1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/PassManager.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/BlockFrequency.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Scalar.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Cloning.h" 71 #include "llvm/Transforms/Utils/Local.h" 72 #include "llvm/Transforms/Utils/SSAUpdater.h" 73 #include "llvm/Transforms/Utils/ValueMapper.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <memory> 80 #include <utility> 81 82 using namespace llvm; 83 using namespace jumpthreading; 84 85 #define DEBUG_TYPE "jump-threading" 86 87 STATISTIC(NumThreads, "Number of jumps threaded"); 88 STATISTIC(NumFolds, "Number of terminators folded"); 89 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 90 91 static cl::opt<unsigned> 92 BBDuplicateThreshold("jump-threading-threshold", 93 cl::desc("Max block size to duplicate for jump threading"), 94 cl::init(6), cl::Hidden); 95 96 static cl::opt<unsigned> 97 ImplicationSearchThreshold( 98 "jump-threading-implication-search-threshold", 99 cl::desc("The number of predecessors to search for a stronger " 100 "condition to use to thread over a weaker condition"), 101 cl::init(3), cl::Hidden); 102 103 static cl::opt<bool> PrintLVIAfterJumpThreading( 104 "print-lvi-after-jump-threading", 105 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 106 cl::Hidden); 107 108 static cl::opt<bool> JumpThreadingFreezeSelectCond( 109 "jump-threading-freeze-select-cond", 110 cl::desc("Freeze the condition when unfolding select"), cl::init(false), 111 cl::Hidden); 112 113 static cl::opt<bool> ThreadAcrossLoopHeaders( 114 "jump-threading-across-loop-headers", 115 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 116 cl::init(false), cl::Hidden); 117 118 119 namespace { 120 121 /// This pass performs 'jump threading', which looks at blocks that have 122 /// multiple predecessors and multiple successors. If one or more of the 123 /// predecessors of the block can be proven to always jump to one of the 124 /// successors, we forward the edge from the predecessor to the successor by 125 /// duplicating the contents of this block. 126 /// 127 /// An example of when this can occur is code like this: 128 /// 129 /// if () { ... 130 /// X = 4; 131 /// } 132 /// if (X < 3) { 133 /// 134 /// In this case, the unconditional branch at the end of the first if can be 135 /// revectored to the false side of the second if. 136 class JumpThreading : public FunctionPass { 137 JumpThreadingPass Impl; 138 139 public: 140 static char ID; // Pass identification 141 142 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1) 143 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) { 144 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 145 } 146 147 bool runOnFunction(Function &F) override; 148 149 void getAnalysisUsage(AnalysisUsage &AU) const override { 150 AU.addRequired<DominatorTreeWrapperPass>(); 151 AU.addPreserved<DominatorTreeWrapperPass>(); 152 AU.addRequired<AAResultsWrapperPass>(); 153 AU.addRequired<LazyValueInfoWrapperPass>(); 154 AU.addPreserved<LazyValueInfoWrapperPass>(); 155 AU.addPreserved<GlobalsAAWrapperPass>(); 156 AU.addRequired<TargetLibraryInfoWrapperPass>(); 157 AU.addRequired<TargetTransformInfoWrapperPass>(); 158 } 159 160 void releaseMemory() override { Impl.releaseMemory(); } 161 }; 162 163 } // end anonymous namespace 164 165 char JumpThreading::ID = 0; 166 167 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 168 "Jump Threading", false, false) 169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 172 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 173 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 174 "Jump Threading", false, false) 175 176 // Public interface to the Jump Threading pass 177 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) { 178 return new JumpThreading(InsertFr, Threshold); 179 } 180 181 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) { 182 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr; 183 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 184 } 185 186 // Update branch probability information according to conditional 187 // branch probability. This is usually made possible for cloned branches 188 // in inline instances by the context specific profile in the caller. 189 // For instance, 190 // 191 // [Block PredBB] 192 // [Branch PredBr] 193 // if (t) { 194 // Block A; 195 // } else { 196 // Block B; 197 // } 198 // 199 // [Block BB] 200 // cond = PN([true, %A], [..., %B]); // PHI node 201 // [Branch CondBr] 202 // if (cond) { 203 // ... // P(cond == true) = 1% 204 // } 205 // 206 // Here we know that when block A is taken, cond must be true, which means 207 // P(cond == true | A) = 1 208 // 209 // Given that P(cond == true) = P(cond == true | A) * P(A) + 210 // P(cond == true | B) * P(B) 211 // we get: 212 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 213 // 214 // which gives us: 215 // P(A) is less than P(cond == true), i.e. 216 // P(t == true) <= P(cond == true) 217 // 218 // In other words, if we know P(cond == true) is unlikely, we know 219 // that P(t == true) is also unlikely. 220 // 221 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 222 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 223 if (!CondBr) 224 return; 225 226 uint64_t TrueWeight, FalseWeight; 227 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 228 return; 229 230 if (TrueWeight + FalseWeight == 0) 231 // Zero branch_weights do not give a hint for getting branch probabilities. 232 // Technically it would result in division by zero denominator, which is 233 // TrueWeight + FalseWeight. 234 return; 235 236 // Returns the outgoing edge of the dominating predecessor block 237 // that leads to the PhiNode's incoming block: 238 auto GetPredOutEdge = 239 [](BasicBlock *IncomingBB, 240 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 241 auto *PredBB = IncomingBB; 242 auto *SuccBB = PhiBB; 243 SmallPtrSet<BasicBlock *, 16> Visited; 244 while (true) { 245 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 246 if (PredBr && PredBr->isConditional()) 247 return {PredBB, SuccBB}; 248 Visited.insert(PredBB); 249 auto *SinglePredBB = PredBB->getSinglePredecessor(); 250 if (!SinglePredBB) 251 return {nullptr, nullptr}; 252 253 // Stop searching when SinglePredBB has been visited. It means we see 254 // an unreachable loop. 255 if (Visited.count(SinglePredBB)) 256 return {nullptr, nullptr}; 257 258 SuccBB = PredBB; 259 PredBB = SinglePredBB; 260 } 261 }; 262 263 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 264 Value *PhiOpnd = PN->getIncomingValue(i); 265 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 266 267 if (!CI || !CI->getType()->isIntegerTy(1)) 268 continue; 269 270 BranchProbability BP = 271 (CI->isOne() ? BranchProbability::getBranchProbability( 272 TrueWeight, TrueWeight + FalseWeight) 273 : BranchProbability::getBranchProbability( 274 FalseWeight, TrueWeight + FalseWeight)); 275 276 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 277 if (!PredOutEdge.first) 278 return; 279 280 BasicBlock *PredBB = PredOutEdge.first; 281 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 282 if (!PredBr) 283 return; 284 285 uint64_t PredTrueWeight, PredFalseWeight; 286 // FIXME: We currently only set the profile data when it is missing. 287 // With PGO, this can be used to refine even existing profile data with 288 // context information. This needs to be done after more performance 289 // testing. 290 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 291 continue; 292 293 // We can not infer anything useful when BP >= 50%, because BP is the 294 // upper bound probability value. 295 if (BP >= BranchProbability(50, 100)) 296 continue; 297 298 SmallVector<uint32_t, 2> Weights; 299 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 300 Weights.push_back(BP.getNumerator()); 301 Weights.push_back(BP.getCompl().getNumerator()); 302 } else { 303 Weights.push_back(BP.getCompl().getNumerator()); 304 Weights.push_back(BP.getNumerator()); 305 } 306 PredBr->setMetadata(LLVMContext::MD_prof, 307 MDBuilder(PredBr->getParent()->getContext()) 308 .createBranchWeights(Weights)); 309 } 310 } 311 312 /// runOnFunction - Toplevel algorithm. 313 bool JumpThreading::runOnFunction(Function &F) { 314 if (skipFunction(F)) 315 return false; 316 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 317 // Jump Threading has no sense for the targets with divergent CF 318 if (TTI->hasBranchDivergence()) 319 return false; 320 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 321 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 322 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 323 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 324 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 325 std::unique_ptr<BlockFrequencyInfo> BFI; 326 std::unique_ptr<BranchProbabilityInfo> BPI; 327 if (F.hasProfileData()) { 328 LoopInfo LI{DominatorTree(F)}; 329 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 330 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 331 } 332 333 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 334 std::move(BFI), std::move(BPI)); 335 if (PrintLVIAfterJumpThreading) { 336 dbgs() << "LVI for function '" << F.getName() << "':\n"; 337 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 338 } 339 return Changed; 340 } 341 342 PreservedAnalyses JumpThreadingPass::run(Function &F, 343 FunctionAnalysisManager &AM) { 344 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 345 // Jump Threading has no sense for the targets with divergent CF 346 if (TTI.hasBranchDivergence()) 347 return PreservedAnalyses::all(); 348 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 349 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 350 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 351 auto &AA = AM.getResult<AAManager>(F); 352 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 353 354 std::unique_ptr<BlockFrequencyInfo> BFI; 355 std::unique_ptr<BranchProbabilityInfo> BPI; 356 if (F.hasProfileData()) { 357 LoopInfo LI{DominatorTree(F)}; 358 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 359 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 360 } 361 362 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 363 std::move(BFI), std::move(BPI)); 364 365 if (PrintLVIAfterJumpThreading) { 366 dbgs() << "LVI for function '" << F.getName() << "':\n"; 367 LVI.printLVI(F, DTU.getDomTree(), dbgs()); 368 } 369 370 if (!Changed) 371 return PreservedAnalyses::all(); 372 PreservedAnalyses PA; 373 PA.preserve<GlobalsAA>(); 374 PA.preserve<DominatorTreeAnalysis>(); 375 PA.preserve<LazyValueAnalysis>(); 376 return PA; 377 } 378 379 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 380 LazyValueInfo *LVI_, AliasAnalysis *AA_, 381 DomTreeUpdater *DTU_, bool HasProfileData_, 382 std::unique_ptr<BlockFrequencyInfo> BFI_, 383 std::unique_ptr<BranchProbabilityInfo> BPI_) { 384 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 385 TLI = TLI_; 386 LVI = LVI_; 387 AA = AA_; 388 DTU = DTU_; 389 BFI.reset(); 390 BPI.reset(); 391 // When profile data is available, we need to update edge weights after 392 // successful jump threading, which requires both BPI and BFI being available. 393 HasProfileData = HasProfileData_; 394 auto *GuardDecl = F.getParent()->getFunction( 395 Intrinsic::getName(Intrinsic::experimental_guard)); 396 HasGuards = GuardDecl && !GuardDecl->use_empty(); 397 if (HasProfileData) { 398 BPI = std::move(BPI_); 399 BFI = std::move(BFI_); 400 } 401 402 // Reduce the number of instructions duplicated when optimizing strictly for 403 // size. 404 if (BBDuplicateThreshold.getNumOccurrences()) 405 BBDupThreshold = BBDuplicateThreshold; 406 else if (F.hasFnAttribute(Attribute::MinSize)) 407 BBDupThreshold = 3; 408 else 409 BBDupThreshold = DefaultBBDupThreshold; 410 411 // JumpThreading must not processes blocks unreachable from entry. It's a 412 // waste of compute time and can potentially lead to hangs. 413 SmallPtrSet<BasicBlock *, 16> Unreachable; 414 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 415 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 416 DominatorTree &DT = DTU->getDomTree(); 417 for (auto &BB : F) 418 if (!DT.isReachableFromEntry(&BB)) 419 Unreachable.insert(&BB); 420 421 if (!ThreadAcrossLoopHeaders) 422 findLoopHeaders(F); 423 424 bool EverChanged = false; 425 bool Changed; 426 do { 427 Changed = false; 428 for (auto &BB : F) { 429 if (Unreachable.count(&BB)) 430 continue; 431 while (processBlock(&BB)) // Thread all of the branches we can over BB. 432 Changed = true; 433 434 // Jump threading may have introduced redundant debug values into BB 435 // which should be removed. 436 if (Changed) 437 RemoveRedundantDbgInstrs(&BB); 438 439 // Stop processing BB if it's the entry or is now deleted. The following 440 // routines attempt to eliminate BB and locating a suitable replacement 441 // for the entry is non-trivial. 442 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 443 continue; 444 445 if (pred_empty(&BB)) { 446 // When processBlock makes BB unreachable it doesn't bother to fix up 447 // the instructions in it. We must remove BB to prevent invalid IR. 448 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 449 << "' with terminator: " << *BB.getTerminator() 450 << '\n'); 451 LoopHeaders.erase(&BB); 452 LVI->eraseBlock(&BB); 453 DeleteDeadBlock(&BB, DTU); 454 Changed = true; 455 continue; 456 } 457 458 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 459 // is "almost empty", we attempt to merge BB with its sole successor. 460 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 461 if (BI && BI->isUnconditional()) { 462 BasicBlock *Succ = BI->getSuccessor(0); 463 if ( 464 // The terminator must be the only non-phi instruction in BB. 465 BB.getFirstNonPHIOrDbg()->isTerminator() && 466 // Don't alter Loop headers and latches to ensure another pass can 467 // detect and transform nested loops later. 468 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 469 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 470 RemoveRedundantDbgInstrs(Succ); 471 // BB is valid for cleanup here because we passed in DTU. F remains 472 // BB's parent until a DTU->getDomTree() event. 