1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/PassManager.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/BlockFrequency.h" 64 #include "llvm/Support/BranchProbability.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar.h" 70 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 71 #include "llvm/Transforms/Utils/Cloning.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/SSAUpdater.h" 74 #include "llvm/Transforms/Utils/ValueMapper.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <memory> 81 #include <utility> 82 83 using namespace llvm; 84 using namespace jumpthreading; 85 86 #define DEBUG_TYPE "jump-threading" 87 88 STATISTIC(NumThreads, "Number of jumps threaded"); 89 STATISTIC(NumFolds, "Number of terminators folded"); 90 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 91 92 static cl::opt<unsigned> 93 BBDuplicateThreshold("jump-threading-threshold", 94 cl::desc("Max block size to duplicate for jump threading"), 95 cl::init(6), cl::Hidden); 96 97 static cl::opt<unsigned> 98 ImplicationSearchThreshold( 99 "jump-threading-implication-search-threshold", 100 cl::desc("The number of predecessors to search for a stronger " 101 "condition to use to thread over a weaker condition"), 102 cl::init(3), cl::Hidden); 103 104 static cl::opt<bool> PrintLVIAfterJumpThreading( 105 "print-lvi-after-jump-threading", 106 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 107 cl::Hidden); 108 109 static cl::opt<bool> JumpThreadingFreezeSelectCond( 110 "jump-threading-freeze-select-cond", 111 cl::desc("Freeze the condition when unfolding select"), cl::init(false), 112 cl::Hidden); 113 114 static cl::opt<bool> ThreadAcrossLoopHeaders( 115 "jump-threading-across-loop-headers", 116 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 117 cl::init(false), cl::Hidden); 118 119 120 namespace { 121 122 /// This pass performs 'jump threading', which looks at blocks that have 123 /// multiple predecessors and multiple successors. If one or more of the 124 /// predecessors of the block can be proven to always jump to one of the 125 /// successors, we forward the edge from the predecessor to the successor by 126 /// duplicating the contents of this block. 127 /// 128 /// An example of when this can occur is code like this: 129 /// 130 /// if () { ... 131 /// X = 4; 132 /// } 133 /// if (X < 3) { 134 /// 135 /// In this case, the unconditional branch at the end of the first if can be 136 /// revectored to the false side of the second if. 137 class JumpThreading : public FunctionPass { 138 JumpThreadingPass Impl; 139 140 public: 141 static char ID; // Pass identification 142 143 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1) 144 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) { 145 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 146 } 147 148 bool runOnFunction(Function &F) override; 149 150 void getAnalysisUsage(AnalysisUsage &AU) const override { 151 AU.addRequired<DominatorTreeWrapperPass>(); 152 AU.addPreserved<DominatorTreeWrapperPass>(); 153 AU.addRequired<AAResultsWrapperPass>(); 154 AU.addRequired<LazyValueInfoWrapperPass>(); 155 AU.addPreserved<LazyValueInfoWrapperPass>(); 156 AU.addPreserved<GlobalsAAWrapperPass>(); 157 AU.addRequired<TargetLibraryInfoWrapperPass>(); 158 AU.addRequired<TargetTransformInfoWrapperPass>(); 159 } 160 161 void releaseMemory() override { Impl.releaseMemory(); } 162 }; 163 164 } // end anonymous namespace 165 166 char JumpThreading::ID = 0; 167 168 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 169 "Jump Threading", false, false) 170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 172 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 173 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 174 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 175 "Jump Threading", false, false) 176 177 // Public interface to the Jump Threading pass 178 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) { 179 return new JumpThreading(InsertFr, Threshold); 180 } 181 182 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) { 183 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr; 184 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 185 } 186 187 // Update branch probability information according to conditional 188 // branch probability. This is usually made possible for cloned branches 189 // in inline instances by the context specific profile in the caller. 190 // For instance, 191 // 192 // [Block PredBB] 193 // [Branch PredBr] 194 // if (t) { 195 // Block A; 196 // } else { 197 // Block B; 198 // } 199 // 200 // [Block BB] 201 // cond = PN([true, %A], [..., %B]); // PHI node 202 // [Branch CondBr] 203 // if (cond) { 204 // ... // P(cond == true) = 1% 205 // } 206 // 207 // Here we know that when block A is taken, cond must be true, which means 208 // P(cond == true | A) = 1 209 // 210 // Given that P(cond == true) = P(cond == true | A) * P(A) + 211 // P(cond == true | B) * P(B) 212 // we get: 213 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 214 // 215 // which gives us: 216 // P(A) is less than P(cond == true), i.e. 217 // P(t == true) <= P(cond == true) 218 // 219 // In other words, if we know P(cond == true) is unlikely, we know 220 // that P(t == true) is also unlikely. 221 // 222 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 223 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 224 if (!CondBr) 225 return; 226 227 uint64_t TrueWeight, FalseWeight; 228 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 229 return; 230 231 if (TrueWeight + FalseWeight == 0) 232 // Zero branch_weights do not give a hint for getting branch probabilities. 233 // Technically it would result in division by zero denominator, which is 234 // TrueWeight + FalseWeight. 235 return; 236 237 // Returns the outgoing edge of the dominating predecessor block 238 // that leads to the PhiNode's incoming block: 239 auto GetPredOutEdge = 240 [](BasicBlock *IncomingBB, 241 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 242 auto *PredBB = IncomingBB; 243 auto *SuccBB = PhiBB; 244 SmallPtrSet<BasicBlock *, 16> Visited; 245 while (true) { 246 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 247 if (PredBr && PredBr->isConditional()) 248 return {PredBB, SuccBB}; 249 Visited.insert(PredBB); 250 auto *SinglePredBB = PredBB->getSinglePredecessor(); 251 if (!SinglePredBB) 252 return {nullptr, nullptr}; 253 254 // Stop searching when SinglePredBB has been visited. It means we see 255 // an unreachable loop. 256 if (Visited.count(SinglePredBB)) 257 return {nullptr, nullptr}; 258 259 SuccBB = PredBB; 260 PredBB = SinglePredBB; 261 } 262 }; 263 264 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 265 Value *PhiOpnd = PN->getIncomingValue(i); 266 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 267 268 if (!CI || !CI->getType()->isIntegerTy(1)) 269 continue; 270 271 BranchProbability BP = 272 (CI->isOne() ? BranchProbability::getBranchProbability( 273 TrueWeight, TrueWeight + FalseWeight) 274 : BranchProbability::getBranchProbability( 275 FalseWeight, TrueWeight + FalseWeight)); 276 277 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 278 if (!PredOutEdge.first) 279 return; 280 281 BasicBlock *PredBB = PredOutEdge.first; 282 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 283 if (!PredBr) 284 return; 285 286 uint64_t PredTrueWeight, PredFalseWeight; 287 // FIXME: We currently only set the profile data when it is missing. 288 // With PGO, this can be used to refine even existing profile data with 289 // context information. This needs to be done after more performance 290 // testing. 291 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 292 continue; 293 294 // We can not infer anything useful when BP >= 50%, because BP is the 295 // upper bound probability value. 296 if (BP >= BranchProbability(50, 100)) 297 continue; 298 299 SmallVector<uint32_t, 2> Weights; 300 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 301 Weights.push_back(BP.getNumerator()); 302 Weights.push_back(BP.getCompl().getNumerator()); 303 } else { 304 Weights.push_back(BP.getCompl().getNumerator()); 305 Weights.push_back(BP.getNumerator()); 306 } 307 PredBr->setMetadata(LLVMContext::MD_prof, 308 MDBuilder(PredBr->getParent()->getContext()) 309 .createBranchWeights(Weights)); 310 } 311 } 312 313 /// runOnFunction - Toplevel algorithm. 314 bool JumpThreading::runOnFunction(Function &F) { 315 if (skipFunction(F)) 316 return false; 317 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 318 // Jump Threading has no sense for the targets with divergent CF 319 if (TTI->hasBranchDivergence()) 320 return false; 321 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 322 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 323 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 324 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 325 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 326 std::unique_ptr<BlockFrequencyInfo> BFI; 327 std::unique_ptr<BranchProbabilityInfo> BPI; 328 if (F.hasProfileData()) { 329 LoopInfo LI{DominatorTree(F)}; 330 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 331 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 332 } 333 334 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 335 std::move(BFI), std::move(BPI)); 336 if (PrintLVIAfterJumpThreading) { 337 dbgs() << "LVI for function '" << F.getName() << "':\n"; 338 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 339 } 340 return Changed; 341 } 342 343 PreservedAnalyses JumpThreadingPass::run(Function &F, 344 FunctionAnalysisManager &AM) { 345 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 346 // Jump Threading has no sense for the targets with divergent CF 347 if (TTI.hasBranchDivergence()) 348 return PreservedAnalyses::all(); 349 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 350 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 351 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 352 auto &AA = AM.getResult<AAManager>(F); 353 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 354 355 std::unique_ptr<BlockFrequencyInfo> BFI; 356 std::unique_ptr<BranchProbabilityInfo> BPI; 357 if (F.hasProfileData()) { 358 LoopInfo LI{DominatorTree(F)}; 359 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 360 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 361 } 362 363 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 364 std::move(BFI), std::move(BPI)); 365 366 if (PrintLVIAfterJumpThreading) { 367 dbgs() << "LVI for function '" << F.getName() << "':\n"; 368 LVI.printLVI(F, DTU.getDomTree(), dbgs()); 369 } 370 371 if (!Changed) 372 return PreservedAnalyses::all(); 373 PreservedAnalyses PA; 374 PA.preserve<DominatorTreeAnalysis>(); 375 PA.preserve<LazyValueAnalysis>(); 376 return PA; 377 } 378 379 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 380 LazyValueInfo *LVI_, AliasAnalysis *AA_, 381 DomTreeUpdater *DTU_, bool HasProfileData_, 382 std::unique_ptr<BlockFrequencyInfo> BFI_, 383 std::unique_ptr<BranchProbabilityInfo> BPI_) { 384 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 385 TLI = TLI_; 386 LVI = LVI_; 387 AA = AA_; 388 DTU = DTU_; 389 BFI.reset(); 390 BPI.reset(); 391 // When profile data is available, we need to update edge weights after 392 // successful jump threading, which requires both BPI and BFI being available. 393 HasProfileData = HasProfileData_; 394 auto *GuardDecl = F.getParent()->getFunction( 395 Intrinsic::getName(Intrinsic::experimental_guard)); 396 HasGuards = GuardDecl && !GuardDecl->use_empty(); 397 if (HasProfileData) { 398 BPI = std::move(BPI_); 399 BFI = std::move(BFI_); 400 } 401 402 // Reduce the number of instructions duplicated when optimizing strictly for 403 // size. 404 if (BBDuplicateThreshold.getNumOccurrences()) 405 BBDupThreshold = BBDuplicateThreshold; 406 else if (F.hasFnAttribute(Attribute::MinSize)) 407 BBDupThreshold = 3; 408 else 409 BBDupThreshold = DefaultBBDupThreshold; 410 411 // JumpThreading must not processes blocks unreachable from entry. It's a 412 // waste of compute time and can potentially lead to hangs. 413 SmallPtrSet<BasicBlock *, 16> Unreachable; 414 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 415 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 416 DominatorTree &DT = DTU->getDomTree(); 417 for (auto &BB : F) 418 if (!DT.isReachableFromEntry(&BB)) 419 Unreachable.insert(&BB); 420 421 if (!ThreadAcrossLoopHeaders) 422 findLoopHeaders(F); 423 424 bool EverChanged = false; 425 bool Changed; 426 do { 427 Changed = false; 428 for (auto &BB : F) { 429 if (Unreachable.count(&BB)) 430 continue; 431 while (processBlock(&BB)) // Thread all of the branches we can over BB. 432 Changed = true; 433 434 // Jump threading may have introduced redundant debug values into BB 435 // which should be removed. 436 if (Changed) 437 RemoveRedundantDbgInstrs(&BB); 438 439 // Stop processing BB if it's the entry or is now deleted. The following 440 // routines attempt to eliminate BB and locating a suitable replacement 441 // for the entry is non-trivial. 442 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 443 continue; 444 445 if (pred_empty(&BB)) { 446 // When processBlock makes BB unreachable it doesn't bother to fix up 447 // the instructions in it. We must remove BB to prevent invalid IR. 448 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 449 << "' with terminator: " << *BB.getTerminator() 450 << '\n'); 451 LoopHeaders.erase(&BB); 452 LVI->eraseBlock(&BB); 453 DeleteDeadBlock(&BB, DTU); 454 Changed = true; 455 continue; 456 } 457 458 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 459 // is "almost empty", we attempt to merge BB with its sole successor. 460 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 461 if (BI && BI->isUnconditional()) { 462 BasicBlock *Succ = BI->getSuccessor(0); 463 if ( 464 // The terminator must be the only non-phi instruction in BB. 465 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 466 // Don't alter Loop headers and latches to ensure another pass can 467 // detect and transform nested loops later. 468 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 469 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 470 RemoveRedundantDbgInstrs(Succ); 471 // BB is valid for cleanup here because we passed in DTU. F remains 472 // BB's parent until a DTU->getDomTree() event. 