xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 7d91d6b83e74edf278dde375e6049aca833cbebd)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/BlockFrequency.h"
64 #include "llvm/Support/BranchProbability.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
71 #include "llvm/Transforms/Utils/Cloning.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/SSAUpdater.h"
74 #include "llvm/Transforms/Utils/ValueMapper.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <memory>
81 #include <utility>
82 
83 using namespace llvm;
84 using namespace jumpthreading;
85 
86 #define DEBUG_TYPE "jump-threading"
87 
88 STATISTIC(NumThreads, "Number of jumps threaded");
89 STATISTIC(NumFolds,   "Number of terminators folded");
90 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
91 
92 static cl::opt<unsigned>
93 BBDuplicateThreshold("jump-threading-threshold",
94           cl::desc("Max block size to duplicate for jump threading"),
95           cl::init(6), cl::Hidden);
96 
97 static cl::opt<unsigned>
98 ImplicationSearchThreshold(
99   "jump-threading-implication-search-threshold",
100   cl::desc("The number of predecessors to search for a stronger "
101            "condition to use to thread over a weaker condition"),
102   cl::init(3), cl::Hidden);
103 
104 static cl::opt<bool> PrintLVIAfterJumpThreading(
105     "print-lvi-after-jump-threading",
106     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
107     cl::Hidden);
108 
109 static cl::opt<bool> JumpThreadingFreezeSelectCond(
110     "jump-threading-freeze-select-cond",
111     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
112     cl::Hidden);
113 
114 static cl::opt<bool> ThreadAcrossLoopHeaders(
115     "jump-threading-across-loop-headers",
116     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
117     cl::init(false), cl::Hidden);
118 
119 
120 namespace {
121 
122   /// This pass performs 'jump threading', which looks at blocks that have
123   /// multiple predecessors and multiple successors.  If one or more of the
124   /// predecessors of the block can be proven to always jump to one of the
125   /// successors, we forward the edge from the predecessor to the successor by
126   /// duplicating the contents of this block.
127   ///
128   /// An example of when this can occur is code like this:
129   ///
130   ///   if () { ...
131   ///     X = 4;
132   ///   }
133   ///   if (X < 3) {
134   ///
135   /// In this case, the unconditional branch at the end of the first if can be
136   /// revectored to the false side of the second if.
137   class JumpThreading : public FunctionPass {
138     JumpThreadingPass Impl;
139 
140   public:
141     static char ID; // Pass identification
142 
143     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
144         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
145       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
146     }
147 
148     bool runOnFunction(Function &F) override;
149 
150     void getAnalysisUsage(AnalysisUsage &AU) const override {
151       AU.addRequired<DominatorTreeWrapperPass>();
152       AU.addPreserved<DominatorTreeWrapperPass>();
153       AU.addRequired<AAResultsWrapperPass>();
154       AU.addRequired<LazyValueInfoWrapperPass>();
155       AU.addPreserved<LazyValueInfoWrapperPass>();
156       AU.addPreserved<GlobalsAAWrapperPass>();
157       AU.addRequired<TargetLibraryInfoWrapperPass>();
158       AU.addRequired<TargetTransformInfoWrapperPass>();
159     }
160 
161     void releaseMemory() override { Impl.releaseMemory(); }
162   };
163 
164 } // end anonymous namespace
165 
166 char JumpThreading::ID = 0;
167 
168 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
169                 "Jump Threading", false, false)
170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
172 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
173 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
174 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
175                 "Jump Threading", false, false)
176 
177 // Public interface to the Jump Threading pass
178 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
179   return new JumpThreading(InsertFr, Threshold);
180 }
181 
182 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
183   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
184   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
185 }
186 
187 // Update branch probability information according to conditional
188 // branch probability. This is usually made possible for cloned branches
189 // in inline instances by the context specific profile in the caller.
190 // For instance,
191 //
192 //  [Block PredBB]
193 //  [Branch PredBr]
194 //  if (t) {
195 //     Block A;
196 //  } else {
197 //     Block B;
198 //  }
199 //
200 //  [Block BB]
201 //  cond = PN([true, %A], [..., %B]); // PHI node
202 //  [Branch CondBr]
203 //  if (cond) {
204 //    ...  // P(cond == true) = 1%
205 //  }
206 //
207 //  Here we know that when block A is taken, cond must be true, which means
208 //      P(cond == true | A) = 1
209 //
210 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
211 //                               P(cond == true | B) * P(B)
212 //  we get:
213 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
214 //
215 //  which gives us:
216 //     P(A) is less than P(cond == true), i.e.
217 //     P(t == true) <= P(cond == true)
218 //
219 //  In other words, if we know P(cond == true) is unlikely, we know
220 //  that P(t == true) is also unlikely.
221 //
222 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
223   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
224   if (!CondBr)
225     return;
226 
227   uint64_t TrueWeight, FalseWeight;
228   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
229     return;
230 
231   if (TrueWeight + FalseWeight == 0)
232     // Zero branch_weights do not give a hint for getting branch probabilities.
233     // Technically it would result in division by zero denominator, which is
234     // TrueWeight + FalseWeight.
235     return;
236 
237   // Returns the outgoing edge of the dominating predecessor block
238   // that leads to the PhiNode's incoming block:
239   auto GetPredOutEdge =
240       [](BasicBlock *IncomingBB,
241          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
242     auto *PredBB = IncomingBB;
243     auto *SuccBB = PhiBB;
244     SmallPtrSet<BasicBlock *, 16> Visited;
245     while (true) {
246       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
247       if (PredBr && PredBr->isConditional())
248         return {PredBB, SuccBB};
249       Visited.insert(PredBB);
250       auto *SinglePredBB = PredBB->getSinglePredecessor();
251       if (!SinglePredBB)
252         return {nullptr, nullptr};
253 
254       // Stop searching when SinglePredBB has been visited. It means we see
255       // an unreachable loop.
256       if (Visited.count(SinglePredBB))
257         return {nullptr, nullptr};
258 
259       SuccBB = PredBB;
260       PredBB = SinglePredBB;
261     }
262   };
263 
264   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
265     Value *PhiOpnd = PN->getIncomingValue(i);
266     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
267 
268     if (!CI || !CI->getType()->isIntegerTy(1))
269       continue;
270 
271     BranchProbability BP =
272         (CI->isOne() ? BranchProbability::getBranchProbability(
273                            TrueWeight, TrueWeight + FalseWeight)
274                      : BranchProbability::getBranchProbability(
275                            FalseWeight, TrueWeight + FalseWeight));
276 
277     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
278     if (!PredOutEdge.first)
279       return;
280 
281     BasicBlock *PredBB = PredOutEdge.first;
282     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
283     if (!PredBr)
284       return;
285 
286     uint64_t PredTrueWeight, PredFalseWeight;
287     // FIXME: We currently only set the profile data when it is missing.
288     // With PGO, this can be used to refine even existing profile data with
289     // context information. This needs to be done after more performance
290     // testing.
291     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
292       continue;
293 
294     // We can not infer anything useful when BP >= 50%, because BP is the
295     // upper bound probability value.
296     if (BP >= BranchProbability(50, 100))
297       continue;
298 
299     SmallVector<uint32_t, 2> Weights;
300     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
301       Weights.push_back(BP.getNumerator());
302       Weights.push_back(BP.getCompl().getNumerator());
303     } else {
304       Weights.push_back(BP.getCompl().getNumerator());
305       Weights.push_back(BP.getNumerator());
306     }
307     PredBr->setMetadata(LLVMContext::MD_prof,
308                         MDBuilder(PredBr->getParent()->getContext())
309                             .createBranchWeights(Weights));
310   }
311 }
312 
313 /// runOnFunction - Toplevel algorithm.
314 bool JumpThreading::runOnFunction(Function &F) {
315   if (skipFunction(F))
316     return false;
317   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
318   // Jump Threading has no sense for the targets with divergent CF
319   if (TTI->hasBranchDivergence())
320     return false;
321   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
322   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
323   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
324   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
325   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
326   std::unique_ptr<BlockFrequencyInfo> BFI;
327   std::unique_ptr<BranchProbabilityInfo> BPI;
328   if (F.hasProfileData()) {
329     LoopInfo LI{DominatorTree(F)};
330     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
331     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
332   }
333 
334   bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
335                               std::move(BFI), std::move(BPI));
336   if (PrintLVIAfterJumpThreading) {
337     dbgs() << "LVI for function '" << F.getName() << "':\n";
338     LVI->printLVI(F, DTU.getDomTree(), dbgs());
339   }
340   return Changed;
341 }
342 
343 PreservedAnalyses JumpThreadingPass::run(Function &F,
344                                          FunctionAnalysisManager &AM) {
345   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
346   // Jump Threading has no sense for the targets with divergent CF
347   if (TTI.hasBranchDivergence())
348     return PreservedAnalyses::all();
349   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
350   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
351   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
352   auto &AA = AM.getResult<AAManager>(F);
353   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
354 
355   std::unique_ptr<BlockFrequencyInfo> BFI;
356   std::unique_ptr<BranchProbabilityInfo> BPI;
357   if (F.hasProfileData()) {
358     LoopInfo LI{DominatorTree(F)};
359     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
360     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
361   }
362 
363   bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
364                          std::move(BFI), std::move(BPI));
365 
366   if (PrintLVIAfterJumpThreading) {
367     dbgs() << "LVI for function '" << F.getName() << "':\n";
368     LVI.printLVI(F, DTU.getDomTree(), dbgs());
369   }
370 
371   if (!Changed)
372     return PreservedAnalyses::all();
373   PreservedAnalyses PA;
374   PA.preserve<DominatorTreeAnalysis>();
375   PA.preserve<LazyValueAnalysis>();
376   return PA;
377 }
378 
379 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
380                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
381                                 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
382                                 bool HasProfileData_,
383                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
384                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
385   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
386   TLI = TLI_;
387   TTI = TTI_;
388   LVI = LVI_;
389   AA = AA_;
390   DTU = DTU_;
391   BFI.reset();
392   BPI.reset();
393   // When profile data is available, we need to update edge weights after
394   // successful jump threading, which requires both BPI and BFI being available.
395   HasProfileData = HasProfileData_;
396   auto *GuardDecl = F.getParent()->getFunction(
397       Intrinsic::getName(Intrinsic::experimental_guard));
398   HasGuards = GuardDecl && !GuardDecl->use_empty();
399   if (HasProfileData) {
400     BPI = std::move(BPI_);
401     BFI = std::move(BFI_);
402   }
403 
404   // Reduce the number of instructions duplicated when optimizing strictly for
405   // size.
406   if (BBDuplicateThreshold.getNumOccurrences())
407     BBDupThreshold = BBDuplicateThreshold;
408   else if (F.hasFnAttribute(Attribute::MinSize))
409     BBDupThreshold = 3;
410   else
411     BBDupThreshold = DefaultBBDupThreshold;
412 
413   // JumpThreading must not processes blocks unreachable from entry. It's a
414   // waste of compute time and can potentially lead to hangs.
415   SmallPtrSet<BasicBlock *, 16> Unreachable;
416   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
417   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
418   DominatorTree &DT = DTU->getDomTree();
419   for (auto &BB : F)
420     if (!DT.isReachableFromEntry(&BB))
421       Unreachable.insert(&BB);
422 
423   if (!ThreadAcrossLoopHeaders)
424     findLoopHeaders(F);
425 
426   bool EverChanged = false;
427   bool Changed;
428   do {
429     Changed = false;
430     for (auto &BB : F) {
431       if (Unreachable.count(&BB))
432         continue;
433       while (processBlock(&BB)) // Thread all of the branches we can over BB.
434         Changed = true;
435 
436       // Jump threading may have introduced redundant debug values into BB
437       // which should be removed.
438       if (Changed)
439         RemoveRedundantDbgInstrs(&BB);
440 
441       // Stop processing BB if it's the entry or is now deleted. The following
442       // routines attempt to eliminate BB and locating a suitable replacement
443       // for the entry is non-trivial.
444       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
445         continue;
446 
447       if (pred_empty(&BB)) {
448         // When processBlock makes BB unreachable it doesn't bother to fix up
449         // the instructions in it. We must remove BB to prevent invalid IR.
450         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
451                           << "' with terminator: " << *BB.getTerminator()
452                           << '\n');
453         LoopHeaders.erase(&BB);
454         LVI->eraseBlock(&BB);
455         DeleteDeadBlock(&BB, DTU);
456         Changed = true;
457         continue;
458       }
459 
460       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
461       // is "almost empty", we attempt to merge BB with its sole successor.
