a non-vector intrinsic, we model them
592     // as having cost of 2 total, and if they are a vector intrinsic, we model
593     // them as having cost 1.
594     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
595       if (!isa<IntrinsicInst>(CI))
596         Size += 3;
597       else if (!CI->getType()->isVectorTy())
598         Size += 1;
599     }
600   }
601 
602   return Size > Bonus ? Size - Bonus : 0;
603 }
604 
605 /// findLoopHeaders - We do not want jump threading to turn proper loop
606 /// structures into irreducible loops.  Doing this breaks up the loop nesting
607 /// hierarchy and pessimizes later transformations.  To prevent this from
608 /// happening, we first have to find the loop headers.  Here we approximate this
609 /// by finding targets of backedges in the CFG.
610 ///
611 /// Note that there definitely are cases when we want to allow threading of
612 /// edges across a loop header.  For example, threading a jump from outside the
613 /// loop (the preheader) to an exit block of the loop is definitely profitable.
614 /// It is also almost always profitable to thread backedges from within the loop
615 /// to exit blocks, and is often profitable to thread backedges to other blocks
616 /// within the loop (forming a nested loop).  This simple analysis is not rich
617 /// enough to track all of these properties and keep it up-to-date as the CFG
618 /// mutates, so we don't allow any of these transformations.
619 void JumpThreadingPass::findLoopHeaders(Function &F) {
620   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
621   FindFunctionBackedges(F, Edges);
622 
623   for (const auto &Edge : Edges)
624     LoopHeaders.insert(Edge.second);
625 }
626 
627 /// getKnownConstant - Helper method to determine if we can thread over a
628 /// terminator with the given value as its condition, and if so what value to
629 /// use for that. What kind of value this is depends on whether we want an
630 /// integer or a block address, but an undef is always accepted.
631 /// Returns null if Val is null or not an appropriate constant.
632 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
633   if (!Val)
634     return nullptr;
635 
636   // Undef is "known" enough.
637   if (UndefValue *U = dyn_cast<UndefValue>(Val))
638     return U;
639 
640   if (Preference == WantBlockAddress)
641     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
642 
643   return dyn_cast<ConstantInt>(Val);
644 }
645 
646 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
647 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
648 /// in any of our predecessors.  If so, return the known list of value and pred
649 /// BB in the result vector.
650 ///
651 /// This returns true if there were any known values.
652 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
653     Value *V, BasicBlock *BB, PredValueInfo &Result,
654     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
655     Instruction *CxtI) {
656   // This method walks up use-def chains recursively.  Because of this, we could
657   // get into an infinite loop going around loops in the use-def chain.  To
658   // prevent this, keep track of what (value, block) pairs we've already visited
659   // and terminate the search if we loop back to them
660   if (!RecursionSet.insert(V).second)
661     return false;
662 
663   // If V is a constant, then it is known in all predecessors.
664   if (Constant *KC = getKnownConstant(V, Preference)) {
665     for (BasicBlock *Pred : predecessors(BB))
666       Result.emplace_back(KC, Pred);
667 
668     return !Result.empty();
669   }
670 
671   // If V is a non-instruction value, or an instruction in a different block,
672   // then it can't be derived from a PHI.
673   Instruction *I = dyn_cast<Instruction>(V);
674   if (!I || I->getParent() != BB) {
675 
676     // Okay, if this is a live-in value, see if it has a known value at the any
677     // edge from our predecessors.
678     for (BasicBlock *P : predecessors(BB)) {
679       using namespace PatternMatch;
680       // If the value is known by LazyValueInfo to be a constant in a
681       // predecessor, use that information to try to thread this block.
682       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
683       // If I is a non-local compare-with-constant instruction, use more-rich
684       // 'getPredicateOnEdge' method. This would be able to handle value
685       // inequalities better, for example if the compare is "X < 4" and "X < 3"
686       // is known true but "X < 4" itself is not available.
687       CmpInst::Predicate Pred;
688       Value *Val;
689       Constant *Cst;
690       if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) {
691         auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
692         if (Res != LazyValueInfo::Unknown)
693           PredCst = ConstantInt::getBool(V->getContext(), Res);
694       }
695       if (Constant *KC = getKnownConstant(PredCst, Preference))
696         Result.emplace_back(KC, P);
697     }
698 
699     return !Result.empty();
700   }
701 
702   /// If I is a PHI node, then we know the incoming values for any constants.
703   if (PHINode *PN = dyn_cast<PHINode>(I)) {
704     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
705       Value *InVal = PN->getIncomingValue(i);
706       if (Constant *KC = getKnownConstant(InVal, Preference)) {
707         Result.emplace_back(KC, PN->getIncomingBlock(i));
708       } else {
709         Constant *CI = LVI->getConstantOnEdge(InVal,
710                                               PN->getIncomingBlock(i),
711                                               BB, CxtI);
712         if (Constant *KC = getKnownConstant(CI, Preference))
713           Result.emplace_back(KC, PN->getIncomingBlock(i));
714       }
715     }
716 
717     return !Result.empty();
718   }
719 
720   // Handle Cast instructions.
721   if (CastInst *CI = dyn_cast<CastInst>(I)) {
722     Value *Source = CI->getOperand(0);
723     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
724                                         RecursionSet, CxtI);
725     if (Result.empty())
726       return false;
727 
728     // Convert the known values.
729     for (auto &R : Result)
730       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
731 
732     return true;
733   }
734 
735   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
736     Value *Source = FI->getOperand(0);
737     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
738                                         RecursionSet, CxtI);
739 
740     erase_if(Result, [](auto &Pair) {
741       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
742     });
743 
744     return !Result.empty();
745   }
746 
747   // Handle some boolean conditions.
748   if (I->getType()->getPrimitiveSizeInBits() == 1) {
749     using namespace PatternMatch;
750     if (Preference != WantInteger)
751       return false;
752     // X | true -> true
753     // X & false -> false
754     Value *Op0, *Op1;
755     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
756         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
757       PredValueInfoTy LHSVals, RHSVals;
758 
759       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
760                                           RecursionSet, CxtI);
761       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
762                                           RecursionSet, CxtI);
763 
764       if (LHSVals.empty() && RHSVals.empty())
765         return false;
766 
767       ConstantInt *InterestingVal;
768       if (match(I, m_LogicalOr()))
769         InterestingVal = ConstantInt::getTrue(I->getContext());
770       else
771         InterestingVal = ConstantInt::getFalse(I->getContext());
772 
773       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
774 
775       // Scan for the sentinel.  If we find an undef, force it to the
776       // interesting value: x|undef -> true and x&undef -> false.
777       for (const auto &LHSVal : LHSVals)
778         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
779           Result.emplace_back(InterestingVal, LHSVal.second);
780           LHSKnownBBs.insert(LHSVal.second);
781         }
782       for (const auto &RHSVal : RHSVals)
783         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
784           // If we already inferred a value for this block on the LHS, don't
785           // re-add it.
786           if (!LHSKnownBBs.count(RHSVal.second))
787             Result.emplace_back(InterestingVal, RHSVal.second);
788         }
789 
790       return !Result.empty();
791     }
792 
793     // Handle the NOT form of XOR.
794     if (I->getOpcode() == Instruction::Xor &&
795         isa<ConstantInt>(I->getOperand(1)) &&
796         cast<ConstantInt>(I->getOperand(1))->isOne()) {
797       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
798                                           WantInteger, RecursionSet, CxtI);
799       if (Result.empty())
800         return false;
801 
802       // Invert the known values.
803       for (auto &R : Result)
804         R.first = ConstantExpr::getNot(R.first);
805 
806       return true;
807     }
808 
809   // Try to simplify some other binary operator values.
810   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
811     if (Preference != WantInteger)
812       return false;
813     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
814       const DataLayout &DL = BO->getModule()->getDataLayout();
815       PredValueInfoTy LHSVals;
816       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
817                                           WantInteger, RecursionSet, CxtI);
818 
819       // Try to use constant folding to simplify the binary operator.
820       for (const auto &LHSVal : LHSVals) {
821         Constant *V = LHSVal.first;
822         Constant *Folded =
823             ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
824 
825         if (Constant *KC = getKnownConstant(Folded, WantInteger))
826           Result.emplace_back(KC, LHSVal.second);
827       }
828     }
829 
830     return !Result.empty();
831   }
832 
833   // Handle compare with phi operand, where the PHI is defined in this block.
834   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
835     if (Preference != WantInteger)
836       return false;
837     Type *CmpType = Cmp->getType();
838     Value *CmpLHS = Cmp->getOperand(0);
839     Value *CmpRHS = Cmp->getOperand(1);
840     CmpInst::Predicate Pred = Cmp->getPredicate();
841 
842     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
843     if (!PN)
844       PN = dyn_cast<PHINode>(CmpRHS);
845     if (PN && PN->getParent() == BB) {
846       const DataLayout &DL = PN->getModule()->getDataLayout();
847       // We can do this simplification if any comparisons fold to true or false.
848       // See if any do.
849       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
850         BasicBlock *PredBB = PN->getIncomingBlock(i);
851         Value *LHS, *RHS;
852         if (PN == CmpLHS) {
853           LHS = PN->getIncomingValue(i);
854           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
855         } else {
856           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
857           RHS = PN->getIncomingValue(i);
858         }
859         Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
860         if (!Res) {
861           if (!isa<Constant>(RHS))
862             continue;
863 
864           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
865           auto LHSInst = dyn_cast<Instruction>(LHS);
866           if (LHSInst && LHSInst->getParent() == BB)
867             continue;
868 
869           LazyValueInfo::Tristate
870             ResT = LVI->getPredicateOnEdge(Pred, LHS,
871                                            cast<Constant>(RHS), PredBB, BB,
872                                            CxtI ? CxtI : Cmp);
873           if (ResT == LazyValueInfo::Unknown)
874             continue;
875           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
876         }
877 
878         if (Constant *KC = getKnownConstant(Res, WantInteger))
879           Result.emplace_back(KC, PredBB);
880       }
881 
882       return !Result.empty();
883     }
884 
885     // If comparing a live-in value against a constant, see if we know the
886     // live-in value on any predecessors.
887     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
888       Constant *CmpConst = cast<Constant>(CmpRHS);
889 
890       if (!isa<Instruction>(CmpLHS) ||
891           cast<Instruction>(CmpLHS)->getParent() != BB) {
892         for (BasicBlock *P : predecessors(BB)) {
893           // If the value is known by LazyValueInfo to be a constant in a
894           // predecessor, use that information to try to thread this block.