473 LVI->eraseBlock(&BB); 474 Changed = true; 475 } 476 } 477 } 478 EverChanged |= Changed; 479 } while (Changed); 480 481 LoopHeaders.clear(); 482 return EverChanged; 483 } 484 485 // Replace uses of Cond with ToVal when safe to do so. If all uses are 486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 487 // because we may incorrectly replace uses when guards/assumes are uses of 488 // of `Cond` and we used the guards/assume to reason about the `Cond` value 489 // at the end of block. RAUW unconditionally replaces all uses 490 // including the guards/assumes themselves and the uses before the 491 // guard/assume. 492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) { 493 assert(Cond->getType() == ToVal->getType()); 494 auto *BB = Cond->getParent(); 495 // We can unconditionally replace all uses in non-local blocks (i.e. uses 496 // strictly dominated by BB), since LVI information is true from the 497 // terminator of BB. 498 replaceNonLocalUsesWith(Cond, ToVal); 499 for (Instruction &I : reverse(*BB)) { 500 // Reached the Cond whose uses we are trying to replace, so there are no 501 // more uses. 502 if (&I == Cond) 503 break; 504 // We only replace uses in instructions that are guaranteed to reach the end 505 // of BB, where we know Cond is ToVal. 506 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 507 break; 508 I.replaceUsesOfWith(Cond, ToVal); 509 } 510 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 511 Cond->eraseFromParent(); 512 } 513 514 /// Return the cost of duplicating a piece of this block from first non-phi 515 /// and before StopAt instruction to thread across it. Stop scanning the block 516 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 517 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 518 Instruction *StopAt, 519 unsigned Threshold) { 520 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 521 /// Ignore PHI nodes, these will be flattened when duplication happens. 522 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 523 524 // FIXME: THREADING will delete values that are just used to compute the 525 // branch, so they shouldn't count against the duplication cost. 526 527 unsigned Bonus = 0; 528 if (BB->getTerminator() == StopAt) { 529 // Threading through a switch statement is particularly profitable. If this 530 // block ends in a switch, decrease its cost to make it more likely to 531 // happen. 532 if (isa<SwitchInst>(StopAt)) 533 Bonus = 6; 534 535 // The same holds for indirect branches, but slightly more so. 536 if (isa<IndirectBrInst>(StopAt)) 537 Bonus = 8; 538 } 539 540 // Bump the threshold up so the early exit from the loop doesn't skip the 541 // terminator-based Size adjustment at the end. 542 Threshold += Bonus; 543 544 // Sum up the cost of each instruction until we get to the terminator. Don't 545 // include the terminator because the copy won't include it. 546 unsigned Size = 0; 547 for (; &*I != StopAt; ++I) { 548 549 // Stop scanning the block if we've reached the threshold. 550 if (Size > Threshold) 551 return Size; 552 553 // Debugger intrinsics don't incur code size. 554 if (isa<DbgInfoIntrinsic>(I)) continue; 555 556 // Pseudo-probes don't incur code size. 557 if (isa<PseudoProbeInst>(I)) 558 continue; 559 560 // If this is a pointer->pointer bitcast, it is free. 561 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 562 continue; 563 564 // Freeze instruction is free, too. 565 if (isa<FreezeInst>(I)) 566 continue; 567 568 // Bail out if this instruction gives back a token type, it is not possible 569 // to duplicate it if it is used outside this BB. 570 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 571 return ~0U; 572 573 // All other instructions count for at least one unit. 574 ++Size; 575 576 // Calls are more expensive. If they are non-intrinsic calls, we model them 577 // as having cost of 4. If they are a non-vector intrinsic, we model them 578 // as having cost of 2 total, and if they are a vector intrinsic, we model 579 // them as having cost 1. 580 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 581 if (CI->cannotDuplicate() || CI->isConvergent()) 582 // Blocks with NoDuplicate are modelled as having infinite cost, so they 583 // are never duplicated. 584 return ~0U; 585 else if (!isa<IntrinsicInst>(CI)) 586 Size += 3; 587 else if (!CI->getType()->isVectorTy()) 588 Size += 1; 589 } 590 } 591 592 return Size > Bonus ? Size - Bonus : 0; 593 } 594 595 /// findLoopHeaders - We do not want jump threading to turn proper loop 596 /// structures into irreducible loops. Doing this breaks up the loop nesting 597 /// hierarchy and pessimizes later transformations. To prevent this from 598 /// happening, we first have to find the loop headers. Here we approximate this 599 /// by finding targets of backedges in the CFG. 600 /// 601 /// Note that there definitely are cases when we want to allow threading of 602 /// edges across a loop header. For example, threading a jump from outside the 603 /// loop (the preheader) to an exit block of the loop is definitely profitable. 604 /// It is also almost always profitable to thread backedges from within the loop 605 /// to exit blocks, and is often profitable to thread backedges to other blocks 606 /// within the loop (forming a nested loop). This simple analysis is not rich 607 /// enough to track all of these properties and keep it up-to-date as the CFG 608 /// mutates, so we don't allow any of these transformations. 609 void JumpThreadingPass::findLoopHeaders(Function &F) { 610 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 611 FindFunctionBackedges(F, Edges); 612 613 for (const auto &Edge : Edges) 614 LoopHeaders.insert(Edge.second); 615 } 616 617 /// getKnownConstant - Helper method to determine if we can thread over a 618 /// terminator with the given value as its condition, and if so what value to 619 /// use for that. What kind of value this is depends on whether we want an 620 /// integer or a block address, but an undef is always accepted. 621 /// Returns null if Val is null or not an appropriate constant. 622 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 623 if (!Val) 624 return nullptr; 625 626 // Undef is "known" enough. 627 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 628 return U; 629 630 if (Preference == WantBlockAddress) 631 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 632 633 return dyn_cast<ConstantInt>(Val); 634 } 635 636 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 637 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 638 /// in any of our predecessors. If so, return the known list of value and pred 639 /// BB in the result vector. 640 /// 641 /// This returns true if there were any known values. 642 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 643 Value *V, BasicBlock *BB, PredValueInfo &Result, 644 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 645 Instruction *CxtI) { 646 // This method walks up use-def chains recursively. Because of this, we could 647 // get into an infinite loop going around loops in the use-def chain. To 648 // prevent this, keep track of what (value, block) pairs we've already visited 649 // and terminate the search if we loop back to them 650 if (!RecursionSet.insert(V).second) 651 return false; 652 653 // If V is a constant, then it is known in all predecessors. 654 if (Constant *KC = getKnownConstant(V, Preference)) { 655 for (BasicBlock *Pred : predecessors(BB)) 656 Result.emplace_back(KC, Pred); 657 658 return !Result.empty(); 659 } 660 661 // If V is a non-instruction value, or an instruction in a different block, 662 // then it can't be derived from a PHI. 663 Instruction *I = dyn_cast<Instruction>(V); 664 if (!I || I->getParent() != BB) { 665 666 // Okay, if this is a live-in value, see if it has a known value at the end 667 // of any of our predecessors. 668 // 669 // FIXME: This should be an edge property, not a block end property. 670 /// TODO: Per PR2563, we could infer value range information about a 671 /// predecessor based on its terminator. 672 // 673 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 674 // "I" is a non-local compare-with-a-constant instruction. This would be 675 // able to handle value inequalities better, for example if the compare is 676 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 677 // Perhaps getConstantOnEdge should be smart enough to do this? 678 for (BasicBlock *P : predecessors(BB)) { 679 // If the value is known by LazyValueInfo to be a constant in a 680 // predecessor, use that information to try to thread this block. 681 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 682 if (Constant *KC = getKnownConstant(PredCst, Preference)) 683 Result.emplace_back(KC, P); 684 } 685 686 return !Result.empty(); 687 } 688 689 /// If I is a PHI node, then we know the incoming values for any constants. 690 if (PHINode *PN = dyn_cast<PHINode>(I)) { 691 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 692 Value *InVal = PN->getIncomingValue(i); 693 if (Constant *KC = getKnownConstant(InVal, Preference)) { 694 Result.emplace_back(KC, PN->getIncomingBlock(i)); 695 } else { 696 Constant *CI = LVI->getConstantOnEdge(InVal, 697 PN->getIncomingBlock(i), 698 BB, CxtI); 699 if (Constant *KC = getKnownConstant(CI, Preference)) 700 Result.emplace_back(KC, PN->getIncomingBlock(i)); 701 } 702 } 703 704 return !Result.empty(); 705 } 706 707 // Handle Cast instructions. 708 if (CastInst *CI = dyn_cast<CastInst>(I)) { 709 Value *Source = CI->getOperand(0); 710 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 711 RecursionSet, CxtI); 712 if (Result.empty()) 713 return false; 714 715 // Convert the known values. 716 for (auto &R : Result) 717 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 718 719 return true; 720 } 721 722 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 723 Value *Source = FI->getOperand(0); 724 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 725 RecursionSet, CxtI); 726 727 erase_if(Result, [](auto &Pair) { 728 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 729 }); 730 731 return !Result.empty(); 732 } 733 734 // Handle some boolean conditions. 735 if (I->getType()->getPrimitiveSizeInBits() == 1) { 736 assert(Preference == WantInteger && "One-bit non-integer type?"); 737 // X | true -> true 738 // X & false -> false 739 if (I->getOpcode() == Instruction::Or || 740 I->getOpcode() == Instruction::And) { 741 PredValueInfoTy LHSVals, RHSVals; 742 743 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 744 WantInteger, RecursionSet, CxtI); 745 computeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 746 WantInteger, RecursionSet, CxtI); 747 748 if (LHSVals.empty() && RHSVals.empty()) 749 return false; 750 751 ConstantInt *InterestingVal; 752 if (I->getOpcode() == Instruction::Or) 753 InterestingVal = ConstantInt::getTrue(I->getContext()); 754 else 755 InterestingVal = ConstantInt::getFalse(I->getContext()); 756 757 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 758 759 // Scan for the sentinel. If we find an undef, force it to the 760 // interesting value: x|undef -> true and x&undef -> false. 761 for (const auto &LHSVal : LHSVals) 762 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 763 Result.emplace_back(InterestingVal, LHSVal.second); 764 LHSKnownBBs.insert(LHSVal.second); 765 } 766 for (const auto &RHSVal : RHSVals) 767 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 768 // If we already inferred a value for this block on the LHS, don't 769 // re-add it. 770 if (!LHSKnownBBs.count(RHSVal.second)) 771 Result.emplace_back(InterestingVal, RHSVal.second); 772 } 773 774 return !Result.empty(); 775 } 776 777 // Handle the NOT form of XOR. 778 if (I->getOpcode() == Instruction::Xor && 779 isa<ConstantInt>(I->getOperand(1)) && 780 cast<ConstantInt>(I->getOperand(1))->isOne()) { 781 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 782 WantInteger, RecursionSet, CxtI); 783 if (Result.empty()) 784 return false; 785 786 // Invert the known values. 787 for (auto &R : Result) 788 R.first = ConstantExpr::getNot(R.first); 789 790 return true; 791 } 792 793 // Try to simplify some other binary operator values. 794 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 795 assert(Preference != WantBlockAddress 796 && "A binary operator creating a block address?"); 797 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 798 PredValueInfoTy LHSVals; 799 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 800 WantInteger, RecursionSet, CxtI); 801 802 // Try to use constant folding to simplify the binary operator. 803 for (const auto &LHSVal : LHSVals) { 804 Constant *V = LHSVal.first; 805 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 806 807 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 808 Result.emplace_back(KC, LHSVal.second); 809 } 810 } 811 812 return !Result.empty(); 813 } 814 815 // Handle compare with phi operand, where the PHI is defined in this block. 816 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 817 assert(Preference == WantInteger && "Compares only produce integers"); 818 Type *CmpType = Cmp->getType(); 819 Value *CmpLHS = Cmp->getOperand(0); 820 Value *CmpRHS = Cmp->getOperand(1); 821 CmpInst::Predicate Pred = Cmp->getPredicate(); 822 823 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 824 if (!PN) 825 PN = dyn_cast<PHINode>(CmpRHS); 826 if (PN && PN->getParent() == BB) { 827 const DataLayout &DL = PN->getModule()->getDataLayout(); 828 // We can do this simplification if any comparisons fold to true or false. 