1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/LazyValueInfo.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/PassManager.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/ProfDataUtils.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/BlockFrequency.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Scalar.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Cloning.h" 71 #include "llvm/Transforms/Utils/Local.h" 72 #include "llvm/Transforms/Utils/SSAUpdater.h" 73 #include "llvm/Transforms/Utils/ValueMapper.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <iterator> 78 #include <memory> 79 #include <utility> 80 81 using namespace llvm; 82 using namespace jumpthreading; 83 84 #define DEBUG_TYPE "jump-threading" 85 86 STATISTIC(NumThreads, "Number of jumps threaded"); 87 STATISTIC(NumFolds, "Number of terminators folded"); 88 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 89 90 static cl::opt<unsigned> 91 BBDuplicateThreshold("jump-threading-threshold", 92 cl::desc("Max block size to duplicate for jump threading"), 93 cl::init(6), cl::Hidden); 94 95 static cl::opt<unsigned> 96 ImplicationSearchThreshold( 97 "jump-threading-implication-search-threshold", 98 cl::desc("The number of predecessors to search for a stronger " 99 "condition to use to thread over a weaker condition"), 100 cl::init(3), cl::Hidden); 101 102 static cl::opt<unsigned> PhiDuplicateThreshold( 103 "jump-threading-phi-threshold", 104 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76), 105 cl::Hidden); 106 107 static cl::opt<bool> PrintLVIAfterJumpThreading( 108 "print-lvi-after-jump-threading", 109 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 110 cl::Hidden); 111 112 static cl::opt<bool> ThreadAcrossLoopHeaders( 113 "jump-threading-across-loop-headers", 114 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 115 cl::init(false), cl::Hidden); 116 117 118 namespace { 119 120 /// This pass performs 'jump threading', which looks at blocks that have 121 /// multiple predecessors and multiple successors. If one or more of the 122 /// predecessors of the block can be proven to always jump to one of the 123 /// successors, we forward the edge from the predecessor to the successor by 124 /// duplicating the contents of this block. 125 /// 126 /// An example of when this can occur is code like this: 127 /// 128 /// if () { ... 129 /// X = 4; 130 /// } 131 /// if (X < 3) { 132 /// 133 /// In this case, the unconditional branch at the end of the first if can be 134 /// revectored to the false side of the second if. 135 class JumpThreading : public FunctionPass { 136 JumpThreadingPass Impl; 137 138 public: 139 static char ID; // Pass identification 140 141 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 142 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 143 } 144 145 bool runOnFunction(Function &F) override; 146 147 void getAnalysisUsage(AnalysisUsage &AU) const override { 148 AU.addRequired<DominatorTreeWrapperPass>(); 149 AU.addPreserved<DominatorTreeWrapperPass>(); 150 AU.addRequired<AAResultsWrapperPass>(); 151 AU.addRequired<LazyValueInfoWrapperPass>(); 152 AU.addPreserved<LazyValueInfoWrapperPass>(); 153 AU.addPreserved<GlobalsAAWrapperPass>(); 154 AU.addRequired<TargetLibraryInfoWrapperPass>(); 155 AU.addRequired<TargetTransformInfoWrapperPass>(); 156 } 157 158 void releaseMemory() override { Impl.releaseMemory(); } 159 }; 160 161 } // end anonymous namespace 162 163 char JumpThreading::ID = 0; 164 165 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 166 "Jump Threading", false, false) 167 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 168 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 171 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 172 "Jump Threading", false, false) 173 174 // Public interface to the Jump Threading pass 175 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 176 return new JumpThreading(Threshold); 177 } 178 179 JumpThreadingPass::JumpThreadingPass(int T) { 180 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 181 } 182 183 // Update branch probability information according to conditional 184 // branch probability. This is usually made possible for cloned branches 185 // in inline instances by the context specific profile in the caller. 186 // For instance, 187 // 188 // [Block PredBB] 189 // [Branch PredBr] 190 // if (t) { 191 // Block A; 192 // } else { 193 // Block B; 194 // } 195 // 196 // [Block BB] 197 // cond = PN([true, %A], [..., %B]); // PHI node 198 // [Branch CondBr] 199 // if (cond) { 200 // ... // P(cond == true) = 1% 201 // } 202 // 203 // Here we know that when block A is taken, cond must be true, which means 204 // P(cond == true | A) = 1 205 // 206 // Given that P(cond == true) = P(cond == true | A) * P(A) + 207 // P(cond == true | B) * P(B) 208 // we get: 209 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 210 // 211 // which gives us: 212 // P(A) is less than P(cond == true), i.e. 213 // P(t == true) <= P(cond == true) 214 // 215 // In other words, if we know P(cond == true) is unlikely, we know 216 // that P(t == true) is also unlikely. 217 // 218 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 219 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 220 if (!CondBr) 221 return; 222 223 uint64_t TrueWeight, FalseWeight; 224 if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight)) 225 return; 226 227 if (TrueWeight + FalseWeight == 0) 228 // Zero branch_weights do not give a hint for getting branch probabilities. 229 // Technically it would result in division by zero denominator, which is 230 // TrueWeight + FalseWeight. 231 return; 232 233 // Returns the outgoing edge of the dominating predecessor block 234 // that leads to the PhiNode's incoming block: 235 auto GetPredOutEdge = 236 [](BasicBlock *IncomingBB, 237 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 238 auto *PredBB = IncomingBB; 239 auto *SuccBB = PhiBB; 240 SmallPtrSet<BasicBlock *, 16> Visited; 241 while (true) { 242 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 243 if (PredBr && PredBr->isConditional()) 244 return {PredBB, SuccBB}; 245 Visited.insert(PredBB); 246 auto *SinglePredBB = PredBB->getSinglePredecessor(); 247 if (!SinglePredBB) 248 return {nullptr, nullptr}; 249 250 // Stop searching when SinglePredBB has been visited. It means we see 251 // an unreachable loop. 252 if (Visited.count(SinglePredBB)) 253 return {nullptr, nullptr}; 254 255 SuccBB = PredBB; 256 PredBB = SinglePredBB; 257 } 258 }; 259 260 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 261 Value *PhiOpnd = PN->getIncomingValue(i); 262 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 263 264 if (!CI || !CI->getType()->isIntegerTy(1)) 265 continue; 266 267 BranchProbability BP = 268 (CI->isOne() ? BranchProbability::getBranchProbability( 269 TrueWeight, TrueWeight + FalseWeight) 270 : BranchProbability::getBranchProbability( 271 FalseWeight, TrueWeight + FalseWeight)); 272 273 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 274 if (!PredOutEdge.first) 275 return; 276 277 BasicBlock *PredBB = PredOutEdge.first; 278 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 279 if (!PredBr) 280 return; 281 282 uint64_t PredTrueWeight, PredFalseWeight; 283 // FIXME: We currently only set the profile data when it is missing. 284 // With PGO, this can be used to refine even existing profile data with 285 // context information. This needs to be done after more performance 286 // testing. 287 if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight)) 288 continue; 289 290 // We can not infer anything useful when BP >= 50%, because BP is the 291 // upper bound probability value. 292 if (BP >= BranchProbability(50, 100)) 293 continue; 294 295 SmallVector<uint32_t, 2> Weights; 296 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 297 Weights.push_back(BP.getNumerator()); 298 Weights.push_back(BP.getCompl().getNumerator()); 299 } else { 300 Weights.push_back(BP.getCompl().getNumerator()); 301 Weights.push_back(BP.getNumerator()); 302 } 303 PredBr->setMetadata(LLVMContext::MD_prof, 304 MDBuilder(PredBr->getParent()->getContext()) 305 .createBranchWeights(Weights)); 306 } 307 } 308 309 /// runOnFunction - Toplevel algorithm. 310 bool JumpThreading::runOnFunction(Function &F) { 311 if (skipFunction(F)) 312 return false; 313 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 314 // Jump Threading has no sense for the targets with divergent CF 315 if (TTI->hasBranchDivergence()) 316 return false; 317 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 318 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 319 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 320 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 321 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 322 std::unique_ptr<BlockFrequencyInfo> BFI; 323 std::unique_ptr<BranchProbabilityInfo> BPI; 324 if (F.hasProfileData()) { 325 LoopInfo LI{*DT}; 326 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 327 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 328 } 329 330 bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(), 331 std::move(BFI), std::move(BPI)); 332 if (PrintLVIAfterJumpThreading) { 333 dbgs() << "LVI for function '" << F.getName() << "':\n"; 334 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 335 } 336 return Changed; 337 } 338 339 PreservedAnalyses JumpThreadingPass::run(Function &F, 340 FunctionAnalysisManager &AM) { 341 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 342 // Jump Threading has no sense for the targets with divergent CF 343 if (TTI.hasBranchDivergence()) 344 return PreservedAnalyses::all(); 345 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 346 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 347 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 348 auto &AA = AM.getResult<AAManager>(F); 349 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 350 351 std::unique_ptr<BlockFrequencyInfo> BFI; 352 std::unique_ptr<BranchProbabilityInfo> BPI; 353 if (F.hasProfileData()) { 354 LoopInfo LI{DT}; 355 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 356 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 357 } 358 359 bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(), 360 std::move(BFI), std::move(BPI)); 361 362 if (PrintLVIAfterJumpThreading) { 363 dbgs() << "LVI for function '" << F.getName() << "':\n"; 364 LVI.printLVI(F, DTU.getDomTree(), dbgs()); 365 } 366 367 if (!Changed) 368 return PreservedAnalyses::all(); 369 PreservedAnalyses PA; 370 PA.preserve<DominatorTreeAnalysis>(); 371 PA.preserve<LazyValueAnalysis>(); 372 return PA; 373 } 374 375 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 376 TargetTransformInfo *TTI_, LazyValueInfo *LVI_, 377 AliasAnalysis *AA_, DomTreeUpdater *DTU_, 378 bool HasProfileData_, 379 std::unique_ptr<BlockFrequencyInfo> BFI_, 380 std::unique_ptr<BranchProbabilityInfo> BPI_) { 381 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 382 TLI = TLI_; 383 TTI = TTI_; 384 LVI = LVI_; 385 AA = AA_; 386 DTU = DTU_; 387 BFI.reset(); 388 BPI.reset(); 389 // When profile data is available, we need to update edge weights after 390 // successful jump threading, which requires both BPI and BFI being available. 391 HasProfileData = HasProfileData_; 392 auto *GuardDecl = F.getParent()->getFunction( 393 Intrinsic::getName(Intrinsic::experimental_guard)); 394 HasGuards = GuardDecl && !GuardDecl->use_empty(); 395 if (HasProfileData) { 396 BPI = std::move(BPI_); 397 BFI = std::move(BFI_); 398 } 399 400 // Reduce the number of instructions duplicated when optimizing strictly for 401 // size. 402 if (BBDuplicateThreshold.getNumOccurrences()) 403 BBDupThreshold = BBDuplicateThreshold; 404 else if (F.hasFnAttribute(Attribute::MinSize)) 405 BBDupThreshold = 3; 406 else 407 BBDupThreshold = DefaultBBDupThreshold; 408 409 // JumpThreading must not processes blocks unreachable from entry. It's a 410 // waste of compute time and can potentially lead to hangs. 411 SmallPtrSet<BasicBlock *, 16> Unreachable; 412 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 413 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 414 DominatorTree &DT = DTU->getDomTree(); 415 for (auto &BB : F) 416 if (!DT.isReachableFromEntry(&BB)) 417 Unreachable.insert(&BB); 418 419 if (!ThreadAcrossLoopHeaders) 420 findLoopHeaders(F); 421 422 bool EverChanged = false; 423 bool Changed; 424 do { 425 Changed = false; 426 for (auto &BB : F) { 427 if (Unreachable.count(&BB)) 428 continue; 429 while (processBlock(&BB)) // Thread all of the branches we can over BB. 430 Changed = true; 431 432 // Jump threading may have introduced redundant debug values into BB 433 // which should be removed. 434 if (Changed) 435 RemoveRedundantDbgInstrs(&BB); 436 437 // Stop processing BB if it's the entry or is now deleted. The following 438 // routines attempt to eliminate BB and locating a suitable replacement 439 // for the entry is non-trivial. 440 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 441 continue; 442 443 if (pred_empty(&BB)) { 444 // When processBlock makes BB unreachable it doesn't bother to fix up 445 // the instructions in it. We must remove BB to prevent invalid IR. 446 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 447 << "' with terminator: " << *BB.getTerminator() 448 << '\n'); 449 LoopHeaders.erase(&BB); 450 LVI->eraseBlock(&BB); 451 DeleteDeadBlock(&BB, DTU); 452 Changed = true; 453 continue; 454 } 455 456 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 457 // is "almost empty", we attempt to merge BB with its sole successor. 458 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 459 if (BI && BI->isUnconditional()) { 460 BasicBlock *Succ = BI->getSuccessor(0); 461 if ( 462 // The terminator must be the only non-phi instruction in BB. 463 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 464 // Don't alter Loop headers and latches to ensure another pass can 465 // detect and transform nested loops later. 466 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 467 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 468 RemoveRedundantDbgInstrs(Succ); 469 // BB is valid for cleanup here because we passed in DTU. F remains 470 // BB's parent until a DTU->getDomTree() event. 