895           LazyValueInfo::Tristate Res =
896             LVI->getPredicateOnEdge(Pred, CmpLHS,
897                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
898           if (Res == LazyValueInfo::Unknown)
899             continue;
900 
901           Constant *ResC = ConstantInt::get(CmpType, Res);
902           Result.emplace_back(ResC, P);
903         }
904 
905         return !Result.empty();
906       }
907 
908       // InstCombine can fold some forms of constant range checks into
909       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
910       // x as a live-in.
911       {
912         using namespace PatternMatch;
913 
914         Value *AddLHS;
915         ConstantInt *AddConst;
916         if (isa<ConstantInt>(CmpConst) &&
917             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
918           if (!isa<Instruction>(AddLHS) ||
919               cast<Instruction>(AddLHS)->getParent() != BB) {
920             for (BasicBlock *P : predecessors(BB)) {
921               // If the value is known by LazyValueInfo to be a ConstantRange in
922               // a predecessor, use that information to try to thread this
923               // block.
924               ConstantRange CR = LVI->getConstantRangeOnEdge(
925                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
926               // Propagate the range through the addition.
927               CR = CR.add(AddConst->getValue());
928 
929               // Get the range where the compare returns true.
930               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
931                   Pred, cast<ConstantInt>(CmpConst)->getValue());
932 
933               Constant *ResC;
934               if (CmpRange.contains(CR))
935                 ResC = ConstantInt::getTrue(CmpType);
936               else if (CmpRange.inverse().contains(CR))
937                 ResC = ConstantInt::getFalse(CmpType);
938               else
939                 continue;
940 
941               Result.emplace_back(ResC, P);
942             }
943 
944             return !Result.empty();
945           }
946         }
947       }
948 
949       // Try to find a constant value for the LHS of a comparison,
950       // and evaluate it statically if we can.
951       PredValueInfoTy LHSVals;
952       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
953                                           WantInteger, RecursionSet, CxtI);
954 
955       for (const auto &LHSVal : LHSVals) {
956         Constant *V = LHSVal.first;
957         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
958         if (Constant *KC = getKnownConstant(Folded, WantInteger))
959           Result.emplace_back(KC, LHSVal.second);
960       }
961 
962       return !Result.empty();
963     }
964   }
965 
966   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
967     // Handle select instructions where at least one operand is a known constant
968     // and we can figure out the condition value for any predecessor block.
969     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
970     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
971     PredValueInfoTy Conds;
972     if ((TrueVal || FalseVal) &&
973         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
974                                             WantInteger, RecursionSet, CxtI)) {
975       for (auto &C : Conds) {
976         Constant *Cond = C.first;
977 
978         // Figure out what value to use for the condition.
979         bool KnownCond;
980         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
981           // A known boolean.
982           KnownCond = CI->isOne();
983         } else {
984           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
985           // Either operand will do, so be sure to pick the one that's a known
986           // constant.
987           // FIXME: Do this more cleverly if both values are known constants?
988           KnownCond = (TrueVal != nullptr);
989         }
990 
991         // See if the select has a known constant value for this predecessor.
992         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
993           Result.emplace_back(Val, C.second);
994       }
995 
996       return !Result.empty();
997     }
998   }
999 
1000   // If all else fails, see if LVI can figure out a constant value for us.
1001   assert(CxtI->getParent() == BB && "CxtI should be in BB");
1002   Constant *CI = LVI->getConstant(V, CxtI);
1003   if (Constant *KC = getKnownConstant(CI, Preference)) {
1004     for (BasicBlock *Pred : predecessors(BB))
1005       Result.emplace_back(KC, Pred);
1006   }
1007 
1008   return !Result.empty();
1009 }
1010 
1011 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
1012 /// in an undefined jump, decide which block is best to revector to.
1013 ///
1014 /// Since we can pick an arbitrary destination, we pick the successor with the
1015 /// fewest predecessors.  This should reduce the in-degree of the others.
1016 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
1017   Instruction *BBTerm = BB->getTerminator();
1018   unsigned MinSucc = 0;
1019   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
1020   // Compute the successor with the minimum number of predecessors.
1021   unsigned MinNumPreds = pred_size(TestBB);
1022   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1023     TestBB = BBTerm->getSuccessor(i);
1024     unsigned NumPreds = pred_size(TestBB);
1025     if (NumPreds < MinNumPreds) {
1026       MinSucc = i;
1027       MinNumPreds = NumPreds;
1028     }
1029   }
1030 
1031   return MinSucc;
1032 }
1033 
1034 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1035   if (!BB->hasAddressTaken()) return false;
1036 
1037   // If the block has its address taken, it may be a tree of dead constants
1038   // hanging off of it.  These shouldn't keep the block alive.
1039   BlockAddress *BA = BlockAddress::get(BB);
1040   BA->removeDeadConstantUsers();
1041   return !BA->use_empty();
1042 }
1043 
1044 /// processBlock - If there are any predecessors whose control can be threaded
1045 /// through to a successor, transform them now.
1046 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1047   // If the block is trivially dead, just return and let the caller nuke it.
1048   // This simplifies other transformations.
1049   if (DTU->isBBPendingDeletion(BB) ||
1050       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1051     return false;
1052 
1053   // If this block has a single predecessor, and if that pred has a single
1054   // successor, merge the blocks.  This encourages recursive jump threading
1055   // because now the condition in this block can be threaded through
1056   // predecessors of our predecessor block.
1057   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1058     return true;
1059 
1060   if (tryToUnfoldSelectInCurrBB(BB))
1061     return true;
1062 
1063   // Look if we can propagate guards to predecessors.
1064   if (HasGuards && processGuards(BB))
1065     return true;
1066 
1067   // What kind of constant we're looking for.
1068   ConstantPreference Preference = WantInteger;
1069 
1070   // Look to see if the terminator is a conditional branch, switch or indirect
1071   // branch, if not we can't thread it.
1072   Value *Condition;
1073   Instruction *Terminator = BB->getTerminator();
1074   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1075     // Can't thread an unconditional jump.
1076     if (BI->isUnconditional()) return false;
1077     Condition = BI->getCondition();
1078   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1079     Condition = SI->getCondition();
1080   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1081     // Can't thread indirect branch with no successors.
1082     if (IB->getNumSuccessors() == 0) return false;
1083     Condition = IB->getAddress()->stripPointerCasts();
1084     Preference = WantBlockAddress;
1085   } else {
1086     return false; // Must be an invoke or callbr.
1087   }
1088 
1089   // Keep track if we constant folded the condition in this invocation.
1090   bool ConstantFolded = false;
1091 
1092   // Run constant folding to see if we can reduce the condition to a simple
1093   // constant.
1094   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1095     Value *SimpleVal =
1096         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1097     if (SimpleVal) {
1098       I->replaceAllUsesWith(SimpleVal);
1099       if (isInstructionTriviallyDead(I, TLI))
1100         I->eraseFromParent();
1101       Condition = SimpleVal;
1102       ConstantFolded = true;
1103     }
1104   }
1105 
1106   // If the terminator is branching on an undef or freeze undef, we can pick any
1107   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1108   auto *FI = dyn_cast<FreezeInst>(Condition);
1109   if (isa<UndefValue>(Condition) ||
1110       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1111     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1112     std::vector<DominatorTree::UpdateType> Updates;
1113 
1114     // Fold the branch/switch.
1115     Instruction *BBTerm = BB->getTerminator();
1116     Updates.reserve(BBTerm->getNumSuccessors());
1117     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1118       if (i == BestSucc) continue;
1119       BasicBlock *Succ = BBTerm->getSuccessor(i);
1120       Succ->removePredecessor(BB, true);
1121       Updates.push_back({DominatorTree::Delete, BB, Succ});
1122     }
1123 
1124     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1125                       << "' folding undef terminator: " << *BBTerm << '\n');
1126     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1127     ++NumFolds;
1128     BBTerm->eraseFromParent();
1129     DTU->applyUpdatesPermissive(Updates);
1130     if (FI)
1131       FI->eraseFromParent();
1132     return true;
1133   }
1134 
1135   // If the terminator of this block is branching on a constant, simplify the
1136   // terminator to an unconditional branch.  This can occur due to threading in
1137   // other blocks.
1138   if (getKnownConstant(Condition, Preference)) {
1139     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1140                       << "' folding terminator: " << *BB->getTerminator()
1141                       << '\n');
1142     ++NumFolds;
1143     ConstantFoldTerminator(BB, true, nullptr, DTU);
1144     if (HasProfileData)
1145       BPI->eraseBlock(BB);
1146     return true;
1147   }
1148 
1149   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1150 
1151   // All the rest of our checks depend on the condition being an instruction.
1152   if (!CondInst) {
1153     // FIXME: Unify this with code below.
1154     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1155       return true;
1156     return ConstantFolded;
1157   }
1158 
1159   // Some of the following optimization can safely work on the unfrozen cond.
1160   Value *CondWithoutFreeze = CondInst;
1161   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1162     CondWithoutFreeze = FI->getOperand(0);
1163 
1164   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1165     // If we're branching on a conditional, LVI might be able to determine
1166     // it's value at the branch instruction.  We only handle comparisons
1167     // against a constant at this time.
1168     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1169       LazyValueInfo::Tristate Ret =
1170           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1171                               CondConst, BB->getTerminator(),
1172                               /*UseBlockValue=*/false);
1173       if (Ret != LazyValueInfo::Unknown) {
1174         // We can safely replace *some* uses of the CondInst if it has
1175         // exactly one value as returned by LVI. RAUW is incorrect in the
1176         // presence of guards and assumes, that have the `Cond` as the use. This
1177         // is because we use the guards/assume to reason about the `Cond` value
1178         // at the end of block, but RAUW unconditionally replaces all uses
1179         // including the guards/assumes themselves and the uses before the
1180         // guard/assume.
1181         auto *CI = Ret == LazyValueInfo::True ?
1182           ConstantInt::getTrue(CondCmp->getType()) :
1183           ConstantInt::getFalse(CondCmp->getType());
1184         if (replaceFoldableUses(CondCmp, CI, BB))
1185           return true;
1186       }
1187 
1188       // We did not manage to simplify this branch, try to see whether
1189       // CondCmp depends on a known phi-select pattern.
1190       if (tryToUnfoldSelect(CondCmp, BB))
1191         return true;
1192     }
1193   }
1194 
1195   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1196     if (tryToUnfoldSelect(SI, BB))
1197       return true;
1198 
1199   // Check for some cases that are worth simplifying.  Right now we want to look
1200   // for loads that are used by a switch or by the condition for the branch.  If
1201   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1202   // which can then be used to thread the values.