829 // See if any do. 830 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 831 BasicBlock *PredBB = PN->getIncomingBlock(i); 832 Value *LHS, *RHS; 833 if (PN == CmpLHS) { 834 LHS = PN->getIncomingValue(i); 835 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 836 } else { 837 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 838 RHS = PN->getIncomingValue(i); 839 } 840 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 841 if (!Res) { 842 if (!isa<Constant>(RHS)) 843 continue; 844 845 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 846 auto LHSInst = dyn_cast<Instruction>(LHS); 847 if (LHSInst && LHSInst->getParent() == BB) 848 continue; 849 850 LazyValueInfo::Tristate 851 ResT = LVI->getPredicateOnEdge(Pred, LHS, 852 cast<Constant>(RHS), PredBB, BB, 853 CxtI ? CxtI : Cmp); 854 if (ResT == LazyValueInfo::Unknown) 855 continue; 856 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 857 } 858 859 if (Constant *KC = getKnownConstant(Res, WantInteger)) 860 Result.emplace_back(KC, PredBB); 861 } 862 863 return !Result.empty(); 864 } 865 866 // If comparing a live-in value against a constant, see if we know the 867 // live-in value on any predecessors. 868 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 869 Constant *CmpConst = cast<Constant>(CmpRHS); 870 871 if (!isa<Instruction>(CmpLHS) || 872 cast<Instruction>(CmpLHS)->getParent() != BB) { 873 for (BasicBlock *P : predecessors(BB)) { 874 // If the value is known by LazyValueInfo to be a constant in a 875 // predecessor, use that information to try to thread this block. 876 LazyValueInfo::Tristate Res = 877 LVI->getPredicateOnEdge(Pred, CmpLHS, 878 CmpConst, P, BB, CxtI ? CxtI : Cmp); 879 if (Res == LazyValueInfo::Unknown) 880 continue; 881 882 Constant *ResC = ConstantInt::get(CmpType, Res); 883 Result.emplace_back(ResC, P); 884 } 885 886 return !Result.empty(); 887 } 888 889 // InstCombine can fold some forms of constant range checks into 890 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 891 // x as a live-in. 892 { 893 using namespace PatternMatch; 894 895 Value *AddLHS; 896 ConstantInt *AddConst; 897 if (isa<ConstantInt>(CmpConst) && 898 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 899 if (!isa<Instruction>(AddLHS) || 900 cast<Instruction>(AddLHS)->getParent() != BB) { 901 for (BasicBlock *P : predecessors(BB)) { 902 // If the value is known by LazyValueInfo to be a ConstantRange in 903 // a predecessor, use that information to try to thread this 904 // block. 905 ConstantRange CR = LVI->getConstantRangeOnEdge( 906 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 907 // Propagate the range through the addition. 908 CR = CR.add(AddConst->getValue()); 909 910 // Get the range where the compare returns true. 911 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 912 Pred, cast<ConstantInt>(CmpConst)->getValue()); 913 914 Constant *ResC; 915 if (CmpRange.contains(CR)) 916 ResC = ConstantInt::getTrue(CmpType); 917 else if (CmpRange.inverse().contains(CR)) 918 ResC = ConstantInt::getFalse(CmpType); 919 else 920 continue; 921 922 Result.emplace_back(ResC, P); 923 } 924 925 return !Result.empty(); 926 } 927 } 928 } 929 930 // Try to find a constant value for the LHS of a comparison, 931 // and evaluate it statically if we can. 932 PredValueInfoTy LHSVals; 933 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 934 WantInteger, RecursionSet, CxtI); 935 936 for (const auto &LHSVal : LHSVals) { 937 Constant *V = LHSVal.first; 938 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 939 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 940 Result.emplace_back(KC, LHSVal.second); 941 } 942 943 return !Result.empty(); 944 } 945 } 946 947 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 948 // Handle select instructions where at least one operand is a known constant 949 // and we can figure out the condition value for any predecessor block. 950 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 951 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 952 PredValueInfoTy Conds; 953 if ((TrueVal || FalseVal) && 954 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 955 WantInteger, RecursionSet, CxtI)) { 956 for (auto &C : Conds) { 957 Constant *Cond = C.first; 958 959 // Figure out what value to use for the condition. 960 bool KnownCond; 961 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 962 // A known boolean. 963 KnownCond = CI->isOne(); 964 } else { 965 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 966 // Either operand will do, so be sure to pick the one that's a known 967 // constant. 968 // FIXME: Do this more cleverly if both values are known constants? 969 KnownCond = (TrueVal != nullptr); 970 } 971 972 // See if the select has a known constant value for this predecessor. 973 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 974 Result.emplace_back(Val, C.second); 975 } 976 977 return !Result.empty(); 978 } 979 } 980 981 // If all else fails, see if LVI can figure out a constant value for us. 982 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 983 Constant *CI = LVI->getConstant(V, CxtI); 984 if (Constant *KC = getKnownConstant(CI, Preference)) { 985 for (BasicBlock *Pred : predecessors(BB)) 986 Result.emplace_back(KC, Pred); 987 } 988 989 return !Result.empty(); 990 } 991 992 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 993 /// in an undefined jump, decide which block is best to revector to. 994 /// 995 /// Since we can pick an arbitrary destination, we pick the successor with the 996 /// fewest predecessors. This should reduce the in-degree of the others. 997 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 998 Instruction *BBTerm = BB->getTerminator(); 999 unsigned MinSucc = 0; 1000 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 1001 // Compute the successor with the minimum number of predecessors. 1002 unsigned MinNumPreds = pred_size(TestBB); 1003 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1004 TestBB = BBTerm->getSuccessor(i); 1005 unsigned NumPreds = pred_size(TestBB); 1006 if (NumPreds < MinNumPreds) { 1007 MinSucc = i; 1008 MinNumPreds = NumPreds; 1009 } 1010 } 1011 1012 return MinSucc; 1013 } 1014 1015 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1016 if (!BB->hasAddressTaken()) return false; 1017 1018 // If the block has its address taken, it may be a tree of dead constants 1019 // hanging off of it. These shouldn't keep the block alive. 1020 BlockAddress *BA = BlockAddress::get(BB); 1021 BA->removeDeadConstantUsers(); 1022 return !BA->use_empty(); 1023 } 1024 1025 /// processBlock - If there are any predecessors whose control can be threaded 1026 /// through to a successor, transform them now. 1027 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1028 // If the block is trivially dead, just return and let the caller nuke it. 1029 // This simplifies other transformations. 1030 if (DTU->isBBPendingDeletion(BB) || 1031 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1032 return false; 1033 1034 // If this block has a single predecessor, and if that pred has a single 1035 // successor, merge the blocks. This encourages recursive jump threading 1036 // because now the condition in this block can be threaded through 1037 // predecessors of our predecessor block. 1038 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1039 return true; 1040 1041 if (tryToUnfoldSelectInCurrBB(BB)) 1042 return true; 1043 1044 // Look if we can propagate guards to predecessors. 1045 if (HasGuards && processGuards(BB)) 1046 return true; 1047 1048 // What kind of constant we're looking for. 1049 ConstantPreference Preference = WantInteger; 1050 1051 // Look to see if the terminator is a conditional branch, switch or indirect 1052 // branch, if not we can't thread it. 1053 Value *Condition; 1054 Instruction *Terminator = BB->getTerminator(); 1055 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1056 // Can't thread an unconditional jump. 1057 if (BI->isUnconditional()) return false; 1058 Condition = BI->getCondition(); 1059 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1060 Condition = SI->getCondition(); 1061 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1062 // Can't thread indirect branch with no successors. 1063 if (IB->getNumSuccessors() == 0) return false; 1064 Condition = IB->getAddress()->stripPointerCasts(); 1065 Preference = WantBlockAddress; 1066 } else { 1067 return false; // Must be an invoke or callbr. 1068 } 1069 1070 // Keep track if we constant folded the condition in this invocation. 1071 bool ConstantFolded = false; 1072 1073 // Run constant folding to see if we can reduce the condition to a simple 1074 // constant. 1075 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1076 Value *SimpleVal = 1077 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1078 if (SimpleVal) { 1079 I->replaceAllUsesWith(SimpleVal); 1080 if (isInstructionTriviallyDead(I, TLI)) 1081 I->eraseFromParent(); 1082 Condition = SimpleVal; 1083 ConstantFolded = true; 1084 } 1085 } 1086 1087 // If the terminator is branching on an undef or freeze undef, we can pick any 1088 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1089 auto *FI = dyn_cast<FreezeInst>(Condition); 1090 if (isa<UndefValue>(Condition) || 1091 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1092 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1093 std::vector<DominatorTree::UpdateType> Updates; 1094 1095 // Fold the branch/switch. 1096 Instruction *BBTerm = BB->getTerminator(); 1097 Updates.reserve(BBTerm->getNumSuccessors()); 1098 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1099 if (i == BestSucc) continue; 1100 BasicBlock *Succ = BBTerm->getSuccessor(i); 1101 Succ->removePredecessor(BB, true); 1102 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1103 } 1104 1105 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1106 << "' folding undef terminator: " << *BBTerm << '\n'); 1107 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1108 BBTerm->eraseFromParent(); 1109 DTU->applyUpdatesPermissive(Updates); 1110 if (FI) 1111 FI->eraseFromParent(); 1112 return true; 1113 } 1114 1115 // If the terminator of this block is branching on a constant, simplify the 1116 // terminator to an unconditional branch. This can occur due to threading in 1117 // other blocks. 1118 if (getKnownConstant(Condition, Preference)) { 1119 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1120 << "' folding terminator: " << *BB->getTerminator() 1121 << '\n'); 1122 ++NumFolds; 1123 ConstantFoldTerminator(BB, true, nullptr, DTU); 1124 if (HasProfileData) 1125 BPI->eraseBlock(BB); 1126 return true; 1127 } 1128 1129 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1130 1131 // All the rest of our checks depend on the condition being an instruction. 1132 if (!CondInst) { 1133 // FIXME: Unify this with code below. 1134 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1135 return true; 1136 return ConstantFolded; 1137 } 1138 1139 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1140 // If we're branching on a conditional, LVI might be able to determine 1141 // it's value at the branch instruction. We only handle comparisons 1142 // against a constant at this time. 1143 // TODO: This should be extended to handle switches as well. 1144 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1145 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1146 if (CondBr && CondConst) { 1147 // We should have returned as soon as we turn a conditional branch to 1148 // unconditional. Because its no longer interesting as far as jump 1149 // threading is concerned. 1150 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1151 1152 LazyValueInfo::Tristate Ret = 1153 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1154 CondConst, CondBr); 1155 if (Ret != LazyValueInfo::Unknown) { 1156 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1157 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1158 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1159 ToRemoveSucc->removePredecessor(BB, true); 1160 BranchInst *UncondBr = 1161 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1162 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1163 CondBr->eraseFromParent(); 1164 if (CondCmp->use_empty()) 1165 CondCmp->eraseFromParent(); 1166 // We can safely replace *some* uses of the CondInst if it has 1167 // exactly one value as returned by LVI. RAUW is incorrect in the 1168 // presence of guards and assumes, that have the `Cond` as the use. This 1169 // is because we use the guards/assume to reason about the `Cond` value 1170 // at the end of block, but RAUW unconditionally replaces all uses 1171 // including the guards/assumes themselves and the uses before the 1172 // guard/assume. 1173 else if (CondCmp->getParent() == BB) { 1174 auto *CI = Ret == LazyValueInfo::True ? 1175 ConstantInt::getTrue(CondCmp->getType()) : 1176 ConstantInt::getFalse(CondCmp->getType()); 1177 replaceFoldableUses(CondCmp, CI); 1178 } 1179 DTU->applyUpdatesPermissive( 1180 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1181 if (HasProfileData) 1182 BPI->eraseBlock(BB); 1183 return true; 1184 } 1185 1186 // We did not manage to simplify this branch, try to see whether 1187 // CondCmp depends on a known phi-select pattern. 1188 if (tryToUnfoldSelect(CondCmp, BB)) 1189 return true; 1190 } 1191 } 1192 1193 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1194 if (tryToUnfoldSelect(SI, BB)) 1195 return true; 1196 1197 // Check for some cases that are worth simplifying. Right now we want to look 1198 // for loads that are used by a switch or by the condition for the branch. If 1199 // we see one, check to see if it's partially redundant. If so, insert a PHI 1200 // which can then be used to thread the values. 1201 Value *SimplifyValue = CondInst; 1202 1203 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue)) 1204 // Look into freeze's operand 1205 SimplifyValue = FI->getOperand(0); 1206 1207 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1208 if (isa<Constant>(CondCmp->getOperand(1))) 1209 SimplifyValue = CondCmp->getOperand(0); 1210 1211 // TODO: There are other places where load PRE would be profitable, such as 1212 // more complex comparisons. 1213 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1214 if (simplifyPartiallyRedundantLoad(LoadI)) 1215 return true; 1216 1217 // Before threading, try to propagate profile data backwards: 1218 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1219 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1220 updatePredecessorProfileMetadata(PN, BB); 1221 1222 // Handle a variety of cases where we are branching on something derived from 1223 // a PHI node in the current block. If we can prove that any predecessors 1224 // compute a predictable value based on a PHI node, thread those predecessors. 