xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 52d973f52c07b94909a6487be373c269988dc151)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/BlockFrequency.h"
64 #include "llvm/Support/BranchProbability.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
71 #include "llvm/Transforms/Utils/Cloning.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/SSAUpdater.h"
74 #include "llvm/Transforms/Utils/ValueMapper.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <memory>
81 #include <utility>
82 
83 using namespace llvm;
84 using namespace jumpthreading;
85 
86 #define DEBUG_TYPE "jump-threading"
87 
88 STATISTIC(NumThreads, "Number of jumps threaded");
89 STATISTIC(NumFolds,   "Number of terminators folded");
90 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
91 
92 static cl::opt<unsigned>
93 BBDuplicateThreshold("jump-threading-threshold",
94           cl::desc("Max block size to duplicate for jump threading"),
95           cl::init(6), cl::Hidden);
96 
97 static cl::opt<unsigned>
98 ImplicationSearchThreshold(
99   "jump-threading-implication-search-threshold",
100   cl::desc("The number of predecessors to search for a stronger "
101            "condition to use to thread over a weaker condition"),
102   cl::init(3), cl::Hidden);
103 
104 static cl::opt<bool> PrintLVIAfterJumpThreading(
105     "print-lvi-after-jump-threading",
106     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
107     cl::Hidden);
108 
109 static cl::opt<bool> JumpThreadingFreezeSelectCond(
110     "jump-threading-freeze-select-cond",
111     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
112     cl::Hidden);
113 
114 static cl::opt<bool> ThreadAcrossLoopHeaders(
115     "jump-threading-across-loop-headers",
116     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
117     cl::init(false), cl::Hidden);
118 
119 
120 namespace {
121 
122   /// This pass performs 'jump threading', which looks at blocks that have
123   /// multiple predecessors and multiple successors.  If one or more of the
124   /// predecessors of the block can be proven to always jump to one of the
125   /// successors, we forward the edge from the predecessor to the successor by
126   /// duplicating the contents of this block.
127   ///
128   /// An example of when this can occur is code like this:
129   ///
130   ///   if () { ...
131   ///     X = 4;
132   ///   }
133   ///   if (X < 3) {
134   ///
135   /// In this case, the unconditional branch at the end of the first if can be
136   /// revectored to the false side of the second if.
137   class JumpThreading : public FunctionPass {
138     JumpThreadingPass Impl;
139 
140   public:
141     static char ID; // Pass identification
142 
143     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
144         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
145       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
146     }
147 
148     bool runOnFunction(Function &F) override;
149 
150     void getAnalysisUsage(AnalysisUsage &AU) const override {
151       AU.addRequired<DominatorTreeWrapperPass>();
152       AU.addPreserved<DominatorTreeWrapperPass>();
153       AU.addRequired<AAResultsWrapperPass>();
154       AU.addRequired<LazyValueInfoWrapperPass>();
155       AU.addPreserved<LazyValueInfoWrapperPass>();
156       AU.addPreserved<GlobalsAAWrapperPass>();
157       AU.addRequired<TargetLibraryInfoWrapperPass>();
158       AU.addRequired<TargetTransformInfoWrapperPass>();
159     }
160 
161     void releaseMemory() override { Impl.releaseMemory(); }
162   };
163 
164 } // end anonymous namespace
165 
166 char JumpThreading::ID = 0;
167 
168 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
169                 "Jump Threading", false, false)
170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
172 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
173 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
174 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
175                 "Jump Threading", false, false)
176 
177 // Public interface to the Jump Threading pass
178 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
179   return new JumpThreading(InsertFr, Threshold);
180 }
181 
182 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
183   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
184   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
185 }
186 
187 // Update branch probability information according to conditional
188 // branch probability. This is usually made possible for cloned branches
189 // in inline instances by the context specific profile in the caller.
190 // For instance,
191 //
192 //  [Block PredBB]
193 //  [Branch PredBr]
194 //  if (t) {
195 //     Block A;
196 //  } else {
197 //     Block B;
198 //  }
199 //
200 //  [Block BB]
201 //  cond = PN([true, %A], [..., %B]); // PHI node
202 //  [Branch CondBr]
203 //  if (cond) {
204 //    ...  // P(cond == true) = 1%
205 //  }
206 //
207 //  Here we know that when block A is taken, cond must be true, which means
208 //      P(cond == true | A) = 1
209 //
210 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
211 //                               P(cond == true | B) * P(B)
212 //  we get:
213 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
214 //
215 //  which gives us:
216 //     P(A) is less than P(cond == true), i.e.
217 //     P(t == true) <= P(cond == true)
218 //
219 //  In other words, if we know P(cond == true) is unlikely, we know
220 //  that P(t == true) is also unlikely.
221 //
222 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
223   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
224   if (!CondBr)
225     return;
226 
227   uint64_t TrueWeight, FalseWeight;
228   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
229     return;
230 
231   if (TrueWeight + FalseWeight == 0)
232     // Zero branch_weights do not give a hint for getting branch probabilities.
233     // Technically it would result in division by zero denominator, which is
234     // TrueWeight + FalseWeight.
235     return;
236 
237   // Returns the outgoing edge of the dominating predecessor block
238   // that leads to the PhiNode's incoming block:
239   auto GetPredOutEdge =
240       [](BasicBlock *IncomingBB,
241          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
242     auto *PredBB = IncomingBB;
243     auto *SuccBB = PhiBB;
244     SmallPtrSet<BasicBlock *, 16> Visited;
245     while (true) {
246       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
247       if (PredBr && PredBr->isConditional())
248         return {PredBB, SuccBB};
249       Visited.insert(PredBB);
250       auto *SinglePredBB = PredBB->getSinglePredecessor();
251       if (!SinglePredBB)
252         return {nullptr, nullptr};
253 
254       // Stop searching when SinglePredBB has been visited. It means we see
255       // an unreachable loop.
256       if (Visited.count(SinglePredBB))
257         return {nullptr, nullptr};
258 
259       SuccBB = PredBB;
260       PredBB = SinglePredBB;
261     }
262   };
263 
264   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
265     Value *PhiOpnd = PN->getIncomingValue(i);
266     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
267 
268     if (!CI || !CI->getType()->isIntegerTy(1))
269       continue;
270 
271     BranchProbability BP =
272         (CI->isOne() ? BranchProbability::getBranchProbability(
273                            TrueWeight, TrueWeight + FalseWeight)
274                      : BranchProbability::getBranchProbability(
275                            FalseWeight, TrueWeight + FalseWeight));
276 
277     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
278     if (!PredOutEdge.first)
279       return;
280 
281     BasicBlock *PredBB = PredOutEdge.first;
282     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
283     if (!PredBr)
284       return;
285 
286     uint64_t PredTrueWeight, PredFalseWeight;
287     // FIXME: We currently only set the profile data when it is missing.
288     // With PGO, this can be used to refine even existing profile data with
289     // context information. This needs to be done after more performance
290     // testing.
291     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
292       continue;
293 
294     // We can not infer anything useful when BP >= 50%, because BP is the
295     // upper bound probability value.
296     if (BP >= BranchProbability(50, 100))
297       continue;
298 
299     SmallVector<uint32_t, 2> Weights;
300     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
301       Weights.push_back(BP.getNumerator());
302       Weights.push_back(BP.getCompl().getNumerator());
303     } else {
304       Weights.push_back(BP.getCompl().getNumerator());
305       Weights.push_back(BP.getNumerator());
306     }
307     PredBr->setMetadata(LLVMContext::MD_prof,
308                         MDBuilder(PredBr->getParent()->getContext())
309                             .createBranchWeights(Weights));
310   }
311 }
312 
313 /// runOnFunction - Toplevel algorithm.
314 bool JumpThreading::runOnFunction(Function &F) {
315   if (skipFunction(F))
316     return false;
317   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
318   // Jump Threading has no sense for the targets with divergent CF
319   if (TTI->hasBranchDivergence())
320     return false;
321   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
322   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
323   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
324   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
325   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
326   std::unique_ptr<BlockFrequencyInfo> BFI;
327   std::unique_ptr<BranchProbabilityInfo> BPI;
328   if (F.hasProfileData()) {
329     LoopInfo LI{DominatorTree(F)};
330     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
331     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
332   }
333 
334   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
335                               std::move(BFI), std::move(BPI));
336   if (PrintLVIAfterJumpThreading) {
337     dbgs() << "LVI for function '" << F.getName() << "':\n";
338     LVI->printLVI(F, DTU.getDomTree(), dbgs());
339   }
340   return Changed;
341 }
342 
343 PreservedAnalyses JumpThreadingPass::run(Function &F,
344                                          FunctionAnalysisManager &AM) {
345   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
346   // Jump Threading has no sense for the targets with divergent CF
347   if (TTI.hasBranchDivergence())
348     return PreservedAnalyses::all();
349   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
350   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
351   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
352   auto &AA = AM.getResult<AAManager>(F);
353   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
354 
355   std::unique_ptr<BlockFrequencyInfo> BFI;
356   std::unique_ptr<BranchProbabilityInfo> BPI;
357   if (F.hasProfileData()) {
358     LoopInfo LI{DominatorTree(F)};
359     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
360     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
361   }
362 
363   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
364                          std::move(BFI), std::move(BPI));
365 
366   if (PrintLVIAfterJumpThreading) {
367     dbgs() << "LVI for function '" << F.getName() << "':\n";
368     LVI.printLVI(F, DTU.getDomTree(), dbgs());
369   }
370 
371   if (!Changed)
372     return PreservedAnalyses::all();
373   PreservedAnalyses PA;
374   PA.preserve<DominatorTreeAnalysis>();
375   PA.preserve<LazyValueAnalysis>();
376   return PA;
377 }
378 
379 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
380                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
381                                 DomTreeUpdater *DTU_, bool HasProfileData_,
382                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
383                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
384   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
385   TLI = TLI_;
386   LVI = LVI_;
387   AA = AA_;
388   DTU = DTU_;
389   BFI.reset();
390   BPI.reset();
391   // When profile data is available, we need to update edge weights after
392   // successful jump threading, which requires both BPI and BFI being available.
393   HasProfileData = HasProfileData_;
394   auto *GuardDecl = F.getParent()->getFunction(
395       Intrinsic::getName(Intrinsic::experimental_guard));
396   HasGuards = GuardDecl && !GuardDecl->use_empty();
397   if (HasProfileData) {
398     BPI = std::move(BPI_);
399     BFI = std::move(BFI_);
400   }
401 
402   // Reduce the number of instructions duplicated when optimizing strictly for
403   // size.
404   if (BBDuplicateThreshold.getNumOccurrences())
405     BBDupThreshold = BBDuplicateThreshold;
406   else if (F.hasFnAttribute(Attribute::MinSize))
407     BBDupThreshold = 3;
408   else
409     BBDupThreshold = DefaultBBDupThreshold;
410 
411   // JumpThreading must not processes blocks unreachable from entry. It's a
412   // waste of compute time and can potentially lead to hangs.
413   SmallPtrSet<BasicBlock *, 16> Unreachable;
414   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
415   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
416   DominatorTree &DT = DTU->getDomTree();
417   for (auto &BB : F)
418     if (!DT.isReachableFromEntry(&BB))
419       Unreachable.insert(&BB);
420 
421   if (!ThreadAcrossLoopHeaders)
422     findLoopHeaders(F);
423 
424   bool EverChanged = false;
425   bool Changed;
426   do {
427     Changed = false;
428     for (auto &BB : F) {
429       if (Unreachable.count(&BB))
430         continue;
431       while (processBlock(&BB)) // Thread all of the branches we can over BB.
432         Changed = true;
433 
434       // Jump threading may have introduced redundant debug values into BB
435       // which should be removed.
436       if (Changed)
437         RemoveRedundantDbgInstrs(&BB);
438 
439       // Stop processing BB if it's the entry or is now deleted. The following
440       // routines attempt to eliminate BB and locating a suitable replacement
441       // for the entry is non-trivial.
442       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
443         continue;
444 
445       if (pred_empty(&BB)) {
446         // When processBlock makes BB unreachable it doesn't bother to fix up
447         // the instructions in it. We must remove BB to prevent invalid IR.
448         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
449                           << "' with terminator: " << *BB.getTerminator()
450                           << '\n');
451         LoopHeaders.erase(&BB);
452         LVI->eraseBlock(&BB);
453         DeleteDeadBlock(&BB, DTU);
454         Changed = true;
455         continue;
456       }
457 
458       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
459       // is "almost empty", we attempt to merge BB with its sole successor.