1203   Value *SimplifyValue = CondWithoutFreeze;
1204 
1205   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1206     if (isa<Constant>(CondCmp->getOperand(1)))
1207       SimplifyValue = CondCmp->getOperand(0);
1208 
1209   // TODO: There are other places where load PRE would be profitable, such as
1210   // more complex comparisons.
1211   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1212     if (simplifyPartiallyRedundantLoad(LoadI))
1213       return true;
1214 
1215   // Before threading, try to propagate profile data backwards:
1216   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1217     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1218       updatePredecessorProfileMetadata(PN, BB);
1219 
1220   // Handle a variety of cases where we are branching on something derived from
1221   // a PHI node in the current block.  If we can prove that any predecessors
1222   // compute a predictable value based on a PHI node, thread those predecessors.
1223   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1224     return true;
1225 
1226   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1227   // the current block, see if we can simplify.
1228   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1229   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1230     return processBranchOnPHI(PN);
1231 
1232   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1233   if (CondInst->getOpcode() == Instruction::Xor &&
1234       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1235     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1236 
1237   // Search for a stronger dominating condition that can be used to simplify a
1238   // conditional branch leaving BB.
1239   if (processImpliedCondition(BB))
1240     return true;
1241 
1242   return false;
1243 }
1244 
1245 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1246   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1247   if (!BI || !BI->isConditional())
1248     return false;
1249 
1250   Value *Cond = BI->getCondition();
1251   // Assuming that predecessor's branch was taken, if pred's branch condition
1252   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1253   // freeze(Cond) is either true or a nondeterministic value.
1254   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1255   // without affecting other instructions.
1256   auto *FICond = dyn_cast<FreezeInst>(Cond);
1257   if (FICond && FICond->hasOneUse())
1258     Cond = FICond->getOperand(0);
1259   else
1260     FICond = nullptr;
1261 
1262   BasicBlock *CurrentBB = BB;
1263   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1264   unsigned Iter = 0;
1265 
1266   auto &DL = BB->getModule()->getDataLayout();
1267 
1268   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1269     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1270     if (!PBI || !PBI->isConditional())
1271       return false;
1272     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1273       return false;
1274 
1275     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1276     std::optional<bool> Implication =
1277         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1278 
1279     // If the branch condition of BB (which is Cond) and CurrentPred are
1280     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1281     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1282       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1283           FICond->getOperand(0))
1284         Implication = CondIsTrue;
1285     }
1286 
1287     if (Implication) {
1288       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1289       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1290       RemoveSucc->removePredecessor(BB);
1291       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1292       UncondBI->setDebugLoc(BI->getDebugLoc());
1293       ++NumFolds;
1294       BI->eraseFromParent();
1295       if (FICond)
1296         FICond->eraseFromParent();
1297 
1298       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1299       if (HasProfileData)
1300         BPI->eraseBlock(BB);
1301       return true;
1302     }
1303     CurrentBB = CurrentPred;
1304     CurrentPred = CurrentBB->getSinglePredecessor();
1305   }
1306 
1307   return false;
1308 }
1309 
1310 /// Return true if Op is an instruction defined in the given block.
1311 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1312   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1313     if (OpInst->getParent() == BB)
1314       return true;
1315   return false;
1316 }
1317 
1318 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1319 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1320 /// This is an important optimization that encourages jump threading, and needs
1321 /// to be run interlaced with other jump threading tasks.
1322 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1323   // Don't hack volatile and ordered loads.
1324   if (!LoadI->isUnordered()) return false;
1325 
1326   // If the load is defined in a block with exactly one predecessor, it can't be
1327   // partially redundant.
1328   BasicBlock *LoadBB = LoadI->getParent();
1329   if (LoadBB->getSinglePredecessor())
1330     return false;
1331 
1332   // If the load is defined in an EH pad, it can't be partially redundant,
1333   // because the edges between the invoke and the EH pad cannot have other
1334   // instructions between them.
1335   if (LoadBB->isEHPad())
1336     return false;
1337 
1338   Value *LoadedPtr = LoadI->getOperand(0);
1339 
1340   // If the loaded operand is defined in the LoadBB and its not a phi,
1341   // it can't be available in predecessors.
1342   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1343     return false;
1344 
1345   // Scan a few instructions up from the load, to see if it is obviously live at
1346   // the entry to its block.
1347   BasicBlock::iterator BBIt(LoadI);
1348   bool IsLoadCSE;
1349   if (Value *AvailableVal = FindAvailableLoadedValue(
1350           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1351     // If the value of the load is locally available within the block, just use
1352     // it.  This frequently occurs for reg2mem'd allocas.
1353 
1354     if (IsLoadCSE) {
1355       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1356       combineMetadataForCSE(NLoadI, LoadI, false);
1357     };
1358 
1359     // If the returned value is the load itself, replace with poison. This can
1360     // only happen in dead loops.
1361     if (AvailableVal == LoadI)
1362       AvailableVal = PoisonValue::get(LoadI->getType());
1363     if (AvailableVal->getType() != LoadI->getType())
1364       AvailableVal = CastInst::CreateBitOrPointerCast(
1365           AvailableVal, LoadI->getType(), "", LoadI);
1366     LoadI->replaceAllUsesWith(AvailableVal);
1367     LoadI->eraseFromParent();
1368     return true;
1369   }
1370 
1371   // Otherwise, if we scanned the whole block and got to the top of the block,
1372   // we know the block is locally transparent to the load.  If not, something
1373   // might clobber its value.
1374   if (BBIt != LoadBB->begin())
1375     return false;
1376 
1377   // If all of the loads and stores that feed the value have the same AA tags,
1378   // then we can propagate them onto any newly inserted loads.
1379   AAMDNodes AATags = LoadI->getAAMetadata();
1380 
1381   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1382 
1383   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1384 
1385   AvailablePredsTy AvailablePreds;
1386   BasicBlock *OneUnavailablePred = nullptr;
1387   SmallVector<LoadInst*, 8> CSELoads;
1388 
1389   // If we got here, the loaded value is transparent through to the start of the
1390   // block.  Check to see if it is available in any of the predecessor blocks.
1391   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1392     // If we already scanned this predecessor, skip it.
1393     if (!PredsScanned.insert(PredBB).second)
1394       continue;
1395 
1396     BBIt = PredBB->end();
1397     unsigned NumScanedInst = 0;
1398     Value *PredAvailable = nullptr;
1399     // NOTE: We don't CSE load that is volatile or anything stronger than
1400     // unordered, that should have been checked when we entered the function.
1401     assert(LoadI->isUnordered() &&
1402            "Attempting to CSE volatile or atomic loads");
1403     // If this is a load on a phi pointer, phi-translate it and search
1404     // for available load/store to the pointer in predecessors.
1405     Type *AccessTy = LoadI->getType();
1406     const auto &DL = LoadI->getModule()->getDataLayout();
1407     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1408                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1409                        AATags);
1410     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1411                                               PredBB, BBIt, DefMaxInstsToScan,
1412                                               AA, &IsLoadCSE, &NumScanedInst);
1413 
1414     // If PredBB has a single predecessor, continue scanning through the
1415     // single predecessor.
1416     BasicBlock *SinglePredBB = PredBB;
1417     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1418            NumScanedInst < DefMaxInstsToScan) {
1419       SinglePredBB = SinglePredBB->getSinglePredecessor();
1420       if (SinglePredBB) {
1421         BBIt = SinglePredBB->end();
1422         PredAvailable = findAvailablePtrLoadStore(
1423             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1424             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1425             &NumScanedInst);
1426       }
1427     }
1428 
1429     if (!PredAvailable) {
1430       OneUnavailablePred = PredBB;
1431       continue;
1432     }
1433 
1434     if (IsLoadCSE)
1435       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1436 
1437     // If so, this load is partially redundant.  Remember this info so that we
1438     // can create a PHI node.
1439     AvailablePreds.emplace_back(PredBB, PredAvailable);
1440   }
1441 
1442   // If the loaded value isn't available in any predecessor, it isn't partially
1443   // redundant.
1444   if (AvailablePreds.empty()) return false;
1445 
1446   // Okay, the loaded value is available in at least one (and maybe all!)
1447   // predecessors.  If the value is unavailable in more than one unique
1448   // predecessor, we want to insert a merge block for those common predecessors.
1449   // This ensures that we only have to insert one reload, thus not increasing
1450   // code size.
1451   BasicBlock *UnavailablePred = nullptr;
1452 
1453   // If the value is unavailable in one of predecessors, we will end up
1454   // inserting a new instruction into them. It is only valid if all the
1455   // instructions before LoadI are guaranteed to pass execution to its
1456   // successor, or if LoadI is safe to speculate.
1457   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1458   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1459   // It requires domination tree analysis, so for this simple case it is an
1460   // overkill.
1461   if (PredsScanned.size() != AvailablePreds.size() &&
1462       !isSafeToSpeculativelyExecute(LoadI))
1463     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1464       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1465         return false;
1466 
1467   // If there is exactly one predecessor where the value is unavailable, the
1468   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1469   // unconditional branch, we know that it isn't a critical edge.
1470   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1471       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1472     UnavailablePred = OneUnavailablePred;
1473   } else if (PredsScanned.size() != AvailablePreds.size()) {
1474     // Otherwise, we had multiple unavailable predecessors or we had a critical
1475     // edge from the one.
1476     SmallVector<BasicBlock*, 8> PredsToSplit;
1477     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1478 
1479     for (const auto &AvailablePred : AvailablePreds)
1480       AvailablePredSet.insert(AvailablePred.first);
1481 
1482     // Add all the unavailable predecessors to the PredsToSplit list.
1483     for (BasicBlock *P : predecessors(LoadBB)) {
1484       // If the predecessor is an indirect goto, we can't split the edge.
1485       if (isa<IndirectBrInst>(P->getTerminator()))
1486         return false;
1487 
1488       if (!AvailablePredSet.count(P))
1489         PredsToSplit.push_back(P);
1490     }
1491 
1492     // Split them out to their own block.
1493     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1494   }
1495 
1496   // If the value isn't available in all predecessors, then there will be
1497   // exactly one where it isn't available.  Insert a load on that edge and add
1498   // it to the AvailablePreds list.
1499   if (UnavailablePred) {
1500     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1501            "Can't handle critical edge here!");
1502     LoadInst *NewVal = new LoadInst(
1503         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1504         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1505         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1506         UnavailablePred->getTerminator());
1507     NewVal->setDebugLoc(LoadI->getDebugLoc());
1508     if (AATags)
1509       NewVal->setAAMetadata(AATags);
1510 
1511     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1512   }
1513 
1514   // Now we know that each predecessor of this block has a value in
1515   // AvailablePreds, sort them for efficient access as we're walking the preds.