462       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
463       if (BI && BI->isUnconditional()) {
464         BasicBlock *Succ = BI->getSuccessor(0);
465         if (
466             // The terminator must be the only non-phi instruction in BB.
467             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
468             // Don't alter Loop headers and latches to ensure another pass can
469             // detect and transform nested loops later.
470             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
471             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
472           RemoveRedundantDbgInstrs(Succ);
473           // BB is valid for cleanup here because we passed in DTU. F remains
474           // BB's parent until a DTU->getDomTree() event.
475           LVI->eraseBlock(&BB);
476           Changed = true;
477         }
478       }
479     }
480     EverChanged |= Changed;
481   } while (Changed);
482 
483   LoopHeaders.clear();
484   return EverChanged;
485 }
486 
487 // Replace uses of Cond with ToVal when safe to do so. If all uses are
488 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
489 // because we may incorrectly replace uses when guards/assumes are uses of
490 // of `Cond` and we used the guards/assume to reason about the `Cond` value
491 // at the end of block. RAUW unconditionally replaces all uses
492 // including the guards/assumes themselves and the uses before the
493 // guard/assume.
494 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
495   assert(Cond->getType() == ToVal->getType());
496   auto *BB = Cond->getParent();
497   // We can unconditionally replace all uses in non-local blocks (i.e. uses
498   // strictly dominated by BB), since LVI information is true from the
499   // terminator of BB.
500   replaceNonLocalUsesWith(Cond, ToVal);
501   for (Instruction &I : reverse(*BB)) {
502     // Reached the Cond whose uses we are trying to replace, so there are no
503     // more uses.
504     if (&I == Cond)
505       break;
506     // We only replace uses in instructions that are guaranteed to reach the end
507     // of BB, where we know Cond is ToVal.
508     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
509       break;
510     I.replaceUsesOfWith(Cond, ToVal);
511   }
512   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
513     Cond->eraseFromParent();
514 }
515 
516 /// Return the cost of duplicating a piece of this block from first non-phi
517 /// and before StopAt instruction to thread across it. Stop scanning the block
518 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
519 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
520                                              BasicBlock *BB,
521                                              Instruction *StopAt,
522                                              unsigned Threshold) {
523   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
524   /// Ignore PHI nodes, these will be flattened when duplication happens.
525   BasicBlock::const_iterator I(BB->getFirstNonPHI());
526 
527   // FIXME: THREADING will delete values that are just used to compute the
528   // branch, so they shouldn't count against the duplication cost.
529 
530   unsigned Bonus = 0;
531   if (BB->getTerminator() == StopAt) {
532     // Threading through a switch statement is particularly profitable.  If this
533     // block ends in a switch, decrease its cost to make it more likely to
534     // happen.
535     if (isa<SwitchInst>(StopAt))
536       Bonus = 6;
537 
538     // The same holds for indirect branches, but slightly more so.
539     if (isa<IndirectBrInst>(StopAt))
540       Bonus = 8;
541   }
542 
543   // Bump the threshold up so the early exit from the loop doesn't skip the
544   // terminator-based Size adjustment at the end.
545   Threshold += Bonus;
546 
547   // Sum up the cost of each instruction until we get to the terminator.  Don't
548   // include the terminator because the copy won't include it.
549   unsigned Size = 0;
550   for (; &*I != StopAt; ++I) {
551 
552     // Stop scanning the block if we've reached the threshold.
553     if (Size > Threshold)
554       return Size;
555 
556     // Bail out if this instruction gives back a token type, it is not possible
557     // to duplicate it if it is used outside this BB.
558     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
559       return ~0U;
560 
561     // Blocks with NoDuplicate are modelled as having infinite cost, so they
562     // are never duplicated.
563     if (const CallInst *CI = dyn_cast<CallInst>(I))
564       if (CI->cannotDuplicate() || CI->isConvergent())
565         return ~0U;
566 
567     if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
568             == TargetTransformInfo::TCC_Free)
569       continue;
570 
571     // All other instructions count for at least one unit.
572     ++Size;
573 
574     // Calls are more expensive.  If they are non-intrinsic calls, we model them
575     // as having cost of 4.  If they are a non-vector intrinsic, we model them
576     // as having cost of 2 total, and if they are a vector intrinsic, we model
577     // them as having cost 1.
578     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
579       if (!isa<IntrinsicInst>(CI))
580         Size += 3;
581       else if (!CI->getType()->isVectorTy())
582         Size += 1;
583     }
584   }
585 
586   return Size > Bonus ? Size - Bonus : 0;
587 }
588 
589 /// findLoopHeaders - We do not want jump threading to turn proper loop
590 /// structures into irreducible loops.  Doing this breaks up the loop nesting
591 /// hierarchy and pessimizes later transformations.  To prevent this from
592 /// happening, we first have to find the loop headers.  Here we approximate this
593 /// by finding targets of backedges in the CFG.
594 ///
595 /// Note that there definitely are cases when we want to allow threading of
596 /// edges across a loop header.  For example, threading a jump from outside the
597 /// loop (the preheader) to an exit block of the loop is definitely profitable.
598 /// It is also almost always profitable to thread backedges from within the loop
599 /// to exit blocks, and is often profitable to thread backedges to other blocks
600 /// within the loop (forming a nested loop).  This simple analysis is not rich
601 /// enough to track all of these properties and keep it up-to-date as the CFG
602 /// mutates, so we don't allow any of these transformations.
603 void JumpThreadingPass::findLoopHeaders(Function &F) {
604   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
605   FindFunctionBackedges(F, Edges);
606 
607   for (const auto &Edge : Edges)
608     LoopHeaders.insert(Edge.second);
609 }
610 
611 /// getKnownConstant - Helper method to determine if we can thread over a
612 /// terminator with the given value as its condition, and if so what value to
613 /// use for that. What kind of value this is depends on whether we want an
614 /// integer or a block address, but an undef is always accepted.
615 /// Returns null if Val is null or not an appropriate constant.
616 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
617   if (!Val)
618     return nullptr;
619 
620   // Undef is "known" enough.
621   if (UndefValue *U = dyn_cast<UndefValue>(Val))
622     return U;
623 
624   if (Preference == WantBlockAddress)
625     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
626 
627   return dyn_cast<ConstantInt>(Val);
628 }
629 
630 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
631 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
632 /// in any of our predecessors.  If so, return the known list of value and pred
633 /// BB in the result vector.
634 ///
635 /// This returns true if there were any known values.
636 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
637     Value *V, BasicBlock *BB, PredValueInfo &Result,
638     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
639     Instruction *CxtI) {
640   // This method walks up use-def chains recursively.  Because of this, we could
641   // get into an infinite loop going around loops in the use-def chain.  To
642   // prevent this, keep track of what (value, block) pairs we've already visited
643   // and terminate the search if we loop back to them
644   if (!RecursionSet.insert(V).second)
645     return false;
646 
647   // If V is a constant, then it is known in all predecessors.
648   if (Constant *KC = getKnownConstant(V, Preference)) {
649     for (BasicBlock *Pred : predecessors(BB))
650       Result.emplace_back(KC, Pred);
651 
652     return !Result.empty();
653   }
654 
655   // If V is a non-instruction value, or an instruction in a different block,
656   // then it can't be derived from a PHI.
657   Instruction *I = dyn_cast<Instruction>(V);
658   if (!I || I->getParent() != BB) {
659 
660     // Okay, if this is a live-in value, see if it has a known value at the end
661     // of any of our predecessors.
662     //
663     // FIXME: This should be an edge property, not a block end property.
664     /// TODO: Per PR2563, we could infer value range information about a
665     /// predecessor based on its terminator.
666     //
667     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
668     // "I" is a non-local compare-with-a-constant instruction.  This would be
669     // able to handle value inequalities better, for example if the compare is
670     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
671     // Perhaps getConstantOnEdge should be smart enough to do this?
672     for (BasicBlock *P : predecessors(BB)) {
673       // If the value is known by LazyValueInfo to be a constant in a
674       // predecessor, use that information to try to thread this block.
675       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
676       if (Constant *KC = getKnownConstant(PredCst, Preference))
677         Result.emplace_back(KC, P);
678     }
679 
680     return !Result.empty();
681   }
682 
683   /// If I is a PHI node, then we know the incoming values for any constants.
684   if (PHINode *PN = dyn_cast<PHINode>(I)) {
685     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
686       Value *InVal = PN->getIncomingValue(i);
687       if (Constant *KC = getKnownConstant(InVal, Preference)) {
688         Result.emplace_back(KC, PN->getIncomingBlock(i));
689       } else {
690         Constant *CI = LVI->getConstantOnEdge(InVal,
691                                               PN->getIncomingBlock(i),
692                                               BB, CxtI);
693         if (Constant *KC = getKnownConstant(CI, Preference))
694           Result.emplace_back(KC, PN->getIncomingBlock(i));
695       }
696     }
697 
698     return !Result.empty();
699   }
700 
701   // Handle Cast instructions.
702   if (CastInst *CI = dyn_cast<CastInst>(I)) {
703     Value *Source = CI->getOperand(0);
704     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
705                                         RecursionSet, CxtI);
706     if (Result.empty())
707       return false;
708 
709     // Convert the known values.
710     for (auto &R : Result)
711       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
712 
713     return true;
714   }
715 
716   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
717     Value *Source = FI->getOperand(0);
718     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
719                                         RecursionSet, CxtI);
720 
721     erase_if(Result, [](auto &Pair) {
722       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
723     });
724 
725     return !Result.empty();
726   }
727 
728   // Handle some boolean conditions.
729   if (I->getType()->getPrimitiveSizeInBits() == 1) {
730     using namespace PatternMatch;
731     if (Preference != WantInteger)
732       return false;
733     // X | true -> true
734     // X & false -> false
735     Value *Op0, *Op1;
736     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
737         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
738       PredValueInfoTy LHSVals, RHSVals;
739 
740       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
741                                           RecursionSet, CxtI);
742       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
743                                           RecursionSet, CxtI);
744 
745       if (LHSVals.empty() && RHSVals.empty())
746         return false;
747 
748       ConstantInt *InterestingVal;
749       if (match(I, m_LogicalOr()))
750         InterestingVal = ConstantInt::getTrue(I->getContext());
751       else
752         InterestingVal = ConstantInt::getFalse(I->getContext());
753 
754       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
755 
756       // Scan for the sentinel.  If we find an undef, force it to the
757       // interesting value: x|undef -> true and x&undef -> false.
758       for (const auto &LHSVal : LHSVals)
759         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
760           Result.emplace_back(InterestingVal, LHSVal.second);
761           LHSKnownBBs.insert(LHSVal.second);
762         }
763       for (const auto &RHSVal : RHSVals)
764         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
765           // If we already inferred a value for this block on the LHS, don't
766           // re-add it.
767           if (!LHSKnownBBs.count(RHSVal.second))
768             Result.emplace_back(InterestingVal, RHSVal.second);
769         }
770 
771       return !Result.empty();
772     }
773 
774     // Handle the NOT form of XOR.
775     if (I->getOpcode() == Instruction::Xor &&
776         isa<ConstantInt>(I->getOperand(1)) &&
777         cast<ConstantInt>(I->getOperand(1))->isOne()) {
778       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
779                                           WantInteger, RecursionSet, CxtI);
780       if (Result.empty())
781         return false;
782 
783       // Invert the known values.
784       for (auto &R : Result)
785         R.first = ConstantExpr::getNot(R.first);
786 
787       return true;
788     }
789 
790   // Try to simplify some other binary operator values.
791   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
792     if (Preference != WantInteger)
793       return false;
794     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
795       PredValueInfoTy LHSVals;
796       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
797                                           WantInteger, RecursionSet, CxtI);
798 
799       // Try to use constant folding to simplify the binary operator.
800       for (const auto &LHSVal : LHSVals) {
801         Constant *V = LHSVal.first;
802         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
803 
804         if (Constant *KC = getKnownConstant(Folded, WantInteger))
805           Result.emplace_back(KC, LHSVal.second);
806       }
807     }
808 
809     return !Result.empty();
810   }
811 
812   // Handle compare with phi operand, where the PHI is defined in this block.
813   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
814     if (Preference != WantInteger)
815       return false;
816     Type *CmpType = Cmp->getType();
817     Value *CmpLHS = Cmp->getOperand(0);
818     Value *CmpRHS = Cmp->getOperand(1);
819     CmpInst::Predicate Pred = Cmp->getPredicate();
820 
821     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
822     if (!PN)
823       PN = dyn_cast<PHINode>(CmpRHS);
824     if (PN && PN->getParent() == BB) {
825       const DataLayout &DL = PN->getModule()->getDataLayout();
826       // We can do this simplification if any comparisons fold to true or false.