460       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
461       if (BI && BI->isUnconditional()) {
462         BasicBlock *Succ = BI->getSuccessor(0);
463         if (
464             // The terminator must be the only non-phi instruction in BB.
465             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
466             // Don't alter Loop headers and latches to ensure another pass can
467             // detect and transform nested loops later.
468             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
469             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
470           RemoveRedundantDbgInstrs(Succ);
471           // BB is valid for cleanup here because we passed in DTU. F remains
472           // BB's parent until a DTU->getDomTree() event.
473           LVI->eraseBlock(&BB);
474           Changed = true;
475         }
476       }
477     }
478     EverChanged |= Changed;
479   } while (Changed);
480 
481   LoopHeaders.clear();
482   return EverChanged;
483 }
484 
485 // Replace uses of Cond with ToVal when safe to do so. If all uses are
486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
487 // because we may incorrectly replace uses when guards/assumes are uses of
488 // of `Cond` and we used the guards/assume to reason about the `Cond` value
489 // at the end of block. RAUW unconditionally replaces all uses
490 // including the guards/assumes themselves and the uses before the
491 // guard/assume.
492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
493   assert(Cond->getType() == ToVal->getType());
494   auto *BB = Cond->getParent();
495   // We can unconditionally replace all uses in non-local blocks (i.e. uses
496   // strictly dominated by BB), since LVI information is true from the
497   // terminator of BB.
498   replaceNonLocalUsesWith(Cond, ToVal);
499   for (Instruction &I : reverse(*BB)) {
500     // Reached the Cond whose uses we are trying to replace, so there are no
501     // more uses.
502     if (&I == Cond)
503       break;
504     // We only replace uses in instructions that are guaranteed to reach the end
505     // of BB, where we know Cond is ToVal.
506     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
507       break;
508     I.replaceUsesOfWith(Cond, ToVal);
509   }
510   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
511     Cond->eraseFromParent();
512 }
513 
514 /// Return the cost of duplicating a piece of this block from first non-phi
515 /// and before StopAt instruction to thread across it. Stop scanning the block
516 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
517 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
518                                              Instruction *StopAt,
519                                              unsigned Threshold) {
520   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
521   /// Ignore PHI nodes, these will be flattened when duplication happens.
522   BasicBlock::const_iterator I(BB->getFirstNonPHI());
523 
524   // FIXME: THREADING will delete values that are just used to compute the
525   // branch, so they shouldn't count against the duplication cost.
526 
527   unsigned Bonus = 0;
528   if (BB->getTerminator() == StopAt) {
529     // Threading through a switch statement is particularly profitable.  If this
530     // block ends in a switch, decrease its cost to make it more likely to
531     // happen.
532     if (isa<SwitchInst>(StopAt))
533       Bonus = 6;
534 
535     // The same holds for indirect branches, but slightly more so.
536     if (isa<IndirectBrInst>(StopAt))
537       Bonus = 8;
538   }
539 
540   // Bump the threshold up so the early exit from the loop doesn't skip the
541   // terminator-based Size adjustment at the end.
542   Threshold += Bonus;
543 
544   // Sum up the cost of each instruction until we get to the terminator.  Don't
545   // include the terminator because the copy won't include it.
546   unsigned Size = 0;
547   for (; &*I != StopAt; ++I) {
548 
549     // Stop scanning the block if we've reached the threshold.
550     if (Size > Threshold)
551       return Size;
552 
553     // Debugger intrinsics don't incur code size.
554     if (isa<DbgInfoIntrinsic>(I)) continue;
555 
556     // Pseudo-probes don't incur code size.
557     if (isa<PseudoProbeInst>(I))
558       continue;
559 
560     // If this is a pointer->pointer bitcast, it is free.
561     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
562       continue;
563 
564     // Freeze instruction is free, too.
565     if (isa<FreezeInst>(I))
566       continue;
567 
568     // Bail out if this instruction gives back a token type, it is not possible
569     // to duplicate it if it is used outside this BB.
570     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
571       return ~0U;
572 
573     // All other instructions count for at least one unit.
574     ++Size;
575 
576     // Calls are more expensive.  If they are non-intrinsic calls, we model them
577     // as having cost of 4.  If they are a non-vector intrinsic, we model them
578     // as having cost of 2 total, and if they are a vector intrinsic, we model
579     // them as having cost 1.
580     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
581       if (CI->cannotDuplicate() || CI->isConvergent())
582         // Blocks with NoDuplicate are modelled as having infinite cost, so they
583         // are never duplicated.
584         return ~0U;
585       else if (!isa<IntrinsicInst>(CI))
586         Size += 3;
587       else if (!CI->getType()->isVectorTy())
588         Size += 1;
589     }
590   }
591 
592   return Size > Bonus ? Size - Bonus : 0;
593 }
594 
595 /// findLoopHeaders - We do not want jump threading to turn proper loop
596 /// structures into irreducible loops.  Doing this breaks up the loop nesting
597 /// hierarchy and pessimizes later transformations.  To prevent this from
598 /// happening, we first have to find the loop headers.  Here we approximate this
599 /// by finding targets of backedges in the CFG.
600 ///
601 /// Note that there definitely are cases when we want to allow threading of
602 /// edges across a loop header.  For example, threading a jump from outside the
603 /// loop (the preheader) to an exit block of the loop is definitely profitable.
604 /// It is also almost always profitable to thread backedges from within the loop
605 /// to exit blocks, and is often profitable to thread backedges to other blocks
606 /// within the loop (forming a nested loop).  This simple analysis is not rich
607 /// enough to track all of these properties and keep it up-to-date as the CFG
608 /// mutates, so we don't allow any of these transformations.
609 void JumpThreadingPass::findLoopHeaders(Function &F) {
610   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
611   FindFunctionBackedges(F, Edges);
612 
613   for (const auto &Edge : Edges)
614     LoopHeaders.insert(Edge.second);
615 }
616 
617 /// getKnownConstant - Helper method to determine if we can thread over a
618 /// terminator with the given value as its condition, and if so what value to
619 /// use for that. What kind of value this is depends on whether we want an
620 /// integer or a block address, but an undef is always accepted.
621 /// Returns null if Val is null or not an appropriate constant.
622 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
623   if (!Val)
624     return nullptr;
625 
626   // Undef is "known" enough.
627   if (UndefValue *U = dyn_cast<UndefValue>(Val))
628     return U;
629 
630   if (Preference == WantBlockAddress)
631     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
632 
633   return dyn_cast<ConstantInt>(Val);
634 }
635 
636 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
637 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
638 /// in any of our predecessors.  If so, return the known list of value and pred
639 /// BB in the result vector.
640 ///
641 /// This returns true if there were any known values.
642 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
643     Value *V, BasicBlock *BB, PredValueInfo &Result,
644     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
645     Instruction *CxtI) {
646   // This method walks up use-def chains recursively.  Because of this, we could
647   // get into an infinite loop going around loops in the use-def chain.  To
648   // prevent this, keep track of what (value, block) pairs we've already visited
649   // and terminate the search if we loop back to them
650   if (!RecursionSet.insert(V).second)
651     return false;
652 
653   // If V is a constant, then it is known in all predecessors.
654   if (Constant *KC = getKnownConstant(V, Preference)) {
655     for (BasicBlock *Pred : predecessors(BB))
656       Result.emplace_back(KC, Pred);
657 
658     return !Result.empty();
659   }
660 
661   // If V is a non-instruction value, or an instruction in a different block,
662   // then it can't be derived from a PHI.
663   Instruction *I = dyn_cast<Instruction>(V);
664   if (!I || I->getParent() != BB) {
665 
666     // Okay, if this is a live-in value, see if it has a known value at the end
667     // of any of our predecessors.
668     //
669     // FIXME: This should be an edge property, not a block end property.
670     /// TODO: Per PR2563, we could infer value range information about a
671     /// predecessor based on its terminator.
672     //
673     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
674     // "I" is a non-local compare-with-a-constant instruction.  This would be
675     // able to handle value inequalities better, for example if the compare is
676     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
677     // Perhaps getConstantOnEdge should be smart enough to do this?
678     for (BasicBlock *P : predecessors(BB)) {
679       // If the value is known by LazyValueInfo to be a constant in a
680       // predecessor, use that information to try to thread this block.
681       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
682       if (Constant *KC = getKnownConstant(PredCst, Preference))
683         Result.emplace_back(KC, P);
684     }
685 
686     return !Result.empty();
687   }
688 
689   /// If I is a PHI node, then we know the incoming values for any constants.
690   if (PHINode *PN = dyn_cast<PHINode>(I)) {
691     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
692       Value *InVal = PN->getIncomingValue(i);
693       if (Constant *KC = getKnownConstant(InVal, Preference)) {
694         Result.emplace_back(KC, PN->getIncomingBlock(i));
695       } else {
696         Constant *CI = LVI->getConstantOnEdge(InVal,
697                                               PN->getIncomingBlock(i),
698                                               BB, CxtI);
699         if (Constant *KC = getKnownConstant(CI, Preference))
700           Result.emplace_back(KC, PN->getIncomingBlock(i));
701       }
702     }
703 
704     return !Result.empty();
705   }
706 
707   // Handle Cast instructions.
708   if (CastInst *CI = dyn_cast<CastInst>(I)) {
709     Value *Source = CI->getOperand(0);
710     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
711                                         RecursionSet, CxtI);
712     if (Result.empty())
713       return false;
714 
715     // Convert the known values.
716     for (auto &R : Result)
717       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
718 
719     return true;
720   }
721 
722   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
723     Value *Source = FI->getOperand(0);
724     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
725                                         RecursionSet, CxtI);
726 
727     erase_if(Result, [](auto &Pair) {
728       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
729     });
730 
731     return !Result.empty();
732   }
733 
734   // Handle some boolean conditions.
735   if (I->getType()->getPrimitiveSizeInBits() == 1) {
736     using namespace PatternMatch;
737 
738     assert(Preference == WantInteger && "One-bit non-integer type?");
739     // X | true -> true
740     // X & false -> false
741     Value *Op0, *Op1;
742     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
743         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
744       PredValueInfoTy LHSVals, RHSVals;
745 
746       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
747                                           RecursionSet, CxtI);
748       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
749                                           RecursionSet, CxtI);
750 
751       if (LHSVals.empty() && RHSVals.empty())
752         return false;
753 
754       ConstantInt *InterestingVal;
755       if (match(I, m_LogicalOr()))
756         InterestingVal = ConstantInt::getTrue(I->getContext());
757       else
758         InterestingVal = ConstantInt::getFalse(I->getContext());
759 
760       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
761 
762       // Scan for the sentinel.  If we find an undef, force it to the
763       // interesting value: x|undef -> true and x&undef -> false.
764       for (const auto &LHSVal : LHSVals)
765         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
766           Result.emplace_back(InterestingVal, LHSVal.second);
767           LHSKnownBBs.insert(LHSVal.second);
768         }
769       for (const auto &RHSVal : RHSVals)
770         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
771           // If we already inferred a value for this block on the LHS, don't
772           // re-add it.
773           if (!LHSKnownBBs.count(RHSVal.second))
774             Result.emplace_back(InterestingVal, RHSVal.second);
775         }
776 
777       return !Result.empty();
778     }
779 
780     // Handle the NOT form of XOR.
781     if (I->getOpcode() == Instruction::Xor &&
782         isa<ConstantInt>(I->getOperand(1)) &&
783         cast<ConstantInt>(I->getOperand(1))->isOne()) {
784       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
785                                           WantInteger, RecursionSet, CxtI);
786       if (Result.empty())
787         return false;
788 
789       // Invert the known values.
790       for (auto &R : Result)
791         R.first = ConstantExpr::getNot(R.first);
792 
793       return true;
794     }
795 
796   // Try to simplify some other binary operator values.
797   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
798     assert(Preference != WantBlockAddress
799             && "A binary operator creating a block address?");
800     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
801       PredValueInfoTy LHSVals;
802       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
803                                           WantInteger, RecursionSet, CxtI);
804 
805       // Try to use constant folding to simplify the binary operator.
806       for (const auto &LHSVal : LHSVals) {
807         Constant *V = LHSVal.first;
808         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
809 
810         if (Constant *KC = getKnownConstant(Folded, WantInteger))
811           Result.emplace_back(KC, LHSVal.second);
812       }
813     }
814 
815     return !Result.empty();
816   }
817 
818   // Handle compare with phi operand, where the PHI is defined in this block.