473 LVI->eraseBlock(&BB); 474 Changed = true; 475 } 476 } 477 } 478 EverChanged |= Changed; 479 } while (Changed); 480 481 LoopHeaders.clear(); 482 return EverChanged; 483 } 484 485 // Replace uses of Cond with ToVal when safe to do so. If all uses are 486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 487 // because we may incorrectly replace uses when guards/assumes are uses of 488 // of `Cond` and we used the guards/assume to reason about the `Cond` value 489 // at the end of block. RAUW unconditionally replaces all uses 490 // including the guards/assumes themselves and the uses before the 491 // guard/assume. 492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) { 493 assert(Cond->getType() == ToVal->getType()); 494 auto *BB = Cond->getParent(); 495 // We can unconditionally replace all uses in non-local blocks (i.e. uses 496 // strictly dominated by BB), since LVI information is true from the 497 // terminator of BB. 498 replaceNonLocalUsesWith(Cond, ToVal); 499 for (Instruction &I : reverse(*BB)) { 500 // Reached the Cond whose uses we are trying to replace, so there are no 501 // more uses. 502 if (&I == Cond) 503 break; 504 // We only replace uses in instructions that are guaranteed to reach the end 505 // of BB, where we know Cond is ToVal. 506 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 507 break; 508 I.replaceUsesOfWith(Cond, ToVal); 509 } 510 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 511 Cond->eraseFromParent(); 512 } 513 514 /// Return the cost of duplicating a piece of this block from first non-phi 515 /// and before StopAt instruction to thread across it. Stop scanning the block 516 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 517 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 518 Instruction *StopAt, 519 unsigned Threshold) { 520 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 521 /// Ignore PHI nodes, these will be flattened when duplication happens. 522 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 523 524 // FIXME: THREADING will delete values that are just used to compute the 525 // branch, so they shouldn't count against the duplication cost. 526 527 unsigned Bonus = 0; 528 if (BB->getTerminator() == StopAt) { 529 // Threading through a switch statement is particularly profitable. If this 530 // block ends in a switch, decrease its cost to make it more likely to 531 // happen. 532 if (isa<SwitchInst>(StopAt)) 533 Bonus = 6; 534 535 // The same holds for indirect branches, but slightly more so. 536 if (isa<IndirectBrInst>(StopAt)) 537 Bonus = 8; 538 } 539 540 // Bump the threshold up so the early exit from the loop doesn't skip the 541 // terminator-based Size adjustment at the end. 542 Threshold += Bonus; 543 544 // Sum up the cost of each instruction until we get to the terminator. Don't 545 // include the terminator because the copy won't include it. 546 unsigned Size = 0; 547 for (; &*I != StopAt; ++I) { 548 549 // Stop scanning the block if we've reached the threshold. 550 if (Size > Threshold) 551 return Size; 552 553 // Debugger intrinsics don't incur code size. 554 if (isa<DbgInfoIntrinsic>(I)) continue; 555 556 // Pseudo-probes don't incur code size. 557 if (isa<PseudoProbeInst>(I)) 558 continue; 559 560 // If this is a pointer->pointer bitcast, it is free. 561 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 562 continue; 563 564 // Freeze instruction is free, too. 565 if (isa<FreezeInst>(I)) 566 continue; 567 568 // Bail out if this instruction gives back a token type, it is not possible 569 // to duplicate it if it is used outside this BB. 570 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 571 return ~0U; 572 573 // All other instructions count for at least one unit. 574 ++Size; 575 576 // Calls are more expensive. If they are non-intrinsic calls, we model them 577 // as having cost of 4. If they are a non-vector intrinsic, we model them 578 // as having cost of 2 total, and if they are a vector intrinsic, we model 579 // them as having cost 1. 580 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 581 if (CI->cannotDuplicate() || CI->isConvergent()) 582 // Blocks with NoDuplicate are modelled as having infinite cost, so they 583 // are never duplicated. 584 return ~0U; 585 else if (!isa<IntrinsicInst>(CI)) 586 Size += 3; 587 else if (!CI->getType()->isVectorTy()) 588 Size += 1; 589 } 590 } 591 592 return Size > Bonus ? Size - Bonus : 0; 593 } 594 595 /// findLoopHeaders - We do not want jump threading to turn proper loop 596 /// structures into irreducible loops. Doing this breaks up the loop nesting 597 /// hierarchy and pessimizes later transformations. To prevent this from 598 /// happening, we first have to find the loop headers. Here we approximate this 599 /// by finding targets of backedges in the CFG. 600 /// 601 /// Note that there definitely are cases when we want to allow threading of 602 /// edges across a loop header. For example, threading a jump from outside the 603 /// loop (the preheader) to an exit block of the loop is definitely profitable. 604 /// It is also almost always profitable to thread backedges from within the loop 605 /// to exit blocks, and is often profitable to thread backedges to other blocks 606 /// within the loop (forming a nested loop). This simple analysis is not rich 607 /// enough to track all of these properties and keep it up-to-date as the CFG 608 /// mutates, so we don't allow any of these transformations. 609 void JumpThreadingPass::findLoopHeaders(Function &F) { 610 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 611 FindFunctionBackedges(F, Edges); 612 613 for (const auto &Edge : Edges) 614 LoopHeaders.insert(Edge.second); 615 } 616 617 /// getKnownConstant - Helper method to determine if we can thread over a 618 /// terminator with the given value as its condition, and if so what value to 619 /// use for that. What kind of value this is depends on whether we want an 620 /// integer or a block address, but an undef is always accepted. 621 /// Returns null if Val is null or not an appropriate constant. 622 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 623 if (!Val) 624 return nullptr; 625 626 // Undef is "known" enough. 627 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 628 return U; 629 630 if (Preference == WantBlockAddress) 631 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 632 633 return dyn_cast<ConstantInt>(Val); 634 } 635 636 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 637 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 638 /// in any of our predecessors. If so, return the known list of value and pred 639 /// BB in the result vector. 640 /// 641 /// This returns true if there were any known values. 642 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 643 Value *V, BasicBlock *BB, PredValueInfo &Result, 644 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 645 Instruction *CxtI) { 646 // This method walks up use-def chains recursively. Because of this, we could 647 // get into an infinite loop going around loops in the use-def chain. To 648 // prevent this, keep track of what (value, block) pairs we've already visited 649 // and terminate the search if we loop back to them 650 if (!RecursionSet.insert(V).second) 651 return false; 652 653 // If V is a constant, then it is known in all predecessors. 654 if (Constant *KC = getKnownConstant(V, Preference)) { 655 for (BasicBlock *Pred : predecessors(BB)) 656 Result.emplace_back(KC, Pred); 657 658 return !Result.empty(); 659 } 660 661 // If V is a non-instruction value, or an instruction in a different block, 662 // then it can't be derived from a PHI. 663 Instruction *I = dyn_cast<Instruction>(V); 664 if (!I || I->getParent() != BB) { 665 666 // Okay, if this is a live-in value, see if it has a known value at the end 667 // of any of our predecessors. 668 // 669 // FIXME: This should be an edge property, not a block end property. 670 /// TODO: Per PR2563, we could infer value range information about a 671 /// predecessor based on its terminator. 672 // 673 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 674 // "I" is a non-local compare-with-a-constant instruction. This would be 675 // able to handle value inequalities better, for example if the compare is 676 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 677 // Perhaps getConstantOnEdge should be smart enough to do this? 678 for (BasicBlock *P : predecessors(BB)) { 679 // If the value is known by LazyValueInfo to be a constant in a 680 // predecessor, use that information to try to thread this block. 681 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 682 if (Constant *KC = getKnownConstant(PredCst, Preference)) 683 Result.emplace_back(KC, P); 684 } 685 686 return !Result.empty(); 687 } 688 689 /// If I is a PHI node, then we know the incoming values for any constants. 690 if (PHINode *PN = dyn_cast<PHINode>(I)) { 691 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 692 Value *InVal = PN->getIncomingValue(i); 693 if (Constant *KC = getKnownConstant(InVal, Preference)) { 694 Result.emplace_back(KC, PN->getIncomingBlock(i)); 695 } else { 696 Constant *CI = LVI->getConstantOnEdge(InVal, 697 PN->getIncomingBlock(i), 698 BB, CxtI); 699 if (Constant *KC = getKnownConstant(CI, Preference)) 700 Result.emplace_back(KC, PN->getIncomingBlock(i)); 701 } 702 } 703 704 return !Result.empty(); 705 } 706 707 // Handle Cast instructions. 708 if (CastInst *CI = dyn_cast<CastInst>(I)) { 709 Value *Source = CI->getOperand(0); 710 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 711 RecursionSet, CxtI); 712 if (Result.empty()) 713 return false; 714 715 // Convert the known values. 716 for (auto &R : Result) 717 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 718 719 return true; 720 } 721 722 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 723 Value *Source = FI->getOperand(0); 724 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 725 RecursionSet, CxtI); 726 727 erase_if(Result, [](auto &Pair) { 728 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 729 }); 730 731 return !Result.empty(); 732 } 733 734 // Handle some boolean conditions. 735 if (I->getType()->getPrimitiveSizeInBits() == 1) { 736 using namespace PatternMatch; 737 738 assert(Preference == WantInteger && "One-bit non-integer type?"); 739 // X | true -> true 740 // X & false -> false 741 Value *Op0, *Op1; 742 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 743 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 744 PredValueInfoTy LHSVals, RHSVals; 745 746 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 747 RecursionSet, CxtI); 748 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 749 RecursionSet, CxtI); 750 751 if (LHSVals.empty() && RHSVals.empty()) 752 return false; 753 754 ConstantInt *InterestingVal; 755 if (match(I, m_LogicalOr())) 756 InterestingVal = ConstantInt::getTrue(I->getContext()); 757 else 758 InterestingVal = ConstantInt::getFalse(I->getContext()); 759 760 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 761 762 // Scan for the sentinel. If we find an undef, force it to the 763 // interesting value: x|undef -> true and x&undef -> false. 764 for (const auto &LHSVal : LHSVals) 765 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 766 Result.emplace_back(InterestingVal, LHSVal.second); 767 LHSKnownBBs.insert(LHSVal.second); 768 } 769 for (const auto &RHSVal : RHSVals) 770 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 771 // If we already inferred a value for this block on the LHS, don't 772 // re-add it. 773 if (!LHSKnownBBs.count(RHSVal.second)) 774 Result.emplace_back(InterestingVal, RHSVal.second); 775 } 776 777 return !Result.empty(); 778 } 779 780 // Handle the NOT form of XOR. 781 if (I->getOpcode() == Instruction::Xor && 782 isa<ConstantInt>(I->getOperand(1)) && 783 cast<ConstantInt>(I->getOperand(1))->isOne()) { 784 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 785 WantInteger, RecursionSet, CxtI); 786 if (Result.empty()) 787 return false; 788 789 // Invert the known values. 790 for (auto &R : Result) 791 R.first = ConstantExpr::getNot(R.first); 792 793 return true; 794 } 795 796 // Try to simplify some other binary operator values. 797 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 798 assert(Preference != WantBlockAddress 799 && "A binary operator creating a block address?"); 800 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 801 PredValueInfoTy LHSVals; 802 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 803 WantInteger, RecursionSet, CxtI); 804 805 // Try to use constant folding to simplify the binary operator. 806 for (const auto &LHSVal : LHSVals) { 807 Constant *V = LHSVal.first; 808 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 809 810 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 811 Result.emplace_back(KC, LHSVal.second); 812 } 813 } 814 815 return !Result.empty(); 816 } 817 818 // Handle compare with phi operand, where the PHI is defined in this block. 819 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 820 assert(Preference == WantInteger && "Compares only produce integers"); 821 Type *CmpType = Cmp->getType(); 822 Value *CmpLHS = Cmp->getOperand(0); 823 Value *CmpRHS = Cmp->getOperand(1); 824 CmpInst::Predicate Pred = Cmp->getPredicate(); 825 826 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 827 if (!PN) 828 PN = dyn_cast<PHINode>(CmpRHS); 829 if (PN && PN->getParent() == BB) { 830 const DataLayout &DL = PN->getModule()->getDataLayout(); 831 // We can do this simplification if any comparisons fold to true or false. 