1516   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1517 
1518   // Create a PHI node at the start of the block for the PRE'd load value.
1519   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1520   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1521                                 &LoadBB->front());
1522   PN->takeName(LoadI);
1523   PN->setDebugLoc(LoadI->getDebugLoc());
1524 
1525   // Insert new entries into the PHI for each predecessor.  A single block may
1526   // have multiple entries here.
1527   for (pred_iterator PI = PB; PI != PE; ++PI) {
1528     BasicBlock *P = *PI;
1529     AvailablePredsTy::iterator I =
1530         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1531 
1532     assert(I != AvailablePreds.end() && I->first == P &&
1533            "Didn't find entry for predecessor!");
1534 
1535     // If we have an available predecessor but it requires casting, insert the
1536     // cast in the predecessor and use the cast. Note that we have to update the
1537     // AvailablePreds vector as we go so that all of the PHI entries for this
1538     // predecessor use the same bitcast.
1539     Value *&PredV = I->second;
1540     if (PredV->getType() != LoadI->getType())
1541       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1542                                                P->getTerminator());
1543 
1544     PN->addIncoming(PredV, I->first);
1545   }
1546 
1547   for (LoadInst *PredLoadI : CSELoads) {
1548     combineMetadataForCSE(PredLoadI, LoadI, true);
1549   }
1550 
1551   LoadI->replaceAllUsesWith(PN);
1552   LoadI->eraseFromParent();
1553 
1554   return true;
1555 }
1556 
1557 /// findMostPopularDest - The specified list contains multiple possible
1558 /// threadable destinations.  Pick the one that occurs the most frequently in
1559 /// the list.
1560 static BasicBlock *
1561 findMostPopularDest(BasicBlock *BB,
1562                     const SmallVectorImpl<std::pair<BasicBlock *,
1563                                           BasicBlock *>> &PredToDestList) {
1564   assert(!PredToDestList.empty());
1565 
1566   // Determine popularity.  If there are multiple possible destinations, we
1567   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1568   // blocks with known and real destinations to threading undef.  We'll handle
1569   // them later if interesting.
1570   MapVector<BasicBlock *, unsigned> DestPopularity;
1571 
1572   // Populate DestPopularity with the successors in the order they appear in the
1573   // successor list.  This way, we ensure determinism by iterating it in the
1574   // same order in std::max_element below.  We map nullptr to 0 so that we can
1575   // return nullptr when PredToDestList contains nullptr only.
1576   DestPopularity[nullptr] = 0;
1577   for (auto *SuccBB : successors(BB))
1578     DestPopularity[SuccBB] = 0;
1579 
1580   for (const auto &PredToDest : PredToDestList)
1581     if (PredToDest.second)
1582       DestPopularity[PredToDest.second]++;
1583 
1584   // Find the most popular dest.
1585   auto MostPopular = std::max_element(
1586       DestPopularity.begin(), DestPopularity.end(), llvm::less_second());
1587 
1588   // Okay, we have finally picked the most popular destination.
1589   return MostPopular->first;
1590 }
1591 
1592 // Try to evaluate the value of V when the control flows from PredPredBB to
1593 // BB->getSinglePredecessor() and then on to BB.
1594 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1595                                                        BasicBlock *PredPredBB,
1596                                                        Value *V) {
1597   BasicBlock *PredBB = BB->getSinglePredecessor();
1598   assert(PredBB && "Expected a single predecessor");
1599 
1600   if (Constant *Cst = dyn_cast<Constant>(V)) {
1601     return Cst;
1602   }
1603 
1604   // Consult LVI if V is not an instruction in BB or PredBB.
1605   Instruction *I = dyn_cast<Instruction>(V);
1606   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1607     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1608   }
1609 
1610   // Look into a PHI argument.
1611   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1612     if (PHI->getParent() == PredBB)
1613       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1614     return nullptr;
1615   }
1616 
1617   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1618   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1619     if (CondCmp->getParent() == BB) {
1620       Constant *Op0 =
1621           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1622       Constant *Op1 =
1623           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1624       if (Op0 && Op1) {
1625         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1626       }
1627     }
1628     return nullptr;
1629   }
1630 
1631   return nullptr;
1632 }
1633 
1634 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1635                                                ConstantPreference Preference,
1636                                                Instruction *CxtI) {
1637   // If threading this would thread across a loop header, don't even try to
1638   // thread the edge.
1639   if (LoopHeaders.count(BB))
1640     return false;
1641 
1642   PredValueInfoTy PredValues;
1643   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1644                                        CxtI)) {
1645     // We don't have known values in predecessors.  See if we can thread through
1646     // BB and its sole predecessor.
1647     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1648   }
1649 
1650   assert(!PredValues.empty() &&
1651          "computeValueKnownInPredecessors returned true with no values");
1652 
1653   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1654              for (const auto &PredValue : PredValues) {
1655                dbgs() << "  BB '" << BB->getName()
1656                       << "': FOUND condition = " << *PredValue.first
1657                       << " for pred '" << PredValue.second->getName() << "'.\n";
1658   });
1659 
1660   // Decide what we want to thread through.  Convert our list of known values to
1661   // a list of known destinations for each pred.  This also discards duplicate
1662   // predecessors and keeps track of the undefined inputs (which are represented
1663   // as a null dest in the PredToDestList).
1664   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1665   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1666 
1667   BasicBlock *OnlyDest = nullptr;
1668   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1669   Constant *OnlyVal = nullptr;
1670   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1671 
1672   for (const auto &PredValue : PredValues) {
1673     BasicBlock *Pred = PredValue.second;
1674     if (!SeenPreds.insert(Pred).second)
1675       continue;  // Duplicate predecessor entry.
1676 
1677     Constant *Val = PredValue.first;
1678 
1679     BasicBlock *DestBB;
1680     if (isa<UndefValue>(Val))
1681       DestBB = nullptr;
1682     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1683       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1684       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1685     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1686       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1687       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1688     } else {
1689       assert(isa<IndirectBrInst>(BB->getTerminator())
1690               && "Unexpected terminator");
1691       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1692       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1693     }
1694 
1695     // If we have exactly one destination, remember it for efficiency below.
1696     if (PredToDestList.empty()) {
1697       OnlyDest = DestBB;
1698       OnlyVal = Val;
1699     } else {
1700       if (OnlyDest != DestBB)
1701         OnlyDest = MultipleDestSentinel;
1702       // It possible we have same destination, but different value, e.g. default
1703       // case in switchinst.
1704       if (Val != OnlyVal)
1705         OnlyVal = MultipleVal;
1706     }
1707 
1708     // If the predecessor ends with an indirect goto, we can't change its
1709     // destination.
1710     if (isa<IndirectBrInst>(Pred->getTerminator()))
1711       continue;
1712 
1713     PredToDestList.emplace_back(Pred, DestBB);
1714   }
1715 
1716   // If all edges were unthreadable, we fail.
1717   if (PredToDestList.empty())
1718     return false;
1719 
1720   // If all the predecessors go to a single known successor, we want to fold,
1721   // not thread. By doing so, we do not need to duplicate the current block and
1722   // also miss potential opportunities in case we dont/cant duplicate.
1723   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1724     if (BB->hasNPredecessors(PredToDestList.size())) {
1725       bool SeenFirstBranchToOnlyDest = false;
1726       std::vector <DominatorTree::UpdateType> Updates;
1727       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1728       for (BasicBlock *SuccBB : successors(BB)) {
1729         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1730           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1731         } else {
1732           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1733           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1734         }
1735       }
1736 
1737       // Finally update the terminator.
1738       Instruction *Term = BB->getTerminator();
1739       BranchInst::Create(OnlyDest, Term);
1740       ++NumFolds;
1741       Term->eraseFromParent();
1742       DTU->applyUpdatesPermissive(Updates);
1743       if (HasProfileData)
1744         BPI->eraseBlock(BB);
1745 
1746       // If the condition is now dead due to the removal of the old terminator,
1747       // erase it.
1748       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1749         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1750           CondInst->eraseFromParent();
1751         // We can safely replace *some* uses of the CondInst if it has
1752         // exactly one value as returned by LVI. RAUW is incorrect in the
1753         // presence of guards and assumes, that have the `Cond` as the use. This
1754         // is because we use the guards/assume to reason about the `Cond` value
1755         // at the end of block, but RAUW unconditionally replaces all uses
1756         // including the guards/assumes themselves and the uses before the
1757         // guard/assume.
1758         else if (OnlyVal && OnlyVal != MultipleVal)
1759           replaceFoldableUses(CondInst, OnlyVal, BB);
1760       }
1761       return true;
1762     }
1763   }
1764 
1765   // Determine which is the most common successor.  If we have many inputs and
1766   // this block is a switch, we want to start by threading the batch that goes
1767   // to the most popular destination first.  If we only know about one
1768   // threadable destination (the common case) we can avoid this.
1769   BasicBlock *MostPopularDest = OnlyDest;
1770 
1771   if (MostPopularDest == MultipleDestSentinel) {
1772     // Remove any loop headers from the Dest list, threadEdge conservatively
1773     // won't process them, but we might have other destination that are eligible
1774     // and we still want to process.
1775     erase_if(PredToDestList,
1776              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1777                return LoopHeaders.contains(PredToDest.second);
1778              });
1779 
1780     if (PredToDestList.empty())
1781       return false;
1782 
1783     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1784   }
1785 
1786   // Now that we know what the most popular destination is, factor all
1787   // predecessors that will jump to it into a single predecessor.
1788   SmallVector<BasicBlock*, 16> PredsToFactor;
1789   for (const auto &PredToDest : PredToDestList)
1790     if (PredToDest.second == MostPopularDest) {
1791       BasicBlock *Pred = PredToDest.first;
1792 
1793       // This predecessor may be a switch or something else that has multiple
1794       // edges to the block.  Factor each of these edges by listing them
1795       // according to # occurrences in PredsToFactor.
1796       for (BasicBlock *Succ : successors(Pred))
1797         if (Succ == BB)
1798           PredsToFactor.push_back(Pred);
1799     }
1800 
1801   // If the threadable edges are branching on an undefined value, we get to pick
1802   // the destination that these predecessors should get to.
1803   if (!MostPopularDest)
1804     MostPopularDest = BB->getTerminator()->
1805                             getSuccessor(getBestDestForJumpOnUndef(BB));
1806 
1807   // Ok, try to thread it!
1808   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1809 }
1810 
1811 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1812 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1813 /// simplifications we can do based on inputs to the phi node.
1814 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1815   BasicBlock *BB = PN->getParent();
1816 
1817   // TODO: We could make use of this to do it once for blocks with common PHI
1818   // values.