819   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
820     assert(Preference == WantInteger && "Compares only produce integers");
821     Type *CmpType = Cmp->getType();
822     Value *CmpLHS = Cmp->getOperand(0);
823     Value *CmpRHS = Cmp->getOperand(1);
824     CmpInst::Predicate Pred = Cmp->getPredicate();
825 
826     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
827     if (!PN)
828       PN = dyn_cast<PHINode>(CmpRHS);
829     if (PN && PN->getParent() == BB) {
830       const DataLayout &DL = PN->getModule()->getDataLayout();
831       // We can do this simplification if any comparisons fold to true or false.
832       // See if any do.
833       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
834         BasicBlock *PredBB = PN->getIncomingBlock(i);
835         Value *LHS, *RHS;
836         if (PN == CmpLHS) {
837           LHS = PN->getIncomingValue(i);
838           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
839         } else {
840           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
841           RHS = PN->getIncomingValue(i);
842         }
843         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
844         if (!Res) {
845           if (!isa<Constant>(RHS))
846             continue;
847 
848           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
849           auto LHSInst = dyn_cast<Instruction>(LHS);
850           if (LHSInst && LHSInst->getParent() == BB)
851             continue;
852 
853           LazyValueInfo::Tristate
854             ResT = LVI->getPredicateOnEdge(Pred, LHS,
855                                            cast<Constant>(RHS), PredBB, BB,
856                                            CxtI ? CxtI : Cmp);
857           if (ResT == LazyValueInfo::Unknown)
858             continue;
859           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
860         }
861 
862         if (Constant *KC = getKnownConstant(Res, WantInteger))
863           Result.emplace_back(KC, PredBB);
864       }
865 
866       return !Result.empty();
867     }
868 
869     // If comparing a live-in value against a constant, see if we know the
870     // live-in value on any predecessors.
871     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
872       Constant *CmpConst = cast<Constant>(CmpRHS);
873 
874       if (!isa<Instruction>(CmpLHS) ||
875           cast<Instruction>(CmpLHS)->getParent() != BB) {
876         for (BasicBlock *P : predecessors(BB)) {
877           // If the value is known by LazyValueInfo to be a constant in a
878           // predecessor, use that information to try to thread this block.
879           LazyValueInfo::Tristate Res =
880             LVI->getPredicateOnEdge(Pred, CmpLHS,
881                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
882           if (Res == LazyValueInfo::Unknown)
883             continue;
884 
885           Constant *ResC = ConstantInt::get(CmpType, Res);
886           Result.emplace_back(ResC, P);
887         }
888 
889         return !Result.empty();
890       }
891 
892       // InstCombine can fold some forms of constant range checks into
893       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
894       // x as a live-in.
895       {
896         using namespace PatternMatch;
897 
898         Value *AddLHS;
899         ConstantInt *AddConst;
900         if (isa<ConstantInt>(CmpConst) &&
901             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
902           if (!isa<Instruction>(AddLHS) ||
903               cast<Instruction>(AddLHS)->getParent() != BB) {
904             for (BasicBlock *P : predecessors(BB)) {
905               // If the value is known by LazyValueInfo to be a ConstantRange in
906               // a predecessor, use that information to try to thread this
907               // block.
908               ConstantRange CR = LVI->getConstantRangeOnEdge(
909                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
910               // Propagate the range through the addition.
911               CR = CR.add(AddConst->getValue());
912 
913               // Get the range where the compare returns true.
914               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
915                   Pred, cast<ConstantInt>(CmpConst)->getValue());
916 
917               Constant *ResC;
918               if (CmpRange.contains(CR))
919                 ResC = ConstantInt::getTrue(CmpType);
920               else if (CmpRange.inverse().contains(CR))
921                 ResC = ConstantInt::getFalse(CmpType);
922               else
923                 continue;
924 
925               Result.emplace_back(ResC, P);
926             }
927 
928             return !Result.empty();
929           }
930         }
931       }
932 
933       // Try to find a constant value for the LHS of a comparison,
934       // and evaluate it statically if we can.
935       PredValueInfoTy LHSVals;
936       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
937                                           WantInteger, RecursionSet, CxtI);
938 
939       for (const auto &LHSVal : LHSVals) {
940         Constant *V = LHSVal.first;
941         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
942         if (Constant *KC = getKnownConstant(Folded, WantInteger))
943           Result.emplace_back(KC, LHSVal.second);
944       }
945 
946       return !Result.empty();
947     }
948   }
949 
950   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
951     // Handle select instructions where at least one operand is a known constant
952     // and we can figure out the condition value for any predecessor block.
953     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
954     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
955     PredValueInfoTy Conds;
956     if ((TrueVal || FalseVal) &&
957         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
958                                             WantInteger, RecursionSet, CxtI)) {
959       for (auto &C : Conds) {
960         Constant *Cond = C.first;
961 
962         // Figure out what value to use for the condition.
963         bool KnownCond;
964         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
965           // A known boolean.
966           KnownCond = CI->isOne();
967         } else {
968           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
969           // Either operand will do, so be sure to pick the one that's a known
970           // constant.
971           // FIXME: Do this more cleverly if both values are known constants?
972           KnownCond = (TrueVal != nullptr);
973         }
974 
975         // See if the select has a known constant value for this predecessor.
976         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
977           Result.emplace_back(Val, C.second);
978       }
979 
980       return !Result.empty();
981     }
982   }
983 
984   // If all else fails, see if LVI can figure out a constant value for us.
985   assert(CxtI->getParent() == BB && "CxtI should be in BB");
986   Constant *CI = LVI->getConstant(V, CxtI);
987   if (Constant *KC = getKnownConstant(CI, Preference)) {
988     for (BasicBlock *Pred : predecessors(BB))
989       Result.emplace_back(KC, Pred);
990   }
991 
992   return !Result.empty();
993 }
994 
995 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
996 /// in an undefined jump, decide which block is best to revector to.
997 ///
998 /// Since we can pick an arbitrary destination, we pick the successor with the
999 /// fewest predecessors.  This should reduce the in-degree of the others.
1000 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
1001   Instruction *BBTerm = BB->getTerminator();
1002   unsigned MinSucc = 0;
1003   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
1004   // Compute the successor with the minimum number of predecessors.
1005   unsigned MinNumPreds = pred_size(TestBB);
1006   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1007     TestBB = BBTerm->getSuccessor(i);
1008     unsigned NumPreds = pred_size(TestBB);
1009     if (NumPreds < MinNumPreds) {
1010       MinSucc = i;
1011       MinNumPreds = NumPreds;
1012     }
1013   }
1014 
1015   return MinSucc;
1016 }
1017 
1018 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1019   if (!BB->hasAddressTaken()) return false;
1020 
1021   // If the block has its address taken, it may be a tree of dead constants
1022   // hanging off of it.  These shouldn't keep the block alive.
1023   BlockAddress *BA = BlockAddress::get(BB);
1024   BA->removeDeadConstantUsers();
1025   return !BA->use_empty();
1026 }
1027 
1028 /// processBlock - If there are any predecessors whose control can be threaded
1029 /// through to a successor, transform them now.
1030 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1031   // If the block is trivially dead, just return and let the caller nuke it.
1032   // This simplifies other transformations.
1033   if (DTU->isBBPendingDeletion(BB) ||
1034       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1035     return false;
1036 
1037   // If this block has a single predecessor, and if that pred has a single
1038   // successor, merge the blocks.  This encourages recursive jump threading
1039   // because now the condition in this block can be threaded through
1040   // predecessors of our predecessor block.
1041   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1042     return true;
1043 
1044   if (tryToUnfoldSelectInCurrBB(BB))
1045     return true;
1046 
1047   // Look if we can propagate guards to predecessors.
1048   if (HasGuards && processGuards(BB))
1049     return true;
1050 
1051   // What kind of constant we're looking for.
1052   ConstantPreference Preference = WantInteger;
1053 
1054   // Look to see if the terminator is a conditional branch, switch or indirect
1055   // branch, if not we can't thread it.
1056   Value *Condition;
1057   Instruction *Terminator = BB->getTerminator();
1058   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1059     // Can't thread an unconditional jump.
1060     if (BI->isUnconditional()) return false;
1061     Condition = BI->getCondition();
1062   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1063     Condition = SI->getCondition();
1064   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1065     // Can't thread indirect branch with no successors.
1066     if (IB->getNumSuccessors() == 0) return false;
1067     Condition = IB->getAddress()->stripPointerCasts();
1068     Preference = WantBlockAddress;
1069   } else {
1070     return false; // Must be an invoke or callbr.
1071   }
1072 
1073   // Keep track if we constant folded the condition in this invocation.
1074   bool ConstantFolded = false;
1075 
1076   // Run constant folding to see if we can reduce the condition to a simple
1077   // constant.
1078   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1079     Value *SimpleVal =
1080         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1081     if (SimpleVal) {
1082       I->replaceAllUsesWith(SimpleVal);
1083       if (isInstructionTriviallyDead(I, TLI))
1084         I->eraseFromParent();
1085       Condition = SimpleVal;
1086       ConstantFolded = true;
1087     }
1088   }
1089 
1090   // If the terminator is branching on an undef or freeze undef, we can pick any
1091   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1092   auto *FI = dyn_cast<FreezeInst>(Condition);
1093   if (isa<UndefValue>(Condition) ||
1094       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1095     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1096     std::vector<DominatorTree::UpdateType> Updates;
1097 
1098     // Fold the branch/switch.
1099     Instruction *BBTerm = BB->getTerminator();
1100     Updates.reserve(BBTerm->getNumSuccessors());
1101     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1102       if (i == BestSucc) continue;
1103       BasicBlock *Succ = BBTerm->getSuccessor(i);
1104       Succ->removePredecessor(BB, true);
1105       Updates.push_back({DominatorTree::Delete, BB, Succ});
1106     }
1107 
1108     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1109                       << "' folding undef terminator: " << *BBTerm << '\n');
1110     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1111     ++NumFolds;
1112     BBTerm->eraseFromParent();
1113     DTU->applyUpdatesPermissive(Updates);
1114     if (FI)
1115       FI->eraseFromParent();
1116     return true;
1117   }
1118 
1119   // If the terminator of this block is branching on a constant, simplify the
1120   // terminator to an unconditional branch.  This can occur due to threading in
1121   // other blocks.
1122   if (getKnownConstant(Condition, Preference)) {
1123     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1124                       << "' folding terminator: " << *BB->getTerminator()
1125                       << '\n');
1126     ++NumFolds;
1127     ConstantFoldTerminator(BB, true, nullptr, DTU);
1128     if (HasProfileData)
1129       BPI->eraseBlock(BB);
1130     return true;
1131   }
1132 
1133   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1134 
1135   // All the rest of our checks depend on the condition being an instruction.
1136   if (!CondInst) {
1137     // FIXME: Unify this with code below.
1138     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1139       return true;
1140     return ConstantFolded;
1141   }
1142 
1143   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1144     // If we're branching on a conditional, LVI might be able to determine
1145     // it's value at the branch instruction.  We only handle comparisons
1146     // against a constant at this time.
1147     // TODO: This should be extended to handle switches as well.
1148     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1149     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1150     if (CondBr && CondConst) {
1151       // We should have returned as soon as we turn a conditional branch to
1152       // unconditional. Because its no longer interesting as far as jump
1153       // threading is concerned.
1154       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1155 
1156       LazyValueInfo::Tristate Ret =
1157           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1158                               CondConst, CondBr, /*UseBlockValue=*/false);
1159       if (Ret != LazyValueInfo::Unknown) {
1160         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1161         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1162         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1163         ToRemoveSucc->removePredecessor(BB, true);
1164         BranchInst *UncondBr =
1165           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1166         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1167         ++NumFolds;
1168         CondBr->eraseFromParent();
1169         if (CondCmp->use_empty())
1170           CondCmp->eraseFromParent();
1171         // We can safely replace *some* uses of the CondInst if it has
1172         // exactly one value as returned by LVI. RAUW is incorrect in the
1173         // presence of guards and assumes, that have the `Cond` as the use. This
1174         // is because we use the guards/assume to reason about the `Cond` value
1175         // at the end of block, but RAUW unconditionally replaces all uses
1176         // including the guards/assumes themselves and the uses before the
1177         // guard/assume.
1178         else if (CondCmp->getParent() == BB) {
1179           auto *CI = Ret == LazyValueInfo::True ?