471 LVI->eraseBlock(&BB); 472 Changed = true; 473 } 474 } 475 } 476 EverChanged |= Changed; 477 } while (Changed); 478 479 LoopHeaders.clear(); 480 return EverChanged; 481 } 482 483 // Replace uses of Cond with ToVal when safe to do so. If all uses are 484 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 485 // because we may incorrectly replace uses when guards/assumes are uses of 486 // of `Cond` and we used the guards/assume to reason about the `Cond` value 487 // at the end of block. RAUW unconditionally replaces all uses 488 // including the guards/assumes themselves and the uses before the 489 // guard/assume. 490 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal, 491 BasicBlock *KnownAtEndOfBB) { 492 bool Changed = false; 493 assert(Cond->getType() == ToVal->getType()); 494 // We can unconditionally replace all uses in non-local blocks (i.e. uses 495 // strictly dominated by BB), since LVI information is true from the 496 // terminator of BB. 497 if (Cond->getParent() == KnownAtEndOfBB) 498 Changed |= replaceNonLocalUsesWith(Cond, ToVal); 499 for (Instruction &I : reverse(*KnownAtEndOfBB)) { 500 // Reached the Cond whose uses we are trying to replace, so there are no 501 // more uses. 502 if (&I == Cond) 503 break; 504 // We only replace uses in instructions that are guaranteed to reach the end 505 // of BB, where we know Cond is ToVal. 506 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 507 break; 508 Changed |= I.replaceUsesOfWith(Cond, ToVal); 509 } 510 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) { 511 Cond->eraseFromParent(); 512 Changed = true; 513 } 514 return Changed; 515 } 516 517 /// Return the cost of duplicating a piece of this block from first non-phi 518 /// and before StopAt instruction to thread across it. Stop scanning the block 519 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 520 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, 521 BasicBlock *BB, 522 Instruction *StopAt, 523 unsigned Threshold) { 524 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 525 526 // Do not duplicate the BB if it has a lot of PHI nodes. 527 // If a threadable chain is too long then the number of PHI nodes can add up, 528 // leading to a substantial increase in compile time when rewriting the SSA. 529 unsigned PhiCount = 0; 530 Instruction *FirstNonPHI = nullptr; 531 for (Instruction &I : *BB) { 532 if (!isa<PHINode>(&I)) { 533 FirstNonPHI = &I; 534 break; 535 } 536 if (++PhiCount > PhiDuplicateThreshold) 537 return ~0U; 538 } 539 540 /// Ignore PHI nodes, these will be flattened when duplication happens. 541 BasicBlock::const_iterator I(FirstNonPHI); 542 543 // FIXME: THREADING will delete values that are just used to compute the 544 // branch, so they shouldn't count against the duplication cost. 545 546 unsigned Bonus = 0; 547 if (BB->getTerminator() == StopAt) { 548 // Threading through a switch statement is particularly profitable. If this 549 // block ends in a switch, decrease its cost to make it more likely to 550 // happen. 551 if (isa<SwitchInst>(StopAt)) 552 Bonus = 6; 553 554 // The same holds for indirect branches, but slightly more so. 555 if (isa<IndirectBrInst>(StopAt)) 556 Bonus = 8; 557 } 558 559 // Bump the threshold up so the early exit from the loop doesn't skip the 560 // terminator-based Size adjustment at the end. 561 Threshold += Bonus; 562 563 // Sum up the cost of each instruction until we get to the terminator. Don't 564 // include the terminator because the copy won't include it. 565 unsigned Size = 0; 566 for (; &*I != StopAt; ++I) { 567 568 // Stop scanning the block if we've reached the threshold. 569 if (Size > Threshold) 570 return Size; 571 572 // Bail out if this instruction gives back a token type, it is not possible 573 // to duplicate it if it is used outside this BB. 574 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 575 return ~0U; 576 577 // Blocks with NoDuplicate are modelled as having infinite cost, so they 578 // are never duplicated. 579 if (const CallInst *CI = dyn_cast<CallInst>(I)) 580 if (CI->cannotDuplicate() || CI->isConvergent()) 581 return ~0U; 582 583 if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) == 584 TargetTransformInfo::TCC_Free) 585 continue; 586 587 // All other instructions count for at least one unit. 588 ++Size; 589 590 // Calls are more expensive. If they are non-intrinsic calls, we model them 591 // as having cost of 4. If they are a non-vector intrinsic, we model them 592 // as having cost of 2 total, and if they are a vector intrinsic, we model 593 // them as having cost 1. 594 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 595 if (!isa<IntrinsicInst>(CI)) 596 Size += 3; 597 else if (!CI->getType()->isVectorTy()) 598 Size += 1; 599 } 600 } 601 602 return Size > Bonus ? Size - Bonus : 0; 603 } 604 605 /// findLoopHeaders - We do not want jump threading to turn proper loop 606 /// structures into irreducible loops. Doing this breaks up the loop nesting 607 /// hierarchy and pessimizes later transformations. To prevent this from 608 /// happening, we first have to find the loop headers. Here we approximate this 609 /// by finding targets of backedges in the CFG. 610 /// 611 /// Note that there definitely are cases when we want to allow threading of 612 /// edges across a loop header. For example, threading a jump from outside the 613 /// loop (the preheader) to an exit block of the loop is definitely profitable. 614 /// It is also almost always profitable to thread backedges from within the loop 615 /// to exit blocks, and is often profitable to thread backedges to other blocks 616 /// within the loop (forming a nested loop). This simple analysis is not rich 617 /// enough to track all of these properties and keep it up-to-date as the CFG 618 /// mutates, so we don't allow any of these transformations. 619 void JumpThreadingPass::findLoopHeaders(Function &F) { 620 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 621 FindFunctionBackedges(F, Edges); 622 623 for (const auto &Edge : Edges) 624 LoopHeaders.insert(Edge.second); 625 } 626 627 /// getKnownConstant - Helper method to determine if we can thread over a 628 /// terminator with the given value as its condition, and if so what value to 629 /// use for that. What kind of value this is depends on whether we want an 630 /// integer or a block address, but an undef is always accepted. 631 /// Returns null if Val is null or not an appropriate constant. 632 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 633 if (!Val) 634 return nullptr; 635 636 // Undef is "known" enough. 637 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 638 return U; 639 640 if (Preference == WantBlockAddress) 641 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 642 643 return dyn_cast<ConstantInt>(Val); 644 } 645 646 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 647 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 648 /// in any of our predecessors. If so, return the known list of value and pred 649 /// BB in the result vector. 650 /// 651 /// This returns true if there were any known values. 652 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 653 Value *V, BasicBlock *BB, PredValueInfo &Result, 654 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 655 Instruction *CxtI) { 656 // This method walks up use-def chains recursively. Because of this, we could 657 // get into an infinite loop going around loops in the use-def chain. To 658 // prevent this, keep track of what (value, block) pairs we've already visited 659 // and terminate the search if we loop back to them 660 if (!RecursionSet.insert(V).second) 661 return false; 662 663 // If V is a constant, then it is known in all predecessors. 664 if (Constant *KC = getKnownConstant(V, Preference)) { 665 for (BasicBlock *Pred : predecessors(BB)) 666 Result.emplace_back(KC, Pred); 667 668 return !Result.empty(); 669 } 670 671 // If V is a non-instruction value, or an instruction in a different block, 672 // then it can't be derived from a PHI. 673 Instruction *I = dyn_cast<Instruction>(V); 674 if (!I || I->getParent() != BB) { 675 676 // Okay, if this is a live-in value, see if it has a known value at the any 677 // edge from our predecessors. 678 for (BasicBlock *P : predecessors(BB)) { 679 using namespace PatternMatch; 680 // If the value is known by LazyValueInfo to be a constant in a 681 // predecessor, use that information to try to thread this block. 682 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 683 // If I is a non-local compare-with-constant instruction, use more-rich 684 // 'getPredicateOnEdge' method. This would be able to handle value 685 // inequalities better, for example if the compare is "X < 4" and "X < 3" 686 // is known true but "X < 4" itself is not available. 687 CmpInst::Predicate Pred; 688 Value *Val; 689 Constant *Cst; 690 if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) { 691 auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI); 692 if (Res != LazyValueInfo::Unknown) 693 PredCst = ConstantInt::getBool(V->getContext(), Res); 694 } 695 if (Constant *KC = getKnownConstant(PredCst, Preference)) 696 Result.emplace_back(KC, P); 697 } 698 699 return !Result.empty(); 700 } 701 702 /// If I is a PHI node, then we know the incoming values for any constants. 703 if (PHINode *PN = dyn_cast<PHINode>(I)) { 704 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 705 Value *InVal = PN->getIncomingValue(i); 706 if (Constant *KC = getKnownConstant(InVal, Preference)) { 707 Result.emplace_back(KC, PN->getIncomingBlock(i)); 708 } else { 709 Constant *CI = LVI->getConstantOnEdge(InVal, 710 PN->getIncomingBlock(i), 711 BB, CxtI); 712 if (Constant *KC = getKnownConstant(CI, Preference)) 713 Result.emplace_back(KC, PN->getIncomingBlock(i)); 714 } 715 } 716 717 return !Result.empty(); 718 } 719 720 // Handle Cast instructions. 721 if (CastInst *CI = dyn_cast<CastInst>(I)) { 722 Value *Source = CI->getOperand(0); 723 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 724 RecursionSet, CxtI); 725 if (Result.empty()) 726 return false; 727 728 // Convert the known values. 729 for (auto &R : Result) 730 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 731 732 return true; 733 } 734 735 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 736 Value *Source = FI->getOperand(0); 737 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 738 RecursionSet, CxtI); 739 740 erase_if(Result, [](auto &Pair) { 741 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 742 }); 743 744 return !Result.empty(); 745 } 746 747 // Handle some boolean conditions. 748 if (I->getType()->getPrimitiveSizeInBits() == 1) { 749 using namespace PatternMatch; 750 if (Preference != WantInteger) 751 return false; 752 // X | true -> true 753 // X & false -> false 754 Value *Op0, *Op1; 755 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 756 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 757 PredValueInfoTy LHSVals, RHSVals; 758 759 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 760 RecursionSet, CxtI); 761 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 762 RecursionSet, CxtI); 763 764 if (LHSVals.empty() && RHSVals.empty()) 765 return false; 766 767 ConstantInt *InterestingVal; 768 if (match(I, m_LogicalOr())) 769 InterestingVal = ConstantInt::getTrue(I->getContext()); 770 else 771 InterestingVal = ConstantInt::getFalse(I->getContext()); 772 773 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 774 775 // Scan for the sentinel. If we find an undef, force it to the 776 // interesting value: x|undef -> true and x&undef -> false. 777 for (const auto &LHSVal : LHSVals) 778 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 779 Result.emplace_back(InterestingVal, LHSVal.second); 780 LHSKnownBBs.insert(LHSVal.second); 781 } 782 for (const auto &RHSVal : RHSVals) 783 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 784 // If we already inferred a value for this block on the LHS, don't 785 // re-add it. 786 if (!LHSKnownBBs.count(RHSVal.second)) 787 Result.emplace_back(InterestingVal, RHSVal.second); 788 } 789 790 return !Result.empty(); 791 } 792 793 // Handle the NOT form of XOR. 794 if (I->getOpcode() == Instruction::Xor && 795 isa<ConstantInt>(I->getOperand(1)) && 796 cast<ConstantInt>(I->getOperand(1))->isOne()) { 797 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 798 WantInteger, RecursionSet, CxtI); 799 if (Result.empty()) 800 return false; 801 802 // Invert the known values. 803 for (auto &R : Result) 804 R.first = ConstantExpr::getNot(R.first); 805 806 return true; 807 } 808 809 // Try to simplify some other binary operator values. 810 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 811 if (Preference != WantInteger) 812 return false; 813 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 814 const DataLayout &DL = BO->getModule()->getDataLayout(); 815 PredValueInfoTy LHSVals; 816 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 817 WantInteger, RecursionSet, CxtI); 818 819 // Try to use constant folding to simplify the binary operator. 820 for (const auto &LHSVal : LHSVals) { 821 Constant *V = LHSVal.first; 822 Constant *Folded = 823 ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL); 824 825 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 826 Result.emplace_back(KC, LHSVal.second); 827 } 828 } 829 830 return !Result.empty(); 831 } 832 833 // Handle compare with phi operand, where the PHI is defined in this block. 834 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 835 if (Preference != WantInteger) 836 return false; 837 Type *CmpType = Cmp->getType(); 838 Value *CmpLHS = Cmp->getOperand(0); 839 Value *CmpRHS = Cmp->getOperand(1); 840 CmpInst::Predicate Pred = Cmp->getPredicate(); 841 842 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 843 if (!PN) 844 PN = dyn_cast<PHINode>(CmpRHS); 845 if (PN && PN->getParent() == BB) { 846 const DataLayout &DL = PN->getModule()->getDataLayout(); 847 // We can do this simplification if any comparisons fold to true or false. 