832 // See if any do. 833 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 834 BasicBlock *PredBB = PN->getIncomingBlock(i); 835 Value *LHS, *RHS; 836 if (PN == CmpLHS) { 837 LHS = PN->getIncomingValue(i); 838 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 839 } else { 840 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 841 RHS = PN->getIncomingValue(i); 842 } 843 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 844 if (!Res) { 845 if (!isa<Constant>(RHS)) 846 continue; 847 848 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 849 auto LHSInst = dyn_cast<Instruction>(LHS); 850 if (LHSInst && LHSInst->getParent() == BB) 851 continue; 852 853 LazyValueInfo::Tristate 854 ResT = LVI->getPredicateOnEdge(Pred, LHS, 855 cast<Constant>(RHS), PredBB, BB, 856 CxtI ? CxtI : Cmp); 857 if (ResT == LazyValueInfo::Unknown) 858 continue; 859 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 860 } 861 862 if (Constant *KC = getKnownConstant(Res, WantInteger)) 863 Result.emplace_back(KC, PredBB); 864 } 865 866 return !Result.empty(); 867 } 868 869 // If comparing a live-in value against a constant, see if we know the 870 // live-in value on any predecessors. 871 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 872 Constant *CmpConst = cast<Constant>(CmpRHS); 873 874 if (!isa<Instruction>(CmpLHS) || 875 cast<Instruction>(CmpLHS)->getParent() != BB) { 876 for (BasicBlock *P : predecessors(BB)) { 877 // If the value is known by LazyValueInfo to be a constant in a 878 // predecessor, use that information to try to thread this block. 879 LazyValueInfo::Tristate Res = 880 LVI->getPredicateOnEdge(Pred, CmpLHS, 881 CmpConst, P, BB, CxtI ? CxtI : Cmp); 882 if (Res == LazyValueInfo::Unknown) 883 continue; 884 885 Constant *ResC = ConstantInt::get(CmpType, Res); 886 Result.emplace_back(ResC, P); 887 } 888 889 return !Result.empty(); 890 } 891 892 // InstCombine can fold some forms of constant range checks into 893 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 894 // x as a live-in. 895 { 896 using namespace PatternMatch; 897 898 Value *AddLHS; 899 ConstantInt *AddConst; 900 if (isa<ConstantInt>(CmpConst) && 901 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 902 if (!isa<Instruction>(AddLHS) || 903 cast<Instruction>(AddLHS)->getParent() != BB) { 904 for (BasicBlock *P : predecessors(BB)) { 905 // If the value is known by LazyValueInfo to be a ConstantRange in 906 // a predecessor, use that information to try to thread this 907 // block. 908 ConstantRange CR = LVI->getConstantRangeOnEdge( 909 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 910 // Propagate the range through the addition. 911 CR = CR.add(AddConst->getValue()); 912 913 // Get the range where the compare returns true. 914 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 915 Pred, cast<ConstantInt>(CmpConst)->getValue()); 916 917 Constant *ResC; 918 if (CmpRange.contains(CR)) 919 ResC = ConstantInt::getTrue(CmpType); 920 else if (CmpRange.inverse().contains(CR)) 921 ResC = ConstantInt::getFalse(CmpType); 922 else 923 continue; 924 925 Result.emplace_back(ResC, P); 926 } 927 928 return !Result.empty(); 929 } 930 } 931 } 932 933 // Try to find a constant value for the LHS of a comparison, 934 // and evaluate it statically if we can. 935 PredValueInfoTy LHSVals; 936 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 937 WantInteger, RecursionSet, CxtI); 938 939 for (const auto &LHSVal : LHSVals) { 940 Constant *V = LHSVal.first; 941 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 942 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 943 Result.emplace_back(KC, LHSVal.second); 944 } 945 946 return !Result.empty(); 947 } 948 } 949 950 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 951 // Handle select instructions where at least one operand is a known constant 952 // and we can figure out the condition value for any predecessor block. 953 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 954 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 955 PredValueInfoTy Conds; 956 if ((TrueVal || FalseVal) && 957 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 958 WantInteger, RecursionSet, CxtI)) { 959 for (auto &C : Conds) { 960 Constant *Cond = C.first; 961 962 // Figure out what value to use for the condition. 963 bool KnownCond; 964 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 965 // A known boolean. 966 KnownCond = CI->isOne(); 967 } else { 968 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 969 // Either operand will do, so be sure to pick the one that's a known 970 // constant. 971 // FIXME: Do this more cleverly if both values are known constants? 972 KnownCond = (TrueVal != nullptr); 973 } 974 975 // See if the select has a known constant value for this predecessor. 976 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 977 Result.emplace_back(Val, C.second); 978 } 979 980 return !Result.empty(); 981 } 982 } 983 984 // If all else fails, see if LVI can figure out a constant value for us. 985 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 986 Constant *CI = LVI->getConstant(V, CxtI); 987 if (Constant *KC = getKnownConstant(CI, Preference)) { 988 for (BasicBlock *Pred : predecessors(BB)) 989 Result.emplace_back(KC, Pred); 990 } 991 992 return !Result.empty(); 993 } 994 995 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 996 /// in an undefined jump, decide which block is best to revector to. 997 /// 998 /// Since we can pick an arbitrary destination, we pick the successor with the 999 /// fewest predecessors. This should reduce the in-degree of the others. 1000 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 1001 Instruction *BBTerm = BB->getTerminator(); 1002 unsigned MinSucc = 0; 1003 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 1004 // Compute the successor with the minimum number of predecessors. 1005 unsigned MinNumPreds = pred_size(TestBB); 1006 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1007 TestBB = BBTerm->getSuccessor(i); 1008 unsigned NumPreds = pred_size(TestBB); 1009 if (NumPreds < MinNumPreds) { 1010 MinSucc = i; 1011 MinNumPreds = NumPreds; 1012 } 1013 } 1014 1015 return MinSucc; 1016 } 1017 1018 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1019 if (!BB->hasAddressTaken()) return false; 1020 1021 // If the block has its address taken, it may be a tree of dead constants 1022 // hanging off of it. These shouldn't keep the block alive. 1023 BlockAddress *BA = BlockAddress::get(BB); 1024 BA->removeDeadConstantUsers(); 1025 return !BA->use_empty(); 1026 } 1027 1028 /// processBlock - If there are any predecessors whose control can be threaded 1029 /// through to a successor, transform them now. 1030 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1031 // If the block is trivially dead, just return and let the caller nuke it. 1032 // This simplifies other transformations. 1033 if (DTU->isBBPendingDeletion(BB) || 1034 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1035 return false; 1036 1037 // If this block has a single predecessor, and if that pred has a single 1038 // successor, merge the blocks. This encourages recursive jump threading 1039 // because now the condition in this block can be threaded through 1040 // predecessors of our predecessor block. 1041 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1042 return true; 1043 1044 if (tryToUnfoldSelectInCurrBB(BB)) 1045 return true; 1046 1047 // Look if we can propagate guards to predecessors. 1048 if (HasGuards && processGuards(BB)) 1049 return true; 1050 1051 // What kind of constant we're looking for. 1052 ConstantPreference Preference = WantInteger; 1053 1054 // Look to see if the terminator is a conditional branch, switch or indirect 1055 // branch, if not we can't thread it. 1056 Value *Condition; 1057 Instruction *Terminator = BB->getTerminator(); 1058 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1059 // Can't thread an unconditional jump. 1060 if (BI->isUnconditional()) return false; 1061 Condition = BI->getCondition(); 1062 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1063 Condition = SI->getCondition(); 1064 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1065 // Can't thread indirect branch with no successors. 1066 if (IB->getNumSuccessors() == 0) return false; 1067 Condition = IB->getAddress()->stripPointerCasts(); 1068 Preference = WantBlockAddress; 1069 } else { 1070 return false; // Must be an invoke or callbr. 1071 } 1072 1073 // Keep track if we constant folded the condition in this invocation. 1074 bool ConstantFolded = false; 1075 1076 // Run constant folding to see if we can reduce the condition to a simple 1077 // constant. 1078 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1079 Value *SimpleVal = 1080 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1081 if (SimpleVal) { 1082 I->replaceAllUsesWith(SimpleVal); 1083 if (isInstructionTriviallyDead(I, TLI)) 1084 I->eraseFromParent(); 1085 Condition = SimpleVal; 1086 ConstantFolded = true; 1087 } 1088 } 1089 1090 // If the terminator is branching on an undef or freeze undef, we can pick any 1091 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1092 auto *FI = dyn_cast<FreezeInst>(Condition); 1093 if (isa<UndefValue>(Condition) || 1094 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1095 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1096 std::vector<DominatorTree::UpdateType> Updates; 1097 1098 // Fold the branch/switch. 1099 Instruction *BBTerm = BB->getTerminator(); 1100 Updates.reserve(BBTerm->getNumSuccessors()); 1101 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1102 if (i == BestSucc) continue; 1103 BasicBlock *Succ = BBTerm->getSuccessor(i); 1104 Succ->removePredecessor(BB, true); 1105 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1106 } 1107 1108 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1109 << "' folding undef terminator: " << *BBTerm << '\n'); 1110 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1111 ++NumFolds; 1112 BBTerm->eraseFromParent(); 1113 DTU->applyUpdatesPermissive(Updates); 1114 if (FI) 1115 FI->eraseFromParent(); 1116 return true; 1117 } 1118 1119 // If the terminator of this block is branching on a constant, simplify the 1120 // terminator to an unconditional branch. This can occur due to threading in 1121 // other blocks. 1122 if (getKnownConstant(Condition, Preference)) { 1123 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1124 << "' folding terminator: " << *BB->getTerminator() 1125 << '\n'); 1126 ++NumFolds; 1127 ConstantFoldTerminator(BB, true, nullptr, DTU); 1128 if (HasProfileData) 1129 BPI->eraseBlock(BB); 1130 return true; 1131 } 1132 1133 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1134 1135 // All the rest of our checks depend on the condition being an instruction. 1136 if (!CondInst) { 1137 // FIXME: Unify this with code below. 1138 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1139 return true; 1140 return ConstantFolded; 1141 } 1142 1143 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1144 // If we're branching on a conditional, LVI might be able to determine 1145 // it's value at the branch instruction. We only handle comparisons 1146 // against a constant at this time. 1147 // TODO: This should be extended to handle switches as well. 1148 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1149 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1150 if (CondBr && CondConst) { 1151 // We should have returned as soon as we turn a conditional branch to 1152 // unconditional. Because its no longer interesting as far as jump 1153 // threading is concerned. 1154 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1155 1156 LazyValueInfo::Tristate Ret = 1157 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1158 CondConst, CondBr, /*UseBlockValue=*/false); 1159 if (Ret != LazyValueInfo::Unknown) { 1160 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1161 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1162 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1163 ToRemoveSucc->removePredecessor(BB, true); 1164 BranchInst *UncondBr = 1165 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1166 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1167 ++NumFolds; 1168 CondBr->eraseFromParent(); 1169 if (CondCmp->use_empty()) 1170 CondCmp->eraseFromParent(); 1171 // We can safely replace *some* uses of the CondInst if it has 1172 // exactly one value as returned by LVI. RAUW is incorrect in the 1173 // presence of guards and assumes, that have the `Cond` as the use. This 1174 // is because we use the guards/assume to reason about the `Cond` value 1175 // at the end of block, but RAUW unconditionally replaces all uses 1176 // including the guards/assumes themselves and the uses before the 1177 // guard/assume. 1178 else if (CondCmp->getParent() == BB) { 1179 auto *CI = Ret == LazyValueInfo::True ? 1180 ConstantInt::getTrue(CondCmp->getType()) : 1181 ConstantInt::getFalse(CondCmp->getType()); 1182 replaceFoldableUses(CondCmp, CI); 1183 } 1184 DTU->applyUpdatesPermissive( 1185 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1186 if (HasProfileData) 1187 BPI->eraseBlock(BB); 1188 return true; 1189 } 1190 1191 // We did not manage to simplify this branch, try to see whether 1192 // CondCmp depends on a known phi-select pattern. 1193 if (tryToUnfoldSelect(CondCmp, BB)) 1194 return true; 1195 } 1196 } 1197 1198 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1199 if (tryToUnfoldSelect(SI, BB)) 1200 return true; 1201 1202 // Check for some cases that are worth simplifying. Right now we want to look 1203 // for loads that are used by a switch or by the condition for the branch. If 1204 // we see one, check to see if it's partially redundant. If so, insert a PHI 1205 // which can then be used to thread the values. 1206 Value *SimplifyValue = CondInst; 1207 1208 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue)) 1209 // Look into freeze's operand 1210 SimplifyValue = FI->getOperand(0); 1211 1212 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1213 if (isa<Constant>(CondCmp->getOperand(1))) 1214 SimplifyValue = CondCmp->getOperand(0); 1215 1216 // TODO: There are other places where load PRE would be profitable, such as 1217 // more complex comparisons. 1218 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1219 if (simplifyPartiallyRedundantLoad(LoadI)) 1220 return true; 1221 1222 // Before threading, try to propagate profile data backwards: 1223 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1224 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1225 updatePredecessorProfileMetadata(PN, BB); 1226 1227 // Handle a variety of cases where we are branching on something derived from 1228 // a PHI node in the current block. If we can prove that any predecessors 1229 // compute a predictable value based on a PHI node, thread those predecessors. 