1819   SmallVector<BasicBlock*, 1> PredBBs;
1820   PredBBs.resize(1);
1821 
1822   // If any of the predecessor blocks end in an unconditional branch, we can
1823   // *duplicate* the conditional branch into that block in order to further
1824   // encourage jump threading and to eliminate cases where we have branch on a
1825   // phi of an icmp (branch on icmp is much better).
1826   // This is still beneficial when a frozen phi is used as the branch condition
1827   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1828   // to br(icmp(freeze ...)).
1829   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1830     BasicBlock *PredBB = PN->getIncomingBlock(i);
1831     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1832       if (PredBr->isUnconditional()) {
1833         PredBBs[0] = PredBB;
1834         // Try to duplicate BB into PredBB.
1835         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1836           return true;
1837       }
1838   }
1839 
1840   return false;
1841 }
1842 
1843 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1844 /// a xor instruction in the current block.  See if there are any
1845 /// simplifications we can do based on inputs to the xor.
1846 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1847   BasicBlock *BB = BO->getParent();
1848 
1849   // If either the LHS or RHS of the xor is a constant, don't do this
1850   // optimization.
1851   if (isa<ConstantInt>(BO->getOperand(0)) ||
1852       isa<ConstantInt>(BO->getOperand(1)))
1853     return false;
1854 
1855   // If the first instruction in BB isn't a phi, we won't be able to infer
1856   // anything special about any particular predecessor.
1857   if (!isa<PHINode>(BB->front()))
1858     return false;
1859 
1860   // If this BB is a landing pad, we won't be able to split the edge into it.
1861   if (BB->isEHPad())
1862     return false;
1863 
1864   // If we have a xor as the branch input to this block, and we know that the
1865   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1866   // the condition into the predecessor and fix that value to true, saving some
1867   // logical ops on that path and encouraging other paths to simplify.
1868   //
1869   // This copies something like this:
1870   //
1871   //  BB:
1872   //    %X = phi i1 [1],  [%X']
1873   //    %Y = icmp eq i32 %A, %B
1874   //    %Z = xor i1 %X, %Y
1875   //    br i1 %Z, ...
1876   //
1877   // Into:
1878   //  BB':
1879   //    %Y = icmp ne i32 %A, %B
1880   //    br i1 %Y, ...
1881 
1882   PredValueInfoTy XorOpValues;
1883   bool isLHS = true;
1884   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1885                                        WantInteger, BO)) {
1886     assert(XorOpValues.empty());
1887     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1888                                          WantInteger, BO))
1889       return false;
1890     isLHS = false;
1891   }
1892 
1893   assert(!XorOpValues.empty() &&
1894          "computeValueKnownInPredecessors returned true with no values");
1895 
1896   // Scan the information to see which is most popular: true or false.  The
1897   // predecessors can be of the set true, false, or undef.
1898   unsigned NumTrue = 0, NumFalse = 0;
1899   for (const auto &XorOpValue : XorOpValues) {
1900     if (isa<UndefValue>(XorOpValue.first))
1901       // Ignore undefs for the count.
1902       continue;
1903     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1904       ++NumFalse;
1905     else
1906       ++NumTrue;
1907   }
1908 
1909   // Determine which value to split on, true, false, or undef if neither.
1910   ConstantInt *SplitVal = nullptr;
1911   if (NumTrue > NumFalse)
1912     SplitVal = ConstantInt::getTrue(BB->getContext());
1913   else if (NumTrue != 0 || NumFalse != 0)
1914     SplitVal = ConstantInt::getFalse(BB->getContext());
1915 
1916   // Collect all of the blocks that this can be folded into so that we can
1917   // factor this once and clone it once.
1918   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1919   for (const auto &XorOpValue : XorOpValues) {
1920     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1921       continue;
1922 
1923     BlocksToFoldInto.push_back(XorOpValue.second);
1924   }
1925 
1926   // If we inferred a value for all of the predecessors, then duplication won't
1927   // help us.  However, we can just replace the LHS or RHS with the constant.
1928   if (BlocksToFoldInto.size() ==
1929       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1930     if (!SplitVal) {
1931       // If all preds provide undef, just nuke the xor, because it is undef too.
1932       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1933       BO->eraseFromParent();
1934     } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1935       // If all preds provide 0, replace the xor with the other input.
1936       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1937       BO->eraseFromParent();
1938     } else {
1939       // If all preds provide 1, set the computed value to 1.
1940       BO->setOperand(!isLHS, SplitVal);
1941     }
1942 
1943     return true;
1944   }
1945 
1946   // If any of predecessors end with an indirect goto, we can't change its
1947   // destination.
1948   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1949         return isa<IndirectBrInst>(Pred->getTerminator());
1950       }))
1951     return false;
1952 
1953   // Try to duplicate BB into PredBB.
1954   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1955 }
1956 
1957 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1958 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1959 /// NewPred using the entries from OldPred (suitably mapped).
1960 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1961                                             BasicBlock *OldPred,
1962                                             BasicBlock *NewPred,
1963                                      DenseMap<Instruction*, Value*> &ValueMap) {
1964   for (PHINode &PN : PHIBB->phis()) {
1965     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1966     // DestBlock.
1967     Value *IV = PN.getIncomingValueForBlock(OldPred);
1968 
1969     // Remap the value if necessary.
1970     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1971       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1972       if (I != ValueMap.end())
1973         IV = I->second;
1974     }
1975 
1976     PN.addIncoming(IV, NewPred);
1977   }
1978 }
1979 
1980 /// Merge basic block BB into its sole predecessor if possible.
1981 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1982   BasicBlock *SinglePred = BB->getSinglePredecessor();
1983   if (!SinglePred)
1984     return false;
1985 
1986   const Instruction *TI = SinglePred->getTerminator();
1987   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1988       SinglePred == BB || hasAddressTakenAndUsed(BB))
1989     return false;
1990 
1991   // If SinglePred was a loop header, BB becomes one.
1992   if (LoopHeaders.erase(SinglePred))
1993     LoopHeaders.insert(BB);
1994 
1995   LVI->eraseBlock(SinglePred);
1996   MergeBasicBlockIntoOnlyPred(BB, DTU);
1997 
1998   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1999   // BB code within one basic block `BB`), we need to invalidate the LVI
2000   // information associated with BB, because the LVI information need not be
2001   // true for all of BB after the merge. For example,
2002   // Before the merge, LVI info and code is as follows:
2003   // SinglePred: <LVI info1 for %p val>
2004   // %y = use of %p
2005   // call @exit() // need not transfer execution to successor.
2006   // assume(%p) // from this point on %p is true
2007   // br label %BB
2008   // BB: <LVI info2 for %p val, i.e. %p is true>
2009   // %x = use of %p
2010   // br label exit
2011   //
2012   // Note that this LVI info for blocks BB and SinglPred is correct for %p
2013   // (info2 and info1 respectively). After the merge and the deletion of the
2014   // LVI info1 for SinglePred. We have the following code:
2015   // BB: <LVI info2 for %p val>
2016   // %y = use of %p
2017   // call @exit()
2018   // assume(%p)
2019   // %x = use of %p <-- LVI info2 is correct from here onwards.
2020   // br label exit
2021   // LVI info2 for BB is incorrect at the beginning of BB.
2022 
2023   // Invalidate LVI information for BB if the LVI is not provably true for
2024   // all of BB.
2025   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2026     LVI->eraseBlock(BB);
2027   return true;
2028 }
2029 
2030 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2031 /// ValueMapping maps old values in BB to new ones in NewBB.
2032 void JumpThreadingPass::updateSSA(
2033     BasicBlock *BB, BasicBlock *NewBB,
2034     DenseMap<Instruction *, Value *> &ValueMapping) {
2035   // If there were values defined in BB that are used outside the block, then we
2036   // now have to update all uses of the value to use either the original value,
2037   // the cloned value, or some PHI derived value.  This can require arbitrary
2038   // PHI insertion, of which we are prepared to do, clean these up now.
2039   SSAUpdater SSAUpdate;
2040   SmallVector<Use *, 16> UsesToRename;
2041 
2042   for (Instruction &I : *BB) {
2043     // Scan all uses of this instruction to see if it is used outside of its
2044     // block, and if so, record them in UsesToRename.
2045     for (Use &U : I.uses()) {
2046       Instruction *User = cast<Instruction>(U.getUser());
2047       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2048         if (UserPN->getIncomingBlock(U) == BB)
2049           continue;
2050       } else if (User->getParent() == BB)
2051         continue;
2052 
2053       UsesToRename.push_back(&U);
2054     }
2055 
2056     // If there are no uses outside the block, we're done with this instruction.
2057     if (UsesToRename.empty())
2058       continue;
2059     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2060 
2061     // We found a use of I outside of BB.  Rename all uses of I that are outside
2062     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2063     // with the two values we know.
2064     SSAUpdate.Initialize(I.getType(), I.getName());
2065     SSAUpdate.AddAvailableValue(BB, &I);
2066     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2067 
2068     while (!UsesToRename.empty())
2069       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2070     LLVM_DEBUG(dbgs() << "\n");
2071   }
2072 }
2073 
2074 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2075 /// arguments that come from PredBB.  Return the map from the variables in the
2076 /// source basic block to the variables in the newly created basic block.
2077 DenseMap<Instruction *, Value *>
2078 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2079                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2080                                      BasicBlock *PredBB) {
2081   // We are going to have to map operands from the source basic block to the new
2082   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2083   // block, evaluate them to account for entry from PredBB.
2084   DenseMap<Instruction *, Value *> ValueMapping;
2085 
2086   // Retargets llvm.dbg.value to any renamed variables.
2087   auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2088     auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2089     if (!DbgInstruction)
2090       return false;
2091 
2092     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2093     for (auto DbgOperand : DbgInstruction->location_ops()) {
2094       auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2095       if (!DbgOperandInstruction)
2096         continue;
2097 
2098       auto I = ValueMapping.find(DbgOperandInstruction);
2099       if (I != ValueMapping.end()) {
2100         OperandsToRemap.insert(
2101             std::pair<Value *, Value *>(DbgOperand, I->second));
2102       }
2103     }
2104 
2105     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2106       DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2107     return true;
2108   };
2109 
2110   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2111   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2112   // might need to rewrite the operand of the cloned phi.
2113   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2114     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2115     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2116     ValueMapping[PN] = NewPN;
2117   }
2118 
2119   // Clone noalias scope declarations in the threaded block. When threading a
2120   // loop exit, we would otherwise end up with two idential scope declarations
2121   // visible at the same time.