848 // See if any do. 849 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 850 BasicBlock *PredBB = PN->getIncomingBlock(i); 851 Value *LHS, *RHS; 852 if (PN == CmpLHS) { 853 LHS = PN->getIncomingValue(i); 854 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 855 } else { 856 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 857 RHS = PN->getIncomingValue(i); 858 } 859 Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL}); 860 if (!Res) { 861 if (!isa<Constant>(RHS)) 862 continue; 863 864 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 865 auto LHSInst = dyn_cast<Instruction>(LHS); 866 if (LHSInst && LHSInst->getParent() == BB) 867 continue; 868 869 LazyValueInfo::Tristate 870 ResT = LVI->getPredicateOnEdge(Pred, LHS, 871 cast<Constant>(RHS), PredBB, BB, 872 CxtI ? CxtI : Cmp); 873 if (ResT == LazyValueInfo::Unknown) 874 continue; 875 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 876 } 877 878 if (Constant *KC = getKnownConstant(Res, WantInteger)) 879 Result.emplace_back(KC, PredBB); 880 } 881 882 return !Result.empty(); 883 } 884 885 // If comparing a live-in value against a constant, see if we know the 886 // live-in value on any predecessors. 887 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 888 Constant *CmpConst = cast<Constant>(CmpRHS); 889 890 if (!isa<Instruction>(CmpLHS) || 891 cast<Instruction>(CmpLHS)->getParent() != BB) { 892 for (BasicBlock *P : predecessors(BB)) { 893 // If the value is known by LazyValueInfo to be a constant in a 894 // predecessor, use that information to try to thread this block. 895 LazyValueInfo::Tristate Res = 896 LVI->getPredicateOnEdge(Pred, CmpLHS, 897 CmpConst, P, BB, CxtI ? CxtI : Cmp); 898 if (Res == LazyValueInfo::Unknown) 899 continue; 900 901 Constant *ResC = ConstantInt::get(CmpType, Res); 902 Result.emplace_back(ResC, P); 903 } 904 905 return !Result.empty(); 906 } 907 908 // InstCombine can fold some forms of constant range checks into 909 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 910 // x as a live-in. 911 { 912 using namespace PatternMatch; 913 914 Value *AddLHS; 915 ConstantInt *AddConst; 916 if (isa<ConstantInt>(CmpConst) && 917 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 918 if (!isa<Instruction>(AddLHS) || 919 cast<Instruction>(AddLHS)->getParent() != BB) { 920 for (BasicBlock *P : predecessors(BB)) { 921 // If the value is known by LazyValueInfo to be a ConstantRange in 922 // a predecessor, use that information to try to thread this 923 // block. 924 ConstantRange CR = LVI->getConstantRangeOnEdge( 925 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 926 // Propagate the range through the addition. 927 CR = CR.add(AddConst->getValue()); 928 929 // Get the range where the compare returns true. 930 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 931 Pred, cast<ConstantInt>(CmpConst)->getValue()); 932 933 Constant *ResC; 934 if (CmpRange.contains(CR)) 935 ResC = ConstantInt::getTrue(CmpType); 936 else if (CmpRange.inverse().contains(CR)) 937 ResC = ConstantInt::getFalse(CmpType); 938 else 939 continue; 940 941 Result.emplace_back(ResC, P); 942 } 943 944 return !Result.empty(); 945 } 946 } 947 } 948 949 // Try to find a constant value for the LHS of a comparison, 950 // and evaluate it statically if we can. 951 PredValueInfoTy LHSVals; 952 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 953 WantInteger, RecursionSet, CxtI); 954 955 for (const auto &LHSVal : LHSVals) { 956 Constant *V = LHSVal.first; 957 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 958 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 959 Result.emplace_back(KC, LHSVal.second); 960 } 961 962 return !Result.empty(); 963 } 964 } 965 966 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 967 // Handle select instructions where at least one operand is a known constant 968 // and we can figure out the condition value for any predecessor block. 969 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 970 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 971 PredValueInfoTy Conds; 972 if ((TrueVal || FalseVal) && 973 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 974 WantInteger, RecursionSet, CxtI)) { 975 for (auto &C : Conds) { 976 Constant *Cond = C.first; 977 978 // Figure out what value to use for the condition. 979 bool KnownCond; 980 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 981 // A known boolean. 982 KnownCond = CI->isOne(); 983 } else { 984 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 985 // Either operand will do, so be sure to pick the one that's a known 986 // constant. 987 // FIXME: Do this more cleverly if both values are known constants? 988 KnownCond = (TrueVal != nullptr); 989 } 990 991 // See if the select has a known constant value for this predecessor. 992 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 993 Result.emplace_back(Val, C.second); 994 } 995 996 return !Result.empty(); 997 } 998 } 999 1000 // If all else fails, see if LVI can figure out a constant value for us. 1001 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 1002 Constant *CI = LVI->getConstant(V, CxtI); 1003 if (Constant *KC = getKnownConstant(CI, Preference)) { 1004 for (BasicBlock *Pred : predecessors(BB)) 1005 Result.emplace_back(KC, Pred); 1006 } 1007 1008 return !Result.empty(); 1009 } 1010 1011 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 1012 /// in an undefined jump, decide which block is best to revector to. 1013 /// 1014 /// Since we can pick an arbitrary destination, we pick the successor with the 1015 /// fewest predecessors. This should reduce the in-degree of the others. 1016 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 1017 Instruction *BBTerm = BB->getTerminator(); 1018 unsigned MinSucc = 0; 1019 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 1020 // Compute the successor with the minimum number of predecessors. 1021 unsigned MinNumPreds = pred_size(TestBB); 1022 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1023 TestBB = BBTerm->getSuccessor(i); 1024 unsigned NumPreds = pred_size(TestBB); 1025 if (NumPreds < MinNumPreds) { 1026 MinSucc = i; 1027 MinNumPreds = NumPreds; 1028 } 1029 } 1030 1031 return MinSucc; 1032 } 1033 1034 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1035 if (!BB->hasAddressTaken()) return false; 1036 1037 // If the block has its address taken, it may be a tree of dead constants 1038 // hanging off of it. These shouldn't keep the block alive. 1039 BlockAddress *BA = BlockAddress::get(BB); 1040 BA->removeDeadConstantUsers(); 1041 return !BA->use_empty(); 1042 } 1043 1044 /// processBlock - If there are any predecessors whose control can be threaded 1045 /// through to a successor, transform them now. 1046 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1047 // If the block is trivially dead, just return and let the caller nuke it. 1048 // This simplifies other transformations. 1049 if (DTU->isBBPendingDeletion(BB) || 1050 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1051 return false; 1052 1053 // If this block has a single predecessor, and if that pred has a single 1054 // successor, merge the blocks. This encourages recursive jump threading 1055 // because now the condition in this block can be threaded through 1056 // predecessors of our predecessor block. 1057 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1058 return true; 1059 1060 if (tryToUnfoldSelectInCurrBB(BB)) 1061 return true; 1062 1063 // Look if we can propagate guards to predecessors. 1064 if (HasGuards && processGuards(BB)) 1065 return true; 1066 1067 // What kind of constant we're looking for. 1068 ConstantPreference Preference = WantInteger; 1069 1070 // Look to see if the terminator is a conditional branch, switch or indirect 1071 // branch, if not we can't thread it. 1072 Value *Condition; 1073 Instruction *Terminator = BB->getTerminator(); 1074 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1075 // Can't thread an unconditional jump. 1076 if (BI->isUnconditional()) return false; 1077 Condition = BI->getCondition(); 1078 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1079 Condition = SI->getCondition(); 1080 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1081 // Can't thread indirect branch with no successors. 1082 if (IB->getNumSuccessors() == 0) return false; 1083 Condition = IB->getAddress()->stripPointerCasts(); 1084 Preference = WantBlockAddress; 1085 } else { 1086 return false; // Must be an invoke or callbr. 1087 } 1088 1089 // Keep track if we constant folded the condition in this invocation. 1090 bool ConstantFolded = false; 1091 1092 // Run constant folding to see if we can reduce the condition to a simple 1093 // constant. 1094 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1095 Value *SimpleVal = 1096 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1097 if (SimpleVal) { 1098 I->replaceAllUsesWith(SimpleVal); 1099 if (isInstructionTriviallyDead(I, TLI)) 1100 I->eraseFromParent(); 1101 Condition = SimpleVal; 1102 ConstantFolded = true; 1103 } 1104 } 1105 1106 // If the terminator is branching on an undef or freeze undef, we can pick any 1107 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1108 auto *FI = dyn_cast<FreezeInst>(Condition); 1109 if (isa<UndefValue>(Condition) || 1110 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1111 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1112 std::vector<DominatorTree::UpdateType> Updates; 1113 1114 // Fold the branch/switch. 1115 Instruction *BBTerm = BB->getTerminator(); 1116 Updates.reserve(BBTerm->getNumSuccessors()); 1117 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1118 if (i == BestSucc) continue; 1119 BasicBlock *Succ = BBTerm->getSuccessor(i); 1120 Succ->removePredecessor(BB, true); 1121 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1122 } 1123 1124 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1125 << "' folding undef terminator: " << *BBTerm << '\n'); 1126 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1127 ++NumFolds; 1128 BBTerm->eraseFromParent(); 1129 DTU->applyUpdatesPermissive(Updates); 1130 if (FI) 1131 FI->eraseFromParent(); 1132 return true; 1133 } 1134 1135 // If the terminator of this block is branching on a constant, simplify the 1136 // terminator to an unconditional branch. This can occur due to threading in 1137 // other blocks. 1138 if (getKnownConstant(Condition, Preference)) { 1139 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1140 << "' folding terminator: " << *BB->getTerminator() 1141 << '\n'); 1142 ++NumFolds; 1143 ConstantFoldTerminator(BB, true, nullptr, DTU); 1144 if (HasProfileData) 1145 BPI->eraseBlock(BB); 1146 return true; 1147 } 1148 1149 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1150 1151 // All the rest of our checks depend on the condition being an instruction. 1152 if (!CondInst) { 1153 // FIXME: Unify this with code below. 1154 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1155 return true; 1156 return ConstantFolded; 1157 } 1158 1159 // Some of the following optimization can safely work on the unfrozen cond. 1160 Value *CondWithoutFreeze = CondInst; 1161 if (auto *FI = dyn_cast<FreezeInst>(CondInst)) 1162 CondWithoutFreeze = FI->getOperand(0); 1163 1164 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) { 1165 // If we're branching on a conditional, LVI might be able to determine 1166 // it's value at the branch instruction. We only handle comparisons 1167 // against a constant at this time. 1168 if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) { 1169 LazyValueInfo::Tristate Ret = 1170 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1171 CondConst, BB->getTerminator(), 1172 /*UseBlockValue=*/false); 1173 if (Ret != LazyValueInfo::Unknown) { 1174 // We can safely replace *some* uses of the CondInst if it has 1175 // exactly one value as returned by LVI. RAUW is incorrect in the 1176 // presence of guards and assumes, that have the `Cond` as the use. This 1177 // is because we use the guards/assume to reason about the `Cond` value 1178 // at the end of block, but RAUW unconditionally replaces all uses 1179 // including the guards/assumes themselves and the uses before the 1180 // guard/assume. 1181 auto *CI = Ret == LazyValueInfo::True ? 1182 ConstantInt::getTrue(CondCmp->getType()) : 1183 ConstantInt::getFalse(CondCmp->getType()); 1184 if (replaceFoldableUses(CondCmp, CI, BB)) 1185 return true; 1186 } 1187 1188 // We did not manage to simplify this branch, try to see whether 1189 // CondCmp depends on a known phi-select pattern. 1190 if (tryToUnfoldSelect(CondCmp, BB)) 1191 return true; 1192 } 1193 } 1194 1195 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1196 if (tryToUnfoldSelect(SI, BB)) 1197 return true; 1198 1199 // Check for some cases that are worth simplifying. Right now we want to look 1200 // for loads that are used by a switch or by the condition for the branch. If 1201 // we see one, check to see if it's partially redundant. If so, insert a PHI 1202 // which can then be used to thread the values. 1203 Value *SimplifyValue = CondWithoutFreeze; 1204 1205 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1206 if (isa<Constant>(CondCmp->getOperand(1))) 1207 SimplifyValue = CondCmp->getOperand(0); 1208 1209 // TODO: There are other places where load PRE would be profitable, such as 1210 // more complex comparisons. 1211 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1212 if (simplifyPartiallyRedundantLoad(LoadI)) 1213 return true; 1214 1215 // Before threading, try to propagate profile data backwards: 1216 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1217 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1218 updatePredecessorProfileMetadata(PN, BB); 1219 1220 // Handle a variety of cases where we are branching on something derived from 1221 // a PHI node in the current block. If we can prove that any predecessors 1222 // compute a predictable value based on a PHI node, thread those predecessors. 1223 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1224 return true; 1225 1226 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1227 // the current block, see if we can simplify. 1228 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze); 1229 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1230 return processBranchOnPHI(PN); 1231 1232 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1233 if (CondInst->getOpcode() == Instruction::Xor && 1234 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1235 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1236 1237 // Search for a stronger dominating condition that can be used to simplify a 1238 // conditional branch leaving BB. 1239 if (processImpliedCondition(BB)) 1240 return true; 1241 1242 return false; 1243 } 1244 1245 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1246 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1247 if (!BI || !BI->isConditional()) 1248 return false; 1249 1250 Value *Cond = BI->getCondition(); 1251 // Assuming that predecessor's branch was taken, if pred's branch condition 1252 // (V) implies Cond, Cond can be either true, undef, or poison. In this case, 1253 // freeze(Cond) is either true or a nondeterministic value. 