1230 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1231 return true; 1232 1233 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1234 // the current block, see if we can simplify. 1235 PHINode *PN = dyn_cast<PHINode>( 1236 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0) 1237 : CondInst); 1238 1239 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1240 return processBranchOnPHI(PN); 1241 1242 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1243 if (CondInst->getOpcode() == Instruction::Xor && 1244 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1245 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1246 1247 // Search for a stronger dominating condition that can be used to simplify a 1248 // conditional branch leaving BB. 1249 if (processImpliedCondition(BB)) 1250 return true; 1251 1252 return false; 1253 } 1254 1255 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1256 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1257 if (!BI || !BI->isConditional()) 1258 return false; 1259 1260 Value *Cond = BI->getCondition(); 1261 BasicBlock *CurrentBB = BB; 1262 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1263 unsigned Iter = 0; 1264 1265 auto &DL = BB->getModule()->getDataLayout(); 1266 1267 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1268 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1269 if (!PBI || !PBI->isConditional()) 1270 return false; 1271 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1272 return false; 1273 1274 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1275 Optional<bool> Implication = 1276 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1277 if (Implication) { 1278 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1279 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1280 RemoveSucc->removePredecessor(BB); 1281 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1282 UncondBI->setDebugLoc(BI->getDebugLoc()); 1283 ++NumFolds; 1284 BI->eraseFromParent(); 1285 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1286 if (HasProfileData) 1287 BPI->eraseBlock(BB); 1288 return true; 1289 } 1290 CurrentBB = CurrentPred; 1291 CurrentPred = CurrentBB->getSinglePredecessor(); 1292 } 1293 1294 return false; 1295 } 1296 1297 /// Return true if Op is an instruction defined in the given block. 1298 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1299 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1300 if (OpInst->getParent() == BB) 1301 return true; 1302 return false; 1303 } 1304 1305 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1306 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1307 /// This is an important optimization that encourages jump threading, and needs 1308 /// to be run interlaced with other jump threading tasks. 1309 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1310 // Don't hack volatile and ordered loads. 1311 if (!LoadI->isUnordered()) return false; 1312 1313 // If the load is defined in a block with exactly one predecessor, it can't be 1314 // partially redundant. 1315 BasicBlock *LoadBB = LoadI->getParent(); 1316 if (LoadBB->getSinglePredecessor()) 1317 return false; 1318 1319 // If the load is defined in an EH pad, it can't be partially redundant, 1320 // because the edges between the invoke and the EH pad cannot have other 1321 // instructions between them. 1322 if (LoadBB->isEHPad()) 1323 return false; 1324 1325 Value *LoadedPtr = LoadI->getOperand(0); 1326 1327 // If the loaded operand is defined in the LoadBB and its not a phi, 1328 // it can't be available in predecessors. 1329 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1330 return false; 1331 1332 // Scan a few instructions up from the load, to see if it is obviously live at 1333 // the entry to its block. 1334 BasicBlock::iterator BBIt(LoadI); 1335 bool IsLoadCSE; 1336 if (Value *AvailableVal = FindAvailableLoadedValue( 1337 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1338 // If the value of the load is locally available within the block, just use 1339 // it. This frequently occurs for reg2mem'd allocas. 1340 1341 if (IsLoadCSE) { 1342 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1343 combineMetadataForCSE(NLoadI, LoadI, false); 1344 }; 1345 1346 // If the returned value is the load itself, replace with an undef. This can 1347 // only happen in dead loops. 1348 if (AvailableVal == LoadI) 1349 AvailableVal = UndefValue::get(LoadI->getType()); 1350 if (AvailableVal->getType() != LoadI->getType()) 1351 AvailableVal = CastInst::CreateBitOrPointerCast( 1352 AvailableVal, LoadI->getType(), "", LoadI); 1353 LoadI->replaceAllUsesWith(AvailableVal); 1354 LoadI->eraseFromParent(); 1355 return true; 1356 } 1357 1358 // Otherwise, if we scanned the whole block and got to the top of the block, 1359 // we know the block is locally transparent to the load. If not, something 1360 // might clobber its value. 1361 if (BBIt != LoadBB->begin()) 1362 return false; 1363 1364 // If all of the loads and stores that feed the value have the same AA tags, 1365 // then we can propagate them onto any newly inserted loads. 1366 AAMDNodes AATags; 1367 LoadI->getAAMetadata(AATags); 1368 1369 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1370 1371 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1372 1373 AvailablePredsTy AvailablePreds; 1374 BasicBlock *OneUnavailablePred = nullptr; 1375 SmallVector<LoadInst*, 8> CSELoads; 1376 1377 // If we got here, the loaded value is transparent through to the start of the 1378 // block. Check to see if it is available in any of the predecessor blocks. 1379 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1380 // If we already scanned this predecessor, skip it. 1381 if (!PredsScanned.insert(PredBB).second) 1382 continue; 1383 1384 BBIt = PredBB->end(); 1385 unsigned NumScanedInst = 0; 1386 Value *PredAvailable = nullptr; 1387 // NOTE: We don't CSE load that is volatile or anything stronger than 1388 // unordered, that should have been checked when we entered the function. 1389 assert(LoadI->isUnordered() && 1390 "Attempting to CSE volatile or atomic loads"); 1391 // If this is a load on a phi pointer, phi-translate it and search 1392 // for available load/store to the pointer in predecessors. 1393 Type *AccessTy = LoadI->getType(); 1394 const auto &DL = LoadI->getModule()->getDataLayout(); 1395 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1396 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1397 AATags); 1398 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(), 1399 PredBB, BBIt, DefMaxInstsToScan, 1400 AA, &IsLoadCSE, &NumScanedInst); 1401 1402 // If PredBB has a single predecessor, continue scanning through the 1403 // single predecessor. 1404 BasicBlock *SinglePredBB = PredBB; 1405 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1406 NumScanedInst < DefMaxInstsToScan) { 1407 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1408 if (SinglePredBB) { 1409 BBIt = SinglePredBB->end(); 1410 PredAvailable = findAvailablePtrLoadStore( 1411 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1412 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1413 &NumScanedInst); 1414 } 1415 } 1416 1417 if (!PredAvailable) { 1418 OneUnavailablePred = PredBB; 1419 continue; 1420 } 1421 1422 if (IsLoadCSE) 1423 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1424 1425 // If so, this load is partially redundant. Remember this info so that we 1426 // can create a PHI node. 1427 AvailablePreds.emplace_back(PredBB, PredAvailable); 1428 } 1429 1430 // If the loaded value isn't available in any predecessor, it isn't partially 1431 // redundant. 1432 if (AvailablePreds.empty()) return false; 1433 1434 // Okay, the loaded value is available in at least one (and maybe all!) 1435 // predecessors. If the value is unavailable in more than one unique 1436 // predecessor, we want to insert a merge block for those common predecessors. 1437 // This ensures that we only have to insert one reload, thus not increasing 1438 // code size. 1439 BasicBlock *UnavailablePred = nullptr; 1440 1441 // If the value is unavailable in one of predecessors, we will end up 1442 // inserting a new instruction into them. It is only valid if all the 1443 // instructions before LoadI are guaranteed to pass execution to its 1444 // successor, or if LoadI is safe to speculate. 1445 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1446 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1447 // It requires domination tree analysis, so for this simple case it is an 1448 // overkill. 1449 if (PredsScanned.size() != AvailablePreds.size() && 1450 !isSafeToSpeculativelyExecute(LoadI)) 1451 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1452 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1453 return false; 1454 1455 // If there is exactly one predecessor where the value is unavailable, the 1456 // already computed 'OneUnavailablePred' block is it. If it ends in an 1457 // unconditional branch, we know that it isn't a critical edge. 1458 if (PredsScanned.size() == AvailablePreds.size()+1 && 1459 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1460 UnavailablePred = OneUnavailablePred; 1461 } else if (PredsScanned.size() != AvailablePreds.size()) { 1462 // Otherwise, we had multiple unavailable predecessors or we had a critical 1463 // edge from the one. 1464 SmallVector<BasicBlock*, 8> PredsToSplit; 1465 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1466 1467 for (const auto &AvailablePred : AvailablePreds) 1468 AvailablePredSet.insert(AvailablePred.first); 1469 1470 // Add all the unavailable predecessors to the PredsToSplit list. 1471 for (BasicBlock *P : predecessors(LoadBB)) { 1472 // If the predecessor is an indirect goto, we can't split the edge. 1473 // Same for CallBr. 1474 if (isa<IndirectBrInst>(P->getTerminator()) || 1475 isa<CallBrInst>(P->getTerminator())) 1476 return false; 1477 1478 if (!AvailablePredSet.count(P)) 1479 PredsToSplit.push_back(P); 1480 } 1481 1482 // Split them out to their own block. 1483 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1484 } 1485 1486 // If the value isn't available in all predecessors, then there will be 1487 // exactly one where it isn't available. Insert a load on that edge and add 1488 // it to the AvailablePreds list. 1489 if (UnavailablePred) { 1490 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1491 "Can't handle critical edge here!"); 1492 LoadInst *NewVal = new LoadInst( 1493 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1494 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1495 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1496 UnavailablePred->getTerminator()); 1497 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1498 if (AATags) 1499 NewVal->setAAMetadata(AATags); 1500 1501 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1502 } 1503 1504 // Now we know that each predecessor of this block has a value in 1505 // AvailablePreds, sort them for efficient access as we're walking the preds. 1506 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1507 1508 // Create a PHI node at the start of the block for the PRE'd load value. 1509 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1510 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1511 &LoadBB->front()); 1512 PN->takeName(LoadI); 1513 PN->setDebugLoc(LoadI->getDebugLoc()); 1514 1515 // Insert new entries into the PHI for each predecessor. A single block may 1516 // have multiple entries here. 1517 for (pred_iterator PI = PB; PI != PE; ++PI) { 1518 BasicBlock *P = *PI; 1519 AvailablePredsTy::iterator I = 1520 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1521 1522 assert(I != AvailablePreds.end() && I->first == P && 1523 "Didn't find entry for predecessor!"); 1524 1525 // If we have an available predecessor but it requires casting, insert the 1526 // cast in the predecessor and use the cast. Note that we have to update the 1527 // AvailablePreds vector as we go so that all of the PHI entries for this 1528 // predecessor use the same bitcast. 1529 Value *&PredV = I->second; 1530 if (PredV->getType() != LoadI->getType()) 1531 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1532 P->getTerminator()); 1533 1534 PN->addIncoming(PredV, I->first); 1535 } 1536 1537 for (LoadInst *PredLoadI : CSELoads) { 1538 combineMetadataForCSE(PredLoadI, LoadI, true); 1539 } 1540 1541 LoadI->replaceAllUsesWith(PN); 1542 LoadI->eraseFromParent(); 1543 1544 return true; 1545 } 1546 1547 /// findMostPopularDest - The specified list contains multiple possible 1548 /// threadable destinations. Pick the one that occurs the most frequently in 1549 /// the list. 1550 static BasicBlock * 1551 findMostPopularDest(BasicBlock *BB, 1552 const SmallVectorImpl<std::pair<BasicBlock *, 1553 BasicBlock *>> &PredToDestList) { 1554 assert(!PredToDestList.empty()); 1555 1556 // Determine popularity. If there are multiple possible destinations, we 1557 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1558 // blocks with known and real destinations to threading undef. We'll handle 1559 // them later if interesting. 1560 MapVector<BasicBlock *, unsigned> DestPopularity; 1561 1562 // Populate DestPopularity with the successors in the order they appear in the 1563 // successor list. This way, we ensure determinism by iterating it in the 1564 // same order in std::max_element below. We map nullptr to 0 so that we can 1565 // return nullptr when PredToDestList contains nullptr only. 1566 DestPopularity[nullptr] = 0; 1567 for (auto *SuccBB : successors(BB)) 1568 DestPopularity[SuccBB] = 0; 1569 1570 for (const auto &PredToDest : PredToDestList) 1571 if (PredToDest.second) 1572 DestPopularity[PredToDest.second]++; 1573 1574 // Find the most popular dest. 1575 using VT = decltype(DestPopularity)::value_type; 1576 auto MostPopular = std::max_element( 1577 DestPopularity.begin(), DestPopularity.end(), 1578 [](const VT &L, const VT &R) { return L.second < R.second; }); 1579 1580 // Okay, we have finally picked the most popular destination. 