827       // See if any do.
828       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
829         BasicBlock *PredBB = PN->getIncomingBlock(i);
830         Value *LHS, *RHS;
831         if (PN == CmpLHS) {
832           LHS = PN->getIncomingValue(i);
833           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
834         } else {
835           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
836           RHS = PN->getIncomingValue(i);
837         }
838         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
839         if (!Res) {
840           if (!isa<Constant>(RHS))
841             continue;
842 
843           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
844           auto LHSInst = dyn_cast<Instruction>(LHS);
845           if (LHSInst && LHSInst->getParent() == BB)
846             continue;
847 
848           LazyValueInfo::Tristate
849             ResT = LVI->getPredicateOnEdge(Pred, LHS,
850                                            cast<Constant>(RHS), PredBB, BB,
851                                            CxtI ? CxtI : Cmp);
852           if (ResT == LazyValueInfo::Unknown)
853             continue;
854           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
855         }
856 
857         if (Constant *KC = getKnownConstant(Res, WantInteger))
858           Result.emplace_back(KC, PredBB);
859       }
860 
861       return !Result.empty();
862     }
863 
864     // If comparing a live-in value against a constant, see if we know the
865     // live-in value on any predecessors.
866     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
867       Constant *CmpConst = cast<Constant>(CmpRHS);
868 
869       if (!isa<Instruction>(CmpLHS) ||
870           cast<Instruction>(CmpLHS)->getParent() != BB) {
871         for (BasicBlock *P : predecessors(BB)) {
872           // If the value is known by LazyValueInfo to be a constant in a
873           // predecessor, use that information to try to thread this block.
874           LazyValueInfo::Tristate Res =
875             LVI->getPredicateOnEdge(Pred, CmpLHS,
876                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
877           if (Res == LazyValueInfo::Unknown)
878             continue;
879 
880           Constant *ResC = ConstantInt::get(CmpType, Res);
881           Result.emplace_back(ResC, P);
882         }
883 
884         return !Result.empty();
885       }
886 
887       // InstCombine can fold some forms of constant range checks into
888       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
889       // x as a live-in.
890       {
891         using namespace PatternMatch;
892 
893         Value *AddLHS;
894         ConstantInt *AddConst;
895         if (isa<ConstantInt>(CmpConst) &&
896             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
897           if (!isa<Instruction>(AddLHS) ||
898               cast<Instruction>(AddLHS)->getParent() != BB) {
899             for (BasicBlock *P : predecessors(BB)) {
900               // If the value is known by LazyValueInfo to be a ConstantRange in
901               // a predecessor, use that information to try to thread this
902               // block.
903               ConstantRange CR = LVI->getConstantRangeOnEdge(
904                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
905               // Propagate the range through the addition.
906               CR = CR.add(AddConst->getValue());
907 
908               // Get the range where the compare returns true.
909               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
910                   Pred, cast<ConstantInt>(CmpConst)->getValue());
911 
912               Constant *ResC;
913               if (CmpRange.contains(CR))
914                 ResC = ConstantInt::getTrue(CmpType);
915               else if (CmpRange.inverse().contains(CR))
916                 ResC = ConstantInt::getFalse(CmpType);
917               else
918                 continue;
919 
920               Result.emplace_back(ResC, P);
921             }
922 
923             return !Result.empty();
924           }
925         }
926       }
927 
928       // Try to find a constant value for the LHS of a comparison,
929       // and evaluate it statically if we can.
930       PredValueInfoTy LHSVals;
931       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
932                                           WantInteger, RecursionSet, CxtI);
933 
934       for (const auto &LHSVal : LHSVals) {
935         Constant *V = LHSVal.first;
936         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
937         if (Constant *KC = getKnownConstant(Folded, WantInteger))
938           Result.emplace_back(KC, LHSVal.second);
939       }
940 
941       return !Result.empty();
942     }
943   }
944 
945   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
946     // Handle select instructions where at least one operand is a known constant
947     // and we can figure out the condition value for any predecessor block.
948     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
949     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
950     PredValueInfoTy Conds;
951     if ((TrueVal || FalseVal) &&
952         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
953                                             WantInteger, RecursionSet, CxtI)) {
954       for (auto &C : Conds) {
955         Constant *Cond = C.first;
956 
957         // Figure out what value to use for the condition.
958         bool KnownCond;
959         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
960           // A known boolean.
961           KnownCond = CI->isOne();
962         } else {
963           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
964           // Either operand will do, so be sure to pick the one that's a known
965           // constant.
966           // FIXME: Do this more cleverly if both values are known constants?
967           KnownCond = (TrueVal != nullptr);
968         }
969 
970         // See if the select has a known constant value for this predecessor.
971         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
972           Result.emplace_back(Val, C.second);
973       }
974 
975       return !Result.empty();
976     }
977   }
978 
979   // If all else fails, see if LVI can figure out a constant value for us.
980   assert(CxtI->getParent() == BB && "CxtI should be in BB");
981   Constant *CI = LVI->getConstant(V, CxtI);
982   if (Constant *KC = getKnownConstant(CI, Preference)) {
983     for (BasicBlock *Pred : predecessors(BB))
984       Result.emplace_back(KC, Pred);
985   }
986 
987   return !Result.empty();
988 }
989 
990 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
991 /// in an undefined jump, decide which block is best to revector to.
992 ///
993 /// Since we can pick an arbitrary destination, we pick the successor with the
994 /// fewest predecessors.  This should reduce the in-degree of the others.
995 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
996   Instruction *BBTerm = BB->getTerminator();
997   unsigned MinSucc = 0;
998   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
999   // Compute the successor with the minimum number of predecessors.
1000   unsigned MinNumPreds = pred_size(TestBB);
1001   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1002     TestBB = BBTerm->getSuccessor(i);
1003     unsigned NumPreds = pred_size(TestBB);
1004     if (NumPreds < MinNumPreds) {
1005       MinSucc = i;
1006       MinNumPreds = NumPreds;
1007     }
1008   }
1009 
1010   return MinSucc;
1011 }
1012 
1013 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1014   if (!BB->hasAddressTaken()) return false;
1015 
1016   // If the block has its address taken, it may be a tree of dead constants
1017   // hanging off of it.  These shouldn't keep the block alive.
1018   BlockAddress *BA = BlockAddress::get(BB);
1019   BA->removeDeadConstantUsers();
1020   return !BA->use_empty();
1021 }
1022 
1023 /// processBlock - If there are any predecessors whose control can be threaded
1024 /// through to a successor, transform them now.
1025 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1026   // If the block is trivially dead, just return and let the caller nuke it.
1027   // This simplifies other transformations.
1028   if (DTU->isBBPendingDeletion(BB) ||
1029       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1030     return false;
1031 
1032   // If this block has a single predecessor, and if that pred has a single
1033   // successor, merge the blocks.  This encourages recursive jump threading
1034   // because now the condition in this block can be threaded through
1035   // predecessors of our predecessor block.
1036   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1037     return true;
1038 
1039   if (tryToUnfoldSelectInCurrBB(BB))
1040     return true;
1041 
1042   // Look if we can propagate guards to predecessors.
1043   if (HasGuards && processGuards(BB))
1044     return true;
1045 
1046   // What kind of constant we're looking for.
1047   ConstantPreference Preference = WantInteger;
1048 
1049   // Look to see if the terminator is a conditional branch, switch or indirect
1050   // branch, if not we can't thread it.
1051   Value *Condition;
1052   Instruction *Terminator = BB->getTerminator();
1053   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1054     // Can't thread an unconditional jump.
1055     if (BI->isUnconditional()) return false;
1056     Condition = BI->getCondition();
1057   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1058     Condition = SI->getCondition();
1059   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1060     // Can't thread indirect branch with no successors.
1061     if (IB->getNumSuccessors() == 0) return false;
1062     Condition = IB->getAddress()->stripPointerCasts();
1063     Preference = WantBlockAddress;
1064   } else {
1065     return false; // Must be an invoke or callbr.
1066   }
1067 
1068   // Keep track if we constant folded the condition in this invocation.
1069   bool ConstantFolded = false;
1070 
1071   // Run constant folding to see if we can reduce the condition to a simple
1072   // constant.
1073   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1074     Value *SimpleVal =
1075         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1076     if (SimpleVal) {
1077       I->replaceAllUsesWith(SimpleVal);
1078       if (isInstructionTriviallyDead(I, TLI))
1079         I->eraseFromParent();
1080       Condition = SimpleVal;
1081       ConstantFolded = true;
1082     }
1083   }
1084 
1085   // If the terminator is branching on an undef or freeze undef, we can pick any
1086   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1087   auto *FI = dyn_cast<FreezeInst>(Condition);
1088   if (isa<UndefValue>(Condition) ||
1089       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1090     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1091     std::vector<DominatorTree::UpdateType> Updates;
1092 
1093     // Fold the branch/switch.
1094     Instruction *BBTerm = BB->getTerminator();
1095     Updates.reserve(BBTerm->getNumSuccessors());
1096     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1097       if (i == BestSucc) continue;
1098       BasicBlock *Succ = BBTerm->getSuccessor(i);
1099       Succ->removePredecessor(BB, true);
1100       Updates.push_back({DominatorTree::Delete, BB, Succ});
1101     }
1102 
1103     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1104                       << "' folding undef terminator: " << *BBTerm << '\n');
1105     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1106     ++NumFolds;
1107     BBTerm->eraseFromParent();
1108     DTU->applyUpdatesPermissive(Updates);
1109     if (FI)
1110       FI->eraseFromParent();
1111     return true;
1112   }
1113 
1114   // If the terminator of this block is branching on a constant, simplify the
1115   // terminator to an unconditional branch.  This can occur due to threading in
1116   // other blocks.
1117   if (getKnownConstant(Condition, Preference)) {
1118     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1119                       << "' folding terminator: " << *BB->getTerminator()
1120                       << '\n');
1121     ++NumFolds;
1122     ConstantFoldTerminator(BB, true, nullptr, DTU);
1123     if (HasProfileData)
1124       BPI->eraseBlock(BB);
1125     return true;
1126   }
1127 
1128   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1129 
1130   // All the rest of our checks depend on the condition being an instruction.
1131   if (!CondInst) {
1132     // FIXME: Unify this with code below.
1133     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1134       return true;
1135     return ConstantFolded;
1136   }
1137 
1138   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1139     // If we're branching on a conditional, LVI might be able to determine
1140     // it's value at the branch instruction.  We only handle comparisons
1141     // against a constant at this time.
1142     // TODO: This should be extended to handle switches as well.
1143     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1144     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1145     if (CondBr && CondConst) {
1146       // We should have returned as soon as we turn a conditional branch to
1147       // unconditional. Because its no longer interesting as far as jump
1148       // threading is concerned.
1149       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1150 
1151       LazyValueInfo::Tristate Ret =
1152           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1153                               CondConst, CondBr, /*UseBlockValue=*/false);
1154       if (Ret != LazyValueInfo::Unknown) {
1155         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1156         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1157         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1158         ToRemoveSucc->removePredecessor(BB, true);
1159         BranchInst *UncondBr =
1160           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1161         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1162         ++NumFolds;
1163         CondBr->eraseFromParent();
1164         if (CondCmp->use_empty())
1165           CondCmp->eraseFromParent();
1166         // We can safely replace *some* uses of the CondInst if it has
1167         // exactly one value as returned by LVI. RAUW is incorrect in the
1168         // presence of guards and assumes, that have the `Cond` as the use. This
1169         // is because we use the guards/assume to reason about the `Cond` value
1170         // at the end of block, but RAUW unconditionally replaces all uses
1171         // including the guards/assumes themselves and the uses before the
1172         // guard/assume.
1173         else if (CondCmp->getParent() == BB) {
1174           auto *CI = Ret == LazyValueInfo::True ?
1175             ConstantInt::getTrue(CondCmp->getType()) :
1176             ConstantInt::getFalse(CondCmp->getType());
1177           replaceFoldableUses(CondCmp, CI);
1178         }
1179         DTU->applyUpdatesPermissive(
1180             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1181         if (HasProfileData)
1182           BPI->eraseBlock(BB);
1183         return true;
1184       }
1185 
1186       // We did not manage to simplify this branch, try to see whether
1187       // CondCmp depends on a known phi-select pattern.