1180             ConstantInt::getTrue(CondCmp->getType()) :
1181             ConstantInt::getFalse(CondCmp->getType());
1182           replaceFoldableUses(CondCmp, CI);
1183         }
1184         DTU->applyUpdatesPermissive(
1185             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1186         if (HasProfileData)
1187           BPI->eraseBlock(BB);
1188         return true;
1189       }
1190 
1191       // We did not manage to simplify this branch, try to see whether
1192       // CondCmp depends on a known phi-select pattern.
1193       if (tryToUnfoldSelect(CondCmp, BB))
1194         return true;
1195     }
1196   }
1197 
1198   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1199     if (tryToUnfoldSelect(SI, BB))
1200       return true;
1201 
1202   // Check for some cases that are worth simplifying.  Right now we want to look
1203   // for loads that are used by a switch or by the condition for the branch.  If
1204   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1205   // which can then be used to thread the values.
1206   Value *SimplifyValue = CondInst;
1207 
1208   if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1209     // Look into freeze's operand
1210     SimplifyValue = FI->getOperand(0);
1211 
1212   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1213     if (isa<Constant>(CondCmp->getOperand(1)))
1214       SimplifyValue = CondCmp->getOperand(0);
1215 
1216   // TODO: There are other places where load PRE would be profitable, such as
1217   // more complex comparisons.
1218   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1219     if (simplifyPartiallyRedundantLoad(LoadI))
1220       return true;
1221 
1222   // Before threading, try to propagate profile data backwards:
1223   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1224     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1225       updatePredecessorProfileMetadata(PN, BB);
1226 
1227   // Handle a variety of cases where we are branching on something derived from
1228   // a PHI node in the current block.  If we can prove that any predecessors
1229   // compute a predictable value based on a PHI node, thread those predecessors.
1230   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1231     return true;
1232 
1233   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1234   // the current block, see if we can simplify.
1235   PHINode *PN = dyn_cast<PHINode>(
1236       isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1237                                 : CondInst);
1238 
1239   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1240     return processBranchOnPHI(PN);
1241 
1242   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1243   if (CondInst->getOpcode() == Instruction::Xor &&
1244       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1245     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1246 
1247   // Search for a stronger dominating condition that can be used to simplify a
1248   // conditional branch leaving BB.
1249   if (processImpliedCondition(BB))
1250     return true;
1251 
1252   return false;
1253 }
1254 
1255 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1256   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1257   if (!BI || !BI->isConditional())
1258     return false;
1259 
1260   Value *Cond = BI->getCondition();
1261   BasicBlock *CurrentBB = BB;
1262   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1263   unsigned Iter = 0;
1264 
1265   auto &DL = BB->getModule()->getDataLayout();
1266 
1267   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1268     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1269     if (!PBI || !PBI->isConditional())
1270       return false;
1271     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1272       return false;
1273 
1274     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1275     Optional<bool> Implication =
1276         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1277     if (Implication) {
1278       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1279       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1280       RemoveSucc->removePredecessor(BB);
1281       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1282       UncondBI->setDebugLoc(BI->getDebugLoc());
1283       ++NumFolds;
1284       BI->eraseFromParent();
1285       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1286       if (HasProfileData)
1287         BPI->eraseBlock(BB);
1288       return true;
1289     }
1290     CurrentBB = CurrentPred;
1291     CurrentPred = CurrentBB->getSinglePredecessor();
1292   }
1293 
1294   return false;
1295 }
1296 
1297 /// Return true if Op is an instruction defined in the given block.
1298 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1299   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1300     if (OpInst->getParent() == BB)
1301       return true;
1302   return false;
1303 }
1304 
1305 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1306 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1307 /// This is an important optimization that encourages jump threading, and needs
1308 /// to be run interlaced with other jump threading tasks.
1309 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1310   // Don't hack volatile and ordered loads.
1311   if (!LoadI->isUnordered()) return false;
1312 
1313   // If the load is defined in a block with exactly one predecessor, it can't be
1314   // partially redundant.
1315   BasicBlock *LoadBB = LoadI->getParent();
1316   if (LoadBB->getSinglePredecessor())
1317     return false;
1318 
1319   // If the load is defined in an EH pad, it can't be partially redundant,
1320   // because the edges between the invoke and the EH pad cannot have other
1321   // instructions between them.
1322   if (LoadBB->isEHPad())
1323     return false;
1324 
1325   Value *LoadedPtr = LoadI->getOperand(0);
1326 
1327   // If the loaded operand is defined in the LoadBB and its not a phi,
1328   // it can't be available in predecessors.
1329   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1330     return false;
1331 
1332   // Scan a few instructions up from the load, to see if it is obviously live at
1333   // the entry to its block.
1334   BasicBlock::iterator BBIt(LoadI);
1335   bool IsLoadCSE;
1336   if (Value *AvailableVal = FindAvailableLoadedValue(
1337           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1338     // If the value of the load is locally available within the block, just use
1339     // it.  This frequently occurs for reg2mem'd allocas.
1340 
1341     if (IsLoadCSE) {
1342       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1343       combineMetadataForCSE(NLoadI, LoadI, false);
1344     };
1345 
1346     // If the returned value is the load itself, replace with an undef. This can
1347     // only happen in dead loops.
1348     if (AvailableVal == LoadI)
1349       AvailableVal = UndefValue::get(LoadI->getType());
1350     if (AvailableVal->getType() != LoadI->getType())
1351       AvailableVal = CastInst::CreateBitOrPointerCast(
1352           AvailableVal, LoadI->getType(), "", LoadI);
1353     LoadI->replaceAllUsesWith(AvailableVal);
1354     LoadI->eraseFromParent();
1355     return true;
1356   }
1357 
1358   // Otherwise, if we scanned the whole block and got to the top of the block,
1359   // we know the block is locally transparent to the load.  If not, something
1360   // might clobber its value.
1361   if (BBIt != LoadBB->begin())
1362     return false;
1363 
1364   // If all of the loads and stores that feed the value have the same AA tags,
1365   // then we can propagate them onto any newly inserted loads.
1366   AAMDNodes AATags;
1367   LoadI->getAAMetadata(AATags);
1368 
1369   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1370 
1371   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1372 
1373   AvailablePredsTy AvailablePreds;
1374   BasicBlock *OneUnavailablePred = nullptr;
1375   SmallVector<LoadInst*, 8> CSELoads;
1376 
1377   // If we got here, the loaded value is transparent through to the start of the
1378   // block.  Check to see if it is available in any of the predecessor blocks.
1379   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1380     // If we already scanned this predecessor, skip it.
1381     if (!PredsScanned.insert(PredBB).second)
1382       continue;
1383 
1384     BBIt = PredBB->end();
1385     unsigned NumScanedInst = 0;
1386     Value *PredAvailable = nullptr;
1387     // NOTE: We don't CSE load that is volatile or anything stronger than
1388     // unordered, that should have been checked when we entered the function.
1389     assert(LoadI->isUnordered() &&
1390            "Attempting to CSE volatile or atomic loads");
1391     // If this is a load on a phi pointer, phi-translate it and search
1392     // for available load/store to the pointer in predecessors.
1393     Type *AccessTy = LoadI->getType();
1394     const auto &DL = LoadI->getModule()->getDataLayout();
1395     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1396                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1397                        AATags);
1398     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1399                                               PredBB, BBIt, DefMaxInstsToScan,
1400                                               AA, &IsLoadCSE, &NumScanedInst);
1401 
1402     // If PredBB has a single predecessor, continue scanning through the
1403     // single predecessor.
1404     BasicBlock *SinglePredBB = PredBB;
1405     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1406            NumScanedInst < DefMaxInstsToScan) {
1407       SinglePredBB = SinglePredBB->getSinglePredecessor();
1408       if (SinglePredBB) {
1409         BBIt = SinglePredBB->end();
1410         PredAvailable = findAvailablePtrLoadStore(
1411             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1412             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1413             &NumScanedInst);
1414       }
1415     }
1416 
1417     if (!PredAvailable) {
1418       OneUnavailablePred = PredBB;
1419       continue;
1420     }
1421 
1422     if (IsLoadCSE)
1423       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1424 
1425     // If so, this load is partially redundant.  Remember this info so that we
1426     // can create a PHI node.
1427     AvailablePreds.emplace_back(PredBB, PredAvailable);
1428   }
1429 
1430   // If the loaded value isn't available in any predecessor, it isn't partially
1431   // redundant.
1432   if (AvailablePreds.empty()) return false;
1433 
1434   // Okay, the loaded value is available in at least one (and maybe all!)
1435   // predecessors.  If the value is unavailable in more than one unique
1436   // predecessor, we want to insert a merge block for those common predecessors.
1437   // This ensures that we only have to insert one reload, thus not increasing
1438   // code size.
1439   BasicBlock *UnavailablePred = nullptr;
1440 
1441   // If the value is unavailable in one of predecessors, we will end up
1442   // inserting a new instruction into them. It is only valid if all the
1443   // instructions before LoadI are guaranteed to pass execution to its
1444   // successor, or if LoadI is safe to speculate.
1445   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1446   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1447   // It requires domination tree analysis, so for this simple case it is an
1448   // overkill.
1449   if (PredsScanned.size() != AvailablePreds.size() &&
1450       !isSafeToSpeculativelyExecute(LoadI))
1451     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1452       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1453         return false;
1454 
1455   // If there is exactly one predecessor where the value is unavailable, the
1456   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1457   // unconditional branch, we know that it isn't a critical edge.
1458   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1459       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1460     UnavailablePred = OneUnavailablePred;
1461   } else if (PredsScanned.size() != AvailablePreds.size()) {
1462     // Otherwise, we had multiple unavailable predecessors or we had a critical
1463     // edge from the one.
1464     SmallVector<BasicBlock*, 8> PredsToSplit;
1465     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1466 
1467     for (const auto &AvailablePred : AvailablePreds)
1468       AvailablePredSet.insert(AvailablePred.first);
1469 
1470     // Add all the unavailable predecessors to the PredsToSplit list.
1471     for (BasicBlock *P : predecessors(LoadBB)) {
1472       // If the predecessor is an indirect goto, we can't split the edge.
1473       // Same for CallBr.
1474       if (isa<IndirectBrInst>(P->getTerminator()) ||
1475           isa<CallBrInst>(P->getTerminator()))
1476         return false;
1477 
1478       if (!AvailablePredSet.count(P))
1479         PredsToSplit.push_back(P);
1480     }
1481 
1482     // Split them out to their own block.
1483     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1484   }
1485 
1486   // If the value isn't available in all predecessors, then there will be
1487   // exactly one where it isn't available.  Insert a load on that edge and add
1488   // it to the AvailablePreds list.
1489   if (UnavailablePred) {
1490     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1491            "Can't handle critical edge here!");
1492     LoadInst *NewVal = new LoadInst(
1493         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1494         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1495         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1496         UnavailablePred->getTerminator());
1497     NewVal->setDebugLoc(LoadI->getDebugLoc());
1498     if (AATags)
1499       NewVal->setAAMetadata(AATags);
1500 
1501     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1502   }
1503 
1504   // Now we know that each predecessor of this block has a value in
1505   // AvailablePreds, sort them for efficient access as we're walking the preds.
1506   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1507 
1508   // Create a PHI node at the start of the block for the PRE'd load value.
1509   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1510   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1511                                 &LoadBB->front());
1512   PN->takeName(LoadI);
1513   PN->setDebugLoc(LoadI->getDebugLoc());
1514 
1515   // Insert new entries into the PHI for each predecessor.  A single block may
1516   // have multiple entries here.
1517   for (pred_iterator PI = PB; PI != PE; ++PI) {
1518     BasicBlock *P = *PI;
1519     AvailablePredsTy::iterator I =
1520         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1521 
1522     assert(I != AvailablePreds.end() && I->first == P &&
1523            "Didn't find entry for predecessor!");
1524 
1525     // If we have an available predecessor but it requires casting, insert the
1526     // cast in the predecessor and use the cast. Note that we have to update the
1527     // AvailablePreds vector as we go so that all of the PHI entries for this
1528     // predecessor use the same bitcast.
1529     Value *&PredV = I->second;
1530     if (PredV->getType() != LoadI->getType())
1531       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1532                                                P->getTerminator());
1533 
1534     PN->addIncoming(PredV, I->first);
1535   }
1536 
1537   for (LoadInst *PredLoadI : CSELoads) {
1538     combineMetadataForCSE(PredLoadI, LoadI, true);
1539   }
1540 
1541   LoadI->replaceAllUsesWith(PN);
1542   LoadI->eraseFromParent();
1543 
1544   return true;
1545 }
1546 
1547 /// findMostPopularDest - The specified list contains multiple possible
1548 /// threadable destinations.  Pick the one that occurs the most frequently in
1549 /// the list.