1254 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true 1255 // without affecting other instructions. 1256 auto *FICond = dyn_cast<FreezeInst>(Cond); 1257 if (FICond && FICond->hasOneUse()) 1258 Cond = FICond->getOperand(0); 1259 else 1260 FICond = nullptr; 1261 1262 BasicBlock *CurrentBB = BB; 1263 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1264 unsigned Iter = 0; 1265 1266 auto &DL = BB->getModule()->getDataLayout(); 1267 1268 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1269 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1270 if (!PBI || !PBI->isConditional()) 1271 return false; 1272 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1273 return false; 1274 1275 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1276 std::optional<bool> Implication = 1277 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1278 1279 // If the branch condition of BB (which is Cond) and CurrentPred are 1280 // exactly the same freeze instruction, Cond can be folded into CondIsTrue. 1281 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) { 1282 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) == 1283 FICond->getOperand(0)) 1284 Implication = CondIsTrue; 1285 } 1286 1287 if (Implication) { 1288 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1289 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1290 RemoveSucc->removePredecessor(BB); 1291 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1292 UncondBI->setDebugLoc(BI->getDebugLoc()); 1293 ++NumFolds; 1294 BI->eraseFromParent(); 1295 if (FICond) 1296 FICond->eraseFromParent(); 1297 1298 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1299 if (HasProfileData) 1300 BPI->eraseBlock(BB); 1301 return true; 1302 } 1303 CurrentBB = CurrentPred; 1304 CurrentPred = CurrentBB->getSinglePredecessor(); 1305 } 1306 1307 return false; 1308 } 1309 1310 /// Return true if Op is an instruction defined in the given block. 1311 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1312 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1313 if (OpInst->getParent() == BB) 1314 return true; 1315 return false; 1316 } 1317 1318 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1319 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1320 /// This is an important optimization that encourages jump threading, and needs 1321 /// to be run interlaced with other jump threading tasks. 1322 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1323 // Don't hack volatile and ordered loads. 1324 if (!LoadI->isUnordered()) return false; 1325 1326 // If the load is defined in a block with exactly one predecessor, it can't be 1327 // partially redundant. 1328 BasicBlock *LoadBB = LoadI->getParent(); 1329 if (LoadBB->getSinglePredecessor()) 1330 return false; 1331 1332 // If the load is defined in an EH pad, it can't be partially redundant, 1333 // because the edges between the invoke and the EH pad cannot have other 1334 // instructions between them. 1335 if (LoadBB->isEHPad()) 1336 return false; 1337 1338 Value *LoadedPtr = LoadI->getOperand(0); 1339 1340 // If the loaded operand is defined in the LoadBB and its not a phi, 1341 // it can't be available in predecessors. 1342 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1343 return false; 1344 1345 // Scan a few instructions up from the load, to see if it is obviously live at 1346 // the entry to its block. 1347 BasicBlock::iterator BBIt(LoadI); 1348 bool IsLoadCSE; 1349 if (Value *AvailableVal = FindAvailableLoadedValue( 1350 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1351 // If the value of the load is locally available within the block, just use 1352 // it. This frequently occurs for reg2mem'd allocas. 1353 1354 if (IsLoadCSE) { 1355 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1356 combineMetadataForCSE(NLoadI, LoadI, false); 1357 }; 1358 1359 // If the returned value is the load itself, replace with poison. This can 1360 // only happen in dead loops. 1361 if (AvailableVal == LoadI) 1362 AvailableVal = PoisonValue::get(LoadI->getType()); 1363 if (AvailableVal->getType() != LoadI->getType()) 1364 AvailableVal = CastInst::CreateBitOrPointerCast( 1365 AvailableVal, LoadI->getType(), "", LoadI); 1366 LoadI->replaceAllUsesWith(AvailableVal); 1367 LoadI->eraseFromParent(); 1368 return true; 1369 } 1370 1371 // Otherwise, if we scanned the whole block and got to the top of the block, 1372 // we know the block is locally transparent to the load. If not, something 1373 // might clobber its value. 1374 if (BBIt != LoadBB->begin()) 1375 return false; 1376 1377 // If all of the loads and stores that feed the value have the same AA tags, 1378 // then we can propagate them onto any newly inserted loads. 1379 AAMDNodes AATags = LoadI->getAAMetadata(); 1380 1381 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1382 1383 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1384 1385 AvailablePredsTy AvailablePreds; 1386 BasicBlock *OneUnavailablePred = nullptr; 1387 SmallVector<LoadInst*, 8> CSELoads; 1388 1389 // If we got here, the loaded value is transparent through to the start of the 1390 // block. Check to see if it is available in any of the predecessor blocks. 1391 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1392 // If we already scanned this predecessor, skip it. 1393 if (!PredsScanned.insert(PredBB).second) 1394 continue; 1395 1396 BBIt = PredBB->end(); 1397 unsigned NumScanedInst = 0; 1398 Value *PredAvailable = nullptr; 1399 // NOTE: We don't CSE load that is volatile or anything stronger than 1400 // unordered, that should have been checked when we entered the function. 1401 assert(LoadI->isUnordered() && 1402 "Attempting to CSE volatile or atomic loads"); 1403 // If this is a load on a phi pointer, phi-translate it and search 1404 // for available load/store to the pointer in predecessors. 1405 Type *AccessTy = LoadI->getType(); 1406 const auto &DL = LoadI->getModule()->getDataLayout(); 1407 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1408 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1409 AATags); 1410 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(), 1411 PredBB, BBIt, DefMaxInstsToScan, 1412 AA, &IsLoadCSE, &NumScanedInst); 1413 1414 // If PredBB has a single predecessor, continue scanning through the 1415 // single predecessor. 1416 BasicBlock *SinglePredBB = PredBB; 1417 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1418 NumScanedInst < DefMaxInstsToScan) { 1419 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1420 if (SinglePredBB) { 1421 BBIt = SinglePredBB->end(); 1422 PredAvailable = findAvailablePtrLoadStore( 1423 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1424 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1425 &NumScanedInst); 1426 } 1427 } 1428 1429 if (!PredAvailable) { 1430 OneUnavailablePred = PredBB; 1431 continue; 1432 } 1433 1434 if (IsLoadCSE) 1435 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1436 1437 // If so, this load is partially redundant. Remember this info so that we 1438 // can create a PHI node. 1439 AvailablePreds.emplace_back(PredBB, PredAvailable); 1440 } 1441 1442 // If the loaded value isn't available in any predecessor, it isn't partially 1443 // redundant. 1444 if (AvailablePreds.empty()) return false; 1445 1446 // Okay, the loaded value is available in at least one (and maybe all!) 1447 // predecessors. If the value is unavailable in more than one unique 1448 // predecessor, we want to insert a merge block for those common predecessors. 1449 // This ensures that we only have to insert one reload, thus not increasing 1450 // code size. 1451 BasicBlock *UnavailablePred = nullptr; 1452 1453 // If the value is unavailable in one of predecessors, we will end up 1454 // inserting a new instruction into them. It is only valid if all the 1455 // instructions before LoadI are guaranteed to pass execution to its 1456 // successor, or if LoadI is safe to speculate. 1457 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1458 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1459 // It requires domination tree analysis, so for this simple case it is an 1460 // overkill. 1461 if (PredsScanned.size() != AvailablePreds.size() && 1462 !isSafeToSpeculativelyExecute(LoadI)) 1463 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1464 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1465 return false; 1466 1467 // If there is exactly one predecessor where the value is unavailable, the 1468 // already computed 'OneUnavailablePred' block is it. If it ends in an 1469 // unconditional branch, we know that it isn't a critical edge. 1470 if (PredsScanned.size() == AvailablePreds.size()+1 && 1471 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1472 UnavailablePred = OneUnavailablePred; 1473 } else if (PredsScanned.size() != AvailablePreds.size()) { 1474 // Otherwise, we had multiple unavailable predecessors or we had a critical 1475 // edge from the one. 1476 SmallVector<BasicBlock*, 8> PredsToSplit; 1477 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1478 1479 for (const auto &AvailablePred : AvailablePreds) 1480 AvailablePredSet.insert(AvailablePred.first); 1481 1482 // Add all the unavailable predecessors to the PredsToSplit list. 1483 for (BasicBlock *P : predecessors(LoadBB)) { 1484 // If the predecessor is an indirect goto, we can't split the edge. 1485 if (isa<IndirectBrInst>(P->getTerminator())) 1486 return false; 1487 1488 if (!AvailablePredSet.count(P)) 1489 PredsToSplit.push_back(P); 1490 } 1491 1492 // Split them out to their own block. 1493 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1494 } 1495 1496 // If the value isn't available in all predecessors, then there will be 1497 // exactly one where it isn't available. Insert a load on that edge and add 1498 // it to the AvailablePreds list. 1499 if (UnavailablePred) { 1500 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1501 "Can't handle critical edge here!"); 1502 LoadInst *NewVal = new LoadInst( 1503 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1504 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1505 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1506 UnavailablePred->getTerminator()); 1507 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1508 if (AATags) 1509 NewVal->setAAMetadata(AATags); 1510 1511 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1512 } 1513 1514 // Now we know that each predecessor of this block has a value in 1515 // AvailablePreds, sort them for efficient access as we're walking the preds. 1516 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1517 1518 // Create a PHI node at the start of the block for the PRE'd load value. 1519 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1520 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1521 &LoadBB->front()); 1522 PN->takeName(LoadI); 1523 PN->setDebugLoc(LoadI->getDebugLoc()); 1524 1525 // Insert new entries into the PHI for each predecessor. A single block may 1526 // have multiple entries here. 1527 for (pred_iterator PI = PB; PI != PE; ++PI) { 1528 BasicBlock *P = *PI; 1529 AvailablePredsTy::iterator I = 1530 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1531 1532 assert(I != AvailablePreds.end() && I->first == P && 1533 "Didn't find entry for predecessor!"); 1534 1535 // If we have an available predecessor but it requires casting, insert the 1536 // cast in the predecessor and use the cast. Note that we have to update the 1537 // AvailablePreds vector as we go so that all of the PHI entries for this 1538 // predecessor use the same bitcast. 1539 Value *&PredV = I->second; 1540 if (PredV->getType() != LoadI->getType()) 1541 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1542 P->getTerminator()); 1543 1544 PN->addIncoming(PredV, I->first); 1545 } 1546 1547 for (LoadInst *PredLoadI : CSELoads) { 1548 combineMetadataForCSE(PredLoadI, LoadI, true); 1549 } 1550 1551 LoadI->replaceAllUsesWith(PN); 1552 LoadI->eraseFromParent(); 1553 1554 return true; 1555 } 1556 1557 /// findMostPopularDest - The specified list contains multiple possible 1558 /// threadable destinations. Pick the one that occurs the most frequently in 1559 /// the list. 1560 static BasicBlock * 1561 findMostPopularDest(BasicBlock *BB, 1562 const SmallVectorImpl<std::pair<BasicBlock *, 1563 BasicBlock *>> &PredToDestList) { 1564 assert(!PredToDestList.empty()); 1565 1566 // Determine popularity. If there are multiple possible destinations, we 1567 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1568 // blocks with known and real destinations to threading undef. We'll handle 1569 // them later if interesting. 1570 MapVector<BasicBlock *, unsigned> DestPopularity; 1571 1572 // Populate DestPopularity with the successors in the order they appear in the 1573 // successor list. This way, we ensure determinism by iterating it in the 1574 // same order in std::max_element below. We map nullptr to 0 so that we can 1575 // return nullptr when PredToDestList contains nullptr only. 1576 DestPopularity[nullptr] = 0; 1577 for (auto *SuccBB : successors(BB)) 1578 DestPopularity[SuccBB] = 0; 1579 1580 for (const auto &PredToDest : PredToDestList) 1581 if (PredToDest.second) 1582 DestPopularity[PredToDest.second]++; 1583 1584 // Find the most popular dest. 1585 auto MostPopular = std::max_element( 1586 DestPopularity.begin(), DestPopularity.end(), llvm::less_second()); 1587 1588 // Okay, we have finally picked the most popular destination. 1589 return MostPopular->first; 1590 } 1591 1592 // Try to evaluate the value of V when the control flows from PredPredBB to 1593 // BB->getSinglePredecessor() and then on to BB. 1594 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1595 BasicBlock *PredPredBB, 1596 Value *V) { 1597 BasicBlock *PredBB = BB->getSinglePredecessor(); 1598 assert(PredBB && "Expected a single predecessor"); 1599 1600 if (Constant *Cst = dyn_cast<Constant>(V)) { 1601 return Cst; 1602 } 1603 1604 // Consult LVI if V is not an instruction in BB or PredBB. 1605 Instruction *I = dyn_cast<Instruction>(V); 1606 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1607 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1608 } 1609 1610 // Look into a PHI argument. 