1188       if (tryToUnfoldSelect(CondCmp, BB))
1189         return true;
1190     }
1191   }
1192 
1193   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1194     if (tryToUnfoldSelect(SI, BB))
1195       return true;
1196 
1197   // Check for some cases that are worth simplifying.  Right now we want to look
1198   // for loads that are used by a switch or by the condition for the branch.  If
1199   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1200   // which can then be used to thread the values.
1201   Value *SimplifyValue = CondInst;
1202 
1203   if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1204     // Look into freeze's operand
1205     SimplifyValue = FI->getOperand(0);
1206 
1207   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1208     if (isa<Constant>(CondCmp->getOperand(1)))
1209       SimplifyValue = CondCmp->getOperand(0);
1210 
1211   // TODO: There are other places where load PRE would be profitable, such as
1212   // more complex comparisons.
1213   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1214     if (simplifyPartiallyRedundantLoad(LoadI))
1215       return true;
1216 
1217   // Before threading, try to propagate profile data backwards:
1218   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1219     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1220       updatePredecessorProfileMetadata(PN, BB);
1221 
1222   // Handle a variety of cases where we are branching on something derived from
1223   // a PHI node in the current block.  If we can prove that any predecessors
1224   // compute a predictable value based on a PHI node, thread those predecessors.
1225   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1226     return true;
1227 
1228   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1229   // the current block, see if we can simplify.
1230   PHINode *PN = dyn_cast<PHINode>(
1231       isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1232                                 : CondInst);
1233 
1234   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1235     return processBranchOnPHI(PN);
1236 
1237   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1238   if (CondInst->getOpcode() == Instruction::Xor &&
1239       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1240     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1241 
1242   // Search for a stronger dominating condition that can be used to simplify a
1243   // conditional branch leaving BB.
1244   if (processImpliedCondition(BB))
1245     return true;
1246 
1247   return false;
1248 }
1249 
1250 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1251   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1252   if (!BI || !BI->isConditional())
1253     return false;
1254 
1255   Value *Cond = BI->getCondition();
1256   BasicBlock *CurrentBB = BB;
1257   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1258   unsigned Iter = 0;
1259 
1260   auto &DL = BB->getModule()->getDataLayout();
1261 
1262   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1263     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1264     if (!PBI || !PBI->isConditional())
1265       return false;
1266     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1267       return false;
1268 
1269     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1270     Optional<bool> Implication =
1271         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1272     if (Implication) {
1273       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1274       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1275       RemoveSucc->removePredecessor(BB);
1276       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1277       UncondBI->setDebugLoc(BI->getDebugLoc());
1278       ++NumFolds;
1279       BI->eraseFromParent();
1280       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1281       if (HasProfileData)
1282         BPI->eraseBlock(BB);
1283       return true;
1284     }
1285     CurrentBB = CurrentPred;
1286     CurrentPred = CurrentBB->getSinglePredecessor();
1287   }
1288 
1289   return false;
1290 }
1291 
1292 /// Return true if Op is an instruction defined in the given block.
1293 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1294   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1295     if (OpInst->getParent() == BB)
1296       return true;
1297   return false;
1298 }
1299 
1300 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1301 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1302 /// This is an important optimization that encourages jump threading, and needs
1303 /// to be run interlaced with other jump threading tasks.
1304 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1305   // Don't hack volatile and ordered loads.
1306   if (!LoadI->isUnordered()) return false;
1307 
1308   // If the load is defined in a block with exactly one predecessor, it can't be
1309   // partially redundant.
1310   BasicBlock *LoadBB = LoadI->getParent();
1311   if (LoadBB->getSinglePredecessor())
1312     return false;
1313 
1314   // If the load is defined in an EH pad, it can't be partially redundant,
1315   // because the edges between the invoke and the EH pad cannot have other
1316   // instructions between them.
1317   if (LoadBB->isEHPad())
1318     return false;
1319 
1320   Value *LoadedPtr = LoadI->getOperand(0);
1321 
1322   // If the loaded operand is defined in the LoadBB and its not a phi,
1323   // it can't be available in predecessors.
1324   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1325     return false;
1326 
1327   // Scan a few instructions up from the load, to see if it is obviously live at
1328   // the entry to its block.
1329   BasicBlock::iterator BBIt(LoadI);
1330   bool IsLoadCSE;
1331   if (Value *AvailableVal = FindAvailableLoadedValue(
1332           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1333     // If the value of the load is locally available within the block, just use
1334     // it.  This frequently occurs for reg2mem'd allocas.
1335 
1336     if (IsLoadCSE) {
1337       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1338       combineMetadataForCSE(NLoadI, LoadI, false);
1339     };
1340 
1341     // If the returned value is the load itself, replace with an undef. This can
1342     // only happen in dead loops.
1343     if (AvailableVal == LoadI)
1344       AvailableVal = UndefValue::get(LoadI->getType());
1345     if (AvailableVal->getType() != LoadI->getType())
1346       AvailableVal = CastInst::CreateBitOrPointerCast(
1347           AvailableVal, LoadI->getType(), "", LoadI);
1348     LoadI->replaceAllUsesWith(AvailableVal);
1349     LoadI->eraseFromParent();
1350     return true;
1351   }
1352 
1353   // Otherwise, if we scanned the whole block and got to the top of the block,
1354   // we know the block is locally transparent to the load.  If not, something
1355   // might clobber its value.
1356   if (BBIt != LoadBB->begin())
1357     return false;
1358 
1359   // If all of the loads and stores that feed the value have the same AA tags,
1360   // then we can propagate them onto any newly inserted loads.
1361   AAMDNodes AATags = LoadI->getAAMetadata();
1362 
1363   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1364 
1365   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1366 
1367   AvailablePredsTy AvailablePreds;
1368   BasicBlock *OneUnavailablePred = nullptr;
1369   SmallVector<LoadInst*, 8> CSELoads;
1370 
1371   // If we got here, the loaded value is transparent through to the start of the
1372   // block.  Check to see if it is available in any of the predecessor blocks.
1373   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1374     // If we already scanned this predecessor, skip it.
1375     if (!PredsScanned.insert(PredBB).second)
1376       continue;
1377 
1378     BBIt = PredBB->end();
1379     unsigned NumScanedInst = 0;
1380     Value *PredAvailable = nullptr;
1381     // NOTE: We don't CSE load that is volatile or anything stronger than
1382     // unordered, that should have been checked when we entered the function.
1383     assert(LoadI->isUnordered() &&
1384            "Attempting to CSE volatile or atomic loads");
1385     // If this is a load on a phi pointer, phi-translate it and search
1386     // for available load/store to the pointer in predecessors.
1387     Type *AccessTy = LoadI->getType();
1388     const auto &DL = LoadI->getModule()->getDataLayout();
1389     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1390                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1391                        AATags);
1392     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1393                                               PredBB, BBIt, DefMaxInstsToScan,
1394                                               AA, &IsLoadCSE, &NumScanedInst);
1395 
1396     // If PredBB has a single predecessor, continue scanning through the
1397     // single predecessor.
1398     BasicBlock *SinglePredBB = PredBB;
1399     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1400            NumScanedInst < DefMaxInstsToScan) {
1401       SinglePredBB = SinglePredBB->getSinglePredecessor();
1402       if (SinglePredBB) {
1403         BBIt = SinglePredBB->end();
1404         PredAvailable = findAvailablePtrLoadStore(
1405             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1406             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1407             &NumScanedInst);
1408       }
1409     }
1410 
1411     if (!PredAvailable) {
1412       OneUnavailablePred = PredBB;
1413       continue;
1414     }
1415 
1416     if (IsLoadCSE)
1417       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1418 
1419     // If so, this load is partially redundant.  Remember this info so that we
1420     // can create a PHI node.
1421     AvailablePreds.emplace_back(PredBB, PredAvailable);
1422   }
1423 
1424   // If the loaded value isn't available in any predecessor, it isn't partially
1425   // redundant.
1426   if (AvailablePreds.empty()) return false;
1427 
1428   // Okay, the loaded value is available in at least one (and maybe all!)
1429   // predecessors.  If the value is unavailable in more than one unique
1430   // predecessor, we want to insert a merge block for those common predecessors.
1431   // This ensures that we only have to insert one reload, thus not increasing
1432   // code size.
1433   BasicBlock *UnavailablePred = nullptr;
1434 
1435   // If the value is unavailable in one of predecessors, we will end up
1436   // inserting a new instruction into them. It is only valid if all the
1437   // instructions before LoadI are guaranteed to pass execution to its
1438   // successor, or if LoadI is safe to speculate.
1439   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1440   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1441   // It requires domination tree analysis, so for this simple case it is an
1442   // overkill.
1443   if (PredsScanned.size() != AvailablePreds.size() &&
1444       !isSafeToSpeculativelyExecute(LoadI))
1445     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1446       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1447         return false;
1448 
1449   // If there is exactly one predecessor where the value is unavailable, the
1450   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1451   // unconditional branch, we know that it isn't a critical edge.
1452   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1453       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1454     UnavailablePred = OneUnavailablePred;
1455   } else if (PredsScanned.size() != AvailablePreds.size()) {
1456     // Otherwise, we had multiple unavailable predecessors or we had a critical
1457     // edge from the one.
1458     SmallVector<BasicBlock*, 8> PredsToSplit;
1459     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1460 
1461     for (const auto &AvailablePred : AvailablePreds)
1462       AvailablePredSet.insert(AvailablePred.first);
1463 
1464     // Add all the unavailable predecessors to the PredsToSplit list.
1465     for (BasicBlock *P : predecessors(LoadBB)) {
1466       // If the predecessor is an indirect goto, we can't split the edge.
1467       // Same for CallBr.
1468       if (isa<IndirectBrInst>(P->getTerminator()) ||
1469           isa<CallBrInst>(P->getTerminator()))
1470         return false;
1471 
1472       if (!AvailablePredSet.count(P))
1473         PredsToSplit.push_back(P);
1474     }
1475 
1476     // Split them out to their own block.
1477     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1478   }
1479 
1480   // If the value isn't available in all predecessors, then there will be
1481   // exactly one where it isn't available.  Insert a load on that edge and add
1482   // it to the AvailablePreds list.
1483   if (UnavailablePred) {
1484     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1485            "Can't handle critical edge here!");
1486     LoadInst *NewVal = new LoadInst(
1487         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1488         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1489         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1490         UnavailablePred->getTerminator());
1491     NewVal->setDebugLoc(LoadI->getDebugLoc());
1492     if (AATags)
1493       NewVal->setAAMetadata(AATags);
1494 
1495     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1496   }
1497 
1498   // Now we know that each predecessor of this block has a value in
1499   // AvailablePreds, sort them for efficient access as we're walking the preds.
1500   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1501 
1502   // Create a PHI node at the start of the block for the PRE'd load value.
1503   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1504   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1505                                 &LoadBB->front());
1506   PN->takeName(LoadI);
1507   PN->setDebugLoc(LoadI->getDebugLoc());
1508 
1509   // Insert new entries into the PHI for each predecessor.  A single block may
1510   // have multiple entries here.
1511   for (pred_iterator PI = PB; PI != PE; ++PI) {
1512     BasicBlock *P = *PI;
1513     AvailablePredsTy::iterator I =
1514         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1515 
1516     assert(I != AvailablePreds.end() && I->first == P &&
1517            "Didn't find entry for predecessor!");
1518 
1519     // If we have an available predecessor but it requires casting, insert the
1520     // cast in the predecessor and use the cast. Note that we have to update the
1521     // AvailablePreds vector as we go so that all of the PHI entries for this
1522     // predecessor use the same bitcast.
1523     Value *&PredV = I->second;
1524     if (PredV->getType() != LoadI->getType())
1525       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1526                                                P->getTerminator());
1527 
1528     PN->addIncoming(PredV, I->first);
1529   }
1530 
1531   for (LoadInst *PredLoadI : CSELoads) {
1532     combineMetadataForCSE(PredLoadI, LoadI, true);
1533   }
1534 
1535   LoadI->replaceAllUsesWith(PN);
1536   LoadI->eraseFromParent();
1537 
1538   return true;
1539 }
1540 
1541 /// findMostPopularDest - The specified list contains multiple possible
1542 /// threadable destinations.  Pick the one that occurs the most frequently in
1543 /// the list.