1550 static BasicBlock *
1551 findMostPopularDest(BasicBlock *BB,
1552                     const SmallVectorImpl<std::pair<BasicBlock *,
1553                                           BasicBlock *>> &PredToDestList) {
1554   assert(!PredToDestList.empty());
1555 
1556   // Determine popularity.  If there are multiple possible destinations, we
1557   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1558   // blocks with known and real destinations to threading undef.  We'll handle
1559   // them later if interesting.
1560   MapVector<BasicBlock *, unsigned> DestPopularity;
1561 
1562   // Populate DestPopularity with the successors in the order they appear in the
1563   // successor list.  This way, we ensure determinism by iterating it in the
1564   // same order in std::max_element below.  We map nullptr to 0 so that we can
1565   // return nullptr when PredToDestList contains nullptr only.
1566   DestPopularity[nullptr] = 0;
1567   for (auto *SuccBB : successors(BB))
1568     DestPopularity[SuccBB] = 0;
1569 
1570   for (const auto &PredToDest : PredToDestList)
1571     if (PredToDest.second)
1572       DestPopularity[PredToDest.second]++;
1573 
1574   // Find the most popular dest.
1575   using VT = decltype(DestPopularity)::value_type;
1576   auto MostPopular = std::max_element(
1577       DestPopularity.begin(), DestPopularity.end(),
1578       [](const VT &L, const VT &R) { return L.second < R.second; });
1579 
1580   // Okay, we have finally picked the most popular destination.
1581   return MostPopular->first;
1582 }
1583 
1584 // Try to evaluate the value of V when the control flows from PredPredBB to
1585 // BB->getSinglePredecessor() and then on to BB.
1586 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1587                                                        BasicBlock *PredPredBB,
1588                                                        Value *V) {
1589   BasicBlock *PredBB = BB->getSinglePredecessor();
1590   assert(PredBB && "Expected a single predecessor");
1591 
1592   if (Constant *Cst = dyn_cast<Constant>(V)) {
1593     return Cst;
1594   }
1595 
1596   // Consult LVI if V is not an instruction in BB or PredBB.
1597   Instruction *I = dyn_cast<Instruction>(V);
1598   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1599     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1600   }
1601 
1602   // Look into a PHI argument.
1603   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1604     if (PHI->getParent() == PredBB)
1605       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1606     return nullptr;
1607   }
1608 
1609   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1610   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1611     if (CondCmp->getParent() == BB) {
1612       Constant *Op0 =
1613           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1614       Constant *Op1 =
1615           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1616       if (Op0 && Op1) {
1617         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1618       }
1619     }
1620     return nullptr;
1621   }
1622 
1623   return nullptr;
1624 }
1625 
1626 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1627                                                ConstantPreference Preference,
1628                                                Instruction *CxtI) {
1629   // If threading this would thread across a loop header, don't even try to
1630   // thread the edge.
1631   if (LoopHeaders.count(BB))
1632     return false;
1633 
1634   PredValueInfoTy PredValues;
1635   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1636                                        CxtI)) {
1637     // We don't have known values in predecessors.  See if we can thread through
1638     // BB and its sole predecessor.
1639     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1640   }
1641 
1642   assert(!PredValues.empty() &&
1643          "computeValueKnownInPredecessors returned true with no values");
1644 
1645   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1646              for (const auto &PredValue : PredValues) {
1647                dbgs() << "  BB '" << BB->getName()
1648                       << "': FOUND condition = " << *PredValue.first
1649                       << " for pred '" << PredValue.second->getName() << "'.\n";
1650   });
1651 
1652   // Decide what we want to thread through.  Convert our list of known values to
1653   // a list of known destinations for each pred.  This also discards duplicate
1654   // predecessors and keeps track of the undefined inputs (which are represented
1655   // as a null dest in the PredToDestList).
1656   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1657   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1658 
1659   BasicBlock *OnlyDest = nullptr;
1660   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1661   Constant *OnlyVal = nullptr;
1662   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1663 
1664   for (const auto &PredValue : PredValues) {
1665     BasicBlock *Pred = PredValue.second;
1666     if (!SeenPreds.insert(Pred).second)
1667       continue;  // Duplicate predecessor entry.
1668 
1669     Constant *Val = PredValue.first;
1670 
1671     BasicBlock *DestBB;
1672     if (isa<UndefValue>(Val))
1673       DestBB = nullptr;
1674     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1675       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1676       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1677     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1678       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1679       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1680     } else {
1681       assert(isa<IndirectBrInst>(BB->getTerminator())
1682               && "Unexpected terminator");
1683       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1684       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1685     }
1686 
1687     // If we have exactly one destination, remember it for efficiency below.
1688     if (PredToDestList.empty()) {
1689       OnlyDest = DestBB;
1690       OnlyVal = Val;
1691     } else {
1692       if (OnlyDest != DestBB)
1693         OnlyDest = MultipleDestSentinel;
1694       // It possible we have same destination, but different value, e.g. default
1695       // case in switchinst.
1696       if (Val != OnlyVal)
1697         OnlyVal = MultipleVal;
1698     }
1699 
1700     // If the predecessor ends with an indirect goto, we can't change its
1701     // destination. Same for CallBr.
1702     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1703         isa<CallBrInst>(Pred->getTerminator()))
1704       continue;
1705 
1706     PredToDestList.emplace_back(Pred, DestBB);
1707   }
1708 
1709   // If all edges were unthreadable, we fail.
1710   if (PredToDestList.empty())
1711     return false;
1712 
1713   // If all the predecessors go to a single known successor, we want to fold,
1714   // not thread. By doing so, we do not need to duplicate the current block and
1715   // also miss potential opportunities in case we dont/cant duplicate.
1716   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1717     if (BB->hasNPredecessors(PredToDestList.size())) {
1718       bool SeenFirstBranchToOnlyDest = false;
1719       std::vector <DominatorTree::UpdateType> Updates;
1720       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1721       for (BasicBlock *SuccBB : successors(BB)) {
1722         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1723           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1724         } else {
1725           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1726           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1727         }
1728       }
1729 
1730       // Finally update the terminator.
1731       Instruction *Term = BB->getTerminator();
1732       BranchInst::Create(OnlyDest, Term);
1733       ++NumFolds;
1734       Term->eraseFromParent();
1735       DTU->applyUpdatesPermissive(Updates);
1736       if (HasProfileData)
1737         BPI->eraseBlock(BB);
1738 
1739       // If the condition is now dead due to the removal of the old terminator,
1740       // erase it.
1741       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1742         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1743           CondInst->eraseFromParent();
1744         // We can safely replace *some* uses of the CondInst if it has
1745         // exactly one value as returned by LVI. RAUW is incorrect in the
1746         // presence of guards and assumes, that have the `Cond` as the use. This
1747         // is because we use the guards/assume to reason about the `Cond` value
1748         // at the end of block, but RAUW unconditionally replaces all uses
1749         // including the guards/assumes themselves and the uses before the
1750         // guard/assume.
1751         else if (OnlyVal && OnlyVal != MultipleVal &&
1752                  CondInst->getParent() == BB)
1753           replaceFoldableUses(CondInst, OnlyVal);
1754       }
1755       return true;
1756     }
1757   }
1758 
1759   // Determine which is the most common successor.  If we have many inputs and
1760   // this block is a switch, we want to start by threading the batch that goes
1761   // to the most popular destination first.  If we only know about one
1762   // threadable destination (the common case) we can avoid this.
1763   BasicBlock *MostPopularDest = OnlyDest;
1764 
1765   if (MostPopularDest == MultipleDestSentinel) {
1766     // Remove any loop headers from the Dest list, threadEdge conservatively
1767     // won't process them, but we might have other destination that are eligible
1768     // and we still want to process.
1769     erase_if(PredToDestList,
1770              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1771                return LoopHeaders.contains(PredToDest.second);
1772              });
1773 
1774     if (PredToDestList.empty())
1775       return false;
1776 
1777     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1778   }
1779 
1780   // Now that we know what the most popular destination is, factor all
1781   // predecessors that will jump to it into a single predecessor.
1782   SmallVector<BasicBlock*, 16> PredsToFactor;
1783   for (const auto &PredToDest : PredToDestList)
1784     if (PredToDest.second == MostPopularDest) {
1785       BasicBlock *Pred = PredToDest.first;
1786 
1787       // This predecessor may be a switch or something else that has multiple
1788       // edges to the block.  Factor each of these edges by listing them
1789       // according to # occurrences in PredsToFactor.
1790       for (BasicBlock *Succ : successors(Pred))
1791         if (Succ == BB)
1792           PredsToFactor.push_back(Pred);
1793     }
1794 
1795   // If the threadable edges are branching on an undefined value, we get to pick
1796   // the destination that these predecessors should get to.
1797   if (!MostPopularDest)
1798     MostPopularDest = BB->getTerminator()->
1799                             getSuccessor(getBestDestForJumpOnUndef(BB));
1800 
1801   // Ok, try to thread it!
1802   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1803 }
1804 
1805 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1806 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1807 /// simplifications we can do based on inputs to the phi node.
1808 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1809   BasicBlock *BB = PN->getParent();
1810 
1811   // TODO: We could make use of this to do it once for blocks with common PHI
1812   // values.
1813   SmallVector<BasicBlock*, 1> PredBBs;
1814   PredBBs.resize(1);
1815 
1816   // If any of the predecessor blocks end in an unconditional branch, we can
1817   // *duplicate* the conditional branch into that block in order to further
1818   // encourage jump threading and to eliminate cases where we have branch on a
1819   // phi of an icmp (branch on icmp is much better).
1820   // This is still beneficial when a frozen phi is used as the branch condition
1821   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1822   // to br(icmp(freeze ...)).
1823   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1824     BasicBlock *PredBB = PN->getIncomingBlock(i);
1825     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1826       if (PredBr->isUnconditional()) {
1827         PredBBs[0] = PredBB;
1828         // Try to duplicate BB into PredBB.
1829         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1830           return true;
1831       }
1832   }
1833 
1834   return false;
1835 }
1836 
1837 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1838 /// a xor instruction in the current block.  See if there are any
1839 /// simplifications we can do based on inputs to the xor.
1840 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1841   BasicBlock *BB = BO->getParent();
1842 
1843   // If either the LHS or RHS of the xor is a constant, don't do this
1844   // optimization.
1845   if (isa<ConstantInt>(BO->getOperand(0)) ||
1846       isa<ConstantInt>(BO->getOperand(1)))
1847     return false;
1848 
1849   // If the first instruction in BB isn't a phi, we won't be able to infer
1850   // anything special about any particular predecessor.
1851   if (!isa<PHINode>(BB->front()))
1852     return false;
1853 
1854   // If this BB is a landing pad, we won't be able to split the edge into it.
1855   if (BB->isEHPad())
1856     return false;
1857 
1858   // If we have a xor as the branch input to this block, and we know that the
1859   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1860   // the condition into the predecessor and fix that value to true, saving some
1861   // logical ops on that path and encouraging other paths to simplify.
1862   //
1863   // This copies something like this:
1864   //
1865   //  BB:
1866   //    %X = phi i1 [1],  [%X']
1867   //    %Y = icmp eq i32 %A, %B
1868   //    %Z = xor i1 %X, %Y
1869   //    br i1 %Z, ...
1870   //
1871   // Into:
1872   //  BB':
1873   //    %Y = icmp ne i32 %A, %B
1874   //    br i1 %Y, ...
1875 
1876   PredValueInfoTy XorOpValues;
1877   bool isLHS = true;
1878   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1879                                        WantInteger, BO)) {
1880     assert(XorOpValues.empty());
1881     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1882                                          WantInteger, BO))
1883       return false;
1884     isLHS = false;
1885   }
1886 
1887   assert(!XorOpValues.empty() &&
1888          "computeValueKnownInPredecessors returned true with no values");
1889 
1890   // Scan the information to see which is most popular: true or false.  The
1891   // predecessors can be of the set true, false, or undef.
1892   unsigned NumTrue = 0, NumFalse = 0;
1893   for (const auto &XorOpValue : XorOpValues) {
1894     if (isa<UndefValue>(XorOpValue.first))
1895       // Ignore undefs for the count.
1896       continue;
1897     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1898       ++NumFalse;
1899     else
1900       ++NumTrue;
1901   }
1902 
1903   // Determine which value to split on, true, false, or undef if neither.