1611 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1612 if (PHI->getParent() == PredBB) 1613 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1614 return nullptr; 1615 } 1616 1617 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1618 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1619 if (CondCmp->getParent() == BB) { 1620 Constant *Op0 = 1621 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1622 Constant *Op1 = 1623 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1624 if (Op0 && Op1) { 1625 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1626 } 1627 } 1628 return nullptr; 1629 } 1630 1631 return nullptr; 1632 } 1633 1634 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1635 ConstantPreference Preference, 1636 Instruction *CxtI) { 1637 // If threading this would thread across a loop header, don't even try to 1638 // thread the edge. 1639 if (LoopHeaders.count(BB)) 1640 return false; 1641 1642 PredValueInfoTy PredValues; 1643 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1644 CxtI)) { 1645 // We don't have known values in predecessors. See if we can thread through 1646 // BB and its sole predecessor. 1647 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1648 } 1649 1650 assert(!PredValues.empty() && 1651 "computeValueKnownInPredecessors returned true with no values"); 1652 1653 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1654 for (const auto &PredValue : PredValues) { 1655 dbgs() << " BB '" << BB->getName() 1656 << "': FOUND condition = " << *PredValue.first 1657 << " for pred '" << PredValue.second->getName() << "'.\n"; 1658 }); 1659 1660 // Decide what we want to thread through. Convert our list of known values to 1661 // a list of known destinations for each pred. This also discards duplicate 1662 // predecessors and keeps track of the undefined inputs (which are represented 1663 // as a null dest in the PredToDestList). 1664 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1665 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1666 1667 BasicBlock *OnlyDest = nullptr; 1668 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1669 Constant *OnlyVal = nullptr; 1670 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1671 1672 for (const auto &PredValue : PredValues) { 1673 BasicBlock *Pred = PredValue.second; 1674 if (!SeenPreds.insert(Pred).second) 1675 continue; // Duplicate predecessor entry. 1676 1677 Constant *Val = PredValue.first; 1678 1679 BasicBlock *DestBB; 1680 if (isa<UndefValue>(Val)) 1681 DestBB = nullptr; 1682 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1683 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1684 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1685 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1686 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1687 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1688 } else { 1689 assert(isa<IndirectBrInst>(BB->getTerminator()) 1690 && "Unexpected terminator"); 1691 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1692 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1693 } 1694 1695 // If we have exactly one destination, remember it for efficiency below. 1696 if (PredToDestList.empty()) { 1697 OnlyDest = DestBB; 1698 OnlyVal = Val; 1699 } else { 1700 if (OnlyDest != DestBB) 1701 OnlyDest = MultipleDestSentinel; 1702 // It possible we have same destination, but different value, e.g. default 1703 // case in switchinst. 1704 if (Val != OnlyVal) 1705 OnlyVal = MultipleVal; 1706 } 1707 1708 // If the predecessor ends with an indirect goto, we can't change its 1709 // destination. 1710 if (isa<IndirectBrInst>(Pred->getTerminator())) 1711 continue; 1712 1713 PredToDestList.emplace_back(Pred, DestBB); 1714 } 1715 1716 // If all edges were unthreadable, we fail. 1717 if (PredToDestList.empty()) 1718 return false; 1719 1720 // If all the predecessors go to a single known successor, we want to fold, 1721 // not thread. By doing so, we do not need to duplicate the current block and 1722 // also miss potential opportunities in case we dont/cant duplicate. 1723 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1724 if (BB->hasNPredecessors(PredToDestList.size())) { 1725 bool SeenFirstBranchToOnlyDest = false; 1726 std::vector <DominatorTree::UpdateType> Updates; 1727 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1728 for (BasicBlock *SuccBB : successors(BB)) { 1729 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1730 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1731 } else { 1732 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1733 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1734 } 1735 } 1736 1737 // Finally update the terminator. 1738 Instruction *Term = BB->getTerminator(); 1739 BranchInst::Create(OnlyDest, Term); 1740 ++NumFolds; 1741 Term->eraseFromParent(); 1742 DTU->applyUpdatesPermissive(Updates); 1743 if (HasProfileData) 1744 BPI->eraseBlock(BB); 1745 1746 // If the condition is now dead due to the removal of the old terminator, 1747 // erase it. 1748 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1749 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1750 CondInst->eraseFromParent(); 1751 // We can safely replace *some* uses of the CondInst if it has 1752 // exactly one value as returned by LVI. RAUW is incorrect in the 1753 // presence of guards and assumes, that have the `Cond` as the use. This 1754 // is because we use the guards/assume to reason about the `Cond` value 1755 // at the end of block, but RAUW unconditionally replaces all uses 1756 // including the guards/assumes themselves and the uses before the 1757 // guard/assume. 1758 else if (OnlyVal && OnlyVal != MultipleVal) 1759 replaceFoldableUses(CondInst, OnlyVal, BB); 1760 } 1761 return true; 1762 } 1763 } 1764 1765 // Determine which is the most common successor. If we have many inputs and 1766 // this block is a switch, we want to start by threading the batch that goes 1767 // to the most popular destination first. If we only know about one 1768 // threadable destination (the common case) we can avoid this. 1769 BasicBlock *MostPopularDest = OnlyDest; 1770 1771 if (MostPopularDest == MultipleDestSentinel) { 1772 // Remove any loop headers from the Dest list, threadEdge conservatively 1773 // won't process them, but we might have other destination that are eligible 1774 // and we still want to process. 1775 erase_if(PredToDestList, 1776 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1777 return LoopHeaders.contains(PredToDest.second); 1778 }); 1779 1780 if (PredToDestList.empty()) 1781 return false; 1782 1783 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1784 } 1785 1786 // Now that we know what the most popular destination is, factor all 1787 // predecessors that will jump to it into a single predecessor. 1788 SmallVector<BasicBlock*, 16> PredsToFactor; 1789 for (const auto &PredToDest : PredToDestList) 1790 if (PredToDest.second == MostPopularDest) { 1791 BasicBlock *Pred = PredToDest.first; 1792 1793 // This predecessor may be a switch or something else that has multiple 1794 // edges to the block. Factor each of these edges by listing them 1795 // according to # occurrences in PredsToFactor. 1796 for (BasicBlock *Succ : successors(Pred)) 1797 if (Succ == BB) 1798 PredsToFactor.push_back(Pred); 1799 } 1800 1801 // If the threadable edges are branching on an undefined value, we get to pick 1802 // the destination that these predecessors should get to. 1803 if (!MostPopularDest) 1804 MostPopularDest = BB->getTerminator()-> 1805 getSuccessor(getBestDestForJumpOnUndef(BB)); 1806 1807 // Ok, try to thread it! 1808 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1809 } 1810 1811 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1812 /// a PHI node (or freeze PHI) in the current block. See if there are any 1813 /// simplifications we can do based on inputs to the phi node. 1814 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1815 BasicBlock *BB = PN->getParent(); 1816 1817 // TODO: We could make use of this to do it once for blocks with common PHI 1818 // values. 1819 SmallVector<BasicBlock*, 1> PredBBs; 1820 PredBBs.resize(1); 1821 1822 // If any of the predecessor blocks end in an unconditional branch, we can 1823 // *duplicate* the conditional branch into that block in order to further 1824 // encourage jump threading and to eliminate cases where we have branch on a 1825 // phi of an icmp (branch on icmp is much better). 1826 // This is still beneficial when a frozen phi is used as the branch condition 1827 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1828 // to br(icmp(freeze ...)). 1829 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1830 BasicBlock *PredBB = PN->getIncomingBlock(i); 1831 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1832 if (PredBr->isUnconditional()) { 1833 PredBBs[0] = PredBB; 1834 // Try to duplicate BB into PredBB. 1835 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1836 return true; 1837 } 1838 } 1839 1840 return false; 1841 } 1842 1843 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1844 /// a xor instruction in the current block. See if there are any 1845 /// simplifications we can do based on inputs to the xor. 1846 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1847 BasicBlock *BB = BO->getParent(); 1848 1849 // If either the LHS or RHS of the xor is a constant, don't do this 1850 // optimization. 1851 if (isa<ConstantInt>(BO->getOperand(0)) || 1852 isa<ConstantInt>(BO->getOperand(1))) 1853 return false; 1854 1855 // If the first instruction in BB isn't a phi, we won't be able to infer 1856 // anything special about any particular predecessor. 1857 if (!isa<PHINode>(BB->front())) 1858 return false; 1859 1860 // If this BB is a landing pad, we won't be able to split the edge into it. 1861 if (BB->isEHPad()) 1862 return false; 1863 1864 // If we have a xor as the branch input to this block, and we know that the 1865 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1866 // the condition into the predecessor and fix that value to true, saving some 1867 // logical ops on that path and encouraging other paths to simplify. 1868 // 1869 // This copies something like this: 1870 // 1871 // BB: 1872 // %X = phi i1 [1], [%X'] 1873 // %Y = icmp eq i32 %A, %B 1874 // %Z = xor i1 %X, %Y 1875 // br i1 %Z, ... 1876 // 1877 // Into: 1878 // BB': 1879 // %Y = icmp ne i32 %A, %B 1880 // br i1 %Y, ... 1881 1882 PredValueInfoTy XorOpValues; 1883 bool isLHS = true; 1884 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1885 WantInteger, BO)) { 1886 assert(XorOpValues.empty()); 1887 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1888 WantInteger, BO)) 1889 return false; 1890 isLHS = false; 1891 } 1892 1893 assert(!XorOpValues.empty() && 1894 "computeValueKnownInPredecessors returned true with no values"); 1895 1896 // Scan the information to see which is most popular: true or false. The 1897 // predecessors can be of the set true, false, or undef. 1898 unsigned NumTrue = 0, NumFalse = 0; 1899 for (const auto &XorOpValue : XorOpValues) { 1900 if (isa<UndefValue>(XorOpValue.first)) 1901 // Ignore undefs for the count. 1902 continue; 1903 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1904 ++NumFalse; 1905 else 1906 ++NumTrue; 1907 } 1908 1909 // Determine which value to split on, true, false, or undef if neither. 1910 ConstantInt *SplitVal = nullptr; 1911 if (NumTrue > NumFalse) 1912 SplitVal = ConstantInt::getTrue(BB->getContext()); 1913 else if (NumTrue != 0 || NumFalse != 0) 1914 SplitVal = ConstantInt::getFalse(BB->getContext()); 1915 1916 // Collect all of the blocks that this can be folded into so that we can 1917 // factor this once and clone it once. 1918 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1919 for (const auto &XorOpValue : XorOpValues) { 1920 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1921 continue; 1922 1923 BlocksToFoldInto.push_back(XorOpValue.second); 1924 } 1925 1926 // If we inferred a value for all of the predecessors, then duplication won't 1927 // help us. However, we can just replace the LHS or RHS with the constant. 1928 if (BlocksToFoldInto.size() == 1929 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1930 if (!SplitVal) { 1931 // If all preds provide undef, just nuke the xor, because it is undef too. 1932 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1933 BO->eraseFromParent(); 1934 } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) { 1935 // If all preds provide 0, replace the xor with the other input. 1936 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1937 BO->eraseFromParent(); 1938 } else { 1939 // If all preds provide 1, set the computed value to 1. 1940 BO->setOperand(!isLHS, SplitVal); 1941 } 1942 1943 return true; 1944 } 1945 1946 // If any of predecessors end with an indirect goto, we can't change its 1947 // destination. 1948 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1949 return isa<IndirectBrInst>(Pred->getTerminator()); 1950 })) 1951 return false; 1952 1953 // Try to duplicate BB into PredBB. 1954 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1955 } 1956 1957 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1958 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1959 /// NewPred using the entries from OldPred (suitably mapped). 1960 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1961 BasicBlock *OldPred, 1962 BasicBlock *NewPred, 1963 DenseMap<Instruction*, Value*> &ValueMap) { 1964 for (PHINode &PN : PHIBB->phis()) { 1965 // Ok, we have a PHI node. Figure out what the incoming value was for the 1966 // DestBlock. 1967 Value *IV = PN.getIncomingValueForBlock(OldPred); 1968 1969 // Remap the value if necessary. 1970 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1971 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1972 if (I != ValueMap.end()) 1973 IV = I->second; 1974 } 1975 1976 PN.addIncoming(IV, NewPred); 1977 } 1978 } 1979 1980 /// Merge basic block BB into its sole predecessor if possible. 