1544 static BasicBlock *
1545 findMostPopularDest(BasicBlock *BB,
1546                     const SmallVectorImpl<std::pair<BasicBlock *,
1547                                           BasicBlock *>> &PredToDestList) {
1548   assert(!PredToDestList.empty());
1549 
1550   // Determine popularity.  If there are multiple possible destinations, we
1551   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1552   // blocks with known and real destinations to threading undef.  We'll handle
1553   // them later if interesting.
1554   MapVector<BasicBlock *, unsigned> DestPopularity;
1555 
1556   // Populate DestPopularity with the successors in the order they appear in the
1557   // successor list.  This way, we ensure determinism by iterating it in the
1558   // same order in std::max_element below.  We map nullptr to 0 so that we can
1559   // return nullptr when PredToDestList contains nullptr only.
1560   DestPopularity[nullptr] = 0;
1561   for (auto *SuccBB : successors(BB))
1562     DestPopularity[SuccBB] = 0;
1563 
1564   for (const auto &PredToDest : PredToDestList)
1565     if (PredToDest.second)
1566       DestPopularity[PredToDest.second]++;
1567 
1568   // Find the most popular dest.
1569   using VT = decltype(DestPopularity)::value_type;
1570   auto MostPopular = std::max_element(
1571       DestPopularity.begin(), DestPopularity.end(),
1572       [](const VT &L, const VT &R) { return L.second < R.second; });
1573 
1574   // Okay, we have finally picked the most popular destination.
1575   return MostPopular->first;
1576 }
1577 
1578 // Try to evaluate the value of V when the control flows from PredPredBB to
1579 // BB->getSinglePredecessor() and then on to BB.
1580 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1581                                                        BasicBlock *PredPredBB,
1582                                                        Value *V) {
1583   BasicBlock *PredBB = BB->getSinglePredecessor();
1584   assert(PredBB && "Expected a single predecessor");
1585 
1586   if (Constant *Cst = dyn_cast<Constant>(V)) {
1587     return Cst;
1588   }
1589 
1590   // Consult LVI if V is not an instruction in BB or PredBB.
1591   Instruction *I = dyn_cast<Instruction>(V);
1592   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1593     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1594   }
1595 
1596   // Look into a PHI argument.
1597   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1598     if (PHI->getParent() == PredBB)
1599       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1600     return nullptr;
1601   }
1602 
1603   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1604   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1605     if (CondCmp->getParent() == BB) {
1606       Constant *Op0 =
1607           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1608       Constant *Op1 =
1609           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1610       if (Op0 && Op1) {
1611         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1612       }
1613     }
1614     return nullptr;
1615   }
1616 
1617   return nullptr;
1618 }
1619 
1620 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1621                                                ConstantPreference Preference,
1622                                                Instruction *CxtI) {
1623   // If threading this would thread across a loop header, don't even try to
1624   // thread the edge.
1625   if (LoopHeaders.count(BB))
1626     return false;
1627 
1628   PredValueInfoTy PredValues;
1629   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1630                                        CxtI)) {
1631     // We don't have known values in predecessors.  See if we can thread through
1632     // BB and its sole predecessor.
1633     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1634   }
1635 
1636   assert(!PredValues.empty() &&
1637          "computeValueKnownInPredecessors returned true with no values");
1638 
1639   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1640              for (const auto &PredValue : PredValues) {
1641                dbgs() << "  BB '" << BB->getName()
1642                       << "': FOUND condition = " << *PredValue.first
1643                       << " for pred '" << PredValue.second->getName() << "'.\n";
1644   });
1645 
1646   // Decide what we want to thread through.  Convert our list of known values to
1647   // a list of known destinations for each pred.  This also discards duplicate
1648   // predecessors and keeps track of the undefined inputs (which are represented
1649   // as a null dest in the PredToDestList).
1650   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1651   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1652 
1653   BasicBlock *OnlyDest = nullptr;
1654   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1655   Constant *OnlyVal = nullptr;
1656   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1657 
1658   for (const auto &PredValue : PredValues) {
1659     BasicBlock *Pred = PredValue.second;
1660     if (!SeenPreds.insert(Pred).second)
1661       continue;  // Duplicate predecessor entry.
1662 
1663     Constant *Val = PredValue.first;
1664 
1665     BasicBlock *DestBB;
1666     if (isa<UndefValue>(Val))
1667       DestBB = nullptr;
1668     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1669       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1670       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1671     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1672       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1673       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1674     } else {
1675       assert(isa<IndirectBrInst>(BB->getTerminator())
1676               && "Unexpected terminator");
1677       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1678       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1679     }
1680 
1681     // If we have exactly one destination, remember it for efficiency below.
1682     if (PredToDestList.empty()) {
1683       OnlyDest = DestBB;
1684       OnlyVal = Val;
1685     } else {
1686       if (OnlyDest != DestBB)
1687         OnlyDest = MultipleDestSentinel;
1688       // It possible we have same destination, but different value, e.g. default
1689       // case in switchinst.
1690       if (Val != OnlyVal)
1691         OnlyVal = MultipleVal;
1692     }
1693 
1694     // If the predecessor ends with an indirect goto, we can't change its
1695     // destination. Same for CallBr.
1696     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1697         isa<CallBrInst>(Pred->getTerminator()))
1698       continue;
1699 
1700     PredToDestList.emplace_back(Pred, DestBB);
1701   }
1702 
1703   // If all edges were unthreadable, we fail.
1704   if (PredToDestList.empty())
1705     return false;
1706 
1707   // If all the predecessors go to a single known successor, we want to fold,
1708   // not thread. By doing so, we do not need to duplicate the current block and
1709   // also miss potential opportunities in case we dont/cant duplicate.
1710   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1711     if (BB->hasNPredecessors(PredToDestList.size())) {
1712       bool SeenFirstBranchToOnlyDest = false;
1713       std::vector <DominatorTree::UpdateType> Updates;
1714       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1715       for (BasicBlock *SuccBB : successors(BB)) {
1716         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1717           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1718         } else {
1719           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1720           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1721         }
1722       }
1723 
1724       // Finally update the terminator.
1725       Instruction *Term = BB->getTerminator();
1726       BranchInst::Create(OnlyDest, Term);
1727       ++NumFolds;
1728       Term->eraseFromParent();
1729       DTU->applyUpdatesPermissive(Updates);
1730       if (HasProfileData)
1731         BPI->eraseBlock(BB);
1732 
1733       // If the condition is now dead due to the removal of the old terminator,
1734       // erase it.
1735       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1736         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1737           CondInst->eraseFromParent();
1738         // We can safely replace *some* uses of the CondInst if it has
1739         // exactly one value as returned by LVI. RAUW is incorrect in the
1740         // presence of guards and assumes, that have the `Cond` as the use. This
1741         // is because we use the guards/assume to reason about the `Cond` value
1742         // at the end of block, but RAUW unconditionally replaces all uses
1743         // including the guards/assumes themselves and the uses before the
1744         // guard/assume.
1745         else if (OnlyVal && OnlyVal != MultipleVal &&
1746                  CondInst->getParent() == BB)
1747           replaceFoldableUses(CondInst, OnlyVal);
1748       }
1749       return true;
1750     }
1751   }
1752 
1753   // Determine which is the most common successor.  If we have many inputs and
1754   // this block is a switch, we want to start by threading the batch that goes
1755   // to the most popular destination first.  If we only know about one
1756   // threadable destination (the common case) we can avoid this.
1757   BasicBlock *MostPopularDest = OnlyDest;
1758 
1759   if (MostPopularDest == MultipleDestSentinel) {
1760     // Remove any loop headers from the Dest list, threadEdge conservatively
1761     // won't process them, but we might have other destination that are eligible
1762     // and we still want to process.
1763     erase_if(PredToDestList,
1764              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1765                return LoopHeaders.contains(PredToDest.second);
1766              });
1767 
1768     if (PredToDestList.empty())
1769       return false;
1770 
1771     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1772   }
1773 
1774   // Now that we know what the most popular destination is, factor all
1775   // predecessors that will jump to it into a single predecessor.
1776   SmallVector<BasicBlock*, 16> PredsToFactor;
1777   for (const auto &PredToDest : PredToDestList)
1778     if (PredToDest.second == MostPopularDest) {
1779       BasicBlock *Pred = PredToDest.first;
1780 
1781       // This predecessor may be a switch or something else that has multiple
1782       // edges to the block.  Factor each of these edges by listing them
1783       // according to # occurrences in PredsToFactor.
1784       for (BasicBlock *Succ : successors(Pred))
1785         if (Succ == BB)
1786           PredsToFactor.push_back(Pred);
1787     }
1788 
1789   // If the threadable edges are branching on an undefined value, we get to pick
1790   // the destination that these predecessors should get to.
1791   if (!MostPopularDest)
1792     MostPopularDest = BB->getTerminator()->
1793                             getSuccessor(getBestDestForJumpOnUndef(BB));
1794 
1795   // Ok, try to thread it!
1796   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1797 }
1798 
1799 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1800 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1801 /// simplifications we can do based on inputs to the phi node.
1802 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1803   BasicBlock *BB = PN->getParent();
1804 
1805   // TODO: We could make use of this to do it once for blocks with common PHI
1806   // values.
1807   SmallVector<BasicBlock*, 1> PredBBs;
1808   PredBBs.resize(1);
1809 
1810   // If any of the predecessor blocks end in an unconditional branch, we can
1811   // *duplicate* the conditional branch into that block in order to further
1812   // encourage jump threading and to eliminate cases where we have branch on a
1813   // phi of an icmp (branch on icmp is much better).
1814   // This is still beneficial when a frozen phi is used as the branch condition
1815   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1816   // to br(icmp(freeze ...)).
1817   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1818     BasicBlock *PredBB = PN->getIncomingBlock(i);
1819     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1820       if (PredBr->isUnconditional()) {
1821         PredBBs[0] = PredBB;
1822         // Try to duplicate BB into PredBB.
1823         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1824           return true;
1825       }
1826   }
1827 
1828   return false;
1829 }
1830 
1831 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1832 /// a xor instruction in the current block.  See if there are any
1833 /// simplifications we can do based on inputs to the xor.
1834 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1835   BasicBlock *BB = BO->getParent();
1836 
1837   // If either the LHS or RHS of the xor is a constant, don't do this
1838   // optimization.
1839   if (isa<ConstantInt>(BO->getOperand(0)) ||
1840       isa<ConstantInt>(BO->getOperand(1)))
1841     return false;
1842 
1843   // If the first instruction in BB isn't a phi, we won't be able to infer
1844   // anything special about any particular predecessor.
1845   if (!isa<PHINode>(BB->front()))
1846     return false;
1847 
1848   // If this BB is a landing pad, we won't be able to split the edge into it.
1849   if (BB->isEHPad())
1850     return false;
1851 
1852   // If we have a xor as the branch input to this block, and we know that the
1853   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1854   // the condition into the predecessor and fix that value to true, saving some
1855   // logical ops on that path and encouraging other paths to simplify.
1856   //
1857   // This copies something like this:
1858   //
1859   //  BB:
1860   //    %X = phi i1 [1],  [%X']
1861   //    %Y = icmp eq i32 %A, %B
1862   //    %Z = xor i1 %X, %Y
1863   //    br i1 %Z, ...
1864   //
1865   // Into:
1866   //  BB':
1867   //    %Y = icmp ne i32 %A, %B
1868   //    br i1 %Y, ...
1869 
1870   PredValueInfoTy XorOpValues;
1871   bool isLHS = true;
1872   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1873                                        WantInteger, BO)) {
1874     assert(XorOpValues.empty());
1875     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1876                                          WantInteger, BO))
1877       return false;
1878     isLHS = false;
1879   }
1880 
1881   assert(!XorOpValues.empty() &&
1882          "computeValueKnownInPredecessors returned true with no values");
1883 
1884   // Scan the information to see which is most popular: true or false.  The
1885   // predecessors can be of the set true, false, or undef.
1886   unsigned NumTrue = 0, NumFalse = 0;
1887   for (const auto &XorOpValue : XorOpValues) {
1888     if (isa<UndefValue>(XorOpValue.first))
1889       // Ignore undefs for the count.
1890       continue;
1891     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1892       ++NumFalse;
1893     else
1894       ++NumTrue;
1895   }
1896 
1897   // Determine which value to split on, true, false, or undef if neither.
1898   ConstantInt *SplitVal = nullptr;
1899   if (NumTrue > NumFalse)
1900     SplitVal = ConstantInt::getTrue(BB->getContext());
1901   else if (NumTrue != 0 || NumFalse != 0)
1902     SplitVal = ConstantInt::getFalse(BB->getContext());
1903 
1904   // Collect all of the blocks that this can be folded into so that we can
1905   // factor this once and clone it once.
1906   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1907   for (const auto &XorOpValue : XorOpValues) {
1908     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1909       continue;
1910 
1911     BlocksToFoldInto.push_back(XorOpValue.second);
1912   }
1913 
1914   // If we inferred a value for all of the predecessors, then duplication won't
1915   // help us.  However, we can just replace the LHS or RHS with the constant.
1916   if (BlocksToFoldInto.size() ==
1917       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1918     if (!SplitVal) {
1919       // If all preds provide undef, just nuke the xor, because it is undef too.
1920       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1921       BO->eraseFromParent();
1922     } else if (SplitVal->isZero()) {
1923       // If all preds provide 0, replace the xor with the other input.
1924       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1925       BO->eraseFromParent();
1926     } else {
1927       // If all preds provide 1, set the computed value to 1.
1928       BO->setOperand(!isLHS, SplitVal);
1929     }
1930 
1931     return true;
1932   }
1933 
1934   // If any of predecessors end with an indirect goto, we can't change its
1935   // destination. Same for CallBr.
1936   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1937         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1938                isa<CallBrInst>(Pred->getTerminator());
1939       }))
1940     return false;
1941 
1942   // Try to duplicate BB into PredBB.
1943   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1944 }
1945 
1946 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1947 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1948 /// NewPred using the entries from OldPred (suitably mapped).
1949 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1950                                             BasicBlock *OldPred,
1951                                             BasicBlock *NewPred,
1952                                      DenseMap<Instruction*, Value*> &ValueMap) {
1953   for (PHINode &PN : PHIBB->phis()) {
1954     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1955     // DestBlock.
1956     Value *IV = PN.getIncomingValueForBlock(OldPred);
1957 
1958     // Remap the value if necessary.
1959     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1960       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1961       if (I != ValueMap.end())
1962         IV = I->second;
1963     }
1964 
1965     PN.addIncoming(IV, NewPred);
1966   }
1967 }
1968 
1969 /// Merge basic block BB into its sole predecessor if possible.
1970 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1971   BasicBlock *SinglePred = BB->getSinglePredecessor();
1972   if (!SinglePred)
1973     return false;
1974 
1975   const Instruction *TI = SinglePred->getTerminator();
1976   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1977       SinglePred == BB || hasAddressTakenAndUsed(BB))
1978     return false;
1979 
1980   // If SinglePred was a loop header, BB becomes one.
1981   if (LoopHeaders.erase(SinglePred))
1982     LoopHeaders.insert(BB);
1983 
1984   LVI->eraseBlock(SinglePred);
1985   MergeBasicBlockIntoOnlyPred(BB, DTU);
1986 
1987   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1988   // BB code within one basic block `BB`), we need to invalidate the LVI
1989   // information associated with BB, because the LVI information need not be
1990   // true for all of BB after the merge. For example,
1991   // Before the merge, LVI info and code is as follows:
1992   // SinglePred: <LVI info1 for %p val>
1993   // %y = use of %p
1994   // call @exit() // need not transfer execution to successor.
1995   // assume(%p) // from this point on %p is true
1996   // br label %BB
1997   // BB: <LVI info2 for %p val, i.e. %p is true>
1998   // %x = use of %p
1999   // br label exit
2000   //
2001   // Note that this LVI info for blocks BB and SinglPred is correct for %p
2002   // (info2 and info1 respectively). After the merge and the deletion of the
2003   // LVI info1 for SinglePred. We have the following code:
2004   // BB: <LVI info2 for %p val>
2005   // %y = use of %p
2006   // call @exit()
2007   // assume(%p)
2008   // %x = use of %p <-- LVI info2 is correct from here onwards.
2009   // br label exit
2010   // LVI info2 for BB is incorrect at the beginning of BB.
2011 
2012   // Invalidate LVI information for BB if the LVI is not provably true for
2013   // all of BB.
2014   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2015     LVI->eraseBlock(BB);
2016   return true;
2017 }
2018 
2019 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2020 /// ValueMapping maps old values in BB to new ones in NewBB.
2021 void JumpThreadingPass::updateSSA(
2022     BasicBlock *BB, BasicBlock *NewBB,
2023     DenseMap<Instruction *, Value *> &ValueMapping) {
2024   // If there were values defined in BB that are used outside the block, then we
2025   // now have to update all uses of the value to use either the original value,
2026   // the cloned value, or some PHI derived value.  This can require arbitrary
2027   // PHI insertion, of which we are prepared to do, clean these up now.
2028   SSAUpdater SSAUpdate;
2029   SmallVector<Use *, 16> UsesToRename;
2030 
2031   for (Instruction &I : *BB) {
2032     // Scan all uses of this instruction to see if it is used outside of its
2033     // block, and if so, record them in UsesToRename.
2034     for (Use &U : I.uses()) {
2035       Instruction *User = cast<Instruction>(U.getUser());
2036       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2037         if (UserPN->getIncomingBlock(U) == BB)
2038           continue;
2039       } else if (User->getParent() == BB)
2040         continue;
2041 
2042       UsesToRename.push_back(&U);
2043     }
2044 
2045     // If there are no uses outside the block, we're done with this instruction.
2046     if (UsesToRename.empty())
2047       continue;
2048     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2049 
2050     // We found a use of I outside of BB.  Rename all uses of I that are outside
2051     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2052     // with the two values we know.
2053     SSAUpdate.Initialize(I.getType(), I.getName());
2054     SSAUpdate.AddAvailableValue(BB, &I);
2055     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2056 
2057     while (!UsesToRename.empty())
2058       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2059     LLVM_DEBUG(dbgs() << "\n");
2060   }
2061 }
2062 
2063 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2064 /// arguments that come from PredBB.  Return the map from the variables in the
2065 /// source basic block to the variables in the newly created basic block.
2066 DenseMap<Instruction *, Value *>
2067 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2068                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2069                                      BasicBlock *PredBB) {
2070   // We are going to have to map operands from the source basic block to the new
2071   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2072   // block, evaluate them to account for entry from PredBB.
2073   DenseMap<Instruction *, Value *> ValueMapping;
2074 
2075   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2076   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2077   // might need to rewrite the operand of the cloned phi.
2078   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2079     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2080     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2081     ValueMapping[PN] = NewPN;
2082   }
2083 
2084   // Clone noalias scope declarations in the threaded block. When threading a
2085   // loop exit, we would otherwise end up with two idential scope declarations
2086   // visible at the same time.
2087   SmallVector<MDNode *> NoAliasScopes;
2088   DenseMap<MDNode *, MDNode *> ClonedScopes;
2089   LLVMContext &Context = PredBB->getContext();
2090   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2091   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2092 
2093   // Clone the non-phi instructions of the source basic block into NewBB,
2094   // keeping track of the mapping and using it to remap operands in the cloned
2095   // instructions.
2096   for (; BI != BE; ++BI) {
2097     Instruction *New = BI->clone();
2098     New->setName(BI->getName());
2099     NewBB->getInstList().push_back(New);
2100     ValueMapping[&*BI] = New;
2101     adaptNoAliasScopes(New, ClonedScopes, Context);
2102 
2103     // Remap operands to patch up intra-block references.
2104     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2105       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2106         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2107         if (I != ValueMapping.end())
2108           New->setOperand(i, I->second);
2109       }
2110   }
2111 
2112   return ValueMapping;
2113 }
2114 
2115 /// Attempt to thread through two successive basic blocks.
2116 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2117                                                          Value *Cond) {
2118   // Consider:
2119   //
2120   // PredBB:
2121   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2122   //   %tobool = icmp eq i32 %cond, 0
2123   //   br i1 %tobool, label %BB, label ...
2124   //
2125   // BB:
2126   //   %cmp = icmp eq i32* %var, null
2127   //   br i1 %cmp, label ..., label ...
2128   //
2129   // We don't know the value of %var at BB even if we know which incoming edge
2130   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2131   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2132   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2133 
2134   // Require that BB end with a Branch for simplicity.
2135   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2136   if (!CondBr)
2137     return false;
2138 
2139   // BB must have exactly one predecessor.
2140   BasicBlock *PredBB = BB->getSinglePredecessor();
2141   if (!PredBB)
2142     return false;
2143 
2144   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2145   // unconditional branch, we should be merging PredBB and BB instead. For
2146   // simplicity, we don't deal with a switch.
2147   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2148   if (!PredBBBranch || PredBBBranch->isUnconditional())
2149     return false;
2150 
2151   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2152   // PredBB.
2153   if (PredBB->getSinglePredecessor())
2154     return false;
2155 
2156   // Don't thread through PredBB if it contains a successor edge to itself, in
2157   // which case we would infinite loop.  Suppose we are threading an edge from
2158   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2159   // successor edge to itself.  If we allowed jump threading in this case, we
2160   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2161   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2162   // with another jump threading opportunity from PredBB.thread through PredBB
2163   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2164   // would keep peeling one iteration from PredBB.
2165   if (llvm::is_contained(successors(PredBB), PredBB))
2166     return false;
2167 
2168   // Don't thread across a loop header.
2169   if (LoopHeaders.count(PredBB))
2170     return false;
2171 
2172   // Avoid complication with duplicating EH pads.
2173   if (PredBB->isEHPad())
2174     return false;
2175 
2176   // Find a predecessor that we can thread.  For simplicity, we only consider a
2177   // successor edge out of BB to which we thread exactly one incoming edge into
2178   // PredBB.
2179   unsigned ZeroCount = 0;
2180   unsigned OneCount = 0;
2181   BasicBlock *ZeroPred = nullptr;
2182   BasicBlock *OnePred = nullptr;
2183   for (BasicBlock *P : predecessors(PredBB)) {
2184     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2185             evaluateOnPredecessorEdge(BB, P, Cond))) {
2186       if (CI->isZero()) {
2187         ZeroCount++;
2188         ZeroPred = P;
2189       } else if (CI->isOne()) {
2190         OneCount++;
2191         OnePred = P;
2192       }
2193     }
2194   }
2195 
2196   // Disregard complicated cases where we have to thread multiple edges.
2197   BasicBlock *PredPredBB;
2198   if (ZeroCount == 1) {
2199     PredPredBB = ZeroPred;
2200   } else if (OneCount == 1) {
2201     PredPredBB = OnePred;
2202   } else {
2203     return false;
2204   }
2205 
2206   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2207 
2208   // If threading to the same block as we come from, we would infinite loop.
2209   if (SuccBB == BB) {
2210     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2211                       << "' - would thread to self!\n");
2212     return false;
2213   }
2214 
2215   // If threading this would thread across a loop header, don't thread the edge.
2216   // See the comments above findLoopHeaders for justifications and caveats.
2217   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2218     LLVM_DEBUG({
2219       bool BBIsHeader = LoopHeaders.count(BB);
2220       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2221       dbgs() << "  Not threading across "
2222              << (BBIsHeader ? "loop header BB '" : "block BB '")
2223              << BB->getName() << "' to dest "
2224              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2225              << SuccBB->getName()
2226              << "' - it might create an irreducible loop!\n";
2227     });
2228     return false;
2229   }
2230 
2231   // Compute the cost of duplicating BB and PredBB.
2232   unsigned BBCost = getJumpThreadDuplicationCost(
2233       TTI, BB, BB->getTerminator(), BBDupThreshold);
2234   unsigned PredBBCost = getJumpThreadDuplicationCost(
2235       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2236 
2237   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2238   // individually before checking their sum because getJumpThreadDuplicationCost
2239   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2240   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2241       BBCost + PredBBCost > BBDupThreshold) {
2242     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2243                       << "' - Cost is too high: " << PredBBCost
2244                       << " for PredBB, " << BBCost << "for BB\n");
2245     return false;
2246   }
2247 
2248   // Now we are ready to duplicate PredBB.
2249   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2250   return true;
2251 }
2252 
2253 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2254                                                     BasicBlock *PredBB,
2255                                                     BasicBlock *BB,
2256                                                     BasicBlock *SuccBB) {
2257   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2258                     << BB->getName() << "'\n");
2259 
2260   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2261   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2262 
2263   BasicBlock *NewBB =
2264       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2265                          PredBB->getParent(), PredBB);
2266   NewBB->moveAfter(PredBB);
2267 
2268   // Set the block frequency of NewBB.
2269   if (HasProfileData) {
2270     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2271                      BPI->getEdgeProbability(PredPredBB, PredBB);
2272     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2273   }
2274 
2275   // We are going to have to map operands from the original BB block to the new
2276   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2277   // to account for entry from PredPredBB.
2278   DenseMap<Instruction *, Value *> ValueMapping =
2279       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2280 
2281   // Copy the edge probabilities from PredBB to NewBB.
2282   if (HasProfileData)
2283     BPI->copyEdgeProbabilities(PredBB, NewBB);
2284 
2285   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2286   // This eliminates predecessors from PredPredBB, which requires us to simplify
2287   // any PHI nodes in PredBB.
2288   Instruction *PredPredTerm = PredPredBB->getTerminator();
2289   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2290     if (PredPredTerm->getSuccessor(i) == PredBB) {
2291       PredBB->removePredecessor(PredPredBB, true);
2292       PredPredTerm->setSuccessor(i, NewBB);
2293     }
2294 
2295   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2296                                   ValueMapping);
2297   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2298                                   ValueMapping);
2299 
2300   DTU->applyUpdatesPermissive(
2301       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2302        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2303        {DominatorTree::Insert, PredPredBB, NewBB},
2304        {DominatorTree::Delete, PredPredBB, PredBB}});
2305 
2306   updateSSA(PredBB, NewBB, ValueMapping);
2307 
2308   // Clean up things like PHI nodes with single operands, dead instructions,
2309   // etc.
2310   SimplifyInstructionsInBlock(NewBB, TLI);
2311   SimplifyInstructionsInBlock(PredBB, TLI);
2312 
2313   SmallVector<BasicBlock *, 1> PredsToFactor;
2314   PredsToFactor.push_back(NewBB);
2315   threadEdge(BB, PredsToFactor, SuccBB);
2316 }
2317 
2318 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2319 bool JumpThreadingPass::tryThreadEdge(
2320     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2321     BasicBlock *SuccBB) {
2322   // If threading to the same block as we come from, we would infinite loop.
2323   if (SuccBB == BB) {
2324     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2325                       << "' - would thread to self!\n");
2326     return false;
2327   }
2328 
2329   // If threading this would thread across a loop header, don't thread the edge.
2330   // See the comments above findLoopHeaders for justifications and caveats.
2331   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2332     LLVM_DEBUG({
2333       bool BBIsHeader = LoopHeaders.count(BB);
2334       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2335       dbgs() << "  Not threading across "
2336           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2337           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2338           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2339     });
2340     return false;
2341   }
2342 
2343   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2344       TTI, BB, BB->getTerminator(), BBDupThreshold);
2345   if (JumpThreadCost > BBDupThreshold) {
2346     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2347                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2348     return false;
2349   }
2350 
2351   threadEdge(BB, PredBBs, SuccBB);
2352   return true;
2353 }
2354 
2355 /// threadEdge - We have decided that it is safe and profitable to factor the
2356 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2357 /// across BB.  Transform the IR to reflect this change.
2358 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2359                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2360                                    BasicBlock *SuccBB) {
2361   assert(SuccBB != BB && "Don't create an infinite loop");
2362 
2363   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2364          "Don't thread across loop headers");
2365 
2366   // And finally, do it!  Start by factoring the predecessors if needed.
2367   BasicBlock *PredBB;
2368   if (PredBBs.size() == 1)
2369     PredBB = PredBBs[0];
2370   else {
2371     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2372                       << " common predecessors.\n");
2373     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2374   }
2375 
2376   // And finally, do it!
2377   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2378                     << "' to '" << SuccBB->getName()
2379                     << ", across block:\n    " << *BB << "\n");
2380 
2381   LVI->threadEdge(PredBB, BB, SuccBB);
2382 
2383   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2384                                          BB->getName()+".thread",
2385                                          BB->getParent(), BB);
2386   NewBB->moveAfter(PredBB);
2387 
2388   // Set the block frequency of NewBB.
2389   if (HasProfileData) {
2390     auto NewBBFreq =
2391         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2392     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2393   }
2394 
2395   // Copy all the instructions from BB to NewBB except the terminator.
2396   DenseMap<Instruction *, Value *> ValueMapping =
2397       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2398 
2399   // We didn't copy the terminator from BB over to NewBB, because there is now
2400   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2401   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2402   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2403 
2404   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2405   // PHI nodes for NewBB now.
2406   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2407 
2408   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2409   // eliminates predecessors from BB, which requires us to simplify any PHI
2410   // nodes in BB.
2411   Instruction *PredTerm = PredBB->getTerminator();
2412   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2413     if (PredTerm->getSuccessor(i) == BB) {
2414       BB->removePredecessor(PredBB, true);
2415       PredTerm->setSuccessor(i, NewBB);
2416     }
2417 
2418   // Enqueue required DT updates.
2419   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2420                                {DominatorTree::Insert, PredBB, NewBB},
2421                                {DominatorTree::Delete, PredBB, BB}});
2422 
2423   updateSSA(BB, NewBB, ValueMapping);
2424 
2425   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2426   // over the new instructions and zap any that are constants or dead.  This
2427   // frequently happens because of phi translation.
2428   SimplifyInstructionsInBlock(NewBB, TLI);
2429 
2430   // Update the edge weight from BB to SuccBB, which should be less than before.
2431   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2432 
2433   // Threaded an edge!
2434   ++NumThreads;
2435 }
2436 
2437 /// Create a new basic block that will be the predecessor of BB and successor of
2438 /// all blocks in Preds. When profile data is available, update the frequency of
2439 /// this new block.
2440 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2441                                                ArrayRef<BasicBlock *> Preds,
2442                                                const char *Suffix) {
2443   SmallVector<BasicBlock *, 2> NewBBs;
2444 
2445   // Collect the frequencies of all predecessors of BB, which will be used to
2446   // update the edge weight of the result of splitting predecessors.
2447   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2448   if (HasProfileData)
2449     for (auto Pred : Preds)
2450       FreqMap.insert(std::make_pair(
2451           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2452 
2453   // In the case when BB is a LandingPad block we create 2 new predecessors
2454   // instead of just one.
2455   if (BB->isLandingPad()) {
2456     std::string NewName = std::string(Suffix) + ".split-lp";
2457     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2458   } else {
2459     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2460   }
2461 
2462   std::vector<DominatorTree::UpdateType> Updates;
2463   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2464   for (auto NewBB : NewBBs) {
2465     BlockFrequency NewBBFreq(0);
2466     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2467     for (auto Pred : predecessors(NewBB)) {
2468       Updates.push_back({DominatorTree::Delete, Pred, BB});
2469       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2470       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2471         NewBBFreq += FreqMap.lookup(Pred);
2472     }
2473     if (HasProfileData) // Apply the summed frequency to NewBB.
2474       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2475   }
2476 
2477   DTU->applyUpdatesPermissive(Updates);
2478   return NewBBs[0];
2479 }
2480 
2481 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2482   const Instruction *TI = BB->getTerminator();
2483   assert(TI->getNumSuccessors() > 1 && "not a split");
2484 
2485   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2486   if (!WeightsNode)
2487     return false;
2488 
2489   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2490   if (MDName->getString() != "branch_weights")
2491     return false;
2492 
2493   // Ensure there are weights for all of the successors. Note that the first
2494   // operand to the metadata node is a name, not a weight.
2495   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2496 }
2497 
2498 /// Update the block frequency of BB and branch weight and the metadata on the
2499 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2500 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2501 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2502                                                      BasicBlock *BB,
2503                                                      BasicBlock *NewBB,
2504                                                      BasicBlock *SuccBB) {
2505   if (!HasProfileData)
2506     return;
2507 
2508   assert(BFI && BPI && "BFI & BPI should have been created here");
2509 
2510   // As the edge from PredBB to BB is deleted, we have to update the block
2511   // frequency of BB.
2512   auto BBOrigFreq = BFI->getBlockFreq(BB);
2513   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2514   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2515   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2516   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2517 
2518   // Collect updated outgoing edges' frequencies from BB and use them to update
2519   // edge probabilities.
2520   SmallVector<uint64_t, 4> BBSuccFreq;
2521   for (BasicBlock *Succ : successors(BB)) {
2522     auto SuccFreq = (Succ == SuccBB)
2523                         ? BB2SuccBBFreq - NewBBFreq
2524                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2525     BBSuccFreq.push_back(SuccFreq.getFrequency());
2526   }
2527 
2528   uint64_t MaxBBSuccFreq =
2529       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2530 
2531   SmallVector<BranchProbability, 4> BBSuccProbs;
2532   if (MaxBBSuccFreq == 0)
2533     BBSuccProbs.assign(BBSuccFreq.size(),
2534                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2535   else {
2536     for (uint64_t Freq : BBSuccFreq)
2537       BBSuccProbs.push_back(
2538           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2539     // Normalize edge probabilities so that they sum up to one.
2540     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2541                                               BBSuccProbs.end());
2542   }
2543 
2544   // Update edge probabilities in BPI.
2545   BPI->setEdgeProbability(BB, BBSuccProbs);
2546 
2547   // Update the profile metadata as well.
2548   //
2549   // Don't do this if the profile of the transformed blocks was statically
2550   // estimated.  (This could occur despite the function having an entry
2551   // frequency in completely cold parts of the CFG.)
2552   //
2553   // In this case we don't want to suggest to subsequent passes that the
2554   // calculated weights are fully consistent.  Consider this graph:
2555   //
2556   //                 check_1
2557   //             50% /  |
2558   //             eq_1   | 50%
2559   //                 \  |
2560   //                 check_2
2561   //             50% /  |
2562   //             eq_2   | 50%
2563   //                 \  |
2564   //                 check_3
2565   //             50% /  |
2566   //             eq_3   | 50%
2567   //                 \  |
2568   //
2569   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2570   // the overall probabilities are inconsistent; the total probability that the
2571   // value is either 1, 2 or 3 is 150%.
2572   //
2573   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2574   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2575   // the loop exit edge.  Then based solely on static estimation we would assume
2576   // the loop was extremely hot.
2577   //
2578   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2579   // shouldn't make edges extremely likely or unlikely based solely on static
2580   // estimation.
2581   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2582     SmallVector<uint32_t, 4> Weights;
2583     for (auto Prob : BBSuccProbs)
2584       Weights.push_back(Prob.getNumerator());
2585 
2586     auto TI = BB->getTerminator();
2587     TI->setMetadata(
2588         LLVMContext::MD_prof,
2589         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2590   }
2591 }
2592 
2593 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2594 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2595 /// If we can duplicate the contents of BB up into PredBB do so now, this
2596 /// improves the odds that the branch will be on an analyzable instruction like
2597 /// a compare.
2598 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2599     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2600   assert(!PredBBs.empty() && "Can't handle an empty set");
2601 
2602   // If BB is a loop header, then duplicating this block outside the loop would
2603   // cause us to transform this into an irreducible loop, don't do this.
2604   // See the comments above findLoopHeaders for justifications and caveats.
2605   if (LoopHeaders.count(BB)) {
2606     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2607                       << "' into predecessor block '" << PredBBs[0]->getName()
2608                       << "' - it might create an irreducible loop!\n");
2609     return false;
2610   }
2611 
2612   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2613       TTI, BB, BB->getTerminator(), BBDupThreshold);
2614   if (DuplicationCost > BBDupThreshold) {
2615     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2616                       << "' - Cost is too high: " << DuplicationCost << "\n");
2617     return false;
2618   }
2619 
2620   // And finally, do it!  Start by factoring the predecessors if needed.
2621   std::vector<DominatorTree::UpdateType> Updates;
2622   BasicBlock *PredBB;
2623   if (PredBBs.size() == 1)
2624     PredBB = PredBBs[0];
2625   else {
2626     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2627                       << " common predecessors.\n");
2628     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2629   }
2630   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2631 
2632   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2633   // of PredBB.
2634   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2635                     << "' into end of '" << PredBB->getName()
2636                     << "' to eliminate branch on phi.  Cost: "
2637                     << DuplicationCost << " block is:" << *BB << "\n");
2638 
2639   // Unless PredBB ends with an unconditional branch, split the edge so that we
2640   // can just clone the bits from BB into the end of the new PredBB.
2641   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2642 
2643   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2644     BasicBlock *OldPredBB = PredBB;
2645     PredBB = SplitEdge(OldPredBB, BB);
2646     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2647     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2648     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2649     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2650   }
2651 
2652   // We are going to have to map operands from the original BB block into the
2653   // PredBB block.  Evaluate PHI nodes in BB.
2654   DenseMap<Instruction*, Value*> ValueMapping;
2655 
2656   BasicBlock::iterator BI = BB->begin();
2657   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2658     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2659   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2660   // mapping and using it to remap operands in the cloned instructions.
2661   for (; BI != BB->end(); ++BI) {
2662     Instruction *New = BI->clone();
2663 
2664     // Remap operands to patch up intra-block references.
2665     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2666       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2667         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2668         if (I != ValueMapping.end())
2669           New->setOperand(i, I->second);
2670       }
2671 
2672     // If this instruction can be simplified after the operands are updated,
2673     // just use the simplified value instead.  This frequently happens due to
2674     // phi translation.
2675     if (Value *IV = SimplifyInstruction(
2676             New,
2677             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2678       ValueMapping[&*BI] = IV;
2679       if (!New->mayHaveSideEffects()) {
2680         New->deleteValue();
2681         New = nullptr;
2682       }
2683     } else {
2684       ValueMapping[&*BI] = New;
2685     }
2686     if (New) {
2687       // Otherwise, insert the new instruction into the block.
2688       New->setName(BI->getName());
2689       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2690       // Update Dominance from simplified New instruction operands.
2691       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2692         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2693           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2694     }
2695   }
2696 
2697   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2698   // add entries to the PHI nodes for branch from PredBB now.
2699   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2700   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2701                                   ValueMapping);
2702   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2703                                   ValueMapping);
2704 
2705   updateSSA(BB, PredBB, ValueMapping);
2706 
2707   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2708   // that we nuked.
2709   BB->removePredecessor(PredBB, true);
2710 
2711   // Remove the unconditional branch at the end of the PredBB block.
2712   OldPredBranch->eraseFromParent();
2713   if (HasProfileData)
2714     BPI->copyEdgeProbabilities(BB, PredBB);
2715   DTU->applyUpdatesPermissive(Updates);
2716 
2717   ++NumDupes;
2718   return true;
2719 }
2720 
2721 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2722 // a Select instruction in Pred. BB has other predecessors and SI is used in
2723 // a PHI node in BB. SI has no other use.
2724 // A new basic block, NewBB, is created and SI is converted to compare and
2725 // conditional branch. SI is erased from parent.
2726 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2727                                           SelectInst *SI, PHINode *SIUse,
2728                                           unsigned Idx) {
2729   // Expand the select.
2730   //
2731   // Pred --
2732   //  |    v
2733   //  |  NewBB
2734   //  |    |
2735   //  |-----
2736   //  v
2737   // BB
2738   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2739   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2740                                          BB->getParent(), BB);
2741   // Move the unconditional branch to NewBB.
2742   PredTerm->removeFromParent();
2743   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2744   // Create a conditional branch and update PHI nodes.
2745   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2746   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2747   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2748   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2749 
2750   // The select is now dead.
2751   SI->eraseFromParent();
2752   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2753                                {DominatorTree::Insert, Pred, NewBB}});
2754 
2755   // Update any other PHI nodes in BB.
2756   for (BasicBlock::iterator BI = BB->begin();
2757        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2758     if (Phi != SIUse)
2759       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2760 }
2761 
2762 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2763   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2764 
2765   if (!CondPHI || CondPHI->getParent() != BB)
2766     return false;
2767 
2768   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2769     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2770     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2771 
2772     // The second and third condition can be potentially relaxed. Currently
2773     // the conditions help to simplify the code and allow us to reuse existing
2774     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2775     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2776       continue;
2777 
2778     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2779     if (!PredTerm || !PredTerm->isUnconditional())
2780       continue;
2781 
2782     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2783     return true;
2784   }
2785   return false;
2786 }
2787 
2788 /// tryToUnfoldSelect - Look for blocks of the form
2789 /// bb1:
2790 ///   %a = select
2791 ///   br bb2
2792 ///
2793 /// bb2:
2794 ///   %p = phi [%a, %bb1] ...
2795 ///   %c = icmp %p
2796 ///   br i1 %c
2797 ///
2798 /// And expand the select into a branch structure if one of its arms allows %c
2799 /// to be folded. This later enables threading from bb1 over bb2.
2800 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2801   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2802   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2803   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2804 
2805   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2806       CondLHS->getParent() != BB)
2807     return false;
2808 
2809   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2810     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2811     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2812 
2813     // Look if one of the incoming values is a select in the corresponding
2814     // predecessor.
2815     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2816       continue;
2817 
2818     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2819     if (!PredTerm || !PredTerm->isUnconditional())
2820       continue;
2821 
2822     // Now check if one of the select values would allow us to constant fold the
2823     // terminator in BB. We don't do the transform if both sides fold, those
2824     // cases will be threaded in any case.
2825     LazyValueInfo::Tristate LHSFolds =
2826         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2827                                 CondRHS, Pred, BB, CondCmp);
2828     LazyValueInfo::Tristate RHSFolds =
2829         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2830                                 CondRHS, Pred, BB, CondCmp);
2831     if ((LHSFolds != LazyValueInfo::Unknown ||
2832          RHSFolds != LazyValueInfo::Unknown) &&
2833         LHSFolds != RHSFolds) {
2834       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2835       return true;
2836     }
2837   }
2838   return false;
2839 }
2840 
2841 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2842 /// same BB in the form
2843 /// bb:
2844 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2845 ///   %s = select %p, trueval, falseval
2846 ///
2847 /// or
2848 ///
2849 /// bb:
2850 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2851 ///   %c = cmp %p, 0
2852 ///   %s = select %c, trueval, falseval
2853 ///
2854 /// And expand the select into a branch structure. This later enables
2855 /// jump-threading over bb in this pass.
2856 ///
2857 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2858 /// select if the associated PHI has at least one constant.  If the unfolded
2859 /// select is not jump-threaded, it will be folded again in the later
2860 /// optimizations.
2861 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2862   // This transform would reduce the quality of msan diagnostics.
2863   // Disable this transform under MemorySanitizer.
2864   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2865     return false;
2866 
2867   // If threading this would thread across a loop header, don't thread the edge.
2868   // See the comments above findLoopHeaders for justifications and caveats.
2869   if (LoopHeaders.count(BB))
2870     return false;
2871 
2872   for (BasicBlock::iterator BI = BB->begin();
2873        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2874     // Look for a Phi having at least one constant incoming value.
2875     if (llvm::all_of(PN->incoming_values(),
2876                      [](Value *V) { return !isa<ConstantInt>(V); }))
2877       continue;
2878 
2879     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2880       using namespace PatternMatch;
2881 
2882       // Check if SI is in BB and use V as condition.
2883       if (SI->getParent() != BB)
2884         return false;
2885       Value *Cond = SI->getCondition();
2886       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2887       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2888     };
2889 
2890     SelectInst *SI = nullptr;
2891     for (Use &U : PN->uses()) {
2892       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2893         // Look for a ICmp in BB that compares PN with a constant and is the
2894         // condition of a Select.
2895         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2896             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2897           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2898             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2899               SI = SelectI;
2900               break;
2901             }
2902       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2903         // Look for a Select in BB that uses PN as condition.
2904         if (isUnfoldCandidate(SelectI, U.get())) {
2905           SI = SelectI;
2906           break;
2907         }
2908       }
2909     }
2910 
2911     if (!SI)
2912       continue;
2913     // Expand the select.
2914     Value *Cond = SI->getCondition();
2915     if (InsertFreezeWhenUnfoldingSelect &&
2916         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
2917                                           &DTU->getDomTree()))
2918       Cond = new FreezeInst(Cond, "cond.fr", SI);
2919     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2920     BasicBlock *SplitBB = SI->getParent();
2921     BasicBlock *NewBB = Term->getParent();
2922     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2923     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2924     NewPN->addIncoming(SI->getFalseValue(), BB);
2925     SI->replaceAllUsesWith(NewPN);
2926     SI->eraseFromParent();
2927     // NewBB and SplitBB are newly created blocks which require insertion.
2928     std::vector<DominatorTree::UpdateType> Updates;
2929     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2930     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2931     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2932     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2933     // BB's successors were moved to SplitBB, update DTU accordingly.
2934     for (auto *Succ : successors(SplitBB)) {
2935       Updates.push_back({DominatorTree::Delete, BB, Succ});
2936       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2937     }
2938     DTU->applyUpdatesPermissive(Updates);
2939     return true;
2940   }
2941   return false;
2942 }
2943 
2944 /// Try to propagate a guard from the current BB into one of its predecessors
2945 /// in case if another branch of execution implies that the condition of this
2946 /// guard is always true. Currently we only process the simplest case that
2947 /// looks like:
2948 ///
2949 /// Start:
2950 ///   %cond = ...
2951 ///   br i1 %cond, label %T1, label %F1
2952 /// T1:
2953 ///   br label %Merge
2954 /// F1:
2955 ///   br label %Merge
2956 /// Merge:
2957 ///   %condGuard = ...
2958 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2959 ///
2960 /// And cond either implies condGuard or !condGuard. In this case all the
2961 /// instructions before the guard can be duplicated in both branches, and the
2962 /// guard is then threaded to one of them.
2963 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2964   using namespace PatternMatch;
2965 
2966   // We only want to deal with two predecessors.
2967   BasicBlock *Pred1, *Pred2;
2968   auto PI = pred_begin(BB), PE = pred_end(BB);
2969   if (PI == PE)
2970     return false;
2971   Pred1 = *PI++;
2972   if (PI == PE)
2973     return false;
2974   Pred2 = *PI++;
2975   if (PI != PE)
2976     return false;
2977   if (Pred1 == Pred2)
2978     return false;
2979 
2980   // Try to thread one of the guards of the block.
2981   // TODO: Look up deeper than to immediate predecessor?
2982   auto *Parent = Pred1->getSinglePredecessor();
2983   if (!Parent || Parent != Pred2->getSinglePredecessor())
2984     return false;
2985 
2986   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2987     for (auto &I : *BB)
2988       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2989         return true;
2990 
2991   return false;
2992 }
2993 
2994 /// Try to propagate the guard from BB which is the lower block of a diamond
2995 /// to one of its branches, in case if diamond's condition implies guard's
2996 /// condition.
2997 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2998                                     BranchInst *BI) {
2999   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3000   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3001   Value *GuardCond = Guard->getArgOperand(0);
3002   Value *BranchCond = BI->getCondition();
3003   BasicBlock *TrueDest = BI->getSuccessor(0);
3004   BasicBlock *FalseDest = BI->getSuccessor(1);
3005 
3006   auto &DL = BB->getModule()->getDataLayout();
3007   bool TrueDestIsSafe = false;
3008   bool FalseDestIsSafe = false;
3009 
3010   // True dest is safe if BranchCond => GuardCond.
3011   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3012   if (Impl && *Impl)
3013     TrueDestIsSafe = true;
3014   else {
3015     // False dest is safe if !BranchCond => GuardCond.
3016     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3017     if (Impl && *Impl)
3018       FalseDestIsSafe = true;
3019   }
3020 
3021   if (!TrueDestIsSafe && !FalseDestIsSafe)
3022     return false;
3023 
3024   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3025   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3026 
3027   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3028   Instruction *AfterGuard = Guard->getNextNode();
3029   unsigned Cost =
3030       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3031   if (Cost > BBDupThreshold)
3032     return false;
3033   // Duplicate all instructions before the guard and the guard itself to the
3034   // branch where implication is not proved.
3035   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3036       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3037   assert(GuardedBlock && "Could not create the guarded block?");
3038   // Duplicate all instructions before the guard in the unguarded branch.
3039   // Since we have successfully duplicated the guarded block and this block
3040   // has fewer instructions, we expect it to succeed.
3041   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3042       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3043   assert(UnguardedBlock && "Could not create the unguarded block?");
3044   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3045                     << GuardedBlock->getName() << "\n");
3046   // Some instructions before the guard may still have uses. For them, we need
3047   // to create Phi nodes merging their copies in both guarded and unguarded
3048   // branches. Those instructions that have no uses can be just removed.
3049   SmallVector<Instruction *, 4> ToRemove;
3050   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3051     if (!isa<PHINode>(&*BI))
3052       ToRemove.push_back(&*BI);
3053 
3054   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3055   assert(InsertionPoint && "Empty block?");
3056   // Substitute with Phis & remove.
3057   for (auto *Inst : reverse(ToRemove)) {
3058     if (!Inst->use_empty()) {
3059       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3060       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3061       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3062       NewPN->insertBefore(InsertionPoint);
3063       Inst->replaceAllUsesWith(NewPN);
3064     }
3065     Inst->eraseFromParent();
3066   }
3067   return true;
3068 }
3069