1225 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1226 return true; 1227 1228 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1229 // the current block, see if we can simplify. 1230 PHINode *PN = dyn_cast<PHINode>( 1231 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0) 1232 : CondInst); 1233 1234 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1235 return processBranchOnPHI(PN); 1236 1237 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1238 if (CondInst->getOpcode() == Instruction::Xor && 1239 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1240 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1241 1242 // Search for a stronger dominating condition that can be used to simplify a 1243 // conditional branch leaving BB. 1244 if (processImpliedCondition(BB)) 1245 return true; 1246 1247 return false; 1248 } 1249 1250 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1251 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1252 if (!BI || !BI->isConditional()) 1253 return false; 1254 1255 Value *Cond = BI->getCondition(); 1256 BasicBlock *CurrentBB = BB; 1257 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1258 unsigned Iter = 0; 1259 1260 auto &DL = BB->getModule()->getDataLayout(); 1261 1262 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1263 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1264 if (!PBI || !PBI->isConditional()) 1265 return false; 1266 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1267 return false; 1268 1269 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1270 Optional<bool> Implication = 1271 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1272 if (Implication) { 1273 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1274 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1275 RemoveSucc->removePredecessor(BB); 1276 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1277 UncondBI->setDebugLoc(BI->getDebugLoc()); 1278 BI->eraseFromParent(); 1279 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1280 if (HasProfileData) 1281 BPI->eraseBlock(BB); 1282 return true; 1283 } 1284 CurrentBB = CurrentPred; 1285 CurrentPred = CurrentBB->getSinglePredecessor(); 1286 } 1287 1288 return false; 1289 } 1290 1291 /// Return true if Op is an instruction defined in the given block. 1292 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1293 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1294 if (OpInst->getParent() == BB) 1295 return true; 1296 return false; 1297 } 1298 1299 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1300 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1301 /// This is an important optimization that encourages jump threading, and needs 1302 /// to be run interlaced with other jump threading tasks. 1303 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1304 // Don't hack volatile and ordered loads. 1305 if (!LoadI->isUnordered()) return false; 1306 1307 // If the load is defined in a block with exactly one predecessor, it can't be 1308 // partially redundant. 1309 BasicBlock *LoadBB = LoadI->getParent(); 1310 if (LoadBB->getSinglePredecessor()) 1311 return false; 1312 1313 // If the load is defined in an EH pad, it can't be partially redundant, 1314 // because the edges between the invoke and the EH pad cannot have other 1315 // instructions between them. 1316 if (LoadBB->isEHPad()) 1317 return false; 1318 1319 Value *LoadedPtr = LoadI->getOperand(0); 1320 1321 // If the loaded operand is defined in the LoadBB and its not a phi, 1322 // it can't be available in predecessors. 1323 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1324 return false; 1325 1326 // Scan a few instructions up from the load, to see if it is obviously live at 1327 // the entry to its block. 1328 BasicBlock::iterator BBIt(LoadI); 1329 bool IsLoadCSE; 1330 if (Value *AvailableVal = FindAvailableLoadedValue( 1331 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1332 // If the value of the load is locally available within the block, just use 1333 // it. This frequently occurs for reg2mem'd allocas. 1334 1335 if (IsLoadCSE) { 1336 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1337 combineMetadataForCSE(NLoadI, LoadI, false); 1338 }; 1339 1340 // If the returned value is the load itself, replace with an undef. This can 1341 // only happen in dead loops. 1342 if (AvailableVal == LoadI) 1343 AvailableVal = UndefValue::get(LoadI->getType()); 1344 if (AvailableVal->getType() != LoadI->getType()) 1345 AvailableVal = CastInst::CreateBitOrPointerCast( 1346 AvailableVal, LoadI->getType(), "", LoadI); 1347 LoadI->replaceAllUsesWith(AvailableVal); 1348 LoadI->eraseFromParent(); 1349 return true; 1350 } 1351 1352 // Otherwise, if we scanned the whole block and got to the top of the block, 1353 // we know the block is locally transparent to the load. If not, something 1354 // might clobber its value. 1355 if (BBIt != LoadBB->begin()) 1356 return false; 1357 1358 // If all of the loads and stores that feed the value have the same AA tags, 1359 // then we can propagate them onto any newly inserted loads. 1360 AAMDNodes AATags; 1361 LoadI->getAAMetadata(AATags); 1362 1363 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1364 1365 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1366 1367 AvailablePredsTy AvailablePreds; 1368 BasicBlock *OneUnavailablePred = nullptr; 1369 SmallVector<LoadInst*, 8> CSELoads; 1370 1371 // If we got here, the loaded value is transparent through to the start of the 1372 // block. Check to see if it is available in any of the predecessor blocks. 1373 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1374 // If we already scanned this predecessor, skip it. 1375 if (!PredsScanned.insert(PredBB).second) 1376 continue; 1377 1378 BBIt = PredBB->end(); 1379 unsigned NumScanedInst = 0; 1380 Value *PredAvailable = nullptr; 1381 // NOTE: We don't CSE load that is volatile or anything stronger than 1382 // unordered, that should have been checked when we entered the function. 1383 assert(LoadI->isUnordered() && 1384 "Attempting to CSE volatile or atomic loads"); 1385 // If this is a load on a phi pointer, phi-translate it and search 1386 // for available load/store to the pointer in predecessors. 1387 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1388 PredAvailable = FindAvailablePtrLoadStore( 1389 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1390 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1391 1392 // If PredBB has a single predecessor, continue scanning through the 1393 // single predecessor. 1394 BasicBlock *SinglePredBB = PredBB; 1395 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1396 NumScanedInst < DefMaxInstsToScan) { 1397 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1398 if (SinglePredBB) { 1399 BBIt = SinglePredBB->end(); 1400 PredAvailable = FindAvailablePtrLoadStore( 1401 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1402 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1403 &NumScanedInst); 1404 } 1405 } 1406 1407 if (!PredAvailable) { 1408 OneUnavailablePred = PredBB; 1409 continue; 1410 } 1411 1412 if (IsLoadCSE) 1413 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1414 1415 // If so, this load is partially redundant. Remember this info so that we 1416 // can create a PHI node. 1417 AvailablePreds.emplace_back(PredBB, PredAvailable); 1418 } 1419 1420 // If the loaded value isn't available in any predecessor, it isn't partially 1421 // redundant. 1422 if (AvailablePreds.empty()) return false; 1423 1424 // Okay, the loaded value is available in at least one (and maybe all!) 1425 // predecessors. If the value is unavailable in more than one unique 1426 // predecessor, we want to insert a merge block for those common predecessors. 1427 // This ensures that we only have to insert one reload, thus not increasing 1428 // code size. 1429 BasicBlock *UnavailablePred = nullptr; 1430 1431 // If the value is unavailable in one of predecessors, we will end up 1432 // inserting a new instruction into them. It is only valid if all the 1433 // instructions before LoadI are guaranteed to pass execution to its 1434 // successor, or if LoadI is safe to speculate. 1435 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1436 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1437 // It requires domination tree analysis, so for this simple case it is an 1438 // overkill. 1439 if (PredsScanned.size() != AvailablePreds.size() && 1440 !isSafeToSpeculativelyExecute(LoadI)) 1441 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1442 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1443 return false; 1444 1445 // If there is exactly one predecessor where the value is unavailable, the 1446 // already computed 'OneUnavailablePred' block is it. If it ends in an 1447 // unconditional branch, we know that it isn't a critical edge. 1448 if (PredsScanned.size() == AvailablePreds.size()+1 && 1449 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1450 UnavailablePred = OneUnavailablePred; 1451 } else if (PredsScanned.size() != AvailablePreds.size()) { 1452 // Otherwise, we had multiple unavailable predecessors or we had a critical 1453 // edge from the one. 1454 SmallVector<BasicBlock*, 8> PredsToSplit; 1455 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1456 1457 for (const auto &AvailablePred : AvailablePreds) 1458 AvailablePredSet.insert(AvailablePred.first); 1459 1460 // Add all the unavailable predecessors to the PredsToSplit list. 1461 for (BasicBlock *P : predecessors(LoadBB)) { 1462 // If the predecessor is an indirect goto, we can't split the edge. 1463 // Same for CallBr. 1464 if (isa<IndirectBrInst>(P->getTerminator()) || 1465 isa<CallBrInst>(P->getTerminator())) 1466 return false; 1467 1468 if (!AvailablePredSet.count(P)) 1469 PredsToSplit.push_back(P); 1470 } 1471 1472 // Split them out to their own block. 1473 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1474 } 1475 1476 // If the value isn't available in all predecessors, then there will be 1477 // exactly one where it isn't available. Insert a load on that edge and add 1478 // it to the AvailablePreds list. 1479 if (UnavailablePred) { 1480 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1481 "Can't handle critical edge here!"); 1482 LoadInst *NewVal = new LoadInst( 1483 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1484 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1485 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1486 UnavailablePred->getTerminator()); 1487 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1488 if (AATags) 1489 NewVal->setAAMetadata(AATags); 1490 1491 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1492 } 1493 1494 // Now we know that each predecessor of this block has a value in 1495 // AvailablePreds, sort them for efficient access as we're walking the preds. 1496 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1497 1498 // Create a PHI node at the start of the block for the PRE'd load value. 1499 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1500 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1501 &LoadBB->front()); 1502 PN->takeName(LoadI); 1503 PN->setDebugLoc(LoadI->getDebugLoc()); 1504 1505 // Insert new entries into the PHI for each predecessor. A single block may 1506 // have multiple entries here. 1507 for (pred_iterator PI = PB; PI != PE; ++PI) { 1508 BasicBlock *P = *PI; 1509 AvailablePredsTy::iterator I = 1510 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1511 1512 assert(I != AvailablePreds.end() && I->first == P && 1513 "Didn't find entry for predecessor!"); 1514 1515 // If we have an available predecessor but it requires casting, insert the 1516 // cast in the predecessor and use the cast. Note that we have to update the 1517 // AvailablePreds vector as we go so that all of the PHI entries for this 1518 // predecessor use the same bitcast. 1519 Value *&PredV = I->second; 1520 if (PredV->getType() != LoadI->getType()) 1521 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1522 P->getTerminator()); 1523 1524 PN->addIncoming(PredV, I->first); 1525 } 1526 1527 for (LoadInst *PredLoadI : CSELoads) { 1528 combineMetadataForCSE(PredLoadI, LoadI, true); 1529 } 1530 1531 LoadI->replaceAllUsesWith(PN); 1532 LoadI->eraseFromParent(); 1533 1534 return true; 1535 } 1536 1537 /// findMostPopularDest - The specified list contains multiple possible 1538 /// threadable destinations. Pick the one that occurs the most frequently in 1539 /// the list. 1540 static BasicBlock * 1541 findMostPopularDest(BasicBlock *BB, 1542 const SmallVectorImpl<std::pair<BasicBlock *, 1543 BasicBlock *>> &PredToDestList) { 1544 assert(!PredToDestList.empty()); 1545 1546 // Determine popularity. If there are multiple possible destinations, we 1547 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1548 // blocks with known and real destinations to threading undef. We'll handle 1549 // them later if interesting. 1550 MapVector<BasicBlock *, unsigned> DestPopularity; 1551 1552 // Populate DestPopularity with the successors in the order they appear in the 1553 // successor list. This way, we ensure determinism by iterating it in the 1554 // same order in std::max_element below. We map nullptr to 0 so that we can 1555 // return nullptr when PredToDestList contains nullptr only. 1556 DestPopularity[nullptr] = 0; 1557 for (auto *SuccBB : successors(BB)) 1558 DestPopularity[SuccBB] = 0; 1559 1560 for (const auto &PredToDest : PredToDestList) 1561 if (PredToDest.second) 1562 DestPopularity[PredToDest.second]++; 1563 1564 // Find the most popular dest. 1565 using VT = decltype(DestPopularity)::value_type; 1566 auto MostPopular = std::max_element( 1567 DestPopularity.begin(), DestPopularity.end(), 1568 [](const VT &L, const VT &R) { return L.second < R.second; }); 1569 1570 // Okay, we have finally picked the most popular destination. 