1904   ConstantInt *SplitVal = nullptr;
1905   if (NumTrue > NumFalse)
1906     SplitVal = ConstantInt::getTrue(BB->getContext());
1907   else if (NumTrue != 0 || NumFalse != 0)
1908     SplitVal = ConstantInt::getFalse(BB->getContext());
1909 
1910   // Collect all of the blocks that this can be folded into so that we can
1911   // factor this once and clone it once.
1912   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1913   for (const auto &XorOpValue : XorOpValues) {
1914     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1915       continue;
1916 
1917     BlocksToFoldInto.push_back(XorOpValue.second);
1918   }
1919 
1920   // If we inferred a value for all of the predecessors, then duplication won't
1921   // help us.  However, we can just replace the LHS or RHS with the constant.
1922   if (BlocksToFoldInto.size() ==
1923       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1924     if (!SplitVal) {
1925       // If all preds provide undef, just nuke the xor, because it is undef too.
1926       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1927       BO->eraseFromParent();
1928     } else if (SplitVal->isZero()) {
1929       // If all preds provide 0, replace the xor with the other input.
1930       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1931       BO->eraseFromParent();
1932     } else {
1933       // If all preds provide 1, set the computed value to 1.
1934       BO->setOperand(!isLHS, SplitVal);
1935     }
1936 
1937     return true;
1938   }
1939 
1940   // If any of predecessors end with an indirect goto, we can't change its
1941   // destination. Same for CallBr.
1942   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1943         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1944                isa<CallBrInst>(Pred->getTerminator());
1945       }))
1946     return false;
1947 
1948   // Try to duplicate BB into PredBB.
1949   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1950 }
1951 
1952 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1953 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1954 /// NewPred using the entries from OldPred (suitably mapped).
1955 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1956                                             BasicBlock *OldPred,
1957                                             BasicBlock *NewPred,
1958                                      DenseMap<Instruction*, Value*> &ValueMap) {
1959   for (PHINode &PN : PHIBB->phis()) {
1960     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1961     // DestBlock.
1962     Value *IV = PN.getIncomingValueForBlock(OldPred);
1963 
1964     // Remap the value if necessary.
1965     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1966       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1967       if (I != ValueMap.end())
1968         IV = I->second;
1969     }
1970 
1971     PN.addIncoming(IV, NewPred);
1972   }
1973 }
1974 
1975 /// Merge basic block BB into its sole predecessor if possible.
1976 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1977   BasicBlock *SinglePred = BB->getSinglePredecessor();
1978   if (!SinglePred)
1979     return false;
1980 
1981   const Instruction *TI = SinglePred->getTerminator();
1982   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1983       SinglePred == BB || hasAddressTakenAndUsed(BB))
1984     return false;
1985 
1986   // If SinglePred was a loop header, BB becomes one.
1987   if (LoopHeaders.erase(SinglePred))
1988     LoopHeaders.insert(BB);
1989 
1990   LVI->eraseBlock(SinglePred);
1991   MergeBasicBlockIntoOnlyPred(BB, DTU);
1992 
1993   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1994   // BB code within one basic block `BB`), we need to invalidate the LVI
1995   // information associated with BB, because the LVI information need not be
1996   // true for all of BB after the merge. For example,
1997   // Before the merge, LVI info and code is as follows:
1998   // SinglePred: <LVI info1 for %p val>
1999   // %y = use of %p
2000   // call @exit() // need not transfer execution to successor.
2001   // assume(%p) // from this point on %p is true
2002   // br label %BB
2003   // BB: <LVI info2 for %p val, i.e. %p is true>
2004   // %x = use of %p
2005   // br label exit
2006   //
2007   // Note that this LVI info for blocks BB and SinglPred is correct for %p
2008   // (info2 and info1 respectively). After the merge and the deletion of the
2009   // LVI info1 for SinglePred. We have the following code:
2010   // BB: <LVI info2 for %p val>
2011   // %y = use of %p
2012   // call @exit()
2013   // assume(%p)
2014   // %x = use of %p <-- LVI info2 is correct from here onwards.
2015   // br label exit
2016   // LVI info2 for BB is incorrect at the beginning of BB.
2017 
2018   // Invalidate LVI information for BB if the LVI is not provably true for
2019   // all of BB.
2020   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2021     LVI->eraseBlock(BB);
2022   return true;
2023 }
2024 
2025 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2026 /// ValueMapping maps old values in BB to new ones in NewBB.
2027 void JumpThreadingPass::updateSSA(
2028     BasicBlock *BB, BasicBlock *NewBB,
2029     DenseMap<Instruction *, Value *> &ValueMapping) {
2030   // If there were values defined in BB that are used outside the block, then we
2031   // now have to update all uses of the value to use either the original value,
2032   // the cloned value, or some PHI derived value.  This can require arbitrary
2033   // PHI insertion, of which we are prepared to do, clean these up now.
2034   SSAUpdater SSAUpdate;
2035   SmallVector<Use *, 16> UsesToRename;
2036 
2037   for (Instruction &I : *BB) {
2038     // Scan all uses of this instruction to see if it is used outside of its
2039     // block, and if so, record them in UsesToRename.
2040     for (Use &U : I.uses()) {
2041       Instruction *User = cast<Instruction>(U.getUser());
2042       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2043         if (UserPN->getIncomingBlock(U) == BB)
2044           continue;
2045       } else if (User->getParent() == BB)
2046         continue;
2047 
2048       UsesToRename.push_back(&U);
2049     }
2050 
2051     // If there are no uses outside the block, we're done with this instruction.
2052     if (UsesToRename.empty())
2053       continue;
2054     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2055 
2056     // We found a use of I outside of BB.  Rename all uses of I that are outside
2057     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2058     // with the two values we know.
2059     SSAUpdate.Initialize(I.getType(), I.getName());
2060     SSAUpdate.AddAvailableValue(BB, &I);
2061     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2062 
2063     while (!UsesToRename.empty())
2064       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2065     LLVM_DEBUG(dbgs() << "\n");
2066   }
2067 }
2068 
2069 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2070 /// arguments that come from PredBB.  Return the map from the variables in the
2071 /// source basic block to the variables in the newly created basic block.
2072 DenseMap<Instruction *, Value *>
2073 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2074                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2075                                      BasicBlock *PredBB) {
2076   // We are going to have to map operands from the source basic block to the new
2077   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2078   // block, evaluate them to account for entry from PredBB.
2079   DenseMap<Instruction *, Value *> ValueMapping;
2080 
2081   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2082   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2083   // might need to rewrite the operand of the cloned phi.
2084   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2085     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2086     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2087     ValueMapping[PN] = NewPN;
2088   }
2089 
2090   // Clone noalias scope declarations in the threaded block. When threading a
2091   // loop exit, we would otherwise end up with two idential scope declarations
2092   // visible at the same time.
2093   SmallVector<MDNode *> NoAliasScopes;
2094   DenseMap<MDNode *, MDNode *> ClonedScopes;
2095   LLVMContext &Context = PredBB->getContext();
2096   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2097   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2098 
2099   // Clone the non-phi instructions of the source basic block into NewBB,
2100   // keeping track of the mapping and using it to remap operands in the cloned
2101   // instructions.
2102   for (; BI != BE; ++BI) {
2103     Instruction *New = BI->clone();
2104     New->setName(BI->getName());
2105     NewBB->getInstList().push_back(New);
2106     ValueMapping[&*BI] = New;
2107     adaptNoAliasScopes(New, ClonedScopes, Context);
2108 
2109     // Remap operands to patch up intra-block references.
2110     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2111       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2112         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2113         if (I != ValueMapping.end())
2114           New->setOperand(i, I->second);
2115       }
2116   }
2117 
2118   return ValueMapping;
2119 }
2120 
2121 /// Attempt to thread through two successive basic blocks.
2122 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2123                                                          Value *Cond) {
2124   // Consider:
2125   //
2126   // PredBB:
2127   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2128   //   %tobool = icmp eq i32 %cond, 0
2129   //   br i1 %tobool, label %BB, label ...
2130   //
2131   // BB:
2132   //   %cmp = icmp eq i32* %var, null
2133   //   br i1 %cmp, label ..., label ...
2134   //
2135   // We don't know the value of %var at BB even if we know which incoming edge
2136   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2137   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2138   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2139 
2140   // Require that BB end with a Branch for simplicity.
2141   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2142   if (!CondBr)
2143     return false;
2144 
2145   // BB must have exactly one predecessor.
2146   BasicBlock *PredBB = BB->getSinglePredecessor();
2147   if (!PredBB)
2148     return false;
2149 
2150   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2151   // unconditional branch, we should be merging PredBB and BB instead. For
2152   // simplicity, we don't deal with a switch.
2153   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2154   if (!PredBBBranch || PredBBBranch->isUnconditional())
2155     return false;
2156 
2157   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2158   // PredBB.
2159   if (PredBB->getSinglePredecessor())
2160     return false;
2161 
2162   // Don't thread through PredBB if it contains a successor edge to itself, in
2163   // which case we would infinite loop.  Suppose we are threading an edge from
2164   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2165   // successor edge to itself.  If we allowed jump threading in this case, we
2166   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2167   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2168   // with another jump threading opportunity from PredBB.thread through PredBB
2169   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2170   // would keep peeling one iteration from PredBB.
2171   if (llvm::is_contained(successors(PredBB), PredBB))
2172     return false;
2173 
2174   // Don't thread across a loop header.
2175   if (LoopHeaders.count(PredBB))
2176     return false;
2177 
2178   // Avoid complication with duplicating EH pads.
2179   if (PredBB->isEHPad())
2180     return false;
2181 
2182   // Find a predecessor that we can thread.  For simplicity, we only consider a
2183   // successor edge out of BB to which we thread exactly one incoming edge into
2184   // PredBB.
2185   unsigned ZeroCount = 0;
2186   unsigned OneCount = 0;
2187   BasicBlock *ZeroPred = nullptr;
2188   BasicBlock *OnePred = nullptr;
2189   for (BasicBlock *P : predecessors(PredBB)) {
2190     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2191             evaluateOnPredecessorEdge(BB, P, Cond))) {
2192       if (CI->isZero()) {
2193         ZeroCount++;
2194         ZeroPred = P;
2195       } else if (CI->isOne()) {
2196         OneCount++;
2197         OnePred = P;
2198       }
2199     }
2200   }
2201 
2202   // Disregard complicated cases where we have to thread multiple edges.
2203   BasicBlock *PredPredBB;
2204   if (ZeroCount == 1) {
2205     PredPredBB = ZeroPred;
2206   } else if (OneCount == 1) {
2207     PredPredBB = OnePred;
2208   } else {
2209     return false;
2210   }
2211 
2212   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2213 
2214   // If threading to the same block as we come from, we would infinite loop.
2215   if (SuccBB == BB) {
2216     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2217                       << "' - would thread to self!\n");
2218     return false;
2219   }
2220 
2221   // If threading this would thread across a loop header, don't thread the edge.
2222   // See the comments above findLoopHeaders for justifications and caveats.
2223   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2224     LLVM_DEBUG({
2225       bool BBIsHeader = LoopHeaders.count(BB);
2226       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2227       dbgs() << "  Not threading across "
2228              << (BBIsHeader ? "loop header BB '" : "block BB '")
2229              << BB->getName() << "' to dest "
2230              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2231              << SuccBB->getName()
2232              << "' - it might create an irreducible loop!\n";
2233     });
2234     return false;
2235   }
2236 
2237   // Compute the cost of duplicating BB and PredBB.
2238   unsigned BBCost =
2239       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2240   unsigned PredBBCost = getJumpThreadDuplicationCost(
2241       PredBB, PredBB->getTerminator(), BBDupThreshold);
2242 
2243   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2244   // individually before checking their sum because getJumpThreadDuplicationCost
2245   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2246   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2247       BBCost + PredBBCost > BBDupThreshold) {
2248     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2249                       << "' - Cost is too high: " << PredBBCost
2250                       << " for PredBB, " << BBCost << "for BB\n");
2251     return false;
2252   }
2253 
2254   // Now we are ready to duplicate PredBB.
2255   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2256   return true;
2257 }
2258 
2259 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2260                                                     BasicBlock *PredBB,
2261                                                     BasicBlock *BB,
2262                                                     BasicBlock *SuccBB) {
2263   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2264                     << BB->getName() << "'\n");
2265 
2266   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2267   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2268 
2269   BasicBlock *NewBB =
2270       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2271                          PredBB->getParent(), PredBB);
2272   NewBB->moveAfter(PredBB);
2273 
2274   // Set the block frequency of NewBB.