2122   SmallVector<MDNode *> NoAliasScopes;
2123   DenseMap<MDNode *, MDNode *> ClonedScopes;
2124   LLVMContext &Context = PredBB->getContext();
2125   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2126   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2127 
2128   // Clone the non-phi instructions of the source basic block into NewBB,
2129   // keeping track of the mapping and using it to remap operands in the cloned
2130   // instructions.
2131   for (; BI != BE; ++BI) {
2132     Instruction *New = BI->clone();
2133     New->setName(BI->getName());
2134     New->insertInto(NewBB, NewBB->end());
2135     ValueMapping[&*BI] = New;
2136     adaptNoAliasScopes(New, ClonedScopes, Context);
2137 
2138     if (RetargetDbgValueIfPossible(New))
2139       continue;
2140 
2141     // Remap operands to patch up intra-block references.
2142     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2143       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2144         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2145         if (I != ValueMapping.end())
2146           New->setOperand(i, I->second);
2147       }
2148   }
2149 
2150   return ValueMapping;
2151 }
2152 
2153 /// Attempt to thread through two successive basic blocks.
2154 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2155                                                          Value *Cond) {
2156   // Consider:
2157   //
2158   // PredBB:
2159   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2160   //   %tobool = icmp eq i32 %cond, 0
2161   //   br i1 %tobool, label %BB, label ...
2162   //
2163   // BB:
2164   //   %cmp = icmp eq i32* %var, null
2165   //   br i1 %cmp, label ..., label ...
2166   //
2167   // We don't know the value of %var at BB even if we know which incoming edge
2168   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2169   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2170   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2171 
2172   // Require that BB end with a Branch for simplicity.
2173   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2174   if (!CondBr)
2175     return false;
2176 
2177   // BB must have exactly one predecessor.
2178   BasicBlock *PredBB = BB->getSinglePredecessor();
2179   if (!PredBB)
2180     return false;
2181 
2182   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2183   // unconditional branch, we should be merging PredBB and BB instead. For
2184   // simplicity, we don't deal with a switch.
2185   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2186   if (!PredBBBranch || PredBBBranch->isUnconditional())
2187     return false;
2188 
2189   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2190   // PredBB.
2191   if (PredBB->getSinglePredecessor())
2192     return false;
2193 
2194   // Don't thread through PredBB if it contains a successor edge to itself, in
2195   // which case we would infinite loop.  Suppose we are threading an edge from
2196   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2197   // successor edge to itself.  If we allowed jump threading in this case, we
2198   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2199   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2200   // with another jump threading opportunity from PredBB.thread through PredBB
2201   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2202   // would keep peeling one iteration from PredBB.
2203   if (llvm::is_contained(successors(PredBB), PredBB))
2204     return false;
2205 
2206   // Don't thread across a loop header.
2207   if (LoopHeaders.count(PredBB))
2208     return false;
2209 
2210   // Avoid complication with duplicating EH pads.
2211   if (PredBB->isEHPad())
2212     return false;
2213 
2214   // Find a predecessor that we can thread.  For simplicity, we only consider a
2215   // successor edge out of BB to which we thread exactly one incoming edge into
2216   // PredBB.
2217   unsigned ZeroCount = 0;
2218   unsigned OneCount = 0;
2219   BasicBlock *ZeroPred = nullptr;
2220   BasicBlock *OnePred = nullptr;
2221   for (BasicBlock *P : predecessors(PredBB)) {
2222     // If PredPred ends with IndirectBrInst, we can't handle it.
2223     if (isa<IndirectBrInst>(P->getTerminator()))
2224       continue;
2225     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2226             evaluateOnPredecessorEdge(BB, P, Cond))) {
2227       if (CI->isZero()) {
2228         ZeroCount++;
2229         ZeroPred = P;
2230       } else if (CI->isOne()) {
2231         OneCount++;
2232         OnePred = P;
2233       }
2234     }
2235   }
2236 
2237   // Disregard complicated cases where we have to thread multiple edges.
2238   BasicBlock *PredPredBB;
2239   if (ZeroCount == 1) {
2240     PredPredBB = ZeroPred;
2241   } else if (OneCount == 1) {
2242     PredPredBB = OnePred;
2243   } else {
2244     return false;
2245   }
2246 
2247   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2248 
2249   // If threading to the same block as we come from, we would infinite loop.
2250   if (SuccBB == BB) {
2251     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2252                       << "' - would thread to self!\n");
2253     return false;
2254   }
2255 
2256   // If threading this would thread across a loop header, don't thread the edge.
2257   // See the comments above findLoopHeaders for justifications and caveats.
2258   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2259     LLVM_DEBUG({
2260       bool BBIsHeader = LoopHeaders.count(BB);
2261       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2262       dbgs() << "  Not threading across "
2263              << (BBIsHeader ? "loop header BB '" : "block BB '")
2264              << BB->getName() << "' to dest "
2265              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2266              << SuccBB->getName()
2267              << "' - it might create an irreducible loop!\n";
2268     });
2269     return false;
2270   }
2271 
2272   // Compute the cost of duplicating BB and PredBB.
2273   unsigned BBCost = getJumpThreadDuplicationCost(
2274       TTI, BB, BB->getTerminator(), BBDupThreshold);
2275   unsigned PredBBCost = getJumpThreadDuplicationCost(
2276       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2277 
2278   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2279   // individually before checking their sum because getJumpThreadDuplicationCost
2280   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2281   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2282       BBCost + PredBBCost > BBDupThreshold) {
2283     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2284                       << "' - Cost is too high: " << PredBBCost
2285                       << " for PredBB, " << BBCost << "for BB\n");
2286     return false;
2287   }
2288 
2289   // Now we are ready to duplicate PredBB.
2290   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2291   return true;
2292 }
2293 
2294 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2295                                                     BasicBlock *PredBB,
2296                                                     BasicBlock *BB,
2297                                                     BasicBlock *SuccBB) {
2298   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2299                     << BB->getName() << "'\n");
2300 
2301   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2302   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2303 
2304   BasicBlock *NewBB =
2305       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2306                          PredBB->getParent(), PredBB);
2307   NewBB->moveAfter(PredBB);
2308 
2309   // Set the block frequency of NewBB.
2310   if (HasProfileData) {
2311     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2312                      BPI->getEdgeProbability(PredPredBB, PredBB);
2313     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2314   }
2315 
2316   // We are going to have to map operands from the original BB block to the new
2317   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2318   // to account for entry from PredPredBB.
2319   DenseMap<Instruction *, Value *> ValueMapping =
2320       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2321 
2322   // Copy the edge probabilities from PredBB to NewBB.
2323   if (HasProfileData)
2324     BPI->copyEdgeProbabilities(PredBB, NewBB);
2325 
2326   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2327   // This eliminates predecessors from PredPredBB, which requires us to simplify
2328   // any PHI nodes in PredBB.
2329   Instruction *PredPredTerm = PredPredBB->getTerminator();
2330   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2331     if (PredPredTerm->getSuccessor(i) == PredBB) {
2332       PredBB->removePredecessor(PredPredBB, true);
2333       PredPredTerm->setSuccessor(i, NewBB);
2334     }
2335 
2336   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2337                                   ValueMapping);
2338   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2339                                   ValueMapping);
2340 
2341   DTU->applyUpdatesPermissive(
2342       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2343        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2344        {DominatorTree::Insert, PredPredBB, NewBB},
2345        {DominatorTree::Delete, PredPredBB, PredBB}});
2346 
2347   updateSSA(PredBB, NewBB, ValueMapping);
2348 
2349   // Clean up things like PHI nodes with single operands, dead instructions,
2350   // etc.
2351   SimplifyInstructionsInBlock(NewBB, TLI);
2352   SimplifyInstructionsInBlock(PredBB, TLI);
2353 
2354   SmallVector<BasicBlock *, 1> PredsToFactor;
2355   PredsToFactor.push_back(NewBB);
2356   threadEdge(BB, PredsToFactor, SuccBB);
2357 }
2358 
2359 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2360 bool JumpThreadingPass::tryThreadEdge(
2361     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2362     BasicBlock *SuccBB) {
2363   // If threading to the same block as we come from, we would infinite loop.
2364   if (SuccBB == BB) {
2365     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2366                       << "' - would thread to self!\n");
2367     return false;
2368   }
2369 
2370   // If threading this would thread across a loop header, don't thread the edge.
2371   // See the comments above findLoopHeaders for justifications and caveats.
2372   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2373     LLVM_DEBUG({
2374       bool BBIsHeader = LoopHeaders.count(BB);
2375       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2376       dbgs() << "  Not threading across "
2377           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2378           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2379           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2380     });
2381     return false;
2382   }
2383 
2384   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2385       TTI, BB, BB->getTerminator(), BBDupThreshold);
2386   if (JumpThreadCost > BBDupThreshold) {
2387     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2388                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2389     return false;
2390   }
2391 
2392   threadEdge(BB, PredBBs, SuccBB);
2393   return true;
2394 }
2395 
2396 /// threadEdge - We have decided that it is safe and profitable to factor the
2397 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2398 /// across BB.  Transform the IR to reflect this change.
2399 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2400                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2401                                    BasicBlock *SuccBB) {
2402   assert(SuccBB != BB && "Don't create an infinite loop");
2403 
2404   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2405          "Don't thread across loop headers");
2406 
2407   // And finally, do it!  Start by factoring the predecessors if needed.
2408   BasicBlock *PredBB;
2409   if (PredBBs.size() == 1)
2410     PredBB = PredBBs[0];
2411   else {
2412     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2413                       << " common predecessors.\n");
2414     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2415   }
2416 
2417   // And finally, do it!
2418   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2419                     << "' to '" << SuccBB->getName()
2420                     << ", across block:\n    " << *BB << "\n");
2421 
2422   LVI->threadEdge(PredBB, BB, SuccBB);
2423 
2424   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2425                                          BB->getName()+".thread",
2426                                          BB->getParent(), BB);
2427   NewBB->moveAfter(PredBB);
2428 
2429   // Set the block frequency of NewBB.
2430   if (HasProfileData) {
2431     auto NewBBFreq =
2432         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2433     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2434   }
2435 
2436   // Copy all the instructions from BB to NewBB except the terminator.
2437   DenseMap<Instruction *, Value *> ValueMapping =
2438       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2439 
2440   // We didn't copy the terminator from BB over to NewBB, because there is now
2441   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2442   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2443   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2444 
2445   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2446   // PHI nodes for NewBB now.
2447   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2448 
2449   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2450   // eliminates predecessors from BB, which requires us to simplify any PHI
2451   // nodes in BB.