1571 return MostPopular->first; 1572 } 1573 1574 // Try to evaluate the value of V when the control flows from PredPredBB to 1575 // BB->getSinglePredecessor() and then on to BB. 1576 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1577 BasicBlock *PredPredBB, 1578 Value *V) { 1579 BasicBlock *PredBB = BB->getSinglePredecessor(); 1580 assert(PredBB && "Expected a single predecessor"); 1581 1582 if (Constant *Cst = dyn_cast<Constant>(V)) { 1583 return Cst; 1584 } 1585 1586 // Consult LVI if V is not an instruction in BB or PredBB. 1587 Instruction *I = dyn_cast<Instruction>(V); 1588 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1589 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1590 } 1591 1592 // Look into a PHI argument. 1593 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1594 if (PHI->getParent() == PredBB) 1595 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1596 return nullptr; 1597 } 1598 1599 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1600 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1601 if (CondCmp->getParent() == BB) { 1602 Constant *Op0 = 1603 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1604 Constant *Op1 = 1605 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1606 if (Op0 && Op1) { 1607 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1608 } 1609 } 1610 return nullptr; 1611 } 1612 1613 return nullptr; 1614 } 1615 1616 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1617 ConstantPreference Preference, 1618 Instruction *CxtI) { 1619 // If threading this would thread across a loop header, don't even try to 1620 // thread the edge. 1621 if (LoopHeaders.count(BB)) 1622 return false; 1623 1624 PredValueInfoTy PredValues; 1625 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1626 CxtI)) { 1627 // We don't have known values in predecessors. See if we can thread through 1628 // BB and its sole predecessor. 1629 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1630 } 1631 1632 assert(!PredValues.empty() && 1633 "computeValueKnownInPredecessors returned true with no values"); 1634 1635 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1636 for (const auto &PredValue : PredValues) { 1637 dbgs() << " BB '" << BB->getName() 1638 << "': FOUND condition = " << *PredValue.first 1639 << " for pred '" << PredValue.second->getName() << "'.\n"; 1640 }); 1641 1642 // Decide what we want to thread through. Convert our list of known values to 1643 // a list of known destinations for each pred. This also discards duplicate 1644 // predecessors and keeps track of the undefined inputs (which are represented 1645 // as a null dest in the PredToDestList). 1646 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1647 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1648 1649 BasicBlock *OnlyDest = nullptr; 1650 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1651 Constant *OnlyVal = nullptr; 1652 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1653 1654 for (const auto &PredValue : PredValues) { 1655 BasicBlock *Pred = PredValue.second; 1656 if (!SeenPreds.insert(Pred).second) 1657 continue; // Duplicate predecessor entry. 1658 1659 Constant *Val = PredValue.first; 1660 1661 BasicBlock *DestBB; 1662 if (isa<UndefValue>(Val)) 1663 DestBB = nullptr; 1664 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1665 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1666 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1667 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1668 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1669 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1670 } else { 1671 assert(isa<IndirectBrInst>(BB->getTerminator()) 1672 && "Unexpected terminator"); 1673 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1674 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1675 } 1676 1677 // If we have exactly one destination, remember it for efficiency below. 1678 if (PredToDestList.empty()) { 1679 OnlyDest = DestBB; 1680 OnlyVal = Val; 1681 } else { 1682 if (OnlyDest != DestBB) 1683 OnlyDest = MultipleDestSentinel; 1684 // It possible we have same destination, but different value, e.g. default 1685 // case in switchinst. 1686 if (Val != OnlyVal) 1687 OnlyVal = MultipleVal; 1688 } 1689 1690 // If the predecessor ends with an indirect goto, we can't change its 1691 // destination. Same for CallBr. 1692 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1693 isa<CallBrInst>(Pred->getTerminator())) 1694 continue; 1695 1696 PredToDestList.emplace_back(Pred, DestBB); 1697 } 1698 1699 // If all edges were unthreadable, we fail. 1700 if (PredToDestList.empty()) 1701 return false; 1702 1703 // If all the predecessors go to a single known successor, we want to fold, 1704 // not thread. By doing so, we do not need to duplicate the current block and 1705 // also miss potential opportunities in case we dont/cant duplicate. 1706 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1707 if (BB->hasNPredecessors(PredToDestList.size())) { 1708 bool SeenFirstBranchToOnlyDest = false; 1709 std::vector <DominatorTree::UpdateType> Updates; 1710 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1711 for (BasicBlock *SuccBB : successors(BB)) { 1712 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1713 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1714 } else { 1715 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1716 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1717 } 1718 } 1719 1720 // Finally update the terminator. 1721 Instruction *Term = BB->getTerminator(); 1722 BranchInst::Create(OnlyDest, Term); 1723 Term->eraseFromParent(); 1724 DTU->applyUpdatesPermissive(Updates); 1725 if (HasProfileData) 1726 BPI->eraseBlock(BB); 1727 1728 // If the condition is now dead due to the removal of the old terminator, 1729 // erase it. 1730 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1731 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1732 CondInst->eraseFromParent(); 1733 // We can safely replace *some* uses of the CondInst if it has 1734 // exactly one value as returned by LVI. RAUW is incorrect in the 1735 // presence of guards and assumes, that have the `Cond` as the use. This 1736 // is because we use the guards/assume to reason about the `Cond` value 1737 // at the end of block, but RAUW unconditionally replaces all uses 1738 // including the guards/assumes themselves and the uses before the 1739 // guard/assume. 1740 else if (OnlyVal && OnlyVal != MultipleVal && 1741 CondInst->getParent() == BB) 1742 replaceFoldableUses(CondInst, OnlyVal); 1743 } 1744 return true; 1745 } 1746 } 1747 1748 // Determine which is the most common successor. If we have many inputs and 1749 // this block is a switch, we want to start by threading the batch that goes 1750 // to the most popular destination first. If we only know about one 1751 // threadable destination (the common case) we can avoid this. 1752 BasicBlock *MostPopularDest = OnlyDest; 1753 1754 if (MostPopularDest == MultipleDestSentinel) { 1755 // Remove any loop headers from the Dest list, threadEdge conservatively 1756 // won't process them, but we might have other destination that are eligible 1757 // and we still want to process. 1758 erase_if(PredToDestList, 1759 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1760 return LoopHeaders.contains(PredToDest.second); 1761 }); 1762 1763 if (PredToDestList.empty()) 1764 return false; 1765 1766 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1767 } 1768 1769 // Now that we know what the most popular destination is, factor all 1770 // predecessors that will jump to it into a single predecessor. 1771 SmallVector<BasicBlock*, 16> PredsToFactor; 1772 for (const auto &PredToDest : PredToDestList) 1773 if (PredToDest.second == MostPopularDest) { 1774 BasicBlock *Pred = PredToDest.first; 1775 1776 // This predecessor may be a switch or something else that has multiple 1777 // edges to the block. Factor each of these edges by listing them 1778 // according to # occurrences in PredsToFactor. 1779 for (BasicBlock *Succ : successors(Pred)) 1780 if (Succ == BB) 1781 PredsToFactor.push_back(Pred); 1782 } 1783 1784 // If the threadable edges are branching on an undefined value, we get to pick 1785 // the destination that these predecessors should get to. 1786 if (!MostPopularDest) 1787 MostPopularDest = BB->getTerminator()-> 1788 getSuccessor(getBestDestForJumpOnUndef(BB)); 1789 1790 // Ok, try to thread it! 1791 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1792 } 1793 1794 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1795 /// a PHI node (or freeze PHI) in the current block. See if there are any 1796 /// simplifications we can do based on inputs to the phi node. 1797 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1798 BasicBlock *BB = PN->getParent(); 1799 1800 // TODO: We could make use of this to do it once for blocks with common PHI 1801 // values. 1802 SmallVector<BasicBlock*, 1> PredBBs; 1803 PredBBs.resize(1); 1804 1805 // If any of the predecessor blocks end in an unconditional branch, we can 1806 // *duplicate* the conditional branch into that block in order to further 1807 // encourage jump threading and to eliminate cases where we have branch on a 1808 // phi of an icmp (branch on icmp is much better). 1809 // This is still beneficial when a frozen phi is used as the branch condition 1810 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1811 // to br(icmp(freeze ...)). 1812 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1813 BasicBlock *PredBB = PN->getIncomingBlock(i); 1814 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1815 if (PredBr->isUnconditional()) { 1816 PredBBs[0] = PredBB; 1817 // Try to duplicate BB into PredBB. 1818 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1819 return true; 1820 } 1821 } 1822 1823 return false; 1824 } 1825 1826 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1827 /// a xor instruction in the current block. See if there are any 1828 /// simplifications we can do based on inputs to the xor. 1829 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1830 BasicBlock *BB = BO->getParent(); 1831 1832 // If either the LHS or RHS of the xor is a constant, don't do this 1833 // optimization. 1834 if (isa<ConstantInt>(BO->getOperand(0)) || 1835 isa<ConstantInt>(BO->getOperand(1))) 1836 return false; 1837 1838 // If the first instruction in BB isn't a phi, we won't be able to infer 1839 // anything special about any particular predecessor. 1840 if (!isa<PHINode>(BB->front())) 1841 return false; 1842 1843 // If this BB is a landing pad, we won't be able to split the edge into it. 1844 if (BB->isEHPad()) 1845 return false; 1846 1847 // If we have a xor as the branch input to this block, and we know that the 1848 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1849 // the condition into the predecessor and fix that value to true, saving some 1850 // logical ops on that path and encouraging other paths to simplify. 1851 // 1852 // This copies something like this: 1853 // 1854 // BB: 1855 // %X = phi i1 [1], [%X'] 1856 // %Y = icmp eq i32 %A, %B 1857 // %Z = xor i1 %X, %Y 1858 // br i1 %Z, ... 1859 // 1860 // Into: 1861 // BB': 1862 // %Y = icmp ne i32 %A, %B 1863 // br i1 %Y, ... 1864 1865 PredValueInfoTy XorOpValues; 1866 bool isLHS = true; 1867 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1868 WantInteger, BO)) { 1869 assert(XorOpValues.empty()); 1870 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1871 WantInteger, BO)) 1872 return false; 1873 isLHS = false; 1874 } 1875 1876 assert(!XorOpValues.empty() && 1877 "computeValueKnownInPredecessors returned true with no values"); 1878 1879 // Scan the information to see which is most popular: true or false. The 1880 // predecessors can be of the set true, false, or undef. 1881 unsigned NumTrue = 0, NumFalse = 0; 1882 for (const auto &XorOpValue : XorOpValues) { 1883 if (isa<UndefValue>(XorOpValue.first)) 1884 // Ignore undefs for the count. 1885 continue; 1886 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1887 ++NumFalse; 1888 else 1889 ++NumTrue; 1890 } 1891 1892 // Determine which value to split on, true, false, or undef if neither. 1893 ConstantInt *SplitVal = nullptr; 1894 if (NumTrue > NumFalse) 1895 SplitVal = ConstantInt::getTrue(BB->getContext()); 1896 else if (NumTrue != 0 || NumFalse != 0) 1897 SplitVal = ConstantInt::getFalse(BB->getContext()); 1898 1899 // Collect all of the blocks that this can be folded into so that we can 1900 // factor this once and clone it once. 1901 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1902 for (const auto &XorOpValue : XorOpValues) { 1903 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1904 continue; 1905 1906 BlocksToFoldInto.push_back(XorOpValue.second); 1907 } 1908 1909 // If we inferred a value for all of the predecessors, then duplication won't 1910 // help us. However, we can just replace the LHS or RHS with the constant. 1911 if (BlocksToFoldInto.size() == 1912 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1913 if (!SplitVal) { 1914 // If all preds provide undef, just nuke the xor, because it is undef too. 1915 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1916 BO->eraseFromParent(); 1917 } else if (SplitVal->isZero()) { 1918 // If all preds provide 0, replace the xor with the other input. 1919 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1920 BO->eraseFromParent(); 1921 } else { 1922 // If all preds provide 1, set the computed value to 1. 1923 BO->setOperand(!isLHS, SplitVal); 1924 } 1925 1926 return true; 1927 } 1928 1929 // If any of predecessors end with an indirect goto, we can't change its 1930 // destination. Same for CallBr. 1931 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1932 return isa<IndirectBrInst>(Pred->getTerminator()) || 1933 isa<CallBrInst>(Pred->getTerminator()); 1934 })) 1935 return false; 1936 1937 // Try to duplicate BB into PredBB. 1938 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1939 } 1940 1941 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1942 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1943 /// NewPred using the entries from OldPred (suitably mapped). 1944 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1945 BasicBlock *OldPred, 1946 BasicBlock *NewPred, 1947 DenseMap<Instruction*, Value*> &ValueMap) { 1948 for (PHINode &PN : PHIBB->phis()) { 1949 // Ok, we have a PHI node. Figure out what the incoming value was for the 1950 // DestBlock. 