2275   if (HasProfileData) {
2276     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2277                      BPI->getEdgeProbability(PredPredBB, PredBB);
2278     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2279   }
2280 
2281   // We are going to have to map operands from the original BB block to the new
2282   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2283   // to account for entry from PredPredBB.
2284   DenseMap<Instruction *, Value *> ValueMapping =
2285       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2286 
2287   // Copy the edge probabilities from PredBB to NewBB.
2288   if (HasProfileData)
2289     BPI->copyEdgeProbabilities(PredBB, NewBB);
2290 
2291   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2292   // This eliminates predecessors from PredPredBB, which requires us to simplify
2293   // any PHI nodes in PredBB.
2294   Instruction *PredPredTerm = PredPredBB->getTerminator();
2295   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2296     if (PredPredTerm->getSuccessor(i) == PredBB) {
2297       PredBB->removePredecessor(PredPredBB, true);
2298       PredPredTerm->setSuccessor(i, NewBB);
2299     }
2300 
2301   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2302                                   ValueMapping);
2303   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2304                                   ValueMapping);
2305 
2306   DTU->applyUpdatesPermissive(
2307       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2308        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2309        {DominatorTree::Insert, PredPredBB, NewBB},
2310        {DominatorTree::Delete, PredPredBB, PredBB}});
2311 
2312   updateSSA(PredBB, NewBB, ValueMapping);
2313 
2314   // Clean up things like PHI nodes with single operands, dead instructions,
2315   // etc.
2316   SimplifyInstructionsInBlock(NewBB, TLI);
2317   SimplifyInstructionsInBlock(PredBB, TLI);
2318 
2319   SmallVector<BasicBlock *, 1> PredsToFactor;
2320   PredsToFactor.push_back(NewBB);
2321   threadEdge(BB, PredsToFactor, SuccBB);
2322 }
2323 
2324 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2325 bool JumpThreadingPass::tryThreadEdge(
2326     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2327     BasicBlock *SuccBB) {
2328   // If threading to the same block as we come from, we would infinite loop.
2329   if (SuccBB == BB) {
2330     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2331                       << "' - would thread to self!\n");
2332     return false;
2333   }
2334 
2335   // If threading this would thread across a loop header, don't thread the edge.
2336   // See the comments above findLoopHeaders for justifications and caveats.
2337   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2338     LLVM_DEBUG({
2339       bool BBIsHeader = LoopHeaders.count(BB);
2340       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2341       dbgs() << "  Not threading across "
2342           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2343           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2344           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2345     });
2346     return false;
2347   }
2348 
2349   unsigned JumpThreadCost =
2350       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2351   if (JumpThreadCost > BBDupThreshold) {
2352     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2353                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2354     return false;
2355   }
2356 
2357   threadEdge(BB, PredBBs, SuccBB);
2358   return true;
2359 }
2360 
2361 /// threadEdge - We have decided that it is safe and profitable to factor the
2362 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2363 /// across BB.  Transform the IR to reflect this change.
2364 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2365                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2366                                    BasicBlock *SuccBB) {
2367   assert(SuccBB != BB && "Don't create an infinite loop");
2368 
2369   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2370          "Don't thread across loop headers");
2371 
2372   // And finally, do it!  Start by factoring the predecessors if needed.
2373   BasicBlock *PredBB;
2374   if (PredBBs.size() == 1)
2375     PredBB = PredBBs[0];
2376   else {
2377     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2378                       << " common predecessors.\n");
2379     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2380   }
2381 
2382   // And finally, do it!
2383   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2384                     << "' to '" << SuccBB->getName()
2385                     << ", across block:\n    " << *BB << "\n");
2386 
2387   LVI->threadEdge(PredBB, BB, SuccBB);
2388 
2389   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2390                                          BB->getName()+".thread",
2391                                          BB->getParent(), BB);
2392   NewBB->moveAfter(PredBB);
2393 
2394   // Set the block frequency of NewBB.
2395   if (HasProfileData) {
2396     auto NewBBFreq =
2397         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2398     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2399   }
2400 
2401   // Copy all the instructions from BB to NewBB except the terminator.
2402   DenseMap<Instruction *, Value *> ValueMapping =
2403       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2404 
2405   // We didn't copy the terminator from BB over to NewBB, because there is now
2406   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2407   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2408   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2409 
2410   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2411   // PHI nodes for NewBB now.
2412   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2413 
2414   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2415   // eliminates predecessors from BB, which requires us to simplify any PHI
2416   // nodes in BB.
2417   Instruction *PredTerm = PredBB->getTerminator();
2418   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2419     if (PredTerm->getSuccessor(i) == BB) {
2420       BB->removePredecessor(PredBB, true);
2421       PredTerm->setSuccessor(i, NewBB);
2422     }
2423 
2424   // Enqueue required DT updates.
2425   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2426                                {DominatorTree::Insert, PredBB, NewBB},
2427                                {DominatorTree::Delete, PredBB, BB}});
2428 
2429   updateSSA(BB, NewBB, ValueMapping);
2430 
2431   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2432   // over the new instructions and zap any that are constants or dead.  This
2433   // frequently happens because of phi translation.
2434   SimplifyInstructionsInBlock(NewBB, TLI);
2435 
2436   // Update the edge weight from BB to SuccBB, which should be less than before.
2437   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2438 
2439   // Threaded an edge!
2440   ++NumThreads;
2441 }
2442 
2443 /// Create a new basic block that will be the predecessor of BB and successor of
2444 /// all blocks in Preds. When profile data is available, update the frequency of
2445 /// this new block.
2446 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2447                                                ArrayRef<BasicBlock *> Preds,
2448                                                const char *Suffix) {
2449   SmallVector<BasicBlock *, 2> NewBBs;
2450 
2451   // Collect the frequencies of all predecessors of BB, which will be used to
2452   // update the edge weight of the result of splitting predecessors.
2453   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2454   if (HasProfileData)
2455     for (auto Pred : Preds)
2456       FreqMap.insert(std::make_pair(
2457           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2458 
2459   // In the case when BB is a LandingPad block we create 2 new predecessors
2460   // instead of just one.
2461   if (BB->isLandingPad()) {
2462     std::string NewName = std::string(Suffix) + ".split-lp";
2463     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2464   } else {
2465     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2466   }
2467 
2468   std::vector<DominatorTree::UpdateType> Updates;
2469   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2470   for (auto NewBB : NewBBs) {
2471     BlockFrequency NewBBFreq(0);
2472     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2473     for (auto Pred : predecessors(NewBB)) {
2474       Updates.push_back({DominatorTree::Delete, Pred, BB});
2475       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2476       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2477         NewBBFreq += FreqMap.lookup(Pred);
2478     }
2479     if (HasProfileData) // Apply the summed frequency to NewBB.
2480       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2481   }
2482 
2483   DTU->applyUpdatesPermissive(Updates);
2484   return NewBBs[0];
2485 }
2486 
2487 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2488   const Instruction *TI = BB->getTerminator();
2489   assert(TI->getNumSuccessors() > 1 && "not a split");
2490 
2491   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2492   if (!WeightsNode)
2493     return false;
2494 
2495   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2496   if (MDName->getString() != "branch_weights")
2497     return false;
2498 
2499   // Ensure there are weights for all of the successors. Note that the first
2500   // operand to the metadata node is a name, not a weight.
2501   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2502 }
2503 
2504 /// Update the block frequency of BB and branch weight and the metadata on the
2505 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2506 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2507 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2508                                                      BasicBlock *BB,
2509                                                      BasicBlock *NewBB,
2510                                                      BasicBlock *SuccBB) {
2511   if (!HasProfileData)
2512     return;
2513 
2514   assert(BFI && BPI && "BFI & BPI should have been created here");
2515 
2516   // As the edge from PredBB to BB is deleted, we have to update the block
2517   // frequency of BB.
2518   auto BBOrigFreq = BFI->getBlockFreq(BB);
2519   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2520   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2521   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2522   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2523 
2524   // Collect updated outgoing edges' frequencies from BB and use them to update
2525   // edge probabilities.
2526   SmallVector<uint64_t, 4> BBSuccFreq;
2527   for (BasicBlock *Succ : successors(BB)) {
2528     auto SuccFreq = (Succ == SuccBB)
2529                         ? BB2SuccBBFreq - NewBBFreq
2530                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2531     BBSuccFreq.push_back(SuccFreq.getFrequency());
2532   }
2533 
2534   uint64_t MaxBBSuccFreq =
2535       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2536 
2537   SmallVector<BranchProbability, 4> BBSuccProbs;
2538   if (MaxBBSuccFreq == 0)
2539     BBSuccProbs.assign(BBSuccFreq.size(),
2540                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2541   else {
2542     for (uint64_t Freq : BBSuccFreq)
2543       BBSuccProbs.push_back(
2544           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2545     // Normalize edge probabilities so that they sum up to one.
2546     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2547                                               BBSuccProbs.end());
2548   }
2549 
2550   // Update edge probabilities in BPI.
2551   BPI->setEdgeProbability(BB, BBSuccProbs);
2552 
2553   // Update the profile metadata as well.
2554   //
2555   // Don't do this if the profile of the transformed blocks was statically
2556   // estimated.  (This could occur despite the function having an entry
2557   // frequency in completely cold parts of the CFG.)
2558   //
2559   // In this case we don't want to suggest to subsequent passes that the
2560   // calculated weights are fully consistent.  Consider this graph:
2561   //
2562   //                 check_1
2563   //             50% /  |
2564   //             eq_1   | 50%
2565   //                 \  |
2566   //                 check_2
2567   //             50% /  |
2568   //             eq_2   | 50%
2569   //                 \  |
2570   //                 check_3
2571   //             50% /  |
2572   //             eq_3   | 50%
2573   //                 \  |
2574   //
2575   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2576   // the overall probabilities are inconsistent; the total probability that the
2577   // value is either 1, 2 or 3 is 150%.
2578   //
2579   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2580   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2581   // the loop exit edge.  Then based solely on static estimation we would assume
2582   // the loop was extremely hot.
2583   //
2584   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2585   // shouldn't make edges extremely likely or unlikely based solely on static
2586   // estimation.
2587   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2588     SmallVector<uint32_t, 4> Weights;
2589     for (auto Prob : BBSuccProbs)
2590       Weights.push_back(Prob.getNumerator());
2591 
2592     auto TI = BB->getTerminator();
2593     TI->setMetadata(
2594         LLVMContext::MD_prof,
2595         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2596   }
2597 }
2598 
2599 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2600 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2601 /// If we can duplicate the contents of BB up into PredBB do so now, this
2602 /// improves the odds that the branch will be on an analyzable instruction like
2603 /// a compare.
2604 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2605     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2606   assert(!PredBBs.empty() && "Can't handle an empty set");
2607 
2608   // If BB is a loop header, then duplicating this block outside the loop would
2609   // cause us to transform this into an irreducible loop, don't do this.
2610   // See the comments above findLoopHeaders for justifications and caveats.
2611   if (LoopHeaders.count(BB)) {
2612     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2613                       << "' into predecessor block '" << PredBBs[0]->getName()
2614                       << "' - it might create an irreducible loop!\n");
2615     return false;
2616   }
2617 
2618   unsigned DuplicationCost =
2619       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2620   if (DuplicationCost > BBDupThreshold) {
2621     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2622                       << "' - Cost is too high: " << DuplicationCost << "\n");
2623     return false;
2624   }
2625 
2626   // And finally, do it!  Start by factoring the predecessors if needed.
2627   std::vector<DominatorTree::UpdateType> Updates;
2628   BasicBlock *PredBB;
2629   if (PredBBs.size() == 1)
2630     PredBB = PredBBs[0];
2631   else {
2632     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2633                       << " common predecessors.\n");
2634     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2635   }
2636   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2637 
2638   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2639   // of PredBB.
2640   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2641                     << "' into end of '" << PredBB->getName()
2642                     << "' to eliminate branch on phi.  Cost: "
2643                     << DuplicationCost << " block is:" << *BB << "\n");
2644 
2645   // Unless PredBB ends with an unconditional branch, split the edge so that we
2646   // can just clone the bits from BB into the end of the new PredBB.
2647   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2648 
2649   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2650     BasicBlock *OldPredBB = PredBB;
2651     PredBB = SplitEdge(OldPredBB, BB);
2652     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2653     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2654     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2655     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2656   }
2657 
2658   // We are going to have to map operands from the original BB block into the
2659   // PredBB block.  Evaluate PHI nodes in BB.