1981 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1982 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1983 if (!SinglePred) 1984 return false; 1985 1986 const Instruction *TI = SinglePred->getTerminator(); 1987 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1988 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1989 return false; 1990 1991 // If SinglePred was a loop header, BB becomes one. 1992 if (LoopHeaders.erase(SinglePred)) 1993 LoopHeaders.insert(BB); 1994 1995 LVI->eraseBlock(SinglePred); 1996 MergeBasicBlockIntoOnlyPred(BB, DTU); 1997 1998 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1999 // BB code within one basic block `BB`), we need to invalidate the LVI 2000 // information associated with BB, because the LVI information need not be 2001 // true for all of BB after the merge. For example, 2002 // Before the merge, LVI info and code is as follows: 2003 // SinglePred: <LVI info1 for %p val> 2004 // %y = use of %p 2005 // call @exit() // need not transfer execution to successor. 2006 // assume(%p) // from this point on %p is true 2007 // br label %BB 2008 // BB: <LVI info2 for %p val, i.e. %p is true> 2009 // %x = use of %p 2010 // br label exit 2011 // 2012 // Note that this LVI info for blocks BB and SinglPred is correct for %p 2013 // (info2 and info1 respectively). After the merge and the deletion of the 2014 // LVI info1 for SinglePred. We have the following code: 2015 // BB: <LVI info2 for %p val> 2016 // %y = use of %p 2017 // call @exit() 2018 // assume(%p) 2019 // %x = use of %p <-- LVI info2 is correct from here onwards. 2020 // br label exit 2021 // LVI info2 for BB is incorrect at the beginning of BB. 2022 2023 // Invalidate LVI information for BB if the LVI is not provably true for 2024 // all of BB. 2025 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 2026 LVI->eraseBlock(BB); 2027 return true; 2028 } 2029 2030 /// Update the SSA form. NewBB contains instructions that are copied from BB. 2031 /// ValueMapping maps old values in BB to new ones in NewBB. 2032 void JumpThreadingPass::updateSSA( 2033 BasicBlock *BB, BasicBlock *NewBB, 2034 DenseMap<Instruction *, Value *> &ValueMapping) { 2035 // If there were values defined in BB that are used outside the block, then we 2036 // now have to update all uses of the value to use either the original value, 2037 // the cloned value, or some PHI derived value. This can require arbitrary 2038 // PHI insertion, of which we are prepared to do, clean these up now. 2039 SSAUpdater SSAUpdate; 2040 SmallVector<Use *, 16> UsesToRename; 2041 2042 for (Instruction &I : *BB) { 2043 // Scan all uses of this instruction to see if it is used outside of its 2044 // block, and if so, record them in UsesToRename. 2045 for (Use &U : I.uses()) { 2046 Instruction *User = cast<Instruction>(U.getUser()); 2047 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2048 if (UserPN->getIncomingBlock(U) == BB) 2049 continue; 2050 } else if (User->getParent() == BB) 2051 continue; 2052 2053 UsesToRename.push_back(&U); 2054 } 2055 2056 // If there are no uses outside the block, we're done with this instruction. 2057 if (UsesToRename.empty()) 2058 continue; 2059 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2060 2061 // We found a use of I outside of BB. Rename all uses of I that are outside 2062 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2063 // with the two values we know. 2064 SSAUpdate.Initialize(I.getType(), I.getName()); 2065 SSAUpdate.AddAvailableValue(BB, &I); 2066 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2067 2068 while (!UsesToRename.empty()) 2069 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2070 LLVM_DEBUG(dbgs() << "\n"); 2071 } 2072 } 2073 2074 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2075 /// arguments that come from PredBB. Return the map from the variables in the 2076 /// source basic block to the variables in the newly created basic block. 2077 DenseMap<Instruction *, Value *> 2078 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2079 BasicBlock::iterator BE, BasicBlock *NewBB, 2080 BasicBlock *PredBB) { 2081 // We are going to have to map operands from the source basic block to the new 2082 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2083 // block, evaluate them to account for entry from PredBB. 2084 DenseMap<Instruction *, Value *> ValueMapping; 2085 2086 // Retargets llvm.dbg.value to any renamed variables. 2087 auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool { 2088 auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst); 2089 if (!DbgInstruction) 2090 return false; 2091 2092 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap; 2093 for (auto DbgOperand : DbgInstruction->location_ops()) { 2094 auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand); 2095 if (!DbgOperandInstruction) 2096 continue; 2097 2098 auto I = ValueMapping.find(DbgOperandInstruction); 2099 if (I != ValueMapping.end()) { 2100 OperandsToRemap.insert( 2101 std::pair<Value *, Value *>(DbgOperand, I->second)); 2102 } 2103 } 2104 2105 for (auto &[OldOp, MappedOp] : OperandsToRemap) 2106 DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp); 2107 return true; 2108 }; 2109 2110 // Clone the phi nodes of the source basic block into NewBB. The resulting 2111 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2112 // might need to rewrite the operand of the cloned phi. 2113 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2114 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2115 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2116 ValueMapping[PN] = NewPN; 2117 } 2118 2119 // Clone noalias scope declarations in the threaded block. When threading a 2120 // loop exit, we would otherwise end up with two idential scope declarations 2121 // visible at the same time. 2122 SmallVector<MDNode *> NoAliasScopes; 2123 DenseMap<MDNode *, MDNode *> ClonedScopes; 2124 LLVMContext &Context = PredBB->getContext(); 2125 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2126 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2127 2128 // Clone the non-phi instructions of the source basic block into NewBB, 2129 // keeping track of the mapping and using it to remap operands in the cloned 2130 // instructions. 2131 for (; BI != BE; ++BI) { 2132 Instruction *New = BI->clone(); 2133 New->setName(BI->getName()); 2134 New->insertInto(NewBB, NewBB->end()); 2135 ValueMapping[&*BI] = New; 2136 adaptNoAliasScopes(New, ClonedScopes, Context); 2137 2138 if (RetargetDbgValueIfPossible(New)) 2139 continue; 2140 2141 // Remap operands to patch up intra-block references. 2142 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2143 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2144 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2145 if (I != ValueMapping.end()) 2146 New->setOperand(i, I->second); 2147 } 2148 } 2149 2150 return ValueMapping; 2151 } 2152 2153 /// Attempt to thread through two successive basic blocks. 2154 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2155 Value *Cond) { 2156 // Consider: 2157 // 2158 // PredBB: 2159 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2160 // %tobool = icmp eq i32 %cond, 0 2161 // br i1 %tobool, label %BB, label ... 2162 // 2163 // BB: 2164 // %cmp = icmp eq i32* %var, null 2165 // br i1 %cmp, label ..., label ... 2166 // 2167 // We don't know the value of %var at BB even if we know which incoming edge 2168 // we take to BB. However, once we duplicate PredBB for each of its incoming 2169 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2170 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2171 2172 // Require that BB end with a Branch for simplicity. 2173 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2174 if (!CondBr) 2175 return false; 2176 2177 // BB must have exactly one predecessor. 2178 BasicBlock *PredBB = BB->getSinglePredecessor(); 2179 if (!PredBB) 2180 return false; 2181 2182 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2183 // unconditional branch, we should be merging PredBB and BB instead. For 2184 // simplicity, we don't deal with a switch. 2185 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2186 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2187 return false; 2188 2189 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2190 // PredBB. 2191 if (PredBB->getSinglePredecessor()) 2192 return false; 2193 2194 // Don't thread through PredBB if it contains a successor edge to itself, in 2195 // which case we would infinite loop. Suppose we are threading an edge from 2196 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2197 // successor edge to itself. If we allowed jump threading in this case, we 2198 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2199 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2200 // with another jump threading opportunity from PredBB.thread through PredBB 2201 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2202 // would keep peeling one iteration from PredBB. 2203 if (llvm::is_contained(successors(PredBB), PredBB)) 2204 return false; 2205 2206 // Don't thread across a loop header. 2207 if (LoopHeaders.count(PredBB)) 2208 return false; 2209 2210 // Avoid complication with duplicating EH pads. 2211 if (PredBB->isEHPad()) 2212 return false; 2213 2214 // Find a predecessor that we can thread. For simplicity, we only consider a 2215 // successor edge out of BB to which we thread exactly one incoming edge into 2216 // PredBB. 2217 unsigned ZeroCount = 0; 2218 unsigned OneCount = 0; 2219 BasicBlock *ZeroPred = nullptr; 2220 BasicBlock *OnePred = nullptr; 2221 for (BasicBlock *P : predecessors(PredBB)) { 2222 // If PredPred ends with IndirectBrInst, we can't handle it. 2223 if (isa<IndirectBrInst>(P->getTerminator())) 2224 continue; 2225 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2226 evaluateOnPredecessorEdge(BB, P, Cond))) { 2227 if (CI->isZero()) { 2228 ZeroCount++; 2229 ZeroPred = P; 2230 } else if (CI->isOne()) { 2231 OneCount++; 2232 OnePred = P; 2233 } 2234 } 2235 } 2236 2237 // Disregard complicated cases where we have to thread multiple edges. 2238 BasicBlock *PredPredBB; 2239 if (ZeroCount == 1) { 2240 PredPredBB = ZeroPred; 2241 } else if (OneCount == 1) { 2242 PredPredBB = OnePred; 2243 } else { 2244 return false; 2245 } 2246 2247 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2248 2249 // If threading to the same block as we come from, we would infinite loop. 2250 if (SuccBB == BB) { 2251 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2252 << "' - would thread to self!\n"); 2253 return false; 2254 } 2255 2256 // If threading this would thread across a loop header, don't thread the edge. 2257 // See the comments above findLoopHeaders for justifications and caveats. 2258 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2259 LLVM_DEBUG({ 2260 bool BBIsHeader = LoopHeaders.count(BB); 2261 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2262 dbgs() << " Not threading across " 2263 << (BBIsHeader ? "loop header BB '" : "block BB '") 2264 << BB->getName() << "' to dest " 2265 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2266 << SuccBB->getName() 2267 << "' - it might create an irreducible loop!\n"; 2268 }); 2269 return false; 2270 } 2271 2272 // Compute the cost of duplicating BB and PredBB. 2273 unsigned BBCost = getJumpThreadDuplicationCost( 2274 TTI, BB, BB->getTerminator(), BBDupThreshold); 2275 unsigned PredBBCost = getJumpThreadDuplicationCost( 2276 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold); 2277 2278 // Give up if costs are too high. We need to check BBCost and PredBBCost 2279 // individually before checking their sum because getJumpThreadDuplicationCost 2280 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2281 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2282 BBCost + PredBBCost > BBDupThreshold) { 2283 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2284 << "' - Cost is too high: " << PredBBCost 2285 << " for PredBB, " << BBCost << "for BB\n"); 2286 return false; 2287 } 2288 2289 // Now we are ready to duplicate PredBB. 2290 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2291 return true; 2292 } 2293 2294 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2295 BasicBlock *PredBB, 2296 BasicBlock *BB, 2297 BasicBlock *SuccBB) { 2298 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2299 << BB->getName() << "'\n"); 2300 2301 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2302 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2303 2304 BasicBlock *NewBB = 2305 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2306 PredBB->getParent(), PredBB); 2307 NewBB->moveAfter(PredBB); 2308 2309 // Set the block frequency of NewBB. 2310 if (HasProfileData) { 2311 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2312 BPI->getEdgeProbability(PredPredBB, PredBB); 2313 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2314 } 2315 2316 // We are going to have to map operands from the original BB block to the new 2317 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2318 // to account for entry from PredPredBB. 2319 DenseMap<Instruction *, Value *> ValueMapping = 2320 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2321 2322 // Copy the edge probabilities from PredBB to NewBB. 2323 if (HasProfileData) 2324 BPI->copyEdgeProbabilities(PredBB, NewBB); 2325 2326 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2327 // This eliminates predecessors from PredPredBB, which requires us to simplify 2328 // any PHI nodes in PredBB. 2329 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2330 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2331 if (PredPredTerm->getSuccessor(i) == PredBB) { 2332 PredBB->removePredecessor(PredPredBB, true); 2333 PredPredTerm->setSuccessor(i, NewBB); 2334 } 2335 2336 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2337 ValueMapping); 2338 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2339 ValueMapping); 2340 2341 DTU->applyUpdatesPermissive( 2342 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2343 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2344 {DominatorTree::Insert, PredPredBB, NewBB}, 2345 {DominatorTree::Delete, PredPredBB, PredBB}}); 2346 2347 updateSSA(PredBB, NewBB, ValueMapping); 2348 2349 // Clean up things like PHI nodes with single operands, dead instructions, 2350 // etc. 2351 SimplifyInstructionsInBlock(NewBB, TLI); 2352 SimplifyInstructionsInBlock(PredBB, TLI); 2353 2354 SmallVector<BasicBlock *, 1> PredsToFactor; 2355 PredsToFactor.push_back(NewBB); 2356 threadEdge(BB, PredsToFactor, SuccBB); 2357 } 2358 2359 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2360 bool JumpThreadingPass::tryThreadEdge( 2361 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2362 BasicBlock *SuccBB) { 2363 // If threading to the same block as we come from, we would infinite loop. 2364 if (SuccBB == BB) { 2365 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2366 << "' - would thread to self!