1581 return MostPopular->first; 1582 } 1583 1584 // Try to evaluate the value of V when the control flows from PredPredBB to 1585 // BB->getSinglePredecessor() and then on to BB. 1586 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1587 BasicBlock *PredPredBB, 1588 Value *V) { 1589 BasicBlock *PredBB = BB->getSinglePredecessor(); 1590 assert(PredBB && "Expected a single predecessor"); 1591 1592 if (Constant *Cst = dyn_cast<Constant>(V)) { 1593 return Cst; 1594 } 1595 1596 // Consult LVI if V is not an instruction in BB or PredBB. 1597 Instruction *I = dyn_cast<Instruction>(V); 1598 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1599 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1600 } 1601 1602 // Look into a PHI argument. 1603 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1604 if (PHI->getParent() == PredBB) 1605 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1606 return nullptr; 1607 } 1608 1609 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1610 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1611 if (CondCmp->getParent() == BB) { 1612 Constant *Op0 = 1613 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1614 Constant *Op1 = 1615 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1616 if (Op0 && Op1) { 1617 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1618 } 1619 } 1620 return nullptr; 1621 } 1622 1623 return nullptr; 1624 } 1625 1626 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1627 ConstantPreference Preference, 1628 Instruction *CxtI) { 1629 // If threading this would thread across a loop header, don't even try to 1630 // thread the edge. 1631 if (LoopHeaders.count(BB)) 1632 return false; 1633 1634 PredValueInfoTy PredValues; 1635 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1636 CxtI)) { 1637 // We don't have known values in predecessors. See if we can thread through 1638 // BB and its sole predecessor. 1639 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1640 } 1641 1642 assert(!PredValues.empty() && 1643 "computeValueKnownInPredecessors returned true with no values"); 1644 1645 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1646 for (const auto &PredValue : PredValues) { 1647 dbgs() << " BB '" << BB->getName() 1648 << "': FOUND condition = " << *PredValue.first 1649 << " for pred '" << PredValue.second->getName() << "'.\n"; 1650 }); 1651 1652 // Decide what we want to thread through. Convert our list of known values to 1653 // a list of known destinations for each pred. This also discards duplicate 1654 // predecessors and keeps track of the undefined inputs (which are represented 1655 // as a null dest in the PredToDestList). 1656 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1657 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1658 1659 BasicBlock *OnlyDest = nullptr; 1660 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1661 Constant *OnlyVal = nullptr; 1662 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1663 1664 for (const auto &PredValue : PredValues) { 1665 BasicBlock *Pred = PredValue.second; 1666 if (!SeenPreds.insert(Pred).second) 1667 continue; // Duplicate predecessor entry. 1668 1669 Constant *Val = PredValue.first; 1670 1671 BasicBlock *DestBB; 1672 if (isa<UndefValue>(Val)) 1673 DestBB = nullptr; 1674 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1675 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1676 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1677 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1678 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1679 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1680 } else { 1681 assert(isa<IndirectBrInst>(BB->getTerminator()) 1682 && "Unexpected terminator"); 1683 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1684 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1685 } 1686 1687 // If we have exactly one destination, remember it for efficiency below. 1688 if (PredToDestList.empty()) { 1689 OnlyDest = DestBB; 1690 OnlyVal = Val; 1691 } else { 1692 if (OnlyDest != DestBB) 1693 OnlyDest = MultipleDestSentinel; 1694 // It possible we have same destination, but different value, e.g. default 1695 // case in switchinst. 1696 if (Val != OnlyVal) 1697 OnlyVal = MultipleVal; 1698 } 1699 1700 // If the predecessor ends with an indirect goto, we can't change its 1701 // destination. Same for CallBr. 1702 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1703 isa<CallBrInst>(Pred->getTerminator())) 1704 continue; 1705 1706 PredToDestList.emplace_back(Pred, DestBB); 1707 } 1708 1709 // If all edges were unthreadable, we fail. 1710 if (PredToDestList.empty()) 1711 return false; 1712 1713 // If all the predecessors go to a single known successor, we want to fold, 1714 // not thread. By doing so, we do not need to duplicate the current block and 1715 // also miss potential opportunities in case we dont/cant duplicate. 1716 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1717 if (BB->hasNPredecessors(PredToDestList.size())) { 1718 bool SeenFirstBranchToOnlyDest = false; 1719 std::vector <DominatorTree::UpdateType> Updates; 1720 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1721 for (BasicBlock *SuccBB : successors(BB)) { 1722 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1723 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1724 } else { 1725 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1726 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1727 } 1728 } 1729 1730 // Finally update the terminator. 1731 Instruction *Term = BB->getTerminator(); 1732 BranchInst::Create(OnlyDest, Term); 1733 ++NumFolds; 1734 Term->eraseFromParent(); 1735 DTU->applyUpdatesPermissive(Updates); 1736 if (HasProfileData) 1737 BPI->eraseBlock(BB); 1738 1739 // If the condition is now dead due to the removal of the old terminator, 1740 // erase it. 1741 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1742 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1743 CondInst->eraseFromParent(); 1744 // We can safely replace *some* uses of the CondInst if it has 1745 // exactly one value as returned by LVI. RAUW is incorrect in the 1746 // presence of guards and assumes, that have the `Cond` as the use. This 1747 // is because we use the guards/assume to reason about the `Cond` value 1748 // at the end of block, but RAUW unconditionally replaces all uses 1749 // including the guards/assumes themselves and the uses before the 1750 // guard/assume. 1751 else if (OnlyVal && OnlyVal != MultipleVal && 1752 CondInst->getParent() == BB) 1753 replaceFoldableUses(CondInst, OnlyVal); 1754 } 1755 return true; 1756 } 1757 } 1758 1759 // Determine which is the most common successor. If we have many inputs and 1760 // this block is a switch, we want to start by threading the batch that goes 1761 // to the most popular destination first. If we only know about one 1762 // threadable destination (the common case) we can avoid this. 1763 BasicBlock *MostPopularDest = OnlyDest; 1764 1765 if (MostPopularDest == MultipleDestSentinel) { 1766 // Remove any loop headers from the Dest list, threadEdge conservatively 1767 // won't process them, but we might have other destination that are eligible 1768 // and we still want to process. 1769 erase_if(PredToDestList, 1770 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1771 return LoopHeaders.contains(PredToDest.second); 1772 }); 1773 1774 if (PredToDestList.empty()) 1775 return false; 1776 1777 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1778 } 1779 1780 // Now that we know what the most popular destination is, factor all 1781 // predecessors that will jump to it into a single predecessor. 1782 SmallVector<BasicBlock*, 16> PredsToFactor; 1783 for (const auto &PredToDest : PredToDestList) 1784 if (PredToDest.second == MostPopularDest) { 1785 BasicBlock *Pred = PredToDest.first; 1786 1787 // This predecessor may be a switch or something else that has multiple 1788 // edges to the block. Factor each of these edges by listing them 1789 // according to # occurrences in PredsToFactor. 1790 for (BasicBlock *Succ : successors(Pred)) 1791 if (Succ == BB) 1792 PredsToFactor.push_back(Pred); 1793 } 1794 1795 // If the threadable edges are branching on an undefined value, we get to pick 1796 // the destination that these predecessors should get to. 1797 if (!MostPopularDest) 1798 MostPopularDest = BB->getTerminator()-> 1799 getSuccessor(getBestDestForJumpOnUndef(BB)); 1800 1801 // Ok, try to thread it! 1802 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1803 } 1804 1805 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1806 /// a PHI node (or freeze PHI) in the current block. See if there are any 1807 /// simplifications we can do based on inputs to the phi node. 1808 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1809 BasicBlock *BB = PN->getParent(); 1810 1811 // TODO: We could make use of this to do it once for blocks with common PHI 1812 // values. 1813 SmallVector<BasicBlock*, 1> PredBBs; 1814 PredBBs.resize(1); 1815 1816 // If any of the predecessor blocks end in an unconditional branch, we can 1817 // *duplicate* the conditional branch into that block in order to further 1818 // encourage jump threading and to eliminate cases where we have branch on a 1819 // phi of an icmp (branch on icmp is much better). 1820 // This is still beneficial when a frozen phi is used as the branch condition 1821 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1822 // to br(icmp(freeze ...)). 1823 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1824 BasicBlock *PredBB = PN->getIncomingBlock(i); 1825 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1826 if (PredBr->isUnconditional()) { 1827 PredBBs[0] = PredBB; 1828 // Try to duplicate BB into PredBB. 1829 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1830 return true; 1831 } 1832 } 1833 1834 return false; 1835 } 1836 1837 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1838 /// a xor instruction in the current block. See if there are any 1839 /// simplifications we can do based on inputs to the xor. 1840 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1841 BasicBlock *BB = BO->getParent(); 1842 1843 // If either the LHS or RHS of the xor is a constant, don't do this 1844 // optimization. 1845 if (isa<ConstantInt>(BO->getOperand(0)) || 1846 isa<ConstantInt>(BO->getOperand(1))) 1847 return false; 1848 1849 // If the first instruction in BB isn't a phi, we won't be able to infer 1850 // anything special about any particular predecessor. 1851 if (!isa<PHINode>(BB->front())) 1852 return false; 1853 1854 // If this BB is a landing pad, we won't be able to split the edge into it. 1855 if (BB->isEHPad()) 1856 return false; 1857 1858 // If we have a xor as the branch input to this block, and we know that the 1859 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1860 // the condition into the predecessor and fix that value to true, saving some 1861 // logical ops on that path and encouraging other paths to simplify. 1862 // 1863 // This copies something like this: 1864 // 1865 // BB: 1866 // %X = phi i1 [1], [%X'] 1867 // %Y = icmp eq i32 %A, %B 1868 // %Z = xor i1 %X, %Y 1869 // br i1 %Z, ... 1870 // 1871 // Into: 1872 // BB': 1873 // %Y = icmp ne i32 %A, %B 1874 // br i1 %Y, ... 1875 1876 PredValueInfoTy XorOpValues; 1877 bool isLHS = true; 1878 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1879 WantInteger, BO)) { 1880 assert(XorOpValues.empty()); 1881 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1882 WantInteger, BO)) 1883 return false; 1884 isLHS = false; 1885 } 1886 1887 assert(!XorOpValues.empty() && 1888 "computeValueKnownInPredecessors returned true with no values"); 1889 1890 // Scan the information to see which is most popular: true or false. The 1891 // predecessors can be of the set true, false, or undef. 1892 unsigned NumTrue = 0, NumFalse = 0; 1893 for (const auto &XorOpValue : XorOpValues) { 1894 if (isa<UndefValue>(XorOpValue.first)) 1895 // Ignore undefs for the count. 1896 continue; 1897 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1898 ++NumFalse; 1899 else 1900 ++NumTrue; 1901 } 1902 1903 // Determine which value to split on, true, false, or undef if neither. 1904 ConstantInt *SplitVal = nullptr; 1905 if (NumTrue > NumFalse) 1906 SplitVal = ConstantInt::getTrue(BB->getContext()); 1907 else if (NumTrue != 0 || NumFalse != 0) 1908 SplitVal = ConstantInt::getFalse(BB->getContext()); 1909 1910 // Collect all of the blocks that this can be folded into so that we can 1911 // factor this once and clone it once. 1912 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1913 for (const auto &XorOpValue : XorOpValues) { 1914 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1915 continue; 1916 1917 BlocksToFoldInto.push_back(XorOpValue.second); 1918 } 1919 1920 // If we inferred a value for all of the predecessors, then duplication won't 1921 // help us. However, we can just replace the LHS or RHS with the constant. 1922 if (BlocksToFoldInto.size() == 1923 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1924 if (!SplitVal) { 1925 // If all preds provide undef, just nuke the xor, because it is undef too. 1926 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1927 BO->eraseFromParent(); 1928 } else if (SplitVal->isZero()) { 1929 // If all preds provide 0, replace the xor with the other input. 1930 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1931 BO->eraseFromParent(); 1932 } else { 1933 // If all preds provide 1, set the computed value to 1. 1934 BO->setOperand(!isLHS, SplitVal); 1935 } 1936 1937 return true; 1938 } 1939 1940 // If any of predecessors end with an indirect goto, we can't change its 1941 // destination. Same for CallBr. 1942 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1943 return isa<IndirectBrInst>(Pred->getTerminator()) || 1944 isa<CallBrInst>(Pred->getTerminator()); 1945 })) 1946 return false; 1947 1948 // Try to duplicate BB into PredBB. 1949 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1950 } 1951 1952 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1953 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1954 /// NewPred using the entries from OldPred (suitably mapped). 1955 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1956 BasicBlock *OldPred, 1957 BasicBlock *NewPred, 1958 DenseMap<Instruction*, Value*> &ValueMap) { 1959 for (PHINode &PN : PHIBB->phis()) { 1960 // Ok, we have a PHI node. Figure out what the incoming value was for the 1961 // DestBlock. 