2452   Instruction *PredTerm = PredBB->getTerminator();
2453   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2454     if (PredTerm->getSuccessor(i) == BB) {
2455       BB->removePredecessor(PredBB, true);
2456       PredTerm->setSuccessor(i, NewBB);
2457     }
2458 
2459   // Enqueue required DT updates.
2460   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2461                                {DominatorTree::Insert, PredBB, NewBB},
2462                                {DominatorTree::Delete, PredBB, BB}});
2463 
2464   updateSSA(BB, NewBB, ValueMapping);
2465 
2466   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2467   // over the new instructions and zap any that are constants or dead.  This
2468   // frequently happens because of phi translation.
2469   SimplifyInstructionsInBlock(NewBB, TLI);
2470 
2471   // Update the edge weight from BB to SuccBB, which should be less than before.
2472   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2473 
2474   // Threaded an edge!
2475   ++NumThreads;
2476 }
2477 
2478 /// Create a new basic block that will be the predecessor of BB and successor of
2479 /// all blocks in Preds. When profile data is available, update the frequency of
2480 /// this new block.
2481 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2482                                                ArrayRef<BasicBlock *> Preds,
2483                                                const char *Suffix) {
2484   SmallVector<BasicBlock *, 2> NewBBs;
2485 
2486   // Collect the frequencies of all predecessors of BB, which will be used to
2487   // update the edge weight of the result of splitting predecessors.
2488   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2489   if (HasProfileData)
2490     for (auto *Pred : Preds)
2491       FreqMap.insert(std::make_pair(
2492           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2493 
2494   // In the case when BB is a LandingPad block we create 2 new predecessors
2495   // instead of just one.
2496   if (BB->isLandingPad()) {
2497     std::string NewName = std::string(Suffix) + ".split-lp";
2498     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2499   } else {
2500     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2501   }
2502 
2503   std::vector<DominatorTree::UpdateType> Updates;
2504   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2505   for (auto *NewBB : NewBBs) {
2506     BlockFrequency NewBBFreq(0);
2507     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2508     for (auto *Pred : predecessors(NewBB)) {
2509       Updates.push_back({DominatorTree::Delete, Pred, BB});
2510       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2511       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2512         NewBBFreq += FreqMap.lookup(Pred);
2513     }
2514     if (HasProfileData) // Apply the summed frequency to NewBB.
2515       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2516   }
2517 
2518   DTU->applyUpdatesPermissive(Updates);
2519   return NewBBs[0];
2520 }
2521 
2522 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2523   const Instruction *TI = BB->getTerminator();
2524   assert(TI->getNumSuccessors() > 1 && "not a split");
2525   return hasValidBranchWeightMD(*TI);
2526 }
2527 
2528 /// Update the block frequency of BB and branch weight and the metadata on the
2529 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2530 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2531 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2532                                                      BasicBlock *BB,
2533                                                      BasicBlock *NewBB,
2534                                                      BasicBlock *SuccBB) {
2535   if (!HasProfileData)
2536     return;
2537 
2538   assert(BFI && BPI && "BFI & BPI should have been created here");
2539 
2540   // As the edge from PredBB to BB is deleted, we have to update the block
2541   // frequency of BB.
2542   auto BBOrigFreq = BFI->getBlockFreq(BB);
2543   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2544   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2545   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2546   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2547 
2548   // Collect updated outgoing edges' frequencies from BB and use them to update
2549   // edge probabilities.
2550   SmallVector<uint64_t, 4> BBSuccFreq;
2551   for (BasicBlock *Succ : successors(BB)) {
2552     auto SuccFreq = (Succ == SuccBB)
2553                         ? BB2SuccBBFreq - NewBBFreq
2554                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2555     BBSuccFreq.push_back(SuccFreq.getFrequency());
2556   }
2557 
2558   uint64_t MaxBBSuccFreq =
2559       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2560 
2561   SmallVector<BranchProbability, 4> BBSuccProbs;
2562   if (MaxBBSuccFreq == 0)
2563     BBSuccProbs.assign(BBSuccFreq.size(),
2564                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2565   else {
2566     for (uint64_t Freq : BBSuccFreq)
2567       BBSuccProbs.push_back(
2568           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2569     // Normalize edge probabilities so that they sum up to one.
2570     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2571                                               BBSuccProbs.end());
2572   }
2573 
2574   // Update edge probabilities in BPI.
2575   BPI->setEdgeProbability(BB, BBSuccProbs);
2576 
2577   // Update the profile metadata as well.
2578   //
2579   // Don't do this if the profile of the transformed blocks was statically
2580   // estimated.  (This could occur despite the function having an entry
2581   // frequency in completely cold parts of the CFG.)
2582   //
2583   // In this case we don't want to suggest to subsequent passes that the
2584   // calculated weights are fully consistent.  Consider this graph:
2585   //
2586   //                 check_1
2587   //             50% /  |
2588   //             eq_1   | 50%
2589   //                 \  |
2590   //                 check_2
2591   //             50% /  |
2592   //             eq_2   | 50%
2593   //                 \  |
2594   //                 check_3
2595   //             50% /  |
2596   //             eq_3   | 50%
2597   //                 \  |
2598   //
2599   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2600   // the overall probabilities are inconsistent; the total probability that the
2601   // value is either 1, 2 or 3 is 150%.
2602   //
2603   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2604   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2605   // the loop exit edge.  Then based solely on static estimation we would assume
2606   // the loop was extremely hot.
2607   //
2608   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2609   // shouldn't make edges extremely likely or unlikely based solely on static
2610   // estimation.
2611   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2612     SmallVector<uint32_t, 4> Weights;
2613     for (auto Prob : BBSuccProbs)
2614       Weights.push_back(Prob.getNumerator());
2615 
2616     auto TI = BB->getTerminator();
2617     TI->setMetadata(
2618         LLVMContext::MD_prof,
2619         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2620   }
2621 }
2622 
2623 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2624 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2625 /// If we can duplicate the contents of BB up into PredBB do so now, this
2626 /// improves the odds that the branch will be on an analyzable instruction like
2627 /// a compare.
2628 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2629     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2630   assert(!PredBBs.empty() && "Can't handle an empty set");
2631 
2632   // If BB is a loop header, then duplicating this block outside the loop would
2633   // cause us to transform this into an irreducible loop, don't do this.
2634   // See the comments above findLoopHeaders for justifications and caveats.
2635   if (LoopHeaders.count(BB)) {
2636     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2637                       << "' into predecessor block '" << PredBBs[0]->getName()
2638                       << "' - it might create an irreducible loop!\n");
2639     return false;
2640   }
2641 
2642   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2643       TTI, BB, BB->getTerminator(), BBDupThreshold);
2644   if (DuplicationCost > BBDupThreshold) {
2645     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2646                       << "' - Cost is too high: " << DuplicationCost << "\n");
2647     return false;
2648   }
2649 
2650   // And finally, do it!  Start by factoring the predecessors if needed.
2651   std::vector<DominatorTree::UpdateType> Updates;
2652   BasicBlock *PredBB;
2653   if (PredBBs.size() == 1)
2654     PredBB = PredBBs[0];
2655   else {
2656     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2657                       << " common predecessors.\n");
2658     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2659   }
2660   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2661 
2662   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2663   // of PredBB.
2664   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2665                     << "' into end of '" << PredBB->getName()
2666                     << "' to eliminate branch on phi.  Cost: "
2667                     << DuplicationCost << " block is:" << *BB << "\n");
2668 
2669   // Unless PredBB ends with an unconditional branch, split the edge so that we
2670   // can just clone the bits from BB into the end of the new PredBB.
2671   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2672 
2673   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2674     BasicBlock *OldPredBB = PredBB;
2675     PredBB = SplitEdge(OldPredBB, BB);
2676     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2677     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2678     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2679     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2680   }
2681 
2682   // We are going to have to map operands from the original BB block into the
2683   // PredBB block.  Evaluate PHI nodes in BB.
2684   DenseMap<Instruction*, Value*> ValueMapping;
2685 
2686   BasicBlock::iterator BI = BB->begin();
2687   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2688     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2689   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2690   // mapping and using it to remap operands in the cloned instructions.
2691   for (; BI != BB->end(); ++BI) {
2692     Instruction *New = BI->clone();
2693 
2694     // Remap operands to patch up intra-block references.
2695     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2696       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2697         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2698         if (I != ValueMapping.end())
2699           New->setOperand(i, I->second);
2700       }
2701 
2702     // If this instruction can be simplified after the operands are updated,
2703     // just use the simplified value instead.  This frequently happens due to
2704     // phi translation.
2705     if (Value *IV = simplifyInstruction(
2706             New,
2707             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2708       ValueMapping[&*BI] = IV;
2709       if (!New->mayHaveSideEffects()) {
2710         New->deleteValue();
2711         New = nullptr;
2712       }
2713     } else {
2714       ValueMapping[&*BI] = New;
2715     }
2716     if (New) {
2717       // Otherwise, insert the new instruction into the block.
2718       New->setName(BI->getName());
2719       New->insertInto(PredBB, OldPredBranch->getIterator());
2720       // Update Dominance from simplified New instruction operands.
2721       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2722         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2723           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2724     }
2725   }
2726 
2727   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2728   // add entries to the PHI nodes for branch from PredBB now.
2729   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2730   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2731                                   ValueMapping);
2732   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2733                                   ValueMapping);
2734 
2735   updateSSA(BB, PredBB, ValueMapping);
2736 
2737   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2738   // that we nuked.
2739   BB->removePredecessor(PredBB, true);
2740 
2741   // Remove the unconditional branch at the end of the PredBB block.
2742   OldPredBranch->eraseFromParent();
2743   if (HasProfileData)
2744     BPI->copyEdgeProbabilities(BB, PredBB);
2745   DTU->applyUpdatesPermissive(Updates);
2746 
2747   ++NumDupes;
2748   return true;
2749 }
2750 
2751 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2752 // a Select instruction in Pred. BB has other predecessors and SI is used in
2753 // a PHI node in BB. SI has no other use.
2754 // A new basic block, NewBB, is created and SI is converted to compare and
2755 // conditional branch. SI is erased from parent.
2756 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2757                                           SelectInst *SI, PHINode *SIUse,
2758                                           unsigned Idx) {
2759   // Expand the select.
2760   //
2761   // Pred --
2762   //  |    v
2763   //  |  NewBB
2764   //  |    |
2765   //  |-----
2766   //  v
2767   // BB
2768   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2769   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2770                                          BB->getParent(), BB);
2771   // Move the unconditional branch to NewBB.
2772   PredTerm->removeFromParent();
2773   PredTerm->insertInto(NewBB, NewBB->end());
2774   // Create a conditional branch and update PHI nodes.