1951 Value *IV = PN.getIncomingValueForBlock(OldPred); 1952 1953 // Remap the value if necessary. 1954 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1955 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1956 if (I != ValueMap.end()) 1957 IV = I->second; 1958 } 1959 1960 PN.addIncoming(IV, NewPred); 1961 } 1962 } 1963 1964 /// Merge basic block BB into its sole predecessor if possible. 1965 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1966 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1967 if (!SinglePred) 1968 return false; 1969 1970 const Instruction *TI = SinglePred->getTerminator(); 1971 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1972 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1973 return false; 1974 1975 // If SinglePred was a loop header, BB becomes one. 1976 if (LoopHeaders.erase(SinglePred)) 1977 LoopHeaders.insert(BB); 1978 1979 LVI->eraseBlock(SinglePred); 1980 MergeBasicBlockIntoOnlyPred(BB, DTU); 1981 1982 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1983 // BB code within one basic block `BB`), we need to invalidate the LVI 1984 // information associated with BB, because the LVI information need not be 1985 // true for all of BB after the merge. For example, 1986 // Before the merge, LVI info and code is as follows: 1987 // SinglePred: <LVI info1 for %p val> 1988 // %y = use of %p 1989 // call @exit() // need not transfer execution to successor. 1990 // assume(%p) // from this point on %p is true 1991 // br label %BB 1992 // BB: <LVI info2 for %p val, i.e. %p is true> 1993 // %x = use of %p 1994 // br label exit 1995 // 1996 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1997 // (info2 and info1 respectively). After the merge and the deletion of the 1998 // LVI info1 for SinglePred. We have the following code: 1999 // BB: <LVI info2 for %p val> 2000 // %y = use of %p 2001 // call @exit() 2002 // assume(%p) 2003 // %x = use of %p <-- LVI info2 is correct from here onwards. 2004 // br label exit 2005 // LVI info2 for BB is incorrect at the beginning of BB. 2006 2007 // Invalidate LVI information for BB if the LVI is not provably true for 2008 // all of BB. 2009 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 2010 LVI->eraseBlock(BB); 2011 return true; 2012 } 2013 2014 /// Update the SSA form. NewBB contains instructions that are copied from BB. 2015 /// ValueMapping maps old values in BB to new ones in NewBB. 2016 void JumpThreadingPass::updateSSA( 2017 BasicBlock *BB, BasicBlock *NewBB, 2018 DenseMap<Instruction *, Value *> &ValueMapping) { 2019 // If there were values defined in BB that are used outside the block, then we 2020 // now have to update all uses of the value to use either the original value, 2021 // the cloned value, or some PHI derived value. This can require arbitrary 2022 // PHI insertion, of which we are prepared to do, clean these up now. 2023 SSAUpdater SSAUpdate; 2024 SmallVector<Use *, 16> UsesToRename; 2025 2026 for (Instruction &I : *BB) { 2027 // Scan all uses of this instruction to see if it is used outside of its 2028 // block, and if so, record them in UsesToRename. 2029 for (Use &U : I.uses()) { 2030 Instruction *User = cast<Instruction>(U.getUser()); 2031 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2032 if (UserPN->getIncomingBlock(U) == BB) 2033 continue; 2034 } else if (User->getParent() == BB) 2035 continue; 2036 2037 UsesToRename.push_back(&U); 2038 } 2039 2040 // If there are no uses outside the block, we're done with this instruction. 2041 if (UsesToRename.empty()) 2042 continue; 2043 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2044 2045 // We found a use of I outside of BB. Rename all uses of I that are outside 2046 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2047 // with the two values we know. 2048 SSAUpdate.Initialize(I.getType(), I.getName()); 2049 SSAUpdate.AddAvailableValue(BB, &I); 2050 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2051 2052 while (!UsesToRename.empty()) 2053 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2054 LLVM_DEBUG(dbgs() << "\n"); 2055 } 2056 } 2057 2058 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2059 /// arguments that come from PredBB. Return the map from the variables in the 2060 /// source basic block to the variables in the newly created basic block. 2061 DenseMap<Instruction *, Value *> 2062 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2063 BasicBlock::iterator BE, BasicBlock *NewBB, 2064 BasicBlock *PredBB) { 2065 // We are going to have to map operands from the source basic block to the new 2066 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2067 // block, evaluate them to account for entry from PredBB. 2068 DenseMap<Instruction *, Value *> ValueMapping; 2069 2070 // Clone the phi nodes of the source basic block into NewBB. The resulting 2071 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2072 // might need to rewrite the operand of the cloned phi. 2073 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2074 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2075 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2076 ValueMapping[PN] = NewPN; 2077 } 2078 2079 // Clone noalias scope declarations in the threaded block. When threading a 2080 // loop exit, we would otherwise end up with two idential scope declarations 2081 // visible at the same time. 2082 SmallVector<MDNode *> NoAliasScopes; 2083 DenseMap<MDNode *, MDNode *> ClonedScopes; 2084 LLVMContext &Context = PredBB->getContext(); 2085 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2086 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2087 2088 // Clone the non-phi instructions of the source basic block into NewBB, 2089 // keeping track of the mapping and using it to remap operands in the cloned 2090 // instructions. 2091 for (; BI != BE; ++BI) { 2092 Instruction *New = BI->clone(); 2093 New->setName(BI->getName()); 2094 NewBB->getInstList().push_back(New); 2095 ValueMapping[&*BI] = New; 2096 adaptNoAliasScopes(New, ClonedScopes, Context); 2097 2098 // Remap operands to patch up intra-block references. 2099 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2100 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2101 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2102 if (I != ValueMapping.end()) 2103 New->setOperand(i, I->second); 2104 } 2105 } 2106 2107 return ValueMapping; 2108 } 2109 2110 /// Attempt to thread through two successive basic blocks. 2111 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2112 Value *Cond) { 2113 // Consider: 2114 // 2115 // PredBB: 2116 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2117 // %tobool = icmp eq i32 %cond, 0 2118 // br i1 %tobool, label %BB, label ... 2119 // 2120 // BB: 2121 // %cmp = icmp eq i32* %var, null 2122 // br i1 %cmp, label ..., label ... 2123 // 2124 // We don't know the value of %var at BB even if we know which incoming edge 2125 // we take to BB. However, once we duplicate PredBB for each of its incoming 2126 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2127 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2128 2129 // Require that BB end with a Branch for simplicity. 2130 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2131 if (!CondBr) 2132 return false; 2133 2134 // BB must have exactly one predecessor. 2135 BasicBlock *PredBB = BB->getSinglePredecessor(); 2136 if (!PredBB) 2137 return false; 2138 2139 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2140 // unconditional branch, we should be merging PredBB and BB instead. For 2141 // simplicity, we don't deal with a switch. 2142 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2143 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2144 return false; 2145 2146 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2147 // PredBB. 2148 if (PredBB->getSinglePredecessor()) 2149 return false; 2150 2151 // Don't thread through PredBB if it contains a successor edge to itself, in 2152 // which case we would infinite loop. Suppose we are threading an edge from 2153 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2154 // successor edge to itself. If we allowed jump threading in this case, we 2155 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2156 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2157 // with another jump threading opportunity from PredBB.thread through PredBB 2158 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2159 // would keep peeling one iteration from PredBB. 2160 if (llvm::is_contained(successors(PredBB), PredBB)) 2161 return false; 2162 2163 // Don't thread across a loop header. 2164 if (LoopHeaders.count(PredBB)) 2165 return false; 2166 2167 // Avoid complication with duplicating EH pads. 2168 if (PredBB->isEHPad()) 2169 return false; 2170 2171 // Find a predecessor that we can thread. For simplicity, we only consider a 2172 // successor edge out of BB to which we thread exactly one incoming edge into 2173 // PredBB. 2174 unsigned ZeroCount = 0; 2175 unsigned OneCount = 0; 2176 BasicBlock *ZeroPred = nullptr; 2177 BasicBlock *OnePred = nullptr; 2178 for (BasicBlock *P : predecessors(PredBB)) { 2179 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2180 evaluateOnPredecessorEdge(BB, P, Cond))) { 2181 if (CI->isZero()) { 2182 ZeroCount++; 2183 ZeroPred = P; 2184 } else if (CI->isOne()) { 2185 OneCount++; 2186 OnePred = P; 2187 } 2188 } 2189 } 2190 2191 // Disregard complicated cases where we have to thread multiple edges. 2192 BasicBlock *PredPredBB; 2193 if (ZeroCount == 1) { 2194 PredPredBB = ZeroPred; 2195 } else if (OneCount == 1) { 2196 PredPredBB = OnePred; 2197 } else { 2198 return false; 2199 } 2200 2201 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2202 2203 // If threading to the same block as we come from, we would infinite loop. 2204 if (SuccBB == BB) { 2205 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2206 << "' - would thread to self!\n"); 2207 return false; 2208 } 2209 2210 // If threading this would thread across a loop header, don't thread the edge. 2211 // See the comments above findLoopHeaders for justifications and caveats. 2212 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2213 LLVM_DEBUG({ 2214 bool BBIsHeader = LoopHeaders.count(BB); 2215 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2216 dbgs() << " Not threading across " 2217 << (BBIsHeader ? "loop header BB '" : "block BB '") 2218 << BB->getName() << "' to dest " 2219 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2220 << SuccBB->getName() 2221 << "' - it might create an irreducible loop!\n"; 2222 }); 2223 return false; 2224 } 2225 2226 // Compute the cost of duplicating BB and PredBB. 2227 unsigned BBCost = 2228 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2229 unsigned PredBBCost = getJumpThreadDuplicationCost( 2230 PredBB, PredBB->getTerminator(), BBDupThreshold); 2231 2232 // Give up if costs are too high. We need to check BBCost and PredBBCost 2233 // individually before checking their sum because getJumpThreadDuplicationCost 2234 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2235 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2236 BBCost + PredBBCost > BBDupThreshold) { 2237 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2238 << "' - Cost is too high: " << PredBBCost 2239 << " for PredBB, " << BBCost << "for BB\n"); 2240 return false; 2241 } 2242 2243 // Now we are ready to duplicate PredBB. 2244 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2245 return true; 2246 } 2247 2248 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2249 BasicBlock *PredBB, 2250 BasicBlock *BB, 2251 BasicBlock *SuccBB) { 2252 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2253 << BB->getName() << "'\n"); 2254 2255 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2256 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2257 2258 BasicBlock *NewBB = 2259 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2260 PredBB->getParent(), PredBB); 2261 NewBB->moveAfter(PredBB); 2262 2263 // Set the block frequency of NewBB. 2264 if (HasProfileData) { 2265 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2266 BPI->getEdgeProbability(PredPredBB, PredBB); 2267 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2268 } 2269 2270 // We are going to have to map operands from the original BB block to the new 2271 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2272 // to account for entry from PredPredBB. 2273 DenseMap<Instruction *, Value *> ValueMapping = 2274 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2275 2276 // Copy the edge probabilities from PredBB to NewBB. 2277 if (HasProfileData) 2278 BPI->copyEdgeProbabilities(PredBB, NewBB); 2279 2280 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2281 // This eliminates predecessors from PredPredBB, which requires us to simplify 2282 // any PHI nodes in PredBB. 2283 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2284 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2285 if (PredPredTerm->getSuccessor(i) == PredBB) { 2286 PredBB->removePredecessor(PredPredBB, true); 2287 PredPredTerm->setSuccessor(i, NewBB); 2288 } 2289 2290 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2291 ValueMapping); 2292 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2293 ValueMapping); 2294 2295 DTU->applyUpdatesPermissive( 2296 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2297 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2298 {DominatorTree::Insert, PredPredBB, NewBB}, 2299 {DominatorTree::Delete, PredPredBB, PredBB}}); 2300 2301 updateSSA(PredBB, NewBB, ValueMapping); 2302 2303 // Clean up things like PHI nodes with single operands, dead instructions, 2304 // etc. 2305 SimplifyInstructionsInBlock(NewBB, TLI); 2306 SimplifyInstructionsInBlock(PredBB, TLI); 2307 2308 SmallVector<BasicBlock *, 1> PredsToFactor; 2309 PredsToFactor.push_back(NewBB); 2310 threadEdge(BB, PredsToFactor, SuccBB); 2311 } 2312 2313 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2314 bool JumpThreadingPass::tryThreadEdge( 2315 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2316 BasicBlock *SuccBB) { 2317 // If threading to the same block as we come from, we would infinite loop. 2318 if (SuccBB == BB) { 2319 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2320 << "' - would thread to self!