1962 Value *IV = PN.getIncomingValueForBlock(OldPred); 1963 1964 // Remap the value if necessary. 1965 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1966 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1967 if (I != ValueMap.end()) 1968 IV = I->second; 1969 } 1970 1971 PN.addIncoming(IV, NewPred); 1972 } 1973 } 1974 1975 /// Merge basic block BB into its sole predecessor if possible. 1976 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1977 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1978 if (!SinglePred) 1979 return false; 1980 1981 const Instruction *TI = SinglePred->getTerminator(); 1982 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1983 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1984 return false; 1985 1986 // If SinglePred was a loop header, BB becomes one. 1987 if (LoopHeaders.erase(SinglePred)) 1988 LoopHeaders.insert(BB); 1989 1990 LVI->eraseBlock(SinglePred); 1991 MergeBasicBlockIntoOnlyPred(BB, DTU); 1992 1993 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1994 // BB code within one basic block `BB`), we need to invalidate the LVI 1995 // information associated with BB, because the LVI information need not be 1996 // true for all of BB after the merge. For example, 1997 // Before the merge, LVI info and code is as follows: 1998 // SinglePred: <LVI info1 for %p val> 1999 // %y = use of %p 2000 // call @exit() // need not transfer execution to successor. 2001 // assume(%p) // from this point on %p is true 2002 // br label %BB 2003 // BB: <LVI info2 for %p val, i.e. %p is true> 2004 // %x = use of %p 2005 // br label exit 2006 // 2007 // Note that this LVI info for blocks BB and SinglPred is correct for %p 2008 // (info2 and info1 respectively). After the merge and the deletion of the 2009 // LVI info1 for SinglePred. We have the following code: 2010 // BB: <LVI info2 for %p val> 2011 // %y = use of %p 2012 // call @exit() 2013 // assume(%p) 2014 // %x = use of %p <-- LVI info2 is correct from here onwards. 2015 // br label exit 2016 // LVI info2 for BB is incorrect at the beginning of BB. 2017 2018 // Invalidate LVI information for BB if the LVI is not provably true for 2019 // all of BB. 2020 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 2021 LVI->eraseBlock(BB); 2022 return true; 2023 } 2024 2025 /// Update the SSA form. NewBB contains instructions that are copied from BB. 2026 /// ValueMapping maps old values in BB to new ones in NewBB. 2027 void JumpThreadingPass::updateSSA( 2028 BasicBlock *BB, BasicBlock *NewBB, 2029 DenseMap<Instruction *, Value *> &ValueMapping) { 2030 // If there were values defined in BB that are used outside the block, then we 2031 // now have to update all uses of the value to use either the original value, 2032 // the cloned value, or some PHI derived value. This can require arbitrary 2033 // PHI insertion, of which we are prepared to do, clean these up now. 2034 SSAUpdater SSAUpdate; 2035 SmallVector<Use *, 16> UsesToRename; 2036 2037 for (Instruction &I : *BB) { 2038 // Scan all uses of this instruction to see if it is used outside of its 2039 // block, and if so, record them in UsesToRename. 2040 for (Use &U : I.uses()) { 2041 Instruction *User = cast<Instruction>(U.getUser()); 2042 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2043 if (UserPN->getIncomingBlock(U) == BB) 2044 continue; 2045 } else if (User->getParent() == BB) 2046 continue; 2047 2048 UsesToRename.push_back(&U); 2049 } 2050 2051 // If there are no uses outside the block, we're done with this instruction. 2052 if (UsesToRename.empty()) 2053 continue; 2054 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2055 2056 // We found a use of I outside of BB. Rename all uses of I that are outside 2057 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2058 // with the two values we know. 2059 SSAUpdate.Initialize(I.getType(), I.getName()); 2060 SSAUpdate.AddAvailableValue(BB, &I); 2061 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2062 2063 while (!UsesToRename.empty()) 2064 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2065 LLVM_DEBUG(dbgs() << "\n"); 2066 } 2067 } 2068 2069 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2070 /// arguments that come from PredBB. Return the map from the variables in the 2071 /// source basic block to the variables in the newly created basic block. 2072 DenseMap<Instruction *, Value *> 2073 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2074 BasicBlock::iterator BE, BasicBlock *NewBB, 2075 BasicBlock *PredBB) { 2076 // We are going to have to map operands from the source basic block to the new 2077 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2078 // block, evaluate them to account for entry from PredBB. 2079 DenseMap<Instruction *, Value *> ValueMapping; 2080 2081 // Clone the phi nodes of the source basic block into NewBB. The resulting 2082 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2083 // might need to rewrite the operand of the cloned phi. 2084 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2085 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2086 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2087 ValueMapping[PN] = NewPN; 2088 } 2089 2090 // Clone noalias scope declarations in the threaded block. When threading a 2091 // loop exit, we would otherwise end up with two idential scope declarations 2092 // visible at the same time. 2093 SmallVector<MDNode *> NoAliasScopes; 2094 DenseMap<MDNode *, MDNode *> ClonedScopes; 2095 LLVMContext &Context = PredBB->getContext(); 2096 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2097 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2098 2099 // Clone the non-phi instructions of the source basic block into NewBB, 2100 // keeping track of the mapping and using it to remap operands in the cloned 2101 // instructions. 2102 for (; BI != BE; ++BI) { 2103 Instruction *New = BI->clone(); 2104 New->setName(BI->getName()); 2105 NewBB->getInstList().push_back(New); 2106 ValueMapping[&*BI] = New; 2107 adaptNoAliasScopes(New, ClonedScopes, Context); 2108 2109 // Remap operands to patch up intra-block references. 2110 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2111 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2112 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2113 if (I != ValueMapping.end()) 2114 New->setOperand(i, I->second); 2115 } 2116 } 2117 2118 return ValueMapping; 2119 } 2120 2121 /// Attempt to thread through two successive basic blocks. 2122 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2123 Value *Cond) { 2124 // Consider: 2125 // 2126 // PredBB: 2127 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2128 // %tobool = icmp eq i32 %cond, 0 2129 // br i1 %tobool, label %BB, label ... 2130 // 2131 // BB: 2132 // %cmp = icmp eq i32* %var, null 2133 // br i1 %cmp, label ..., label ... 2134 // 2135 // We don't know the value of %var at BB even if we know which incoming edge 2136 // we take to BB. However, once we duplicate PredBB for each of its incoming 2137 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2138 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2139 2140 // Require that BB end with a Branch for simplicity. 2141 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2142 if (!CondBr) 2143 return false; 2144 2145 // BB must have exactly one predecessor. 2146 BasicBlock *PredBB = BB->getSinglePredecessor(); 2147 if (!PredBB) 2148 return false; 2149 2150 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2151 // unconditional branch, we should be merging PredBB and BB instead. For 2152 // simplicity, we don't deal with a switch. 2153 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2154 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2155 return false; 2156 2157 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2158 // PredBB. 2159 if (PredBB->getSinglePredecessor()) 2160 return false; 2161 2162 // Don't thread through PredBB if it contains a successor edge to itself, in 2163 // which case we would infinite loop. Suppose we are threading an edge from 2164 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2165 // successor edge to itself. If we allowed jump threading in this case, we 2166 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2167 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2168 // with another jump threading opportunity from PredBB.thread through PredBB 2169 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2170 // would keep peeling one iteration from PredBB. 2171 if (llvm::is_contained(successors(PredBB), PredBB)) 2172 return false; 2173 2174 // Don't thread across a loop header. 2175 if (LoopHeaders.count(PredBB)) 2176 return false; 2177 2178 // Avoid complication with duplicating EH pads. 2179 if (PredBB->isEHPad()) 2180 return false; 2181 2182 // Find a predecessor that we can thread. For simplicity, we only consider a 2183 // successor edge out of BB to which we thread exactly one incoming edge into 2184 // PredBB. 2185 unsigned ZeroCount = 0; 2186 unsigned OneCount = 0; 2187 BasicBlock *ZeroPred = nullptr; 2188 BasicBlock *OnePred = nullptr; 2189 for (BasicBlock *P : predecessors(PredBB)) { 2190 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2191 evaluateOnPredecessorEdge(BB, P, Cond))) { 2192 if (CI->isZero()) { 2193 ZeroCount++; 2194 ZeroPred = P; 2195 } else if (CI->isOne()) { 2196 OneCount++; 2197 OnePred = P; 2198 } 2199 } 2200 } 2201 2202 // Disregard complicated cases where we have to thread multiple edges. 2203 BasicBlock *PredPredBB; 2204 if (ZeroCount == 1) { 2205 PredPredBB = ZeroPred; 2206 } else if (OneCount == 1) { 2207 PredPredBB = OnePred; 2208 } else { 2209 return false; 2210 } 2211 2212 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2213 2214 // If threading to the same block as we come from, we would infinite loop. 2215 if (SuccBB == BB) { 2216 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2217 << "' - would thread to self!\n"); 2218 return false; 2219 } 2220 2221 // If threading this would thread across a loop header, don't thread the edge. 2222 // See the comments above findLoopHeaders for justifications and caveats. 2223 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2224 LLVM_DEBUG({ 2225 bool BBIsHeader = LoopHeaders.count(BB); 2226 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2227 dbgs() << " Not threading across " 2228 << (BBIsHeader ? "loop header BB '" : "block BB '") 2229 << BB->getName() << "' to dest " 2230 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2231 << SuccBB->getName() 2232 << "' - it might create an irreducible loop!\n"; 2233 }); 2234 return false; 2235 } 2236 2237 // Compute the cost of duplicating BB and PredBB. 2238 unsigned BBCost = 2239 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2240 unsigned PredBBCost = getJumpThreadDuplicationCost( 2241 PredBB, PredBB->getTerminator(), BBDupThreshold); 2242 2243 // Give up if costs are too high. We need to check BBCost and PredBBCost 2244 // individually before checking their sum because getJumpThreadDuplicationCost 2245 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2246 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2247 BBCost + PredBBCost > BBDupThreshold) { 2248 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2249 << "' - Cost is too high: " << PredBBCost 2250 << " for PredBB, " << BBCost << "for BB\n"); 2251 return false; 2252 } 2253 2254 // Now we are ready to duplicate PredBB. 2255 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2256 return true; 2257 } 2258 2259 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2260 BasicBlock *PredBB, 2261 BasicBlock *BB, 2262 BasicBlock *SuccBB) { 2263 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2264 << BB->getName() << "'\n"); 2265 2266 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2267 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2268 2269 BasicBlock *NewBB = 2270 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2271 PredBB->getParent(), PredBB); 2272 NewBB->moveAfter(PredBB); 2273 2274 // Set the block frequency of NewBB. 2275 if (HasProfileData) { 2276 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2277 BPI->getEdgeProbability(PredPredBB, PredBB); 2278 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2279 } 2280 2281 // We are going to have to map operands from the original BB block to the new 2282 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2283 // to account for entry from PredPredBB. 2284 DenseMap<Instruction *, Value *> ValueMapping = 2285 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2286 2287 // Copy the edge probabilities from PredBB to NewBB. 2288 if (HasProfileData) 2289 BPI->copyEdgeProbabilities(PredBB, NewBB); 2290 2291 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2292 // This eliminates predecessors from PredPredBB, which requires us to simplify 2293 // any PHI nodes in PredBB. 2294 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2295 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2296 if (PredPredTerm->getSuccessor(i) == PredBB) { 2297 PredBB->removePredecessor(PredPredBB, true); 2298 PredPredTerm->setSuccessor(i, NewBB); 2299 } 2300 2301 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2302 ValueMapping); 2303 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2304 ValueMapping); 2305 2306 DTU->applyUpdatesPermissive( 2307 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2308 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2309 {DominatorTree::Insert, PredPredBB, NewBB}, 2310 {DominatorTree::Delete, PredPredBB, PredBB}}); 2311 2312 updateSSA(PredBB, NewBB, ValueMapping); 2313 2314 // Clean up things like PHI nodes with single operands, dead instructions, 2315 // etc. 2316 SimplifyInstructionsInBlock(NewBB, TLI); 2317 SimplifyInstructionsInBlock(PredBB, TLI); 2318 2319 SmallVector<BasicBlock *, 1> PredsToFactor; 2320 PredsToFactor.push_back(NewBB); 2321 threadEdge(BB, PredsToFactor, SuccBB); 2322 } 2323 2324 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2325 bool JumpThreadingPass::tryThreadEdge( 2326 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2327 BasicBlock *SuccBB) { 2328 // If threading to the same block as we come from, we would infinite loop. 2329 if (SuccBB == BB) { 2330 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2331 << "' - would thread to self!