2775   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2776   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2777   BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2778   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2779   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2780   // Set the block frequency of NewBB.
2781   if (HasProfileData) {
2782     uint64_t TrueWeight, FalseWeight;
2783     if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2784         (TrueWeight + FalseWeight) != 0) {
2785       SmallVector<BranchProbability, 2> BP;
2786       BP.emplace_back(BranchProbability::getBranchProbability(
2787           TrueWeight, TrueWeight + FalseWeight));
2788       BP.emplace_back(BranchProbability::getBranchProbability(
2789           FalseWeight, TrueWeight + FalseWeight));
2790       BPI->setEdgeProbability(Pred, BP);
2791     }
2792 
2793     auto NewBBFreq =
2794         BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, NewBB);
2795     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2796   }
2797 
2798   // The select is now dead.
2799   SI->eraseFromParent();
2800   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2801                                {DominatorTree::Insert, Pred, NewBB}});
2802 
2803   // Update any other PHI nodes in BB.
2804   for (BasicBlock::iterator BI = BB->begin();
2805        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2806     if (Phi != SIUse)
2807       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2808 }
2809 
2810 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2811   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2812 
2813   if (!CondPHI || CondPHI->getParent() != BB)
2814     return false;
2815 
2816   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2817     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2818     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2819 
2820     // The second and third condition can be potentially relaxed. Currently
2821     // the conditions help to simplify the code and allow us to reuse existing
2822     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2823     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2824       continue;
2825 
2826     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2827     if (!PredTerm || !PredTerm->isUnconditional())
2828       continue;
2829 
2830     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2831     return true;
2832   }
2833   return false;
2834 }
2835 
2836 /// tryToUnfoldSelect - Look for blocks of the form
2837 /// bb1:
2838 ///   %a = select
2839 ///   br bb2
2840 ///
2841 /// bb2:
2842 ///   %p = phi [%a, %bb1] ...
2843 ///   %c = icmp %p
2844 ///   br i1 %c
2845 ///
2846 /// And expand the select into a branch structure if one of its arms allows %c
2847 /// to be folded. This later enables threading from bb1 over bb2.
2848 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2849   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2850   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2851   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2852 
2853   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2854       CondLHS->getParent() != BB)
2855     return false;
2856 
2857   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2858     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2859     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2860 
2861     // Look if one of the incoming values is a select in the corresponding
2862     // predecessor.
2863     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2864       continue;
2865 
2866     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2867     if (!PredTerm || !PredTerm->isUnconditional())
2868       continue;
2869 
2870     // Now check if one of the select values would allow us to constant fold the
2871     // terminator in BB. We don't do the transform if both sides fold, those
2872     // cases will be threaded in any case.
2873     LazyValueInfo::Tristate LHSFolds =
2874         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2875                                 CondRHS, Pred, BB, CondCmp);
2876     LazyValueInfo::Tristate RHSFolds =
2877         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2878                                 CondRHS, Pred, BB, CondCmp);
2879     if ((LHSFolds != LazyValueInfo::Unknown ||
2880          RHSFolds != LazyValueInfo::Unknown) &&
2881         LHSFolds != RHSFolds) {
2882       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2883       return true;
2884     }
2885   }
2886   return false;
2887 }
2888 
2889 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2890 /// same BB in the form
2891 /// bb:
2892 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2893 ///   %s = select %p, trueval, falseval
2894 ///
2895 /// or
2896 ///
2897 /// bb:
2898 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2899 ///   %c = cmp %p, 0
2900 ///   %s = select %c, trueval, falseval
2901 ///
2902 /// And expand the select into a branch structure. This later enables
2903 /// jump-threading over bb in this pass.
2904 ///
2905 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2906 /// select if the associated PHI has at least one constant.  If the unfolded
2907 /// select is not jump-threaded, it will be folded again in the later
2908 /// optimizations.
2909 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2910   // This transform would reduce the quality of msan diagnostics.
2911   // Disable this transform under MemorySanitizer.
2912   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2913     return false;
2914 
2915   // If threading this would thread across a loop header, don't thread the edge.
2916   // See the comments above findLoopHeaders for justifications and caveats.
2917   if (LoopHeaders.count(BB))
2918     return false;
2919 
2920   for (BasicBlock::iterator BI = BB->begin();
2921        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2922     // Look for a Phi having at least one constant incoming value.
2923     if (llvm::all_of(PN->incoming_values(),
2924                      [](Value *V) { return !isa<ConstantInt>(V); }))
2925       continue;
2926 
2927     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2928       using namespace PatternMatch;
2929 
2930       // Check if SI is in BB and use V as condition.
2931       if (SI->getParent() != BB)
2932         return false;
2933       Value *Cond = SI->getCondition();
2934       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2935       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2936     };
2937 
2938     SelectInst *SI = nullptr;
2939     for (Use &U : PN->uses()) {
2940       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2941         // Look for a ICmp in BB that compares PN with a constant and is the
2942         // condition of a Select.
2943         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2944             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2945           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2946             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2947               SI = SelectI;
2948               break;
2949             }
2950       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2951         // Look for a Select in BB that uses PN as condition.
2952         if (isUnfoldCandidate(SelectI, U.get())) {
2953           SI = SelectI;
2954           break;
2955         }
2956       }
2957     }
2958 
2959     if (!SI)
2960       continue;
2961     // Expand the select.
2962     Value *Cond = SI->getCondition();
2963     if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2964       Cond = new FreezeInst(Cond, "cond.fr", SI);
2965     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2966     BasicBlock *SplitBB = SI->getParent();
2967     BasicBlock *NewBB = Term->getParent();
2968     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2969     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2970     NewPN->addIncoming(SI->getFalseValue(), BB);
2971     SI->replaceAllUsesWith(NewPN);
2972     SI->eraseFromParent();
2973     // NewBB and SplitBB are newly created blocks which require insertion.
2974     std::vector<DominatorTree::UpdateType> Updates;
2975     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2976     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2977     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2978     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2979     // BB's successors were moved to SplitBB, update DTU accordingly.
2980     for (auto *Succ : successors(SplitBB)) {
2981       Updates.push_back({DominatorTree::Delete, BB, Succ});
2982       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2983     }
2984     DTU->applyUpdatesPermissive(Updates);
2985     return true;
2986   }
2987   return false;
2988 }
2989 
2990 /// Try to propagate a guard from the current BB into one of its predecessors
2991 /// in case if another branch of execution implies that the condition of this
2992 /// guard is always true. Currently we only process the simplest case that
2993 /// looks like:
2994 ///
2995 /// Start:
2996 ///   %cond = ...
2997 ///   br i1 %cond, label %T1, label %F1
2998 /// T1:
2999 ///   br label %Merge
3000 /// F1:
3001 ///   br label %Merge
3002 /// Merge:
3003 ///   %condGuard = ...
3004 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
3005 ///
3006 /// And cond either implies condGuard or !condGuard. In this case all the
3007 /// instructions before the guard can be duplicated in both branches, and the
3008 /// guard is then threaded to one of them.
3009 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
3010   using namespace PatternMatch;
3011 
3012   // We only want to deal with two predecessors.
3013   BasicBlock *Pred1, *Pred2;
3014   auto PI = pred_begin(BB), PE = pred_end(BB);
3015   if (PI == PE)
3016     return false;
3017   Pred1 = *PI++;
3018   if (PI == PE)
3019     return false;
3020   Pred2 = *PI++;
3021   if (PI != PE)
3022     return false;
3023   if (Pred1 == Pred2)
3024     return false;
3025 
3026   // Try to thread one of the guards of the block.
3027   // TODO: Look up deeper than to immediate predecessor?
3028   auto *Parent = Pred1->getSinglePredecessor();
3029   if (!Parent || Parent != Pred2->getSinglePredecessor())
3030     return false;
3031 
3032   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3033     for (auto &I : *BB)
3034       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3035         return true;
3036 
3037   return false;
3038 }
3039 
3040 /// Try to propagate the guard from BB which is the lower block of a diamond
3041 /// to one of its branches, in case if diamond's condition implies guard's
3042 /// condition.
3043 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3044                                     BranchInst *BI) {
3045   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3046   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3047   Value *GuardCond = Guard->getArgOperand(0);
3048   Value *BranchCond = BI->getCondition();
3049   BasicBlock *TrueDest = BI->getSuccessor(0);
3050   BasicBlock *FalseDest = BI->getSuccessor(1);
3051 
3052   auto &DL = BB->getModule()->getDataLayout();
3053   bool TrueDestIsSafe = false;
3054   bool FalseDestIsSafe = false;
3055 
3056   // True dest is safe if BranchCond => GuardCond.
3057   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3058   if (Impl && *Impl)
3059     TrueDestIsSafe = true;
3060   else {
3061     // False dest is safe if !BranchCond => GuardCond.
3062     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3063     if (Impl && *Impl)
3064       FalseDestIsSafe = true;
3065   }
3066 
3067   if (!TrueDestIsSafe && !FalseDestIsSafe)
3068     return false;
3069 
3070   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3071   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3072 
3073   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3074   Instruction *AfterGuard = Guard->getNextNode();
3075   unsigned Cost =
3076       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3077   if (Cost > BBDupThreshold)
3078     return false;
3079   // Duplicate all instructions before the guard and the guard itself to the
3080   // branch where implication is not proved.
3081   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3082       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3083   assert(GuardedBlock && "Could not create the guarded block?");
3084   // Duplicate all instructions before the guard in the unguarded branch.
3085   // Since we have successfully duplicated the guarded block and this block
3086   // has fewer instructions, we expect it to succeed.
3087   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3088       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3089   assert(UnguardedBlock && "Could not create the unguarded block?");
3090   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3091                     << GuardedBlock->getName() << "\n");
3092   // Some instructions before the guard may still have uses. For them, we need
3093   // to create Phi nodes merging their copies in both guarded and unguarded
3094   // branches. Those instructions that have no uses can be just removed.
3095   SmallVector<Instruction *, 4> ToRemove;
3096   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3097     if (!isa<PHINode>(&*BI))
3098       ToRemove.push_back(&*BI);
3099 
3100   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3101   assert(InsertionPoint && "Empty block?");
3102   // Substitute with Phis & remove.
3103   for (auto *Inst : reverse(ToRemove)) {
3104     if (!Inst->use_empty()) {
3105       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3106       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3107       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3108       NewPN->insertBefore(InsertionPoint);
3109       Inst->replaceAllUsesWith(NewPN);
3110     }
3111     Inst->eraseFromParent();
3112   }
3113   return true;
3114 }
3115