\n"); 2321 return false; 2322 } 2323 2324 // If threading this would thread across a loop header, don't thread the edge. 2325 // See the comments above findLoopHeaders for justifications and caveats. 2326 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2327 LLVM_DEBUG({ 2328 bool BBIsHeader = LoopHeaders.count(BB); 2329 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2330 dbgs() << " Not threading across " 2331 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2332 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2333 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2334 }); 2335 return false; 2336 } 2337 2338 unsigned JumpThreadCost = 2339 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2340 if (JumpThreadCost > BBDupThreshold) { 2341 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2342 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2343 return false; 2344 } 2345 2346 threadEdge(BB, PredBBs, SuccBB); 2347 return true; 2348 } 2349 2350 /// threadEdge - We have decided that it is safe and profitable to factor the 2351 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2352 /// across BB. Transform the IR to reflect this change. 2353 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2354 const SmallVectorImpl<BasicBlock *> &PredBBs, 2355 BasicBlock *SuccBB) { 2356 assert(SuccBB != BB && "Don't create an infinite loop"); 2357 2358 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2359 "Don't thread across loop headers"); 2360 2361 // And finally, do it! Start by factoring the predecessors if needed. 2362 BasicBlock *PredBB; 2363 if (PredBBs.size() == 1) 2364 PredBB = PredBBs[0]; 2365 else { 2366 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2367 << " common predecessors.\n"); 2368 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2369 } 2370 2371 // And finally, do it! 2372 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2373 << "' to '" << SuccBB->getName() 2374 << ", across block:\n " << *BB << "\n"); 2375 2376 LVI->threadEdge(PredBB, BB, SuccBB); 2377 2378 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2379 BB->getName()+".thread", 2380 BB->getParent(), BB); 2381 NewBB->moveAfter(PredBB); 2382 2383 // Set the block frequency of NewBB. 2384 if (HasProfileData) { 2385 auto NewBBFreq = 2386 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2387 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2388 } 2389 2390 // Copy all the instructions from BB to NewBB except the terminator. 2391 DenseMap<Instruction *, Value *> ValueMapping = 2392 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2393 2394 // We didn't copy the terminator from BB over to NewBB, because there is now 2395 // an unconditional jump to SuccBB. Insert the unconditional jump. 2396 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2397 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2398 2399 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2400 // PHI nodes for NewBB now. 2401 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2402 2403 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2404 // eliminates predecessors from BB, which requires us to simplify any PHI 2405 // nodes in BB. 2406 Instruction *PredTerm = PredBB->getTerminator(); 2407 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2408 if (PredTerm->getSuccessor(i) == BB) { 2409 BB->removePredecessor(PredBB, true); 2410 PredTerm->setSuccessor(i, NewBB); 2411 } 2412 2413 // Enqueue required DT updates. 2414 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2415 {DominatorTree::Insert, PredBB, NewBB}, 2416 {DominatorTree::Delete, PredBB, BB}}); 2417 2418 updateSSA(BB, NewBB, ValueMapping); 2419 2420 // At this point, the IR is fully up to date and consistent. Do a quick scan 2421 // over the new instructions and zap any that are constants or dead. This 2422 // frequently happens because of phi translation. 2423 SimplifyInstructionsInBlock(NewBB, TLI); 2424 2425 // Update the edge weight from BB to SuccBB, which should be less than before. 2426 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2427 2428 // Threaded an edge! 2429 ++NumThreads; 2430 } 2431 2432 /// Create a new basic block that will be the predecessor of BB and successor of 2433 /// all blocks in Preds. When profile data is available, update the frequency of 2434 /// this new block. 2435 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2436 ArrayRef<BasicBlock *> Preds, 2437 const char *Suffix) { 2438 SmallVector<BasicBlock *, 2> NewBBs; 2439 2440 // Collect the frequencies of all predecessors of BB, which will be used to 2441 // update the edge weight of the result of splitting predecessors. 2442 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2443 if (HasProfileData) 2444 for (auto Pred : Preds) 2445 FreqMap.insert(std::make_pair( 2446 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2447 2448 // In the case when BB is a LandingPad block we create 2 new predecessors 2449 // instead of just one. 2450 if (BB->isLandingPad()) { 2451 std::string NewName = std::string(Suffix) + ".split-lp"; 2452 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2453 } else { 2454 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2455 } 2456 2457 std::vector<DominatorTree::UpdateType> Updates; 2458 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2459 for (auto NewBB : NewBBs) { 2460 BlockFrequency NewBBFreq(0); 2461 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2462 for (auto Pred : predecessors(NewBB)) { 2463 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2464 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2465 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2466 NewBBFreq += FreqMap.lookup(Pred); 2467 } 2468 if (HasProfileData) // Apply the summed frequency to NewBB. 2469 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2470 } 2471 2472 DTU->applyUpdatesPermissive(Updates); 2473 return NewBBs[0]; 2474 } 2475 2476 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2477 const Instruction *TI = BB->getTerminator(); 2478 assert(TI->getNumSuccessors() > 1 && "not a split"); 2479 2480 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2481 if (!WeightsNode) 2482 return false; 2483 2484 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2485 if (MDName->getString() != "branch_weights") 2486 return false; 2487 2488 // Ensure there are weights for all of the successors. Note that the first 2489 // operand to the metadata node is a name, not a weight. 2490 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2491 } 2492 2493 /// Update the block frequency of BB and branch weight and the metadata on the 2494 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2495 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2496 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2497 BasicBlock *BB, 2498 BasicBlock *NewBB, 2499 BasicBlock *SuccBB) { 2500 if (!HasProfileData) 2501 return; 2502 2503 assert(BFI && BPI && "BFI & BPI should have been created here"); 2504 2505 // As the edge from PredBB to BB is deleted, we have to update the block 2506 // frequency of BB. 2507 auto BBOrigFreq = BFI->getBlockFreq(BB); 2508 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2509 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2510 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2511 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2512 2513 // Collect updated outgoing edges' frequencies from BB and use them to update 2514 // edge probabilities. 2515 SmallVector<uint64_t, 4> BBSuccFreq; 2516 for (BasicBlock *Succ : successors(BB)) { 2517 auto SuccFreq = (Succ == SuccBB) 2518 ? BB2SuccBBFreq - NewBBFreq 2519 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2520 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2521 } 2522 2523 uint64_t MaxBBSuccFreq = 2524 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2525 2526 SmallVector<BranchProbability, 4> BBSuccProbs; 2527 if (MaxBBSuccFreq == 0) 2528 BBSuccProbs.assign(BBSuccFreq.size(), 2529 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2530 else { 2531 for (uint64_t Freq : BBSuccFreq) 2532 BBSuccProbs.push_back( 2533 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2534 // Normalize edge probabilities so that they sum up to one. 2535 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2536 BBSuccProbs.end()); 2537 } 2538 2539 // Update edge probabilities in BPI. 2540 BPI->setEdgeProbability(BB, BBSuccProbs); 2541 2542 // Update the profile metadata as well. 2543 // 2544 // Don't do this if the profile of the transformed blocks was statically 2545 // estimated. (This could occur despite the function having an entry 2546 // frequency in completely cold parts of the CFG.) 2547 // 2548 // In this case we don't want to suggest to subsequent passes that the 2549 // calculated weights are fully consistent. Consider this graph: 2550 // 2551 // check_1 2552 // 50% / | 2553 // eq_1 | 50% 2554 // \ | 2555 // check_2 2556 // 50% / | 2557 // eq_2 | 50% 2558 // \ | 2559 // check_3 2560 // 50% / | 2561 // eq_3 | 50% 2562 // \ | 2563 // 2564 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2565 // the overall probabilities are inconsistent; the total probability that the 2566 // value is either 1, 2 or 3 is 150%. 2567 // 2568 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2569 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2570 // the loop exit edge. Then based solely on static estimation we would assume 2571 // the loop was extremely hot. 2572 // 2573 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2574 // shouldn't make edges extremely likely or unlikely based solely on static 2575 // estimation. 2576 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2577 SmallVector<uint32_t, 4> Weights; 2578 for (auto Prob : BBSuccProbs) 2579 Weights.push_back(Prob.getNumerator()); 2580 2581 auto TI = BB->getTerminator(); 2582 TI->setMetadata( 2583 LLVMContext::MD_prof, 2584 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2585 } 2586 } 2587 2588 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2589 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2590 /// If we can duplicate the contents of BB up into PredBB do so now, this 2591 /// improves the odds that the branch will be on an analyzable instruction like 2592 /// a compare. 2593 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2594 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2595 assert(!PredBBs.empty() && "Can't handle an empty set"); 2596 2597 // If BB is a loop header, then duplicating this block outside the loop would 2598 // cause us to transform this into an irreducible loop, don't do this. 2599 // See the comments above findLoopHeaders for justifications and caveats. 2600 if (LoopHeaders.count(BB)) { 2601 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2602 << "' into predecessor block '" << PredBBs[0]->getName() 2603 << "' - it might create an irreducible loop!\n"); 2604 return false; 2605 } 2606 2607 unsigned DuplicationCost = 2608 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2609 if (DuplicationCost > BBDupThreshold) { 2610 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2611 << "' - Cost is too high: " << DuplicationCost << "\n"); 2612 return false; 2613 } 2614 2615 // And finally, do it! Start by factoring the predecessors if needed. 2616 std::vector<DominatorTree::UpdateType> Updates; 2617 BasicBlock *PredBB; 2618 if (PredBBs.size() == 1) 2619 PredBB = PredBBs[0]; 2620 else { 2621 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2622 << " common predecessors.\n"); 2623 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2624 } 2625 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2626 2627 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2628 // of PredBB. 2629 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2630 << "' into end of '" << PredBB->getName() 2631 << "' to eliminate branch on phi. Cost: " 2632 << DuplicationCost << " block is:" << *BB << "\n"); 2633 2634 // Unless PredBB ends with an unconditional branch, split the edge so that we 2635 // can just clone the bits from BB into the end of the new PredBB. 2636 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2637 2638 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2639 BasicBlock *OldPredBB = PredBB; 2640 PredBB = SplitEdge(OldPredBB, BB); 2641 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2642 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2643 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2644 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2645 } 2646 2647 // We are going to have to map operands from the original BB block into the 2648 // PredBB block. Evaluate PHI nodes in BB. 2649 DenseMap<Instruction*, Value*> ValueMapping; 2650 2651 BasicBlock::iterator BI = BB->begin(); 2652 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2653 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2654 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2655 // mapping and using it to remap operands in the cloned instructions. 2656 for (; BI != BB->end(); ++BI) { 2657 Instruction *New = BI->clone(); 2658 2659 // Remap operands to patch up intra-block references. 2660 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2661 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2662 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2663 if (I != ValueMapping.end()) 2664 New->setOperand(i, I->second); 2665 } 2666 2667 // If this instruction can be simplified after the operands are updated, 2668 // just use the simplified value instead. This frequently happens due to 2669 // phi translation. 2670 if (Value *IV = SimplifyInstruction( 2671 New, 2672 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2673 ValueMapping[&*BI] = IV; 2674 if (!New->mayHaveSideEffects()) { 2675 New->deleteValue(); 2676 New = nullptr; 2677 } 2678 } else { 2679 ValueMapping[&*BI] = New; 2680 } 2681 if (New) { 2682 // Otherwise, insert the new instruction into the block. 