\n"); 2332 return false; 2333 } 2334 2335 // If threading this would thread across a loop header, don't thread the edge. 2336 // See the comments above findLoopHeaders for justifications and caveats. 2337 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2338 LLVM_DEBUG({ 2339 bool BBIsHeader = LoopHeaders.count(BB); 2340 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2341 dbgs() << " Not threading across " 2342 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2343 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2344 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2345 }); 2346 return false; 2347 } 2348 2349 unsigned JumpThreadCost = 2350 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2351 if (JumpThreadCost > BBDupThreshold) { 2352 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2353 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2354 return false; 2355 } 2356 2357 threadEdge(BB, PredBBs, SuccBB); 2358 return true; 2359 } 2360 2361 /// threadEdge - We have decided that it is safe and profitable to factor the 2362 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2363 /// across BB. Transform the IR to reflect this change. 2364 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2365 const SmallVectorImpl<BasicBlock *> &PredBBs, 2366 BasicBlock *SuccBB) { 2367 assert(SuccBB != BB && "Don't create an infinite loop"); 2368 2369 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2370 "Don't thread across loop headers"); 2371 2372 // And finally, do it! Start by factoring the predecessors if needed. 2373 BasicBlock *PredBB; 2374 if (PredBBs.size() == 1) 2375 PredBB = PredBBs[0]; 2376 else { 2377 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2378 << " common predecessors.\n"); 2379 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2380 } 2381 2382 // And finally, do it! 2383 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2384 << "' to '" << SuccBB->getName() 2385 << ", across block:\n " << *BB << "\n"); 2386 2387 LVI->threadEdge(PredBB, BB, SuccBB); 2388 2389 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2390 BB->getName()+".thread", 2391 BB->getParent(), BB); 2392 NewBB->moveAfter(PredBB); 2393 2394 // Set the block frequency of NewBB. 2395 if (HasProfileData) { 2396 auto NewBBFreq = 2397 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2398 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2399 } 2400 2401 // Copy all the instructions from BB to NewBB except the terminator. 2402 DenseMap<Instruction *, Value *> ValueMapping = 2403 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2404 2405 // We didn't copy the terminator from BB over to NewBB, because there is now 2406 // an unconditional jump to SuccBB. Insert the unconditional jump. 2407 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2408 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2409 2410 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2411 // PHI nodes for NewBB now. 2412 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2413 2414 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2415 // eliminates predecessors from BB, which requires us to simplify any PHI 2416 // nodes in BB. 2417 Instruction *PredTerm = PredBB->getTerminator(); 2418 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2419 if (PredTerm->getSuccessor(i) == BB) { 2420 BB->removePredecessor(PredBB, true); 2421 PredTerm->setSuccessor(i, NewBB); 2422 } 2423 2424 // Enqueue required DT updates. 2425 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2426 {DominatorTree::Insert, PredBB, NewBB}, 2427 {DominatorTree::Delete, PredBB, BB}}); 2428 2429 updateSSA(BB, NewBB, ValueMapping); 2430 2431 // At this point, the IR is fully up to date and consistent. Do a quick scan 2432 // over the new instructions and zap any that are constants or dead. This 2433 // frequently happens because of phi translation. 2434 SimplifyInstructionsInBlock(NewBB, TLI); 2435 2436 // Update the edge weight from BB to SuccBB, which should be less than before. 2437 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2438 2439 // Threaded an edge! 2440 ++NumThreads; 2441 } 2442 2443 /// Create a new basic block that will be the predecessor of BB and successor of 2444 /// all blocks in Preds. When profile data is available, update the frequency of 2445 /// this new block. 2446 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2447 ArrayRef<BasicBlock *> Preds, 2448 const char *Suffix) { 2449 SmallVector<BasicBlock *, 2> NewBBs; 2450 2451 // Collect the frequencies of all predecessors of BB, which will be used to 2452 // update the edge weight of the result of splitting predecessors. 2453 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2454 if (HasProfileData) 2455 for (auto Pred : Preds) 2456 FreqMap.insert(std::make_pair( 2457 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2458 2459 // In the case when BB is a LandingPad block we create 2 new predecessors 2460 // instead of just one. 2461 if (BB->isLandingPad()) { 2462 std::string NewName = std::string(Suffix) + ".split-lp"; 2463 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2464 } else { 2465 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2466 } 2467 2468 std::vector<DominatorTree::UpdateType> Updates; 2469 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2470 for (auto NewBB : NewBBs) { 2471 BlockFrequency NewBBFreq(0); 2472 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2473 for (auto Pred : predecessors(NewBB)) { 2474 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2475 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2476 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2477 NewBBFreq += FreqMap.lookup(Pred); 2478 } 2479 if (HasProfileData) // Apply the summed frequency to NewBB. 2480 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2481 } 2482 2483 DTU->applyUpdatesPermissive(Updates); 2484 return NewBBs[0]; 2485 } 2486 2487 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2488 const Instruction *TI = BB->getTerminator(); 2489 assert(TI->getNumSuccessors() > 1 && "not a split"); 2490 2491 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2492 if (!WeightsNode) 2493 return false; 2494 2495 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2496 if (MDName->getString() != "branch_weights") 2497 return false; 2498 2499 // Ensure there are weights for all of the successors. Note that the first 2500 // operand to the metadata node is a name, not a weight. 2501 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2502 } 2503 2504 /// Update the block frequency of BB and branch weight and the metadata on the 2505 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2506 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2507 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2508 BasicBlock *BB, 2509 BasicBlock *NewBB, 2510 BasicBlock *SuccBB) { 2511 if (!HasProfileData) 2512 return; 2513 2514 assert(BFI && BPI && "BFI & BPI should have been created here"); 2515 2516 // As the edge from PredBB to BB is deleted, we have to update the block 2517 // frequency of BB. 2518 auto BBOrigFreq = BFI->getBlockFreq(BB); 2519 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2520 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2521 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2522 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2523 2524 // Collect updated outgoing edges' frequencies from BB and use them to update 2525 // edge probabilities. 2526 SmallVector<uint64_t, 4> BBSuccFreq; 2527 for (BasicBlock *Succ : successors(BB)) { 2528 auto SuccFreq = (Succ == SuccBB) 2529 ? BB2SuccBBFreq - NewBBFreq 2530 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2531 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2532 } 2533 2534 uint64_t MaxBBSuccFreq = 2535 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2536 2537 SmallVector<BranchProbability, 4> BBSuccProbs; 2538 if (MaxBBSuccFreq == 0) 2539 BBSuccProbs.assign(BBSuccFreq.size(), 2540 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2541 else { 2542 for (uint64_t Freq : BBSuccFreq) 2543 BBSuccProbs.push_back( 2544 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2545 // Normalize edge probabilities so that they sum up to one. 2546 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2547 BBSuccProbs.end()); 2548 } 2549 2550 // Update edge probabilities in BPI. 2551 BPI->setEdgeProbability(BB, BBSuccProbs); 2552 2553 // Update the profile metadata as well. 2554 // 2555 // Don't do this if the profile of the transformed blocks was statically 2556 // estimated. (This could occur despite the function having an entry 2557 // frequency in completely cold parts of the CFG.) 2558 // 2559 // In this case we don't want to suggest to subsequent passes that the 2560 // calculated weights are fully consistent. Consider this graph: 2561 // 2562 // check_1 2563 // 50% / | 2564 // eq_1 | 50% 2565 // \ | 2566 // check_2 2567 // 50% / | 2568 // eq_2 | 50% 2569 // \ | 2570 // check_3 2571 // 50% / | 2572 // eq_3 | 50% 2573 // \ | 2574 // 2575 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2576 // the overall probabilities are inconsistent; the total probability that the 2577 // value is either 1, 2 or 3 is 150%. 2578 // 2579 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2580 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2581 // the loop exit edge. Then based solely on static estimation we would assume 2582 // the loop was extremely hot. 2583 // 2584 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2585 // shouldn't make edges extremely likely or unlikely based solely on static 2586 // estimation. 2587 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2588 SmallVector<uint32_t, 4> Weights; 2589 for (auto Prob : BBSuccProbs) 2590 Weights.push_back(Prob.getNumerator()); 2591 2592 auto TI = BB->getTerminator(); 2593 TI->setMetadata( 2594 LLVMContext::MD_prof, 2595 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2596 } 2597 } 2598 2599 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2600 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2601 /// If we can duplicate the contents of BB up into PredBB do so now, this 2602 /// improves the odds that the branch will be on an analyzable instruction like 2603 /// a compare. 2604 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2605 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2606 assert(!PredBBs.empty() && "Can't handle an empty set"); 2607 2608 // If BB is a loop header, then duplicating this block outside the loop would 2609 // cause us to transform this into an irreducible loop, don't do this. 2610 // See the comments above findLoopHeaders for justifications and caveats. 2611 if (LoopHeaders.count(BB)) { 2612 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2613 << "' into predecessor block '" << PredBBs[0]->getName() 2614 << "' - it might create an irreducible loop!\n"); 2615 return false; 2616 } 2617 2618 unsigned DuplicationCost = 2619 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2620 if (DuplicationCost > BBDupThreshold) { 2621 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2622 << "' - Cost is too high: " << DuplicationCost << "\n"); 2623 return false; 2624 } 2625 2626 // And finally, do it! Start by factoring the predecessors if needed. 2627 std::vector<DominatorTree::UpdateType> Updates; 2628 BasicBlock *PredBB; 2629 if (PredBBs.size() == 1) 2630 PredBB = PredBBs[0]; 2631 else { 2632 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2633 << " common predecessors.\n"); 2634 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2635 } 2636 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2637 2638 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2639 // of PredBB. 2640 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2641 << "' into end of '" << PredBB->getName() 2642 << "' to eliminate branch on phi. Cost: " 2643 << DuplicationCost << " block is:" << *BB << "\n"); 2644 2645 // Unless PredBB ends with an unconditional branch, split the edge so that we 2646 // can just clone the bits from BB into the end of the new PredBB. 2647 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2648 2649 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2650 BasicBlock *OldPredBB = PredBB; 2651 PredBB = SplitEdge(OldPredBB, BB); 2652 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2653 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2654 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2655 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2656 } 2657 2658 // We are going to have to map operands from the original BB block into the 2659 // PredBB block. Evaluate PHI nodes in BB. 2660 DenseMap<Instruction*, Value*> ValueMapping; 2661 2662 BasicBlock::iterator BI = BB->begin(); 2663 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2664 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2665 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2666 // mapping and using it to remap operands in the cloned instructions. 2667 for (; BI != BB->end(); ++BI) { 2668 Instruction *New = BI->clone(); 2669 2670 // Remap operands to patch up intra-block references. 2671 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2672 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2673 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2674 if (I != ValueMapping.end()) 2675 New->setOperand(i, I->second); 2676 } 2677 2678 // If this instruction can be simplified after the operands are updated, 2679 // just use the simplified value instead. This frequently happens due to 2680 // phi translation. 2681 if (Value *IV = SimplifyInstruction( 2682 New, 2683 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2684 ValueMapping[&*BI] = IV; 2685 if (!New->mayHaveSideEffects()) { 2686 New->deleteValue(); 2687 New = nullptr; 2688 } 2689 } else { 2690 ValueMapping[&*BI] = New; 2691 } 2692 if (New) { 2693 // Otherwise, insert the new instruction into the block. 