\n"); 2367 return false; 2368 } 2369 2370 // If threading this would thread across a loop header, don't thread the edge. 2371 // See the comments above findLoopHeaders for justifications and caveats. 2372 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2373 LLVM_DEBUG({ 2374 bool BBIsHeader = LoopHeaders.count(BB); 2375 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2376 dbgs() << " Not threading across " 2377 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2378 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2379 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2380 }); 2381 return false; 2382 } 2383 2384 unsigned JumpThreadCost = getJumpThreadDuplicationCost( 2385 TTI, BB, BB->getTerminator(), BBDupThreshold); 2386 if (JumpThreadCost > BBDupThreshold) { 2387 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2388 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2389 return false; 2390 } 2391 2392 threadEdge(BB, PredBBs, SuccBB); 2393 return true; 2394 } 2395 2396 /// threadEdge - We have decided that it is safe and profitable to factor the 2397 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2398 /// across BB. Transform the IR to reflect this change. 2399 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2400 const SmallVectorImpl<BasicBlock *> &PredBBs, 2401 BasicBlock *SuccBB) { 2402 assert(SuccBB != BB && "Don't create an infinite loop"); 2403 2404 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2405 "Don't thread across loop headers"); 2406 2407 // And finally, do it! Start by factoring the predecessors if needed. 2408 BasicBlock *PredBB; 2409 if (PredBBs.size() == 1) 2410 PredBB = PredBBs[0]; 2411 else { 2412 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2413 << " common predecessors.\n"); 2414 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2415 } 2416 2417 // And finally, do it! 2418 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2419 << "' to '" << SuccBB->getName() 2420 << ", across block:\n " << *BB << "\n"); 2421 2422 LVI->threadEdge(PredBB, BB, SuccBB); 2423 2424 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2425 BB->getName()+".thread", 2426 BB->getParent(), BB); 2427 NewBB->moveAfter(PredBB); 2428 2429 // Set the block frequency of NewBB. 2430 if (HasProfileData) { 2431 auto NewBBFreq = 2432 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2433 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2434 } 2435 2436 // Copy all the instructions from BB to NewBB except the terminator. 2437 DenseMap<Instruction *, Value *> ValueMapping = 2438 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2439 2440 // We didn't copy the terminator from BB over to NewBB, because there is now 2441 // an unconditional jump to SuccBB. Insert the unconditional jump. 2442 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2443 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2444 2445 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2446 // PHI nodes for NewBB now. 2447 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2448 2449 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2450 // eliminates predecessors from BB, which requires us to simplify any PHI 2451 // nodes in BB. 2452 Instruction *PredTerm = PredBB->getTerminator(); 2453 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2454 if (PredTerm->getSuccessor(i) == BB) { 2455 BB->removePredecessor(PredBB, true); 2456 PredTerm->setSuccessor(i, NewBB); 2457 } 2458 2459 // Enqueue required DT updates. 2460 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2461 {DominatorTree::Insert, PredBB, NewBB}, 2462 {DominatorTree::Delete, PredBB, BB}}); 2463 2464 updateSSA(BB, NewBB, ValueMapping); 2465 2466 // At this point, the IR is fully up to date and consistent. Do a quick scan 2467 // over the new instructions and zap any that are constants or dead. This 2468 // frequently happens because of phi translation. 2469 SimplifyInstructionsInBlock(NewBB, TLI); 2470 2471 // Update the edge weight from BB to SuccBB, which should be less than before. 2472 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2473 2474 // Threaded an edge! 2475 ++NumThreads; 2476 } 2477 2478 /// Create a new basic block that will be the predecessor of BB and successor of 2479 /// all blocks in Preds. When profile data is available, update the frequency of 2480 /// this new block. 2481 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2482 ArrayRef<BasicBlock *> Preds, 2483 const char *Suffix) { 2484 SmallVector<BasicBlock *, 2> NewBBs; 2485 2486 // Collect the frequencies of all predecessors of BB, which will be used to 2487 // update the edge weight of the result of splitting predecessors. 2488 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2489 if (HasProfileData) 2490 for (auto *Pred : Preds) 2491 FreqMap.insert(std::make_pair( 2492 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2493 2494 // In the case when BB is a LandingPad block we create 2 new predecessors 2495 // instead of just one. 2496 if (BB->isLandingPad()) { 2497 std::string NewName = std::string(Suffix) + ".split-lp"; 2498 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2499 } else { 2500 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2501 } 2502 2503 std::vector<DominatorTree::UpdateType> Updates; 2504 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2505 for (auto *NewBB : NewBBs) { 2506 BlockFrequency NewBBFreq(0); 2507 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2508 for (auto *Pred : predecessors(NewBB)) { 2509 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2510 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2511 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2512 NewBBFreq += FreqMap.lookup(Pred); 2513 } 2514 if (HasProfileData) // Apply the summed frequency to NewBB. 2515 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2516 } 2517 2518 DTU->applyUpdatesPermissive(Updates); 2519 return NewBBs[0]; 2520 } 2521 2522 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2523 const Instruction *TI = BB->getTerminator(); 2524 assert(TI->getNumSuccessors() > 1 && "not a split"); 2525 return hasValidBranchWeightMD(*TI); 2526 } 2527 2528 /// Update the block frequency of BB and branch weight and the metadata on the 2529 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2530 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2531 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2532 BasicBlock *BB, 2533 BasicBlock *NewBB, 2534 BasicBlock *SuccBB) { 2535 if (!HasProfileData) 2536 return; 2537 2538 assert(BFI && BPI && "BFI & BPI should have been created here"); 2539 2540 // As the edge from PredBB to BB is deleted, we have to update the block 2541 // frequency of BB. 2542 auto BBOrigFreq = BFI->getBlockFreq(BB); 2543 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2544 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2545 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2546 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2547 2548 // Collect updated outgoing edges' frequencies from BB and use them to update 2549 // edge probabilities. 2550 SmallVector<uint64_t, 4> BBSuccFreq; 2551 for (BasicBlock *Succ : successors(BB)) { 2552 auto SuccFreq = (Succ == SuccBB) 2553 ? BB2SuccBBFreq - NewBBFreq 2554 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2555 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2556 } 2557 2558 uint64_t MaxBBSuccFreq = 2559 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2560 2561 SmallVector<BranchProbability, 4> BBSuccProbs; 2562 if (MaxBBSuccFreq == 0) 2563 BBSuccProbs.assign(BBSuccFreq.size(), 2564 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2565 else { 2566 for (uint64_t Freq : BBSuccFreq) 2567 BBSuccProbs.push_back( 2568 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2569 // Normalize edge probabilities so that they sum up to one. 2570 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2571 BBSuccProbs.end()); 2572 } 2573 2574 // Update edge probabilities in BPI. 2575 BPI->setEdgeProbability(BB, BBSuccProbs); 2576 2577 // Update the profile metadata as well. 2578 // 2579 // Don't do this if the profile of the transformed blocks was statically 2580 // estimated. (This could occur despite the function having an entry 2581 // frequency in completely cold parts of the CFG.) 2582 // 2583 // In this case we don't want to suggest to subsequent passes that the 2584 // calculated weights are fully consistent. Consider this graph: 2585 // 2586 // check_1 2587 // 50% / | 2588 // eq_1 | 50% 2589 // \ | 2590 // check_2 2591 // 50% / | 2592 // eq_2 | 50% 2593 // \ | 2594 // check_3 2595 // 50% / | 2596 // eq_3 | 50% 2597 // \ | 2598 // 2599 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2600 // the overall probabilities are inconsistent; the total probability that the 2601 // value is either 1, 2 or 3 is 150%. 2602 // 2603 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2604 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2605 // the loop exit edge. Then based solely on static estimation we would assume 2606 // the loop was extremely hot. 2607 // 2608 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2609 // shouldn't make edges extremely likely or unlikely based solely on static 2610 // estimation. 2611 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2612 SmallVector<uint32_t, 4> Weights; 2613 for (auto Prob : BBSuccProbs) 2614 Weights.push_back(Prob.getNumerator()); 2615 2616 auto TI = BB->getTerminator(); 2617 TI->setMetadata( 2618 LLVMContext::MD_prof, 2619 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2620 } 2621 } 2622 2623 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2624 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2625 /// If we can duplicate the contents of BB up into PredBB do so now, this 2626 /// improves the odds that the branch will be on an analyzable instruction like 2627 /// a compare. 2628 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2629 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2630 assert(!PredBBs.empty() && "Can't handle an empty set"); 2631 2632 // If BB is a loop header, then duplicating this block outside the loop would 2633 // cause us to transform this into an irreducible loop, don't do this. 2634 // See the comments above findLoopHeaders for justifications and caveats. 2635 if (LoopHeaders.count(BB)) { 2636 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2637 << "' into predecessor block '" << PredBBs[0]->getName() 2638 << "' - it might create an irreducible loop!\n"); 2639 return false; 2640 } 2641 2642 unsigned DuplicationCost = getJumpThreadDuplicationCost( 2643 TTI, BB, BB->getTerminator(), BBDupThreshold); 2644 if (DuplicationCost > BBDupThreshold) { 2645 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2646 << "' - Cost is too high: " << DuplicationCost << "\n"); 2647 return false; 2648 } 2649 2650 // And finally, do it! Start by factoring the predecessors if needed. 2651 std::vector<DominatorTree::UpdateType> Updates; 2652 BasicBlock *PredBB; 2653 if (PredBBs.size() == 1) 2654 PredBB = PredBBs[0]; 2655 else { 2656 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2657 << " common predecessors.\n"); 2658 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2659 } 2660 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2661 2662 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2663 // of PredBB. 2664 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2665 << "' into end of '" << PredBB->getName() 2666 << "' to eliminate branch on phi. Cost: " 2667 << DuplicationCost << " block is:" << *BB << "\n"); 2668 2669 // Unless PredBB ends with an unconditional branch, split the edge so that we 2670 // can just clone the bits from BB into the end of the new PredBB. 2671 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2672 2673 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2674 BasicBlock *OldPredBB = PredBB; 2675 PredBB = SplitEdge(OldPredBB, BB); 2676 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2677 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2678 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2679 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2680 } 2681 2682 // We are going to have to map operands from the original BB block into the 2683 // PredBB block. Evaluate PHI nodes in BB. 2684 DenseMap<Instruction*, Value*> ValueMapping; 2685 2686 BasicBlock::iterator BI = BB->begin(); 2687 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2688 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2689 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2690 // mapping and using it to remap operands in the cloned instructions. 2691 for (; BI != BB->end(); ++BI) { 2692 Instruction *New = BI->clone(); 2693 2694 // Remap operands to patch up intra-block references. 2695 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2696 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2697 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2698 if (I != ValueMapping.end()) 2699 New->setOperand(i, I->second); 2700 } 2701 2702 // If this instruction can be simplified after the operands are updated, 2703 // just use the simplified value instead. This frequently happens due to 2704 // phi translation. 2705 if (Value *IV = simplifyInstruction( 2706 New, 2707 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2708 ValueMapping[&*BI] = IV; 2709 if (!New->mayHaveSideEffects()) { 2710 New->deleteValue(); 2711 New = nullptr; 2712 } 2713 } else { 2714 ValueMapping[&*BI] = New; 2715 } 2716 if (New) { 2717 // Otherwise, insert the new instruction into the block. 2718 New->setName(BI->getName()); 2719 New->insertInto(PredBB, OldPredBranch->getIterator()); 2720 // Update Dominance from simplified New instruction operands. 2721 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2722 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2723 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2724 } 2725 } 2726 2727 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2728 // add entries to the PHI nodes for branch from PredBB now. 2729 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2730 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2731 ValueMapping); 2732 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2733 ValueMapping); 2734 2735 updateSSA(BB, PredBB, ValueMapping); 2736 2737 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2738 // that we nuked. 