2660   DenseMap<Instruction*, Value*> ValueMapping;
2661 
2662   BasicBlock::iterator BI = BB->begin();
2663   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2664     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2665   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2666   // mapping and using it to remap operands in the cloned instructions.
2667   for (; BI != BB->end(); ++BI) {
2668     Instruction *New = BI->clone();
2669 
2670     // Remap operands to patch up intra-block references.
2671     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2672       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2673         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2674         if (I != ValueMapping.end())
2675           New->setOperand(i, I->second);
2676       }
2677 
2678     // If this instruction can be simplified after the operands are updated,
2679     // just use the simplified value instead.  This frequently happens due to
2680     // phi translation.
2681     if (Value *IV = SimplifyInstruction(
2682             New,
2683             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2684       ValueMapping[&*BI] = IV;
2685       if (!New->mayHaveSideEffects()) {
2686         New->deleteValue();
2687         New = nullptr;
2688       }
2689     } else {
2690       ValueMapping[&*BI] = New;
2691     }
2692     if (New) {
2693       // Otherwise, insert the new instruction into the block.
2694       New->setName(BI->getName());
2695       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2696       // Update Dominance from simplified New instruction operands.
2697       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2698         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2699           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2700     }
2701   }
2702 
2703   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2704   // add entries to the PHI nodes for branch from PredBB now.
2705   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2706   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2707                                   ValueMapping);
2708   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2709                                   ValueMapping);
2710 
2711   updateSSA(BB, PredBB, ValueMapping);
2712 
2713   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2714   // that we nuked.
2715   BB->removePredecessor(PredBB, true);
2716 
2717   // Remove the unconditional branch at the end of the PredBB block.
2718   OldPredBranch->eraseFromParent();
2719   if (HasProfileData)
2720     BPI->copyEdgeProbabilities(BB, PredBB);
2721   DTU->applyUpdatesPermissive(Updates);
2722 
2723   ++NumDupes;
2724   return true;
2725 }
2726 
2727 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2728 // a Select instruction in Pred. BB has other predecessors and SI is used in
2729 // a PHI node in BB. SI has no other use.
2730 // A new basic block, NewBB, is created and SI is converted to compare and
2731 // conditional branch. SI is erased from parent.
2732 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2733                                           SelectInst *SI, PHINode *SIUse,
2734                                           unsigned Idx) {
2735   // Expand the select.
2736   //
2737   // Pred --
2738   //  |    v
2739   //  |  NewBB
2740   //  |    |
2741   //  |-----
2742   //  v
2743   // BB
2744   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2745   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2746                                          BB->getParent(), BB);
2747   // Move the unconditional branch to NewBB.
2748   PredTerm->removeFromParent();
2749   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2750   // Create a conditional branch and update PHI nodes.
2751   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2752   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2753   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2754   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2755 
2756   // The select is now dead.
2757   SI->eraseFromParent();
2758   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2759                                {DominatorTree::Insert, Pred, NewBB}});
2760 
2761   // Update any other PHI nodes in BB.
2762   for (BasicBlock::iterator BI = BB->begin();
2763        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2764     if (Phi != SIUse)
2765       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2766 }
2767 
2768 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2769   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2770 
2771   if (!CondPHI || CondPHI->getParent() != BB)
2772     return false;
2773 
2774   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2775     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2776     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2777 
2778     // The second and third condition can be potentially relaxed. Currently
2779     // the conditions help to simplify the code and allow us to reuse existing
2780     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2781     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2782       continue;
2783 
2784     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2785     if (!PredTerm || !PredTerm->isUnconditional())
2786       continue;
2787 
2788     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2789     return true;
2790   }
2791   return false;
2792 }
2793 
2794 /// tryToUnfoldSelect - Look for blocks of the form
2795 /// bb1:
2796 ///   %a = select
2797 ///   br bb2
2798 ///
2799 /// bb2:
2800 ///   %p = phi [%a, %bb1] ...
2801 ///   %c = icmp %p
2802 ///   br i1 %c
2803 ///
2804 /// And expand the select into a branch structure if one of its arms allows %c
2805 /// to be folded. This later enables threading from bb1 over bb2.
2806 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2807   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2808   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2809   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2810 
2811   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2812       CondLHS->getParent() != BB)
2813     return false;
2814 
2815   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2816     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2817     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2818 
2819     // Look if one of the incoming values is a select in the corresponding
2820     // predecessor.
2821     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2822       continue;
2823 
2824     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2825     if (!PredTerm || !PredTerm->isUnconditional())
2826       continue;
2827 
2828     // Now check if one of the select values would allow us to constant fold the
2829     // terminator in BB. We don't do the transform if both sides fold, those
2830     // cases will be threaded in any case.
2831     LazyValueInfo::Tristate LHSFolds =
2832         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2833                                 CondRHS, Pred, BB, CondCmp);
2834     LazyValueInfo::Tristate RHSFolds =
2835         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2836                                 CondRHS, Pred, BB, CondCmp);
2837     if ((LHSFolds != LazyValueInfo::Unknown ||
2838          RHSFolds != LazyValueInfo::Unknown) &&
2839         LHSFolds != RHSFolds) {
2840       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2841       return true;
2842     }
2843   }
2844   return false;
2845 }
2846 
2847 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2848 /// same BB in the form
2849 /// bb:
2850 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2851 ///   %s = select %p, trueval, falseval
2852 ///
2853 /// or
2854 ///
2855 /// bb:
2856 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2857 ///   %c = cmp %p, 0
2858 ///   %s = select %c, trueval, falseval
2859 ///
2860 /// And expand the select into a branch structure. This later enables
2861 /// jump-threading over bb in this pass.
2862 ///
2863 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2864 /// select if the associated PHI has at least one constant.  If the unfolded
2865 /// select is not jump-threaded, it will be folded again in the later
2866 /// optimizations.
2867 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2868   // This transform would reduce the quality of msan diagnostics.
2869   // Disable this transform under MemorySanitizer.
2870   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2871     return false;
2872 
2873   // If threading this would thread across a loop header, don't thread the edge.
2874   // See the comments above findLoopHeaders for justifications and caveats.
2875   if (LoopHeaders.count(BB))
2876     return false;
2877 
2878   for (BasicBlock::iterator BI = BB->begin();
2879        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2880     // Look for a Phi having at least one constant incoming value.
2881     if (llvm::all_of(PN->incoming_values(),
2882                      [](Value *V) { return !isa<ConstantInt>(V); }))
2883       continue;
2884 
2885     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2886       using namespace PatternMatch;
2887 
2888       // Check if SI is in BB and use V as condition.
2889       if (SI->getParent() != BB)
2890         return false;
2891       Value *Cond = SI->getCondition();
2892       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2893       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2894     };
2895 
2896     SelectInst *SI = nullptr;
2897     for (Use &U : PN->uses()) {
2898       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2899         // Look for a ICmp in BB that compares PN with a constant and is the
2900         // condition of a Select.
2901         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2902             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2903           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2904             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2905               SI = SelectI;
2906               break;
2907             }
2908       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2909         // Look for a Select in BB that uses PN as condition.
2910         if (isUnfoldCandidate(SelectI, U.get())) {
2911           SI = SelectI;
2912           break;
2913         }
2914       }
2915     }
2916 
2917     if (!SI)
2918       continue;
2919     // Expand the select.
2920     Value *Cond = SI->getCondition();
2921     if (InsertFreezeWhenUnfoldingSelect &&
2922         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
2923                                           &DTU->getDomTree()))
2924       Cond = new FreezeInst(Cond, "cond.fr", SI);
2925     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2926     BasicBlock *SplitBB = SI->getParent();
2927     BasicBlock *NewBB = Term->getParent();
2928     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2929     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2930     NewPN->addIncoming(SI->getFalseValue(), BB);
2931     SI->replaceAllUsesWith(NewPN);
2932     SI->eraseFromParent();
2933     // NewBB and SplitBB are newly created blocks which require insertion.
2934     std::vector<DominatorTree::UpdateType> Updates;
2935     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2936     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2937     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2938     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2939     // BB's successors were moved to SplitBB, update DTU accordingly.
2940     for (auto *Succ : successors(SplitBB)) {
2941       Updates.push_back({DominatorTree::Delete, BB, Succ});
2942       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2943     }
2944     DTU->applyUpdatesPermissive(Updates);
2945     return true;
2946   }
2947   return false;
2948 }
2949 
2950 /// Try to propagate a guard from the current BB into one of its predecessors
2951 /// in case if another branch of execution implies that the condition of this
2952 /// guard is always true. Currently we only process the simplest case that
2953 /// looks like:
2954 ///
2955 /// Start:
2956 ///   %cond = ...
2957 ///   br i1 %cond, label %T1, label %F1
2958 /// T1:
2959 ///   br label %Merge
2960 /// F1:
2961 ///   br label %Merge
2962 /// Merge:
2963 ///   %condGuard = ...
2964 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2965 ///
2966 /// And cond either implies condGuard or !condGuard. In this case all the
2967 /// instructions before the guard can be duplicated in both branches, and the
2968 /// guard is then threaded to one of them.
2969 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2970   using namespace PatternMatch;
2971 
2972   // We only want to deal with two predecessors.
2973   BasicBlock *Pred1, *Pred2;
2974   auto PI = pred_begin(BB), PE = pred_end(BB);
2975   if (PI == PE)
2976     return false;
2977   Pred1 = *PI++;
2978   if (PI == PE)
2979     return false;
2980   Pred2 = *PI++;
2981   if (PI != PE)
2982     return false;
2983   if (Pred1 == Pred2)
2984     return false;
2985 
2986   // Try to thread one of the guards of the block.
2987   // TODO: Look up deeper than to immediate predecessor?
2988   auto *Parent = Pred1->getSinglePredecessor();
2989   if (!Parent || Parent != Pred2->getSinglePredecessor())
2990     return false;
2991 
2992   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2993     for (auto &I : *BB)
2994       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2995         return true;
2996 
2997   return false;
2998 }
2999 
3000 /// Try to propagate the guard from BB which is the lower block of a diamond
3001 /// to one of its branches, in case if diamond's condition implies guard's
3002 /// condition.
3003 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3004                                     BranchInst *BI) {
3005   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3006   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3007   Value *GuardCond = Guard->getArgOperand(0);
3008   Value *BranchCond = BI->getCondition();
3009   BasicBlock *TrueDest = BI->getSuccessor(0);
3010   BasicBlock *FalseDest = BI->getSuccessor(1);
3011 
3012   auto &DL = BB->getModule()->getDataLayout();
3013   bool TrueDestIsSafe = false;
3014   bool FalseDestIsSafe = false;
3015 
3016   // True dest is safe if BranchCond => GuardCond.
3017   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3018   if (Impl && *Impl)
3019     TrueDestIsSafe = true;
3020   else {
3021     // False dest is safe if !BranchCond => GuardCond.
3022     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3023     if (Impl && *Impl)
3024       FalseDestIsSafe = true;
3025   }
3026 
3027   if (!TrueDestIsSafe && !FalseDestIsSafe)
3028     return false;
3029 
3030   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3031   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3032 
3033   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3034   Instruction *AfterGuard = Guard->getNextNode();
3035   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
3036   if (Cost > BBDupThreshold)
3037     return false;
3038   // Duplicate all instructions before the guard and the guard itself to the
3039   // branch where implication is not proved.
3040   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3041       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3042   assert(GuardedBlock && "Could not create the guarded block?");
3043   // Duplicate all instructions before the guard in the unguarded branch.
3044   // Since we have successfully duplicated the guarded block and this block
3045   // has fewer instructions, we expect it to succeed.
3046   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3047       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3048   assert(UnguardedBlock && "Could not create the unguarded block?");
3049   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3050                     << GuardedBlock->getName() << "\n");
3051   // Some instructions before the guard may still have uses. For them, we need
3052   // to create Phi nodes merging their copies in both guarded and unguarded
3053   // branches. Those instructions that have no uses can be just removed.
3054   SmallVector<Instruction *, 4> ToRemove;
3055   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3056     if (!isa<PHINode>(&*BI))
3057       ToRemove.push_back(&*BI);
3058 
3059   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3060   assert(InsertionPoint && "Empty block?");
3061   // Substitute with Phis & remove.
3062   for (auto *Inst : reverse(ToRemove)) {
3063     if (!Inst->use_empty()) {
3064       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3065       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3066       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3067       NewPN->insertBefore(InsertionPoint);
3068       Inst->replaceAllUsesWith(NewPN);
3069     }
3070     Inst->eraseFromParent();
3071   }
3072   return true;
3073 }
3074