2694 New->setName(BI->getName()); 2695 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2696 // Update Dominance from simplified New instruction operands. 2697 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2698 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2699 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2700 } 2701 } 2702 2703 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2704 // add entries to the PHI nodes for branch from PredBB now. 2705 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2706 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2707 ValueMapping); 2708 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2709 ValueMapping); 2710 2711 updateSSA(BB, PredBB, ValueMapping); 2712 2713 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2714 // that we nuked. 2715 BB->removePredecessor(PredBB, true); 2716 2717 // Remove the unconditional branch at the end of the PredBB block. 2718 OldPredBranch->eraseFromParent(); 2719 if (HasProfileData) 2720 BPI->copyEdgeProbabilities(BB, PredBB); 2721 DTU->applyUpdatesPermissive(Updates); 2722 2723 ++NumDupes; 2724 return true; 2725 } 2726 2727 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2728 // a Select instruction in Pred. BB has other predecessors and SI is used in 2729 // a PHI node in BB. SI has no other use. 2730 // A new basic block, NewBB, is created and SI is converted to compare and 2731 // conditional branch. SI is erased from parent. 2732 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2733 SelectInst *SI, PHINode *SIUse, 2734 unsigned Idx) { 2735 // Expand the select. 2736 // 2737 // Pred -- 2738 // | v 2739 // | NewBB 2740 // | | 2741 // |----- 2742 // v 2743 // BB 2744 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2745 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2746 BB->getParent(), BB); 2747 // Move the unconditional branch to NewBB. 2748 PredTerm->removeFromParent(); 2749 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2750 // Create a conditional branch and update PHI nodes. 2751 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2752 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc()); 2753 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2754 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2755 2756 // The select is now dead. 2757 SI->eraseFromParent(); 2758 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2759 {DominatorTree::Insert, Pred, NewBB}}); 2760 2761 // Update any other PHI nodes in BB. 2762 for (BasicBlock::iterator BI = BB->begin(); 2763 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2764 if (Phi != SIUse) 2765 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2766 } 2767 2768 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2769 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2770 2771 if (!CondPHI || CondPHI->getParent() != BB) 2772 return false; 2773 2774 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2775 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2776 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2777 2778 // The second and third condition can be potentially relaxed. Currently 2779 // the conditions help to simplify the code and allow us to reuse existing 2780 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2781 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2782 continue; 2783 2784 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2785 if (!PredTerm || !PredTerm->isUnconditional()) 2786 continue; 2787 2788 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2789 return true; 2790 } 2791 return false; 2792 } 2793 2794 /// tryToUnfoldSelect - Look for blocks of the form 2795 /// bb1: 2796 /// %a = select 2797 /// br bb2 2798 /// 2799 /// bb2: 2800 /// %p = phi [%a, %bb1] ... 2801 /// %c = icmp %p 2802 /// br i1 %c 2803 /// 2804 /// And expand the select into a branch structure if one of its arms allows %c 2805 /// to be folded. This later enables threading from bb1 over bb2. 2806 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2807 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2808 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2809 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2810 2811 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2812 CondLHS->getParent() != BB) 2813 return false; 2814 2815 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2816 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2817 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2818 2819 // Look if one of the incoming values is a select in the corresponding 2820 // predecessor. 2821 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2822 continue; 2823 2824 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2825 if (!PredTerm || !PredTerm->isUnconditional()) 2826 continue; 2827 2828 // Now check if one of the select values would allow us to constant fold the 2829 // terminator in BB. We don't do the transform if both sides fold, those 2830 // cases will be threaded in any case. 2831 LazyValueInfo::Tristate LHSFolds = 2832 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2833 CondRHS, Pred, BB, CondCmp); 2834 LazyValueInfo::Tristate RHSFolds = 2835 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2836 CondRHS, Pred, BB, CondCmp); 2837 if ((LHSFolds != LazyValueInfo::Unknown || 2838 RHSFolds != LazyValueInfo::Unknown) && 2839 LHSFolds != RHSFolds) { 2840 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2841 return true; 2842 } 2843 } 2844 return false; 2845 } 2846 2847 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2848 /// same BB in the form 2849 /// bb: 2850 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2851 /// %s = select %p, trueval, falseval 2852 /// 2853 /// or 2854 /// 2855 /// bb: 2856 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2857 /// %c = cmp %p, 0 2858 /// %s = select %c, trueval, falseval 2859 /// 2860 /// And expand the select into a branch structure. This later enables 2861 /// jump-threading over bb in this pass. 2862 /// 2863 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2864 /// select if the associated PHI has at least one constant. If the unfolded 2865 /// select is not jump-threaded, it will be folded again in the later 2866 /// optimizations. 2867 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2868 // This transform would reduce the quality of msan diagnostics. 2869 // Disable this transform under MemorySanitizer. 2870 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2871 return false; 2872 2873 // If threading this would thread across a loop header, don't thread the edge. 2874 // See the comments above findLoopHeaders for justifications and caveats. 2875 if (LoopHeaders.count(BB)) 2876 return false; 2877 2878 for (BasicBlock::iterator BI = BB->begin(); 2879 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2880 // Look for a Phi having at least one constant incoming value. 2881 if (llvm::all_of(PN->incoming_values(), 2882 [](Value *V) { return !isa<ConstantInt>(V); })) 2883 continue; 2884 2885 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2886 using namespace PatternMatch; 2887 2888 // Check if SI is in BB and use V as condition. 2889 if (SI->getParent() != BB) 2890 return false; 2891 Value *Cond = SI->getCondition(); 2892 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2893 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2894 }; 2895 2896 SelectInst *SI = nullptr; 2897 for (Use &U : PN->uses()) { 2898 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2899 // Look for a ICmp in BB that compares PN with a constant and is the 2900 // condition of a Select. 2901 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2902 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2903 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2904 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2905 SI = SelectI; 2906 break; 2907 } 2908 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2909 // Look for a Select in BB that uses PN as condition. 2910 if (isUnfoldCandidate(SelectI, U.get())) { 2911 SI = SelectI; 2912 break; 2913 } 2914 } 2915 } 2916 2917 if (!SI) 2918 continue; 2919 // Expand the select. 2920 Value *Cond = SI->getCondition(); 2921 if (InsertFreezeWhenUnfoldingSelect && 2922 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI, 2923 &DTU->getDomTree())) 2924 Cond = new FreezeInst(Cond, "cond.fr", SI); 2925 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 2926 BasicBlock *SplitBB = SI->getParent(); 2927 BasicBlock *NewBB = Term->getParent(); 2928 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2929 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2930 NewPN->addIncoming(SI->getFalseValue(), BB); 2931 SI->replaceAllUsesWith(NewPN); 2932 SI->eraseFromParent(); 2933 // NewBB and SplitBB are newly created blocks which require insertion. 2934 std::vector<DominatorTree::UpdateType> Updates; 2935 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2936 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2937 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2938 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2939 // BB's successors were moved to SplitBB, update DTU accordingly. 2940 for (auto *Succ : successors(SplitBB)) { 2941 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2942 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2943 } 2944 DTU->applyUpdatesPermissive(Updates); 2945 return true; 2946 } 2947 return false; 2948 } 2949 2950 /// Try to propagate a guard from the current BB into one of its predecessors 2951 /// in case if another branch of execution implies that the condition of this 2952 /// guard is always true. Currently we only process the simplest case that 2953 /// looks like: 2954 /// 2955 /// Start: 2956 /// %cond = ... 2957 /// br i1 %cond, label %T1, label %F1 2958 /// T1: 2959 /// br label %Merge 2960 /// F1: 2961 /// br label %Merge 2962 /// Merge: 2963 /// %condGuard = ... 2964 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2965 /// 2966 /// And cond either implies condGuard or !condGuard. In this case all the 2967 /// instructions before the guard can be duplicated in both branches, and the 2968 /// guard is then threaded to one of them. 2969 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 2970 using namespace PatternMatch; 2971 2972 // We only want to deal with two predecessors. 2973 BasicBlock *Pred1, *Pred2; 2974 auto PI = pred_begin(BB), PE = pred_end(BB); 2975 if (PI == PE) 2976 return false; 2977 Pred1 = *PI++; 2978 if (PI == PE) 2979 return false; 2980 Pred2 = *PI++; 2981 if (PI != PE) 2982 return false; 2983 if (Pred1 == Pred2) 2984 return false; 2985 2986 // Try to thread one of the guards of the block. 2987 // TODO: Look up deeper than to immediate predecessor? 2988 auto *Parent = Pred1->getSinglePredecessor(); 2989 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2990 return false; 2991 2992 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2993 for (auto &I : *BB) 2994 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2995 return true; 2996 2997 return false; 2998 } 2999 3000 /// Try to propagate the guard from BB which is the lower block of a diamond 3001 /// to one of its branches, in case if diamond's condition implies guard's 3002 /// condition. 3003 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 3004 BranchInst *BI) { 3005 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 3006 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 3007 Value *GuardCond = Guard->getArgOperand(0); 3008 Value *BranchCond = BI->getCondition(); 3009 BasicBlock *TrueDest = BI->getSuccessor(0); 3010 BasicBlock *FalseDest = BI->getSuccessor(1); 3011 3012 auto &DL = BB->getModule()->getDataLayout(); 3013 bool TrueDestIsSafe = false; 3014 bool FalseDestIsSafe = false; 3015 3016 // True dest is safe if BranchCond => GuardCond. 3017 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3018 if (Impl && *Impl) 3019 TrueDestIsSafe = true; 3020 else { 3021 // False dest is safe if !BranchCond => GuardCond. 3022 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3023 if (Impl && *Impl) 3024 FalseDestIsSafe = true; 3025 } 3026 3027 if (!TrueDestIsSafe && !FalseDestIsSafe) 3028 return false; 3029 3030 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3031 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3032 3033 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3034 Instruction *AfterGuard = Guard->getNextNode(); 3035 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 3036 if (Cost > BBDupThreshold) 3037 return false; 3038 // Duplicate all instructions before the guard and the guard itself to the 3039 // branch where implication is not proved. 3040 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3041 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3042 assert(GuardedBlock && "Could not create the guarded block?"); 3043 // Duplicate all instructions before the guard in the unguarded branch. 3044 // Since we have successfully duplicated the guarded block and this block 3045 // has fewer instructions, we expect it to succeed. 3046 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3047 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3048 assert(UnguardedBlock && "Could not create the unguarded block?"); 3049 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3050 << GuardedBlock->getName() << "\n"); 3051 // Some instructions before the guard may still have uses. For them, we need 3052 // to create Phi nodes merging their copies in both guarded and unguarded 3053 // branches. Those instructions that have no uses can be just removed. 3054 SmallVector<Instruction *, 4> ToRemove; 3055 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3056 if (!isa<PHINode>(&*BI)) 3057 ToRemove.push_back(&*BI); 3058 3059 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3060 assert(InsertionPoint && "Empty block?"); 3061 // Substitute with Phis & remove. 3062 for (auto *Inst : reverse(ToRemove)) { 3063 if (!Inst->use_empty()) { 3064 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3065 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3066 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3067 NewPN->insertBefore(InsertionPoint); 3068 Inst->replaceAllUsesWith(NewPN); 3069 } 3070 Inst->eraseFromParent(); 3071 } 3072 return true; 3073 } 3074