2739 BB->removePredecessor(PredBB, true); 2740 2741 // Remove the unconditional branch at the end of the PredBB block. 2742 OldPredBranch->eraseFromParent(); 2743 if (HasProfileData) 2744 BPI->copyEdgeProbabilities(BB, PredBB); 2745 DTU->applyUpdatesPermissive(Updates); 2746 2747 ++NumDupes; 2748 return true; 2749 } 2750 2751 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2752 // a Select instruction in Pred. BB has other predecessors and SI is used in 2753 // a PHI node in BB. SI has no other use. 2754 // A new basic block, NewBB, is created and SI is converted to compare and 2755 // conditional branch. SI is erased from parent. 2756 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2757 SelectInst *SI, PHINode *SIUse, 2758 unsigned Idx) { 2759 // Expand the select. 2760 // 2761 // Pred -- 2762 // | v 2763 // | NewBB 2764 // | | 2765 // |----- 2766 // v 2767 // BB 2768 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2769 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2770 BB->getParent(), BB); 2771 // Move the unconditional branch to NewBB. 2772 PredTerm->removeFromParent(); 2773 PredTerm->insertInto(NewBB, NewBB->end()); 2774 // Create a conditional branch and update PHI nodes. 2775 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2776 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc()); 2777 BI->copyMetadata(*SI, {LLVMContext::MD_prof}); 2778 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2779 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2780 // Set the block frequency of NewBB. 2781 if (HasProfileData) { 2782 uint64_t TrueWeight, FalseWeight; 2783 if (extractBranchWeights(*SI, TrueWeight, FalseWeight) && 2784 (TrueWeight + FalseWeight) != 0) { 2785 SmallVector<BranchProbability, 2> BP; 2786 BP.emplace_back(BranchProbability::getBranchProbability( 2787 TrueWeight, TrueWeight + FalseWeight)); 2788 BP.emplace_back(BranchProbability::getBranchProbability( 2789 FalseWeight, TrueWeight + FalseWeight)); 2790 BPI->setEdgeProbability(Pred, BP); 2791 } 2792 2793 auto NewBBFreq = 2794 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, NewBB); 2795 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2796 } 2797 2798 // The select is now dead. 2799 SI->eraseFromParent(); 2800 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2801 {DominatorTree::Insert, Pred, NewBB}}); 2802 2803 // Update any other PHI nodes in BB. 2804 for (BasicBlock::iterator BI = BB->begin(); 2805 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2806 if (Phi != SIUse) 2807 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2808 } 2809 2810 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2811 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2812 2813 if (!CondPHI || CondPHI->getParent() != BB) 2814 return false; 2815 2816 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2817 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2818 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2819 2820 // The second and third condition can be potentially relaxed. Currently 2821 // the conditions help to simplify the code and allow us to reuse existing 2822 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2823 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2824 continue; 2825 2826 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2827 if (!PredTerm || !PredTerm->isUnconditional()) 2828 continue; 2829 2830 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2831 return true; 2832 } 2833 return false; 2834 } 2835 2836 /// tryToUnfoldSelect - Look for blocks of the form 2837 /// bb1: 2838 /// %a = select 2839 /// br bb2 2840 /// 2841 /// bb2: 2842 /// %p = phi [%a, %bb1] ... 2843 /// %c = icmp %p 2844 /// br i1 %c 2845 /// 2846 /// And expand the select into a branch structure if one of its arms allows %c 2847 /// to be folded. This later enables threading from bb1 over bb2. 2848 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2849 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2850 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2851 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2852 2853 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2854 CondLHS->getParent() != BB) 2855 return false; 2856 2857 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2858 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2859 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2860 2861 // Look if one of the incoming values is a select in the corresponding 2862 // predecessor. 2863 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2864 continue; 2865 2866 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2867 if (!PredTerm || !PredTerm->isUnconditional()) 2868 continue; 2869 2870 // Now check if one of the select values would allow us to constant fold the 2871 // terminator in BB. We don't do the transform if both sides fold, those 2872 // cases will be threaded in any case. 2873 LazyValueInfo::Tristate LHSFolds = 2874 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2875 CondRHS, Pred, BB, CondCmp); 2876 LazyValueInfo::Tristate RHSFolds = 2877 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2878 CondRHS, Pred, BB, CondCmp); 2879 if ((LHSFolds != LazyValueInfo::Unknown || 2880 RHSFolds != LazyValueInfo::Unknown) && 2881 LHSFolds != RHSFolds) { 2882 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2883 return true; 2884 } 2885 } 2886 return false; 2887 } 2888 2889 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2890 /// same BB in the form 2891 /// bb: 2892 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2893 /// %s = select %p, trueval, falseval 2894 /// 2895 /// or 2896 /// 2897 /// bb: 2898 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2899 /// %c = cmp %p, 0 2900 /// %s = select %c, trueval, falseval 2901 /// 2902 /// And expand the select into a branch structure. This later enables 2903 /// jump-threading over bb in this pass. 2904 /// 2905 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2906 /// select if the associated PHI has at least one constant. If the unfolded 2907 /// select is not jump-threaded, it will be folded again in the later 2908 /// optimizations. 2909 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2910 // This transform would reduce the quality of msan diagnostics. 2911 // Disable this transform under MemorySanitizer. 2912 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2913 return false; 2914 2915 // If threading this would thread across a loop header, don't thread the edge. 2916 // See the comments above findLoopHeaders for justifications and caveats. 2917 if (LoopHeaders.count(BB)) 2918 return false; 2919 2920 for (BasicBlock::iterator BI = BB->begin(); 2921 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2922 // Look for a Phi having at least one constant incoming value. 2923 if (llvm::all_of(PN->incoming_values(), 2924 [](Value *V) { return !isa<ConstantInt>(V); })) 2925 continue; 2926 2927 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2928 using namespace PatternMatch; 2929 2930 // Check if SI is in BB and use V as condition. 2931 if (SI->getParent() != BB) 2932 return false; 2933 Value *Cond = SI->getCondition(); 2934 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2935 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2936 }; 2937 2938 SelectInst *SI = nullptr; 2939 for (Use &U : PN->uses()) { 2940 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2941 // Look for a ICmp in BB that compares PN with a constant and is the 2942 // condition of a Select. 2943 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2944 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2945 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2946 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2947 SI = SelectI; 2948 break; 2949 } 2950 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2951 // Look for a Select in BB that uses PN as condition. 2952 if (isUnfoldCandidate(SelectI, U.get())) { 2953 SI = SelectI; 2954 break; 2955 } 2956 } 2957 } 2958 2959 if (!SI) 2960 continue; 2961 // Expand the select. 2962 Value *Cond = SI->getCondition(); 2963 if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI)) 2964 Cond = new FreezeInst(Cond, "cond.fr", SI); 2965 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 2966 BasicBlock *SplitBB = SI->getParent(); 2967 BasicBlock *NewBB = Term->getParent(); 2968 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2969 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2970 NewPN->addIncoming(SI->getFalseValue(), BB); 2971 SI->replaceAllUsesWith(NewPN); 2972 SI->eraseFromParent(); 2973 // NewBB and SplitBB are newly created blocks which require insertion. 2974 std::vector<DominatorTree::UpdateType> Updates; 2975 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2976 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2977 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2978 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2979 // BB's successors were moved to SplitBB, update DTU accordingly. 2980 for (auto *Succ : successors(SplitBB)) { 2981 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2982 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2983 } 2984 DTU->applyUpdatesPermissive(Updates); 2985 return true; 2986 } 2987 return false; 2988 } 2989 2990 /// Try to propagate a guard from the current BB into one of its predecessors 2991 /// in case if another branch of execution implies that the condition of this 2992 /// guard is always true. Currently we only process the simplest case that 2993 /// looks like: 2994 /// 2995 /// Start: 2996 /// %cond = ... 2997 /// br i1 %cond, label %T1, label %F1 2998 /// T1: 2999 /// br label %Merge 3000 /// F1: 3001 /// br label %Merge 3002 /// Merge: 3003 /// %condGuard = ... 3004 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 3005 /// 3006 /// And cond either implies condGuard or !condGuard. In this case all the 3007 /// instructions before the guard can be duplicated in both branches, and the 3008 /// guard is then threaded to one of them. 3009 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 3010 using namespace PatternMatch; 3011 3012 // We only want to deal with two predecessors. 3013 BasicBlock *Pred1, *Pred2; 3014 auto PI = pred_begin(BB), PE = pred_end(BB); 3015 if (PI == PE) 3016 return false; 3017 Pred1 = *PI++; 3018 if (PI == PE) 3019 return false; 3020 Pred2 = *PI++; 3021 if (PI != PE) 3022 return false; 3023 if (Pred1 == Pred2) 3024 return false; 3025 3026 // Try to thread one of the guards of the block. 3027 // TODO: Look up deeper than to immediate predecessor? 3028 auto *Parent = Pred1->getSinglePredecessor(); 3029 if (!Parent || Parent != Pred2->getSinglePredecessor()) 3030 return false; 3031 3032 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 3033 for (auto &I : *BB) 3034 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 3035 return true; 3036 3037 return false; 3038 } 3039 3040 /// Try to propagate the guard from BB which is the lower block of a diamond 3041 /// to one of its branches, in case if diamond's condition implies guard's 3042 /// condition. 3043 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 3044 BranchInst *BI) { 3045 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 3046 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 3047 Value *GuardCond = Guard->getArgOperand(0); 3048 Value *BranchCond = BI->getCondition(); 3049 BasicBlock *TrueDest = BI->getSuccessor(0); 3050 BasicBlock *FalseDest = BI->getSuccessor(1); 3051 3052 auto &DL = BB->getModule()->getDataLayout(); 3053 bool TrueDestIsSafe = false; 3054 bool FalseDestIsSafe = false; 3055 3056 // True dest is safe if BranchCond => GuardCond. 3057 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3058 if (Impl && *Impl) 3059 TrueDestIsSafe = true; 3060 else { 3061 // False dest is safe if !BranchCond => GuardCond. 3062 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3063 if (Impl && *Impl) 3064 FalseDestIsSafe = true; 3065 } 3066 3067 if (!TrueDestIsSafe && !FalseDestIsSafe) 3068 return false; 3069 3070 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3071 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3072 3073 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3074 Instruction *AfterGuard = Guard->getNextNode(); 3075 unsigned Cost = 3076 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold); 3077 if (Cost > BBDupThreshold) 3078 return false; 3079 // Duplicate all instructions before the guard and the guard itself to the 3080 // branch where implication is not proved. 3081 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3082 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3083 assert(GuardedBlock && "Could not create the guarded block?"); 3084 // Duplicate all instructions before the guard in the unguarded branch. 3085 // Since we have successfully duplicated the guarded block and this block 3086 // has fewer instructions, we expect it to succeed. 3087 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3088 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3089 assert(UnguardedBlock && "Could not create the unguarded block?"); 3090 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3091 << GuardedBlock->getName() << "\n"); 3092 // Some instructions before the guard may still have uses. For them, we need 3093 // to create Phi nodes merging their copies in both guarded and unguarded 3094 // branches. Those instructions that have no uses can be just removed. 3095 SmallVector<Instruction *, 4> ToRemove; 3096 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3097 if (!isa<PHINode>(&*BI)) 3098 ToRemove.push_back(&*BI); 3099 3100 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3101 assert(InsertionPoint && "Empty block?"); 3102 // Substitute with Phis & remove. 3103 for (auto *Inst : reverse(ToRemove)) { 3104 if (!Inst->use_empty()) { 3105 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3106 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3107 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3108 NewPN->insertBefore(InsertionPoint); 3109 Inst->replaceAllUsesWith(NewPN); 3110 } 3111 Inst->eraseFromParent(); 3112 } 3113 return true; 3114 } 3115