2683 New->setName(BI->getName()); 2684 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2685 // Update Dominance from simplified New instruction operands. 2686 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2687 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2688 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2689 } 2690 } 2691 2692 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2693 // add entries to the PHI nodes for branch from PredBB now. 2694 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2695 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2696 ValueMapping); 2697 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2698 ValueMapping); 2699 2700 updateSSA(BB, PredBB, ValueMapping); 2701 2702 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2703 // that we nuked. 2704 BB->removePredecessor(PredBB, true); 2705 2706 // Remove the unconditional branch at the end of the PredBB block. 2707 OldPredBranch->eraseFromParent(); 2708 if (HasProfileData) 2709 BPI->copyEdgeProbabilities(BB, PredBB); 2710 DTU->applyUpdatesPermissive(Updates); 2711 2712 ++NumDupes; 2713 return true; 2714 } 2715 2716 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2717 // a Select instruction in Pred. BB has other predecessors and SI is used in 2718 // a PHI node in BB. SI has no other use. 2719 // A new basic block, NewBB, is created and SI is converted to compare and 2720 // conditional branch. SI is erased from parent. 2721 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2722 SelectInst *SI, PHINode *SIUse, 2723 unsigned Idx) { 2724 // Expand the select. 2725 // 2726 // Pred -- 2727 // | v 2728 // | NewBB 2729 // | | 2730 // |----- 2731 // v 2732 // BB 2733 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2734 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2735 BB->getParent(), BB); 2736 // Move the unconditional branch to NewBB. 2737 PredTerm->removeFromParent(); 2738 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2739 // Create a conditional branch and update PHI nodes. 2740 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2741 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2742 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2743 2744 // The select is now dead. 2745 SI->eraseFromParent(); 2746 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2747 {DominatorTree::Insert, Pred, NewBB}}); 2748 2749 // Update any other PHI nodes in BB. 2750 for (BasicBlock::iterator BI = BB->begin(); 2751 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2752 if (Phi != SIUse) 2753 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2754 } 2755 2756 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2757 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2758 2759 if (!CondPHI || CondPHI->getParent() != BB) 2760 return false; 2761 2762 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2763 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2764 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2765 2766 // The second and third condition can be potentially relaxed. Currently 2767 // the conditions help to simplify the code and allow us to reuse existing 2768 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2769 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2770 continue; 2771 2772 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2773 if (!PredTerm || !PredTerm->isUnconditional()) 2774 continue; 2775 2776 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2777 return true; 2778 } 2779 return false; 2780 } 2781 2782 /// tryToUnfoldSelect - Look for blocks of the form 2783 /// bb1: 2784 /// %a = select 2785 /// br bb2 2786 /// 2787 /// bb2: 2788 /// %p = phi [%a, %bb1] ... 2789 /// %c = icmp %p 2790 /// br i1 %c 2791 /// 2792 /// And expand the select into a branch structure if one of its arms allows %c 2793 /// to be folded. This later enables threading from bb1 over bb2. 2794 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2795 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2796 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2797 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2798 2799 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2800 CondLHS->getParent() != BB) 2801 return false; 2802 2803 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2804 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2805 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2806 2807 // Look if one of the incoming values is a select in the corresponding 2808 // predecessor. 2809 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2810 continue; 2811 2812 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2813 if (!PredTerm || !PredTerm->isUnconditional()) 2814 continue; 2815 2816 // Now check if one of the select values would allow us to constant fold the 2817 // terminator in BB. We don't do the transform if both sides fold, those 2818 // cases will be threaded in any case. 2819 LazyValueInfo::Tristate LHSFolds = 2820 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2821 CondRHS, Pred, BB, CondCmp); 2822 LazyValueInfo::Tristate RHSFolds = 2823 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2824 CondRHS, Pred, BB, CondCmp); 2825 if ((LHSFolds != LazyValueInfo::Unknown || 2826 RHSFolds != LazyValueInfo::Unknown) && 2827 LHSFolds != RHSFolds) { 2828 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2829 return true; 2830 } 2831 } 2832 return false; 2833 } 2834 2835 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2836 /// same BB in the form 2837 /// bb: 2838 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2839 /// %s = select %p, trueval, falseval 2840 /// 2841 /// or 2842 /// 2843 /// bb: 2844 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2845 /// %c = cmp %p, 0 2846 /// %s = select %c, trueval, falseval 2847 /// 2848 /// And expand the select into a branch structure. This later enables 2849 /// jump-threading over bb in this pass. 2850 /// 2851 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2852 /// select if the associated PHI has at least one constant. If the unfolded 2853 /// select is not jump-threaded, it will be folded again in the later 2854 /// optimizations. 2855 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2856 // This transform would reduce the quality of msan diagnostics. 2857 // Disable this transform under MemorySanitizer. 2858 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2859 return false; 2860 2861 // If threading this would thread across a loop header, don't thread the edge. 2862 // See the comments above findLoopHeaders for justifications and caveats. 2863 if (LoopHeaders.count(BB)) 2864 return false; 2865 2866 for (BasicBlock::iterator BI = BB->begin(); 2867 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2868 // Look for a Phi having at least one constant incoming value. 2869 if (llvm::all_of(PN->incoming_values(), 2870 [](Value *V) { return !isa<ConstantInt>(V); })) 2871 continue; 2872 2873 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2874 // Check if SI is in BB and use V as condition. 2875 if (SI->getParent() != BB) 2876 return false; 2877 Value *Cond = SI->getCondition(); 2878 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2879 }; 2880 2881 SelectInst *SI = nullptr; 2882 for (Use &U : PN->uses()) { 2883 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2884 // Look for a ICmp in BB that compares PN with a constant and is the 2885 // condition of a Select. 2886 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2887 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2888 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2889 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2890 SI = SelectI; 2891 break; 2892 } 2893 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2894 // Look for a Select in BB that uses PN as condition. 2895 if (isUnfoldCandidate(SelectI, U.get())) { 2896 SI = SelectI; 2897 break; 2898 } 2899 } 2900 } 2901 2902 if (!SI) 2903 continue; 2904 // Expand the select. 2905 Value *Cond = SI->getCondition(); 2906 if (InsertFreezeWhenUnfoldingSelect && 2907 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI, 2908 &DTU->getDomTree())) 2909 Cond = new FreezeInst(Cond, "cond.fr", SI); 2910 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 2911 BasicBlock *SplitBB = SI->getParent(); 2912 BasicBlock *NewBB = Term->getParent(); 2913 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2914 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2915 NewPN->addIncoming(SI->getFalseValue(), BB); 2916 SI->replaceAllUsesWith(NewPN); 2917 SI->eraseFromParent(); 2918 // NewBB and SplitBB are newly created blocks which require insertion. 2919 std::vector<DominatorTree::UpdateType> Updates; 2920 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2921 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2922 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2923 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2924 // BB's successors were moved to SplitBB, update DTU accordingly. 2925 for (auto *Succ : successors(SplitBB)) { 2926 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2927 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2928 } 2929 DTU->applyUpdatesPermissive(Updates); 2930 return true; 2931 } 2932 return false; 2933 } 2934 2935 /// Try to propagate a guard from the current BB into one of its predecessors 2936 /// in case if another branch of execution implies that the condition of this 2937 /// guard is always true. Currently we only process the simplest case that 2938 /// looks like: 2939 /// 2940 /// Start: 2941 /// %cond = ... 2942 /// br i1 %cond, label %T1, label %F1 2943 /// T1: 2944 /// br label %Merge 2945 /// F1: 2946 /// br label %Merge 2947 /// Merge: 2948 /// %condGuard = ... 2949 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2950 /// 2951 /// And cond either implies condGuard or !condGuard. In this case all the 2952 /// instructions before the guard can be duplicated in both branches, and the 2953 /// guard is then threaded to one of them. 2954 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 2955 using namespace PatternMatch; 2956 2957 // We only want to deal with two predecessors. 2958 BasicBlock *Pred1, *Pred2; 2959 auto PI = pred_begin(BB), PE = pred_end(BB); 2960 if (PI == PE) 2961 return false; 2962 Pred1 = *PI++; 2963 if (PI == PE) 2964 return false; 2965 Pred2 = *PI++; 2966 if (PI != PE) 2967 return false; 2968 if (Pred1 == Pred2) 2969 return false; 2970 2971 // Try to thread one of the guards of the block. 2972 // TODO: Look up deeper than to immediate predecessor? 2973 auto *Parent = Pred1->getSinglePredecessor(); 2974 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2975 return false; 2976 2977 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2978 for (auto &I : *BB) 2979 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2980 return true; 2981 2982 return false; 2983 } 2984 2985 /// Try to propagate the guard from BB which is the lower block of a diamond 2986 /// to one of its branches, in case if diamond's condition implies guard's 2987 /// condition. 2988 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2989 BranchInst *BI) { 2990 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2991 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2992 Value *GuardCond = Guard->getArgOperand(0); 2993 Value *BranchCond = BI->getCondition(); 2994 BasicBlock *TrueDest = BI->getSuccessor(0); 2995 BasicBlock *FalseDest = BI->getSuccessor(1); 2996 2997 auto &DL = BB->getModule()->getDataLayout(); 2998 bool TrueDestIsSafe = false; 2999 bool FalseDestIsSafe = false; 3000 3001 // True dest is safe if BranchCond => GuardCond. 3002 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3003 if (Impl && *Impl) 3004 TrueDestIsSafe = true; 3005 else { 3006 // False dest is safe if !BranchCond => GuardCond. 3007 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3008 if (Impl && *Impl) 3009 FalseDestIsSafe = true; 3010 } 3011 3012 if (!TrueDestIsSafe && !FalseDestIsSafe) 3013 return false; 3014 3015 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3016 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3017 3018 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3019 Instruction *AfterGuard = Guard->getNextNode(); 3020 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 3021 if (Cost > BBDupThreshold) 3022 return false; 3023 // Duplicate all instructions before the guard and the guard itself to the 3024 // branch where implication is not proved. 3025 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3026 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3027 assert(GuardedBlock && "Could not create the guarded block?"); 3028 // Duplicate all instructions before the guard in the unguarded branch. 3029 // Since we have successfully duplicated the guarded block and this block 3030 // has fewer instructions, we expect it to succeed. 3031 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3032 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3033 assert(UnguardedBlock && "Could not create the unguarded block?"); 3034 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3035 << GuardedBlock->getName() << "\n"); 3036 // Some instructions before the guard may still have uses. For them, we need 3037 // to create Phi nodes merging their copies in both guarded and unguarded 3038 // branches. Those instructions that have no uses can be just removed. 3039 SmallVector<Instruction *, 4> ToRemove; 3040 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3041 if (!isa<PHINode>(&*BI)) 3042 ToRemove.push_back(&*BI); 3043 3044 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3045 assert(InsertionPoint && "Empty block?"); 3046 // Substitute with Phis & remove. 3047 for (auto *Inst : reverse(ToRemove)) { 3048 if (!Inst->use_empty()) { 3049 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3050 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3051 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3052 NewPN->insertBefore(InsertionPoint); 3053 Inst->replaceAllUsesWith(NewPN); 3054 } 3055 Inst->eraseFromParent